JP2005132756A - Tantalum compound, method for producing the same and method for forming tantalum-containing thin film - Google Patents

Tantalum compound, method for producing the same and method for forming tantalum-containing thin film Download PDF

Info

Publication number
JP2005132756A
JP2005132756A JP2003368973A JP2003368973A JP2005132756A JP 2005132756 A JP2005132756 A JP 2005132756A JP 2003368973 A JP2003368973 A JP 2003368973A JP 2003368973 A JP2003368973 A JP 2003368973A JP 2005132756 A JP2005132756 A JP 2005132756A
Authority
JP
Japan
Prior art keywords
tantalum
tantalum compound
alkyl
methyl
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003368973A
Other languages
Japanese (ja)
Inventor
Kenichi Sekimoto
謙一 関本
Kensho Oshima
憲昭 大島
Satoru Yamakawa
哲 山川
Kenichi Tada
賢一 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sagami Chemical Research Institute
Tosoh Corp
Original Assignee
Sagami Chemical Research Institute
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagami Chemical Research Institute, Tosoh Corp filed Critical Sagami Chemical Research Institute
Priority to JP2003368973A priority Critical patent/JP2005132756A/en
Publication of JP2005132756A publication Critical patent/JP2005132756A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a tantalum compound that has reactivity to water lower than that of a conventional tantalum compound and forms a tantalum-containing thin film by a CVD method and to provide a method for producing the same and a method for forming a tantalum-containing thin film using the compound. <P>SOLUTION: The tantalum compound represented by formula 1 (R<SP>1</SP>is a 1-3C alkyl; R<SP>2</SP>is a 1-5C alkyl or a 3C or 4C trialkylsilyl; R<SP>3</SP>is a 1-3C alkyl; R<SP>4</SP>is methyl or ethyl; m is an integer of 0-5; n is an integer of 0-3; m+n is a number of ≤5) is obtained by reacting a tantalum compound represented by formula 2 with a cyclopentadiene derivative represented by general formula 3. The tantalum-containing thin film is obtained by using the compound as a raw material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、化学気相成長法(CVD法)によるタンタル含有薄膜の形成に有用なタンタル化合物、その製造方法およびそれを用いたタンタル含有薄膜の形成方法に関する。   The present invention relates to a tantalum compound useful for forming a tantalum-containing thin film by chemical vapor deposition (CVD), a method for producing the same, and a method for forming a tantalum-containing thin film using the same.

半導体デバイスの高性能化にともないデバイス構造の微細化が進んでいる。デバイス内の配線幅が細くなり従来配線材料として使用されてきたアルミニウムでは信号伝達の遅延が問題となるため、銅が使用されるようになってきた。銅は抵抗が低いという特徴をもつが、配線間の絶縁膜に使用される酸化シリコン中に拡散し易く絶縁膜の性能を低下させるという欠点を持つ。このため、配線と絶縁膜の間に拡散を防止するためのバリア膜を設けるという方法が取られている。バリア膜としては銅の拡散防止能の高さから窒化タンタル膜が一般に使用されている。現在、窒化タンタルのバリア膜は主としてスパッタによる物理気相成長法(PVD法)により形成されている。PVD法では凹凸のある面に均一な膜を形成することが難しく、今後、半導体デバイスの微細化が進むと複雑な3次元構造の表面に均一で薄い膜を形成することが必要となるためCVD法によるバリア膜の形成が検討されている。   As semiconductor devices have higher performance, device structures are being miniaturized. Since the wiring width in the device has become narrower and aluminum, which has been used as a conventional wiring material, delay in signal transmission becomes a problem, copper has been used. Although copper has a feature of low resistance, it has a drawback that it easily diffuses into silicon oxide used for an insulating film between wirings and lowers the performance of the insulating film. For this reason, a method of providing a barrier film for preventing diffusion between the wiring and the insulating film is employed. As the barrier film, a tantalum nitride film is generally used because of its high copper diffusion preventing ability. At present, a barrier film of tantalum nitride is mainly formed by a physical vapor deposition method (PVD method) by sputtering. With the PVD method, it is difficult to form a uniform film on an uneven surface, and it is necessary to form a uniform and thin film on the surface of a complicated three-dimensional structure as semiconductor devices become finer in the future. Formation of a barrier film by the method has been studied.

CVD法による窒化タンタル膜の原料としてはTaCl、TaF等のハロゲン化物、Ta(NMe、Ta(NEt等のアミド化合物、BuN=Ta(NEt等のアミド−イミド化合物が検討されている。これら窒化タンタル膜の原料として検討されている化合物はいずれも水に対して不安定なため、成膜に使用するキャリアガス、反応ガス中などに含まれる微量水分と反応して形成された膜内に酸素を取り込んでしまう。例えば、BuN=Ta(NEtを原料として600℃で成膜した窒化タンタル膜中には10atm%の酸素が含まれていたことが報告されている(例えば非特許文献1参照)。酸化タンタルは導電性がないため、配線と共に低抵抗であることが必要とされるバリア膜の抵抗値上昇の原因となる。 As a raw material for the tantalum nitride film by the CVD method, halides such as TaCl 5 and TaF 5 , amide compounds such as Ta (NMe 2 ) 5 and Ta (NEt 2 ) 5 , and amides such as t BuN = Ta (NEt 2 ) 3 -Imide compounds have been investigated. Since all of the compounds studied as raw materials for these tantalum nitride films are unstable with respect to water, the compounds in the film formed by reacting with trace moisture contained in the carrier gas and reaction gas used for film formation Intake oxygen into the water. For example, it has been reported that a tantalum nitride film formed at 600 ° C. using t BuN = Ta (NEt 2 ) 3 as a raw material contains 10 atm% oxygen (see, for example, Non-Patent Document 1). Since tantalum oxide is not conductive, it causes an increase in the resistance value of the barrier film, which is required to have a low resistance together with the wiring.

Thin Solid Filmes vol.270,531(1995)Thin Solid Films vol. 270,531 (1995)

本発明は、上記タンタル化合物よりも水に対する反応性が低く、CVD法によってタンタル含有薄膜を形成可能なタンタル化合物とその製造方法およびそれを用いたタンタル含有薄膜の形成方法を提供することを目的とする。   An object of the present invention is to provide a tantalum compound that is less reactive to water than the tantalum compound and can form a tantalum-containing thin film by a CVD method, a method for producing the same, and a method for forming a tantalum-containing thin film using the same. To do.

本発明者らは上述のような現状に鑑み、鋭意検討を重ねた結果、タンタルのアミド−イミド化合物にかさ高いシクロペンタジエニル基を導入することにより上記目的を達成できることを見出し、本発明を完成するに至った。   In light of the present situation as described above, the present inventors have made extensive studies and found that the above object can be achieved by introducing a bulky cyclopentadienyl group into a tantalum amide-imide compound. It came to be completed.

すなわち本発明は、下記式1で表されることを特徴とする、タンタル化合物である   That is, this invention is a tantalum compound characterized by being represented by following formula 1.

Figure 2005132756
(式中Rは炭素数1から3のアルキル、Rは炭素数1から5のアルキル又は炭素数3もしくは4のトリアルキルシリル、Rは炭素数1から3のアルキル、Rはメチル又はエチルを示す。また、mは0から5の整数、nは0から3の整数でm+nが5以下となる数を示す。)。
Figure 2005132756
(Wherein R 1 is alkyl having 1 to 3 carbon atoms, R 2 is alkyl having 1 to 5 carbon atoms or trialkylsilyl having 3 or 4 carbon atoms, R 3 is alkyl having 1 to 3 carbon atoms, and R 4 is methyl. Or m represents an integer of 0 to 5, n represents an integer of 0 to 3, and m + n represents a number of 5 or less.

また本発明は、下記式2で表されるタンタル化合物と下記式3で表されるシクロペンタジエン誘導体を有機溶媒中で反応させることを特徴とする、式1で表されるタンタル化合物の製造方法である   Moreover, this invention is a manufacturing method of the tantalum compound represented by Formula 1 characterized by making the tantalum compound represented by following Formula 2 and the cyclopentadiene derivative represented by following Formula 3 react in an organic solvent. is there

Figure 2005132756
(式中Rは炭素数1から3のアルキル、Rはメチル又はエチルを示す。)
Figure 2005132756
(In the formula, R 3 represents alkyl having 1 to 3 carbon atoms, and R 4 represents methyl or ethyl.)

Figure 2005132756
(式中Rは炭素数1から3のアルキル、Rは炭素数1から5のアルキル又は炭素数3もしくは4のトリアルキルシリル、また、mは0から5の整数、nは0から3の整数でm+nが5以下となる数を示す。)。
Figure 2005132756
Wherein R 1 is alkyl having 1 to 3 carbon atoms, R 2 is alkyl having 1 to 5 carbon atoms or trialkylsilyl having 3 or 4 carbon atoms, m is an integer of 0 to 5, and n is 0 to 3 In which m + n is 5 or less.)

更に本発明は、式1で表されるタンタル化合物を原料として用いることを特徴とする、タンタル含有薄膜の形成方法である。以下に本発明を更に詳細に説明する。   Furthermore, the present invention is a method for forming a tantalum-containing thin film characterized by using a tantalum compound represented by Formula 1 as a raw material. The present invention is described in further detail below.

上記式中Rは炭素数1から3のアルキル、Rは炭素数1から5のアルキル又は炭素数3もしくは4のトリアルキルシリル、Rは炭素数1から3のアルキル、Rはメチル又はエチルを示す。また、mは0から5の整数、nは0から3の整数でm+nが5以下となる数を示す。このうちmおよびnが0、又はmが0、nが1でRが−CH、−CHCH、−CH(CH、−C(CH、もしくは−Si(CHのものが好ましい。また、Rは炭素数1から3のアルキル、Rはメチルまたはエチルを示すが、R、Rとの組み合わせでタンタル化合物が室温で液体となるものが好ましく、例えばm=0、n=0、またはm=0、n=1でRがメチルもしくはエチル、RおよびRがメチルまたはエチルが好ましい。特にm=0、n=1で、Rがエチル、Rがメチル、Rがメチルの組み合わせ、m=0、n=0で、Rがエチル、Rメチルの組み合わせ、m=0、n=1で、Rがエチル、Rがエチル、Rがメチルの組み合わせが好ましい。 In the above formula, R 1 is alkyl having 1 to 3 carbon atoms, R 2 is alkyl having 1 to 5 carbon atoms or trialkylsilyl having 3 or 4 carbon atoms, R 3 is alkyl having 1 to 3 carbon atoms, and R 4 is methyl Or ethyl. M is an integer from 0 to 5, n is an integer from 0 to 3, and m + n is a number that is 5 or less. Among them, m and n are 0, or m is 0, n is 1, and R 2 is —CH 3 , —CH 2 CH 3 , —CH (CH 3 ) 2 , —C (CH 3 ) 3 , or —Si ( Those of CH 3 ) 3 are preferred. R 3 represents alkyl having 1 to 3 carbon atoms, and R 4 represents methyl or ethyl. In combination with R 1 and R 2 , a compound in which the tantalum compound is liquid at room temperature is preferable, for example, m = 0, n = 0, or m = 0, n = 1, R 2 is methyl or ethyl, and R 3 and R 4 are preferably methyl or ethyl. In particular, m = 0, n = 1, R 2 is ethyl, R 3 is methyl, R 4 is methyl, m = 0, n = 0, R 3 is ethyl, R 4 methyl, m = 0 N = 1, R 2 is ethyl, R 3 is ethyl, and R 4 is methyl.

本発明のタンタル化合物は式2で表されるタンタル化合物と式3で表されるシクロペンタジエン誘導体を有機溶媒中で反応させることにより製造することができる。具体的には例えば上記式2で表されるタンタル化合物を有機溶媒に溶解し、上記式3で表されるシクロペンタジエン誘導体を加えて30分〜50時間反応させる。反応終了後、溶媒を留去して減圧蒸留、再結晶等の方法により精製すると、式1で表されるタンタル化合物が得られる。反応溶媒としてはヘキサン、ヘプタン、オクタン、トルエン、キシレン、ジエチルエーテル、THF等が使用できる。反応温度は特に限定されないが、式3で表されるシクロペンタジエン誘導体として、シクロペンタジエン、メチルシクロペンタジエン、エチルシクロペンタジエン等の2量化しやすいシクロペンタジエン類と反応させる場合には、加熱により2量化が進行しやすくなり、シクロペンタジエン類の2量体が生成すると、目的とするタンタル化合物との分離に手間がかかる。このためシクロペンタジエン類が2量化しにくい室温(25℃)付近が好ましい。   The tantalum compound of the present invention can be produced by reacting the tantalum compound represented by Formula 2 and the cyclopentadiene derivative represented by Formula 3 in an organic solvent. Specifically, for example, the tantalum compound represented by the above formula 2 is dissolved in an organic solvent, and the cyclopentadiene derivative represented by the above formula 3 is added and reacted for 30 minutes to 50 hours. After completion of the reaction, the tantalum compound represented by Formula 1 is obtained by distilling off the solvent and purifying by a method such as distillation under reduced pressure or recrystallization. As the reaction solvent, hexane, heptane, octane, toluene, xylene, diethyl ether, THF and the like can be used. Although the reaction temperature is not particularly limited, when the cyclopentadiene derivative represented by the formula 3 is reacted with cyclopentadiene such as cyclopentadiene, methylcyclopentadiene, ethylcyclopentadiene, etc. When it proceeds easily and a dimer of cyclopentadiene is produced, it takes time to separate from the target tantalum compound. For this reason, the vicinity of room temperature (25 ° C.) where cyclopentadiene is difficult to dimerize is preferable.

本発明の式1で表されるタンタル化合物を原料として、タンタル含有薄膜を形成することができる。その方法は特に限定されないが、一般に、タンタル化合物をガス、液体あるいは溶液で基板上に供給し、基板上で分解することにより行なわれる。ガス化の方法としてはタンタル化合物を加熱して気化させる方法、加熱した液体のタンタル化合物中に不活性キャリアガスを導入し、バブリングすることにより気化させる方法、タンタル化合物を有機溶媒に溶かして溶液とし、気化器に送って気化器内で気化させる方法等がある。また、液体あるいは溶液で供給する方法としてはスピンコート法、ディップ法、噴霧法等がある。溶液で使用する場合に用いられる有機溶媒としては、タンタル化合物と反応しないものであれば特に限定されないがヘキサン、シクロヘキサン、ヘプタン、オクタン、トルエン、キシレン等の炭化水素類が好ましい。基板上での分解は熱だけでも可能だが、プラズマ、光等を併用しても良い。   A tantalum-containing thin film can be formed using the tantalum compound represented by Formula 1 of the present invention as a raw material. Although the method is not particularly limited, it is generally carried out by supplying a tantalum compound with a gas, liquid or solution onto the substrate and decomposing it on the substrate. As a gasification method, a tantalum compound is heated and vaporized, an inert carrier gas is introduced into the heated liquid tantalum compound and vaporized by bubbling, and the tantalum compound is dissolved in an organic solvent to form a solution. There is a method of sending to a vaporizer and vaporizing in the vaporizer. Examples of the method of supplying the liquid or solution include a spin coating method, a dip method, and a spray method. The organic solvent used in the solution is not particularly limited as long as it does not react with the tantalum compound, but hydrocarbons such as hexane, cyclohexane, heptane, octane, toluene and xylene are preferable. Decomposition on the substrate is possible only with heat, but plasma, light, etc. may be used in combination.

また、モノシラン、ジシラン、ジクロロシラン、トリクロロシラン、テトラクロロシラン等のSi含有ガス、アンモニア、メチルヒドラジン、ジメチルヒドラジン、エチルヒドラジン、ジエチルヒドラジン、ブチルヒドラジン、フェニルヒドラジン、アジ化エチル、アジ化ブチル、アジ化フェニル等のN含有ガス、酸素、水素等を供給して成膜することにより金属タンタル、窒化タンタル、炭化タンタル、炭窒化タンタル、珪化タンタル、珪窒化タンタル、酸化タンタル等のタンタル含有膜を形成することができる。   Also, Si-containing gas such as monosilane, disilane, dichlorosilane, trichlorosilane, tetrachlorosilane, ammonia, methyl hydrazine, dimethyl hydrazine, ethyl hydrazine, diethyl hydrazine, butyl hydrazine, phenyl hydrazine, ethyl azide, butyl azide, azide N-containing gas such as phenyl, oxygen, hydrogen, etc. are supplied to form a tantalum-containing film such as metal tantalum, tantalum nitride, tantalum carbide, tantalum carbonitride, tantalum silicide, tantalum silicon nitride, and tantalum oxide. be able to.

本発明のタンタル化合物は、後述の実施例にも記載したように、TG−DTAにおける気化開始温度以下の温度域での重量減少が少なく、既知化合物であるBuN=Ta(NEtに比べてフローガス中の水分による影響を受けにくく、CVD材料として安定に気化することができる。またこの材料によりタンタル含有薄膜の形成が可能だが、特に窒化タンタル膜の場合には、フローガス中の水分の影響を受けにくいため膜中酸素の少ない膜の形成が期待できる。 As described in Examples below, the tantalum compound of the present invention has little weight loss in the temperature range below the vaporization start temperature in TG-DTA, and is a known compound t BuN = Ta (NEt 2 ) 3 . In comparison, it is less affected by moisture in the flow gas, and can be stably vaporized as a CVD material. In addition, although a tantalum-containing thin film can be formed with this material, in particular, in the case of a tantalum nitride film, it is difficult to be affected by moisture in the flow gas, so that formation of a film with little oxygen in the film can be expected.

以下、本発明を適用した具体的な実施の形態について、実施例により詳細に説明する。なお、本発明は以下の実施例に限定されるものではない。   Hereinafter, specific embodiments to which the present invention is applied will be described in detail by way of examples. In addition, this invention is not limited to a following example.

(実施例1)BuN=Ta(NEtCpの合成
BuN=Ta(NEt 1.20g(2.57mmol)をトルエン3mlに溶解した。氷浴により冷却してシクロペンタジエン0.63ml(7.70mmol)を滴下後、80℃のオイルバスで1時間加熱した。反応混合物から溶媒と揮発成分を減圧留去して橙色液体を得た。これを減圧蒸留してBuN=Ta(NEtCpの黄色液体0.70g(収率58.8%)を得た。
(Example 1) t BuN = Ta (NEt 2) 2 Cp Synthesis of
t BuN = Ta (NEt 2 ) 3 1.20 g (2.57 mmol) was dissolved in 3 ml of toluene. After cooling with an ice bath and adding 0.63 ml (7.70 mmol) of cyclopentadiene dropwise, the mixture was heated in an oil bath at 80 ° C. for 1 hour. The solvent and volatile components were distilled off from the reaction mixture under reduced pressure to obtain an orange liquid. This was distilled under reduced pressure to obtain 0.70 g (yield 58.8%) of a yellow liquid of t BuN = Ta (NEt 2 ) 2 Cp.

H−NMR(Benzene−d
δ:5.97(s,5H,C )、3.48(q,J=7Hz,8H,CH N)、1.25(s,9H,(C CN)、1.11(t,J=6.8Hz,12H,C CHN)
13C−NMR(Benzene−d
δ:106.00( )、64.91((CH N)、53.10(CH N)、33.92((CN)、16.91(CHN)。
1 H-NMR (Benzene-d 6 )
δ: 5.97 (s, 5H, C 5 H 5), 3.48 (q, J = 7Hz, 8H, CH 3 C H 2 N), 1.25 (s, 9H, (C H 3) 3 CN), 1.11 (t, J = 6.8 Hz, 12H, C H 3 CH 2 N)
13 C-NMR (Benzene-d 6 )
δ: 106.00 (C 5 H 5 ), 64.91 ((CH 3) 3 C N), 53.10 (CH 3 C H 2 N), 33.92 ((C H 3) 3 CN), 16.91 ( C H 3 CH 2 N).

(実施例2)BuN=Ta(NEtEtCpの合成
BuN=Ta(NEt 1.23g(2.64mmol)をトルエン3mlに溶解した。氷浴により冷却してエチルシクロペンタジエン1.53ml(13.2mmol)を滴下後、50℃のオイルバスで17時間加熱した。反応混合物から溶媒と揮発成分を減圧留去して橙色液体を得た。これを減圧蒸留してBuN=Ta(NEtEtCpの黄色液体0.34g(収率26.5%)を得た。
Example 2 Synthesis of t BuN = Ta (NEt 2 ) 2 EtCp
t BuN = Ta (NEt 2 ) 3 1.23 g (2.64 mmol) was dissolved in 3 ml of toluene. After cooling with an ice bath and adding 1.53 ml (13.2 mmol) of ethylcyclopentadiene dropwise, the mixture was heated in an oil bath at 50 ° C. for 17 hours. The solvent and volatile components were distilled off from the reaction mixture under reduced pressure to obtain an orange liquid. This was distilled under reduced pressure to obtain 0.34 g (yield 26.5%) of a yellow liquid of t BuN = Ta (NEt 2 ) 2 EtCp.

H−NMR(Benzene−d
δ:5.89(t,J=2.5Hz,2H,C Et)、5.87(t,J=2.8Hz,2H,C Et)、3.52(q,J=7Hz,8H,CH N)、2.55(q,J=7.7Hz,2H,CH Cp)、1.28(s,9H,(C CN)、1.14(t,J=7Hz,15H,C CHCp,C CHN)
13C−NMR(Benzene−d
δ:128.50( Et)、105.37( Et)、104.71( Et)、64.96((CH N)、53.01(CH N)、33.91((CN)、23.42(CH Cp)、17.02(CHN)、16.42(CHCp)。
1 H-NMR (Benzene-d 6 )
δ: 5.89 (t, J = 2.5 Hz, 2H, C 5 H 4 Et), 5.87 (t, J = 2.8 Hz, 2H, C 5 H 4 Et), 3.52 (q, J = 7Hz, 8H, CH 3 C H 2 N), 2.55 (q, J = 7.7Hz, 2H, CH 3 C H 2 Cp), 1.28 (s, 9H, (C H 3) 3 CN), 1.14 (t, J = 7 Hz, 15H, C H 3 CH 2 Cp, C H 3 CH 2 N)
13 C-NMR (Benzene-d 6 )
δ: 128.50 (C 5 H 4 Et), 105.37 (C 5 H 4 Et), 104.71 (C 5 H 4 Et), 64.96 ((CH 3) 3 C N), 53. 01 (CH 3 C H 2 N ), 33.91 ((C H 3) 3 CN), 23.42 (CH 3 C H 2 Cp), 17.02 (C H 3 CH 2 N), 16.42 ( C H 3 CH 2 Cp).

(実施例3)BuN=Ta(NMeEtCpの合成
BuN=Ta(NMe0.61g(1.58mmol)をトルエン5mlに溶解し、エチルシクロペンタジエン0.92ml(7.91mmol)を加えた。室温で21時間攪拌後、反応混合物中の固体をろ別してろ液から溶媒と揮発成分を留去して褐色液体を得た。これを減圧蒸留してBuN=Ta(NMeEtCpの黄色液体0.31g(収率44.6%)を得た。
Example 3 Synthesis of t BuN = Ta (NMe 2 ) 2 EtCp
0.61 g (1.58 mmol) of t BuN = Ta (NMe 2 ) 3 was dissolved in 5 ml of toluene, and 0.92 ml (7.91 mmol) of ethylcyclopentadiene was added. After stirring at room temperature for 21 hours, the solid in the reaction mixture was filtered off, and the solvent and volatile components were distilled off from the filtrate to obtain a brown liquid. This was distilled under reduced pressure to obtain 0.31 g (yield 44.6%) of a yellow liquid of t BuN = Ta (NMe 2 ) 2 EtCp.

H−NMR(Benzene−d
δ:5.89(t,J=2.5Hz,2H,C Et)、5.86(t,J=2.8Hz,2H,C Et)、3.28(s,12H,(C N)、2.47(q,J=7.7Hz,2H,CH Cp)、1.29(s,9H,(C CN)、1.11(t,J=7.5Hz,3H,C CHCp)
13C−NMR(Benzene−d
δ:129.64( Et)、105.55( Et)、103.97( Et)、64.89((CH N)、52.51((N)、34.19((CN)、22.66(CH Cp)、15.46(CHCp)。
1 H-NMR (Benzene-d 6 )
δ: 5.89 (t, J = 2.5 Hz, 2H, C 5 H 4 Et), 5.86 (t, J = 2.8 Hz, 2H, C 5 H 4 Et), 3.28 (s, 12H, (C H 3 ) 2 N), 2.47 (q, J = 7.7 Hz, 2H, CH 3 C H 2 Cp), 1.29 (s, 9H, (C H 3 ) 3 CN), 1.11 (t, J = 7.5 Hz, 3H, C H 3 CH 2 Cp)
13 C-NMR (Benzene-d 6 )
δ: 129.64 (C 5 H 4 Et), 105.55 (C 5 H 4 Et), 103.97 (C 5 H 4 Et), 64.89 ((CH 3) 3 C N), 52. 51 ((C H 3) 2 N), 34.19 ((C H 3) 3 CN), 22.66 (CH 3 C H 2 Cp), 15.46 (C H 3 CH 2 Cp).

(実施例4)BuN=Ta(NEtCpの熱分析
サンプル量15.2mg、フローガス(Ar)400ml/min、昇温速度10℃/minでTG−DTAを測定した。結果を図1に示す。密閉容器を使用し、昇温速度10℃/minでDSCを測定した。結果を図2に示す。TGより気化特性、DSCより分解特性がわかるが、測定結果よりこのタンタル化合物は気体として安定な温度範囲を有し、CVD法による成膜原料として適していることがわかった。また、タンタル化合物の気化ではなく、フローガス中の水分による分解と考えられる45〜55℃における重量減少は0.292%と少なかった。
(Example 4) Thermal analysis of t BuN = Ta (NEt 2 ) 2 Cp TG-DTA was measured at a sample amount of 15.2 mg, a flow gas (Ar) of 400 ml / min, and a heating rate of 10 ° C./min. The results are shown in FIG. Using an airtight container, DSC was measured at a heating rate of 10 ° C./min. The results are shown in FIG. Vaporization characteristics can be seen from TG and decomposition characteristics can be seen from DSC. From the measurement results, it was found that this tantalum compound has a stable temperature range as a gas and is suitable as a raw material for film formation by CVD. Further, the weight loss at 45 to 55 ° C., which is considered to be decomposition due to moisture in the flow gas, not vaporization of the tantalum compound was as small as 0.292%.

(実施例5)BuN=Ta(NEtEtCpの熱分析
サンプル量21.4mg、フローガス(Ar)400ml/min、昇温速度10℃/minでTG−DTAを測定した。結果を図3に示す。密閉容器を使用し、昇温速度10℃/minでDSCを測定した。結果を図4に示す。測定結果よりこのタンタル化合物は気体として安定な温度範囲を有し、CVD法による成膜原料として適していることがわかった。また、タンタル化合物の気化ではなく、フローガス中の水分による分解と考えられる45〜55℃における重量減少は0.144%と少なかった。
(Example 5) Thermal analysis of t BuN = Ta (NEt 2 ) 2 EtCp TG-DTA was measured at a sample amount of 21.4 mg, a flow gas (Ar) of 400 ml / min, and a heating rate of 10 ° C./min. The results are shown in FIG. Using an airtight container, DSC was measured at a heating rate of 10 ° C./min. The results are shown in FIG. From the measurement results, it was found that this tantalum compound has a stable temperature range as a gas and is suitable as a film forming raw material by the CVD method. In addition, the weight loss at 45 to 55 ° C., which is considered to be decomposition due to moisture in the flow gas, not vaporization of the tantalum compound was as small as 0.144%.

(実施例6)BuN=Ta(NMeEtCpの熱分析
サンプル量21.0mg、フローガス(Ar)400ml/min、昇温速度10℃/minでTG−DTAを測定した。結果を図5に示す。密閉容器を使用し、昇温速度10℃/minでDSCを測定した。結果を図6に示す。測定結果よりこのタンタル化合物は気体として安定な温度範囲を有し、CVD法による成膜原料として適していることがわかった。また、タンタル化合物の気化ではなく、フローガス中の水分による分解と考えられる45〜55℃における重量減少は0.156%と少なかった。
(Example 6) Thermal analysis of t BuN = Ta (NMe 2 ) 2 EtCp TG-DTA was measured at a sample amount of 21.0 mg, a flow gas (Ar) of 400 ml / min, and a heating rate of 10 ° C./min. The results are shown in FIG. Using an airtight container, DSC was measured at a heating rate of 10 ° C./min. The results are shown in FIG. From the measurement results, it was found that this tantalum compound has a stable temperature range as a gas and is suitable as a film forming raw material by the CVD method. Further, the weight loss at 45 to 55 ° C., which is considered to be decomposition due to moisture in the flow gas, not vaporization of the tantalum compound was as small as 0.156%.

(比較例1)BuN=Ta(NEtのTG−DTA測定
サンプル量12.4mg、フローガス(Ar)400ml/min、昇温速度10℃/minでTG−DTAを測定した。タンタル化合物の気化ではなく、フローガス中の水分による分解と考えられる45〜55℃における重量減少は0.436%であった。
(Comparative Example 1) TG-DTA measurement of t BuN = Ta (NEt 2 ) 3 TG-DTA was measured at a sample amount of 12.4 mg, flow gas (Ar) of 400 ml / min, and a heating rate of 10 ° C./min. The weight loss at 45 to 55 ° C., which is considered to be decomposition due to moisture in the flow gas, not vaporization of the tantalum compound, was 0.436%.

(実施例7)BuN=Ta(NEtCpを原料とした窒化タンタル膜の形成
1.5Paに減圧した反応槽中にSiO膜付Si基板を設置し、ヒーターで600℃に加熱した。ここにステンレス製容器内で180℃に加熱して気化させたBuN=Ta(NEtCpを供給して成膜を行なった。膜組成をX線回折により確認したところTaNであり、膜厚をSEMにより測定したところ100nmだった。
(Example 7) t BuN = Ta (NEt 2) the Si substrate with the SiO 2 film was placed 2 Cp A reaction vessel was evacuated to form 1.5Pa tantalum nitride film as a raw material, heated to 600 ° C. by the heater did. It was performed deposited here in a stainless steel vessel t vaporizing by heating to 180 ° C. in BuN = Ta (NEt 2) to supply 2 Cp. When the film composition was confirmed by X-ray diffraction, it was TaN, and when the film thickness was measured by SEM, it was 100 nm.

実施例4のTG−DTA曲線を示す図である。FIG. 6 is a diagram showing a TG-DTA curve of Example 4. 実施例4のDSC曲線を示す図である。FIG. 6 is a diagram showing a DSC curve of Example 4. 実施例5のTG−DTA曲線を示す図である。10 is a diagram showing a TG-DTA curve of Example 5. FIG. 実施例5のDSC曲線を示す図である。6 is a diagram showing a DSC curve of Example 5. FIG. 実施例6のTG−DTA曲線を示す図である。10 is a diagram showing a TG-DTA curve of Example 6. FIG. 実施例6のDSC曲線を示す図である。10 is a diagram showing a DSC curve of Example 6. FIG.

Claims (7)

下記式1で表されることを特徴とする、タンタル化合物
Figure 2005132756
(式中Rは炭素数1から3のアルキル、Rは炭素数1から5のアルキル又は炭素数3もしくは4のトリアルキルシリル、Rは炭素数1から3のアルキル、Rはメチル又はエチルを示す。また、mは0から5の整数、nは0から3の整数でm+nが5以下となる数を示す。)。
A tantalum compound represented by the following formula 1
Figure 2005132756
(Wherein R 1 is alkyl having 1 to 3 carbon atoms, R 2 is alkyl having 1 to 5 carbon atoms or trialkylsilyl having 3 or 4 carbon atoms, R 3 is alkyl having 1 to 3 carbon atoms, and R 4 is methyl. Or m represents an integer of 0 to 5, n represents an integer of 0 to 3, and m + n represents a number of 5 or less.
上記式1において、m=0、n=0、またはm=0、n=1でRがメチルもしくはエチル、RおよびRがメチルまたはエチルであることを特徴とする、請求項1に記載のタンタル化合物。 In the above formula 1, m = 0, n = 0, or m = 0, n = 1, R 2 is methyl or ethyl, and R 3 and R 4 are methyl or ethyl. The tantalum compound described. 上記式1において、m=0、n=1であり、Rがエチル、Rがメチル、Rがメチルであることを特徴とする、請求項1又は2に記載のタンタル化合物。 3. The tantalum compound according to claim 1, wherein m = 0, n = 1, R 2 is ethyl, R 3 is methyl, and R 4 is methyl. 上記式1において、m=0、n=0であり、Rがエチル、Rがメチルであることを特徴とする、請求項1又は2に記載のタンタル化合物。 3. The tantalum compound according to claim 1, wherein m = 0 and n = 0 in the formula 1, R 3 is ethyl, and R 4 is methyl. 上記式1において、m=0、n=1であり、Rがエチル、Rがエチル、Rがメチルであることを特徴とする、請求項1又は2に記載のタンタル化合物。 3. The tantalum compound according to claim 1, wherein m = 0, n = 1, R 2 is ethyl, R 3 is ethyl, and R 4 is methyl. 下記式2で表されるタンタル化合物と下記式3で表されるシクロペンタジエン誘導体を有機溶媒中で反応させることを特徴とする、請求項1〜5いずれかに記載のタンタル化合物の製造方法
Figure 2005132756
(式中Rは炭素数1から3のアルキル、Rはメチル又はエチルを示す。)
Figure 2005132756
(式中Rは炭素数1から3のアルキル、Rは炭素数1から5のアルキル又は炭素数3もしくは4のトリアルキルシリル、また、mは0から5の整数、nは0から3の整数でm+nが5以下となる数を示す。)。
The method for producing a tantalum compound according to any one of claims 1 to 5, wherein a tantalum compound represented by the following formula 2 and a cyclopentadiene derivative represented by the following formula 3 are reacted in an organic solvent.
Figure 2005132756
(In the formula, R 3 represents alkyl having 1 to 3 carbon atoms, and R 4 represents methyl or ethyl.)
Figure 2005132756
Wherein R 1 is alkyl having 1 to 3 carbon atoms, R 2 is alkyl having 1 to 5 carbon atoms or trialkylsilyl having 3 or 4 carbon atoms, m is an integer of 0 to 5, and n is 0 to 3 In which m + n is 5 or less.)
請求項1〜5いずれかに記載のタンタル化合物を原料として用いることを特徴とする、タンタル含有薄膜の形成方法。
A method for forming a tantalum-containing thin film, wherein the tantalum compound according to claim 1 is used as a raw material.
JP2003368973A 2003-10-29 2003-10-29 Tantalum compound, method for producing the same and method for forming tantalum-containing thin film Pending JP2005132756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003368973A JP2005132756A (en) 2003-10-29 2003-10-29 Tantalum compound, method for producing the same and method for forming tantalum-containing thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003368973A JP2005132756A (en) 2003-10-29 2003-10-29 Tantalum compound, method for producing the same and method for forming tantalum-containing thin film

Publications (1)

Publication Number Publication Date
JP2005132756A true JP2005132756A (en) 2005-05-26

Family

ID=34646478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003368973A Pending JP2005132756A (en) 2003-10-29 2003-10-29 Tantalum compound, method for producing the same and method for forming tantalum-containing thin film

Country Status (1)

Country Link
JP (1) JP2005132756A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036612A (en) * 2007-08-01 2009-02-19 Yazaki Corp Instrument device
WO2010012595A1 (en) * 2008-08-01 2010-02-04 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method of forming a tantalum-containing layer on a substrate
JP2010505002A (en) * 2006-09-28 2010-02-18 プラクスエア・テクノロジー・インコーポレイテッド Heteroleptic organometallic compounds
JP2012505177A (en) * 2008-10-07 2012-03-01 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Organometallic precursors of niobium and vanadium for thin film deposition
US8470401B2 (en) 2006-10-26 2013-06-25 L'Air Liquide, Socété Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Use of group V metal containing precursors for a process of depositing a metal containing film
KR20170073947A (en) * 2015-12-21 2017-06-29 삼성전자주식회사 Tantalum compound and methods of forming thin film and integrated circuit device
CN110073474A (en) * 2016-12-30 2019-07-30 乔治洛德方法研究和开发液化空气有限公司 Zirconium precursors, hafnium precursors, titanium precursor and the film for containing the 4th race using its deposition

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010505002A (en) * 2006-09-28 2010-02-18 プラクスエア・テクノロジー・インコーポレイテッド Heteroleptic organometallic compounds
US8470401B2 (en) 2006-10-26 2013-06-25 L'Air Liquide, Socété Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Use of group V metal containing precursors for a process of depositing a metal containing film
JP2009036612A (en) * 2007-08-01 2009-02-19 Yazaki Corp Instrument device
KR20110041498A (en) * 2008-08-01 2011-04-21 레르 리키드 쏘시에떼 아노님 뿌르 레드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Method of forming a tantalum-containing layer on a substrate
JP2011530002A (en) * 2008-08-01 2011-12-15 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method for forming a tantalum-containing layer on a substrate
WO2010012595A1 (en) * 2008-08-01 2010-02-04 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method of forming a tantalum-containing layer on a substrate
US9085823B2 (en) 2008-08-01 2015-07-21 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method of forming a tantalum-containing layer on a substrate
KR101589777B1 (en) * 2008-08-01 2016-01-28 레르 리키드 쏘시에떼 아노님 뿌르 레?드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Method of forming a tantalum-containing layer on a substrate
JP2012505177A (en) * 2008-10-07 2012-03-01 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Organometallic precursors of niobium and vanadium for thin film deposition
KR20170073947A (en) * 2015-12-21 2017-06-29 삼성전자주식회사 Tantalum compound and methods of forming thin film and integrated circuit device
KR102627456B1 (en) 2015-12-21 2024-01-19 삼성전자주식회사 Tantalum compound and methods of forming thin film and integrated circuit device
CN110073474A (en) * 2016-12-30 2019-07-30 乔治洛德方法研究和开发液化空气有限公司 Zirconium precursors, hafnium precursors, titanium precursor and the film for containing the 4th race using its deposition
CN110073474B (en) * 2016-12-30 2023-09-01 乔治洛德方法研究和开发液化空气有限公司 Zirconium precursor, hafnium precursor, titanium precursor and group 4-containing film deposited using the same

Similar Documents

Publication Publication Date Title
US7329768B2 (en) Chemical vapor deposition precursors for deposition of tantalum-based materials
KR101659725B1 (en) Volatile dihydropyrazinyl and dihydropyrazine metal complexes
EP1921061B1 (en) Metal-containing compound, process for producing the same and method of forming a metal-containing thin film
JP5275243B2 (en) Novel group V metal-containing precursors and their use for the deposition of metal-containing films
JP5148186B2 (en) Imido complex, method for producing the same, metal-containing thin film, and method for producing the same
US9121093B2 (en) Bis-ketoiminate copper precursors for deposition of copper-containing films and methods thereof
US7592471B2 (en) Tantalum compound, method for producing same, tantalum-containing thin film and method for forming same
JP2006241137A (en) VOLATILE METAL beta-KETOIMINATO COMPLEX
JP2007508389A (en) A tantalum amide complex for depositing a tantalum-containing film and a method of manufacturing the same
US6337148B1 (en) Copper source reagent compositions, and method of making and using same for microelectronic device structures
JP2011529135A (en) Heteroleptic cyclopentadienyl transition metal precursor for the deposition of transition metal containing films
JP2022070966A (en) Metal complexes containing cyclopentadienyl ligands
TWI756699B (en) New group v and vi transition metal precursors for thin film deposition
JP2010111672A (en) Group 2 metal precursor for depositing group 2 metal oxide film
JP2005132756A (en) Tantalum compound, method for producing the same and method for forming tantalum-containing thin film
JP5096016B2 (en) Tantalum compound and method for producing the same, tantalum-containing thin film using the same and method for forming the same
US10011903B2 (en) Manganese-containing film forming compositions, their synthesis, and use in film deposition
KR20210058370A (en) Tungsten Compound, Method for Preparation of the Same, and Tungsten-Containing Thin Film, Method of Manufacturing the Same
TW202229302A (en) Lanthanide and lanthanide-like transition metal complexes
JP2005132757A (en) Tantalum compound, method for producing the same and method for forming tantalum-containing thin film
KR20210058289A (en) Tungsten Precursor, Method for Preparation of the Same, and Tungsten-Containing Thin Film, Method of Manufacturing the Same
JP7363688B2 (en) Titanium complex, method for producing the same, and method for producing a titanium-containing thin film
JP4289141B2 (en) ORGANIC SILICON COMPOUND, SOLUTION RAW MATERIAL, AND METHOD FOR FORMING SILICON-CONTAINING FILM USING THE COMPOUND
JP2003201563A (en) SOLUTION RAW MATERIAL FOR METAL ORGANIC CHEMICAL VAPOR DEPOSITION METHOD CONTAINING beta-DIKETONATE COMPLEX OF COPPER (II), AND COPPER THIN FILM PRODUCED BY USING THE SAME
JP2015048343A (en) Silicon nitride film raw material, and silicon nitride film obtained from this raw material