JP2005130331A - Image pickup signal correction circuit - Google Patents

Image pickup signal correction circuit Download PDF

Info

Publication number
JP2005130331A
JP2005130331A JP2003365622A JP2003365622A JP2005130331A JP 2005130331 A JP2005130331 A JP 2005130331A JP 2003365622 A JP2003365622 A JP 2003365622A JP 2003365622 A JP2003365622 A JP 2003365622A JP 2005130331 A JP2005130331 A JP 2005130331A
Authority
JP
Japan
Prior art keywords
light
imaging
correction
signal
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003365622A
Other languages
Japanese (ja)
Inventor
Koji Kuriyama
孝司 栗山
Tadao Shinya
忠雄 新屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2003365622A priority Critical patent/JP2005130331A/en
Publication of JP2005130331A publication Critical patent/JP2005130331A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an image pickup signal correction circuit capable of deleting streaking in the shape of stripes in the horizontal direction which is generated when strong spot light is irradiated even in an image pickup area having no light shielding area. <P>SOLUTION: A light shielding area is provided in the horizontal direction only to both left and right ends or an image pickup area A1 of one end of image pickup areas A1 to A4 divided into a plurality in the horizontal direction so that a pickup image at a center part is not lacked, a signal level obtained from the light shielding part is detected, correction signals corresponding to each image pickup area are generated and correction is performed to the signals of each image pickup area using the correction signals. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、HDTV方式の画素数(1080×1920)以上の画素数を持つ超高精細撮像装置に用いる固体撮像素子から得られる撮像信号の撮像信号補正回路に関するものである。   The present invention relates to an image pickup signal correction circuit for an image pickup signal obtained from a solid-state image pickup device used in an ultra-high-definition image pickup device having a number of pixels of HDTV system (1080 × 1920) or more.

従来、HDTVの画素数以上の画素数を持つ固体撮像素子においては、特に動画用の高速読み出し動作を実現するため、全画素領域を略一定間隔に複数のエリアに分割し、その複数のエリアを略同一のタイミングにて駆動する並列読み出し動作を行う構成が考えられている。   Conventionally, in a solid-state imaging device having a number of pixels equal to or greater than the number of pixels of an HDTV, in order to realize a high-speed reading operation particularly for moving images, the entire pixel region is divided into a plurality of areas at substantially constant intervals, and the plurality of areas are divided. A configuration for performing a parallel read operation that is driven at substantially the same timing is considered.

この並列に読み出された被写体光像の黒に相当する撮像信号部分の安定化を行うため、撮像素子の受光面上に垂直方向遮光部を設け、この遮光部から得られる信号を基に、1垂直走査期間に一回の垂直直流クランプを行い1フレーム或いは1フィールド毎の垂直走査期間の直流分変動を防いでいた(例えば、特許文献1参照。)。   In order to stabilize the imaging signal portion corresponding to black of the subject light image read in parallel, a vertical light shielding portion is provided on the light receiving surface of the image sensor, and based on the signal obtained from this light shielding portion, A vertical DC clamp is performed once in one vertical scanning period to prevent a DC component variation in the vertical scanning period for each frame or field (see, for example, Patent Document 1).

この様な垂直直流クランプでは、例えば水平方向に分割された複数の撮像エリア全てに対して1フレーム或いは1フィールド毎の走査期間に1回のクランプを行うため、被写体光像の黒部分のレベルが揃った撮像信号を得ることが出来た。   In such a vertical DC clamp, for example, the level of the black portion of the subject light image is set because the clamp is performed once in the scanning period of one frame or one field for all of the plurality of imaging areas divided in the horizontal direction. A uniform imaging signal could be obtained.

しかし,この様な従来の方法では水平走査期間の直流分変化に対する信号変動には対応出来なかった。例えば、図2に強いスポット光が当たった被写体光像を撮像した時に撮像素子から出力された撮像信号をディスプレイに表示させた画像例を示すが、このように被写体光像に部分的に強い光(スポット光Pw)が照射された場合、これを撮像して得た撮像信号による画像は水平方向に縞状のストリーキング(横縞Stw)を生じ、従来の垂直直流クランプでは垂直走査期間の直流分変動に対応しているのみなので、水平走査期間の直流分変化には対応出来なかった。
また一方で、HDTV方式を超える、所謂超高精細撮像装置に用いられる撮像素子においては、画素数が膨大となりチップ面積がかなり大きくなるため、チップ内部で電源供給部から各画素を接続する電源ラインの長さが増加する。このため、電源供給位置から離れるほど電源ラインの内部抵抗による電圧降下が大きくなっていた。
この電源供給位置からの距離の差により撮像素子のそれぞれの画素に供給される電圧が異なると、撮像素子から出力されるそれぞれの撮像信号レベルが異なり、画質劣化を生じる。特に、強いスポット光が入射した場合は、部分的に大きな電圧降下を生じる。
この現象は電荷量ではなく電圧値や電流値を信号量とするCMOSセンサーにおいて顕著である。
特開2003−169262号公報
However, such a conventional method cannot cope with a signal fluctuation with respect to a change in DC component during the horizontal scanning period. For example, FIG. 2 shows an example of an image in which an imaging signal output from an imaging device is displayed on a display when a subject light image hit with a strong spot light is displayed. When (spot light Pw) is irradiated, an image by an imaging signal obtained by imaging the spot light causes stripe-like streaking (horizontal stripe Stw) in the horizontal direction. In the conventional vertical DC clamp, fluctuation of DC component in the vertical scanning period Therefore, it was not possible to cope with the change in the DC component during the horizontal scanning period.
On the other hand, in an imaging element used in a so-called ultra-high-definition imaging device that exceeds the HDTV system, the number of pixels is enormous and the chip area becomes considerably large. Therefore, a power line that connects each pixel from a power supply unit inside the chip The length of increases. For this reason, the voltage drop due to the internal resistance of the power supply line increases as the distance from the power supply position increases.
When the voltage supplied to each pixel of the image sensor differs due to the difference in distance from the power supply position, the respective image signal levels output from the image sensor differ, resulting in image quality degradation. In particular, when a strong spot light is incident, a large voltage drop occurs partially.
This phenomenon is remarkable in a CMOS sensor that uses a voltage value or a current value as a signal amount instead of a charge amount.
JP 2003-169262 A

水平方向に複数に分割した全撮像エリア毎に水平遮光部を設けて水平直流クランプによる撮像信号の直流分補正を行おうとすると、中央部分の撮像エリア内にも遮光部を設定することになり、この遮光部部分の被写体光像の撮像画像が欠如し問題点となる。   If you try to correct the DC component of the imaging signal by horizontal DC clamp by providing a horizontal shading part for every imaging area divided into multiple in the horizontal direction, you will also set the shading part in the imaging area in the center part, A lack of a captured image of the subject light image in the light shielding portion causes a problem.

そこで本発明は、上述した問題点を解決して、強いスポット光が入射した場合に生じる水平方向の縞状のストリーキングを、遮光部のない撮像エリヤにおいても削除出来る撮像信号補正回路を提供することを目的とする。   Accordingly, the present invention provides an imaging signal correction circuit that solves the above-described problems and can eliminate horizontal stripe streaking that occurs when a strong spot light is incident even in an imaging area without a light shielding portion. With the goal.

上記目的を達成するため、第1の発明の撮像信号補正回路は、 被写体光学像を受光する受光面(A1〜A4)と、前記受光面の垂直方向及び水平方向に亘り多数の画素をマトリクス状に配置してなりかつ前記水平方向に配置されている前記多数の画素を所定数毎に前記水平方向に分割して得た複数の画素群(撮像エリアA1〜撮像エリアA4)と、前記複数の画素群の両端又は片端(撮像エリアA1)に位置する前記画素群のうち前記垂直方向が前記受光面の端部に対応し前記水平方向が所定数の画素に対応する画素領域全体を遮光した遮光部(遮光部Op)と、を有する撮像素子(撮像素子1)から出力し、前記遮光部及び前記複数の画素群のそれぞれから取り出す撮像信号を用いて、少なくともストリーキング現象を除去する撮像信号補正回路であって、前記撮像素子が受光する光が遮断されている時に、前記各複数の画素群をライン方向に走査して得た撮像信号の直流レベルを得る第1の手段(S101)と、前記撮像素子が受光する光が遮断されている時に前記遮光部のみから出力する直流レベルに対する、前記第1の手段から得られた直流レベルの差分を検出する第2の手段(S102)と、前記被写体光像が撮像されている時に、前記各複数の画素群をライン方向に走査して得た撮像信号を得る第3の手段(S105)と、前記被写体光像が撮像されている時の前記遮光部のみから出力する直流レベルから、前記撮像素子が受光する光を遮断されている時の前記遮光部のみから出力する直流レベルの差分を検出する第4の手段(S106)と、前記第3の手段から得られた撮像信号から、前記第2の手段から得られた直流レベルの差分を減算し、かつ前記第4の手段から得られた直流レベルの差分を減算する第5の手段(S107)と、を有することを特徴とする撮像信号補正回路である。   In order to achieve the above object, an imaging signal correction circuit according to a first aspect of the present invention includes a light receiving surface (A1 to A4) that receives a subject optical image and a large number of pixels in a vertical direction and a horizontal direction of the light receiving surface. A plurality of pixel groups (imaging area A1 to imaging area A4) obtained by dividing the plurality of pixels arranged in the horizontal direction in the horizontal direction by a predetermined number, and the plurality of pixels In the pixel group located at both ends or one end (imaging area A1) of the pixel group, the light shielding is performed by shielding the entire pixel region where the vertical direction corresponds to the end of the light receiving surface and the horizontal direction corresponds to a predetermined number of pixels. An imaging signal that is output from an imaging device (imaging device 1) having a light-shielding portion (light-shielding portion Op) and that removes at least the streaking phenomenon by using an imaging signal extracted from each of the light-shielding portion and the plurality of pixel groups A first circuit (S101) for obtaining a DC level of an image pickup signal obtained by scanning each of the plurality of pixel groups in a line direction when the light received by the image pickup element is interrupted in a positive circuit; Second means (S102) for detecting a difference between the direct current level obtained from the first means with respect to the direct current level output only from the light shielding portion when the light received by the imaging device is blocked; Third means (S105) for obtaining an imaging signal obtained by scanning each of the plurality of pixel groups in the line direction when the subject light image is captured, and when the subject light image is captured A fourth means (S106) for detecting a difference between a direct current level output only from the light shielding portion and a direct current level output only from the light shielding portion when the light received by the imaging element is blocked from the direct current level output from the light shielding portion; Obtained from 3 means A fifth means (S107) for subtracting the difference in DC level obtained from the second means from the captured image signal and subtracting the difference in DC level obtained from the fourth means; An imaging signal correction circuit including:

本発明の撮像信号補正回路は、スポツト光によって生じる直流レベル変動により、水平方向に縞状のストリーキングが生ずるのを、防止出来る撮像信号回路を提供できるという効果がある。   The imaging signal correction circuit according to the present invention has an effect of providing an imaging signal circuit that can prevent stripe streaking in the horizontal direction due to a DC level fluctuation caused by spot light.

撮像素子を水平方向に複数に分割した撮像エリアにおいて、両端または片端の撮像エリアに水平方向の遮光部を設け、この水平方向の遮光部から得られる補正信号を基に、全ての撮像エリアの信号に対して被写体光像遮断時の直流レベルの差分を減算し、かつ撮像時と遮断時の直流レベルの差分を減算することにより、水平方向に縞状のストリーキングが生じるのを防ぐ最良の形態である。   In an imaging area in which the imaging device is divided into a plurality of parts in the horizontal direction, a horizontal light shielding part is provided at the imaging area at both ends or one end, and the signals of all the imaging areas are based on correction signals obtained from the horizontal light shielding part. By subtracting the difference in DC level when the subject light image is blocked and subtracting the difference in DC level between shooting and blocking, this is the best mode to prevent horizontal streaking. is there.

以下、本発明の実施の最良の形態につき、好ましい実施例により、図面を参照して説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings by way of preferred embodiments.

図1は本発明に係る複数の撮像エリアを持つ撮像素子例を示す構成図である。   FIG. 1 is a block diagram showing an example of an image sensor having a plurality of image areas according to the present invention.

この図においては、水平方向の画素数をHDTV方式の2倍(1920×2=3840)以上の3888画素とし、これを4つの撮像エリアに分割した例である。   This figure shows an example in which the number of pixels in the horizontal direction is 3888 pixels that is twice as high as that of the HDTV system (1920 × 2 = 3840) and is divided into four imaging areas.

従って、1つの撮像エリアは水平方向972画素、垂直方向2160画素となる。   Accordingly, one imaging area is 972 pixels in the horizontal direction and 2160 pixels in the vertical direction.

垂直方向の画素数はHDTV方式の2倍の2160画素であるが、垂直帰線期間を考慮すれば2250画素までは増加出来る。   The number of pixels in the vertical direction is 2160 pixels, which is twice that of the HDTV system, but can be increased to 2250 pixels in consideration of the vertical blanking period.

この撮像素子例は超高解像度CMOS型撮像素子を用いたもので、撮像エリアA1は水平走査周波数をHDTVの2倍(15.75kHz×2=31.5kHz)として順次撮像素子の被写体受光信号を水平シフトレジスタ1に送り波形整形した後Amp1にて増幅して撮像信号P1としたものである。   This example of the image sensor uses an ultra-high resolution CMOS type image sensor, and the image pickup area A1 has a horizontal scanning frequency twice as high as that of HDTV (15.75 kHz × 2 = 31.5 kHz) and sequentially receives a subject light reception signal of the image sensor. The image is sent to the horizontal shift register 1 and shaped, and then amplified by Amp1 to obtain an imaging signal P1.

同様にして撮像エリアA2〜撮像エリアA4において、撮像信号P1と並列に撮像信号P2〜撮像信号P4を得る。   Similarly, in the imaging area A2 to the imaging area A4, the imaging signal P2 to the imaging signal P4 are obtained in parallel with the imaging signal P1.

この4分割したそれぞれの撮像エリアA1〜A4において、最も左端にある撮像エリアA1の左端の水平方向に幅24画素、垂直方向に2160ライン全ての領域を遮光部として設定する。   In each of the four divided imaging areas A1 to A4, an area of 24 pixels wide in the horizontal direction and all 2160 lines in the vertical direction is set as a light shielding portion at the left end of the imaging area A1 at the left end.

この遮光部は、一般的には、半導体プロセスにおいてアルミ配線層を使った遮光膜で生成するが、撮像素子前面に設けられるカバーガラスに黒色塗料等による遮光部分を設けても良い。この撮像エリアA1の左端に遮光部を全水平ライン24画素設置することにより、常に光が遮断された撮像信号を得、この撮像信号により撮像素子全画素の直流分レベルの補正を行う。   This light shielding portion is generally generated by a light shielding film using an aluminum wiring layer in a semiconductor process. However, a light shielding portion made of black paint or the like may be provided on a cover glass provided on the front surface of the image sensor. By installing a light-shielding portion at the left end of this imaging area A1 with 24 pixels in all horizontal lines, an imaging signal in which light is always blocked is obtained, and the DC component level of all pixels in the imaging device is corrected by this imaging signal.

図2は、図1に示した撮像素子上に、100%白レベルPwhite以上の撮像信号を生成するスポット光Pwが入射した場合に発生するストリーキングの様子を、模式的に表したものである。   FIG. 2 schematically shows the state of streaking that occurs when spot light Pw that generates an image signal of 100% white level Pwhite or higher is incident on the image sensor shown in FIG.

同図には、垂直方向の撮像信号レベルをS1,S2,S3の垂直線の位置から抽出し、その信号波形を図の下方にそれぞれ示す。   In the figure, the imaging signal level in the vertical direction is extracted from the positions of the vertical lines S1, S2, and S3, and the signal waveforms are respectively shown in the lower part of the figure.

更に同図には、スポット光Pwにより、略同一ライン幅で水平方向に帯状の横縞Stwが現れており、被写体光像が遮断されたときの遮光部Opの信号レベルPblackに対し、被写体光像としてスポット光Pwを撮像した時に、更に低いレベルのPdownにシフトした例を示している。   Further, in the same figure, a strip-shaped horizontal stripe Stw appears in the horizontal direction with substantially the same line width due to the spot light Pw, and the subject light image with respect to the signal level Pblack of the light shielding portion Op when the subject light image is blocked. As an example, when spot light Pw is imaged, an example of shifting to a lower level of Pdown is shown.

図3は、スポット光Pwにより生じた横縞Stwを削減するための補正回路構成を示す図である。   FIG. 3 is a diagram showing a correction circuit configuration for reducing the horizontal stripes Stw generated by the spot light Pw.

この補正回路は遮光部を持つ撮像素子1、撮像信号をデジタル信号に変換するA/D2、遮光部による補正信号を生成する遮光部演算回路3、デジタル信号から補正信号を差し引いて横縞Stwを削減する遮光補正演算回路4から構成される。   This correction circuit has an image sensor 1 having a light shielding part, A / D2 for converting an imaging signal into a digital signal, a light shielding part arithmetic circuit 3 for generating a correction signal by the light shielding part, and subtracting the correction signal from the digital signal to reduce horizontal stripes Stw The light-shielding correction arithmetic circuit 4 is configured.

次に図3に示す補正回路の動作を説明する。   Next, the operation of the correction circuit shown in FIG. 3 will be described.

まず、撮像素子1の4分割されたそれぞれの撮像エリアA1〜撮像エリアA4から並列に出力された撮像信号P1〜撮像信号P4は、A/Dコンバータ2により4チャンネルのディジタル撮像信号D1〜ディジタル撮像信号D4に変換される。   First, the image pickup signals P1 to P4 output in parallel from the respective image pickup areas A1 to A4 divided into four parts of the image pickup device 1 are converted into 4-channel digital image pickup signals D1 to digital image pickup by the A / D converter 2. Converted to signal D4.

この4チャンネルのディジタル撮像信号D1〜ディジタル撮像信号D4は、遮光補正演算回路4に入力された後、所定の補正演算が施されOut1〜Out4として出力される。一方、前記遮光部が設けられた撮像エリアA1から得られたディジタル撮像信号D1は、別途設けられた遮光部演算回路3にも入力され、その出力である遮光部補正値Pcutは前記遮光補正演算回路4へ送られ、前記補正演算のパラメータとして用いられる。   The four-channel digital image pickup signal D1 to digital image pickup signal D4 are input to the shading correction calculation circuit 4 and then subjected to a predetermined correction calculation and output as Out1 to Out4. On the other hand, the digital imaging signal D1 obtained from the imaging area A1 provided with the light shielding part is also input to the light shielding part arithmetic circuit 3 provided separately, and the light shielding part correction value Pcut as the output thereof is the light shielding correction calculation. It is sent to the circuit 4 and used as a parameter for the correction calculation.

図4は、図3に示された遮光部演算回路3、遮光補正演算回路4のより詳細な構成例を示したものである。   FIG. 4 shows a more detailed configuration example of the light shielding unit arithmetic circuit 3 and the light shielding correction arithmetic circuit 4 shown in FIG.

この遮光部演算回路3は、遮光部画素信号加算器3a、加算結果保持回路3b、タイミング制御回路3cから構成される。   The light shielding unit arithmetic circuit 3 includes a light shielding unit pixel signal adder 3a, an addition result holding circuit 3b, and a timing control circuit 3c.

そして遮光補正演算回路4はLUT1〜LUT4、減算回路1〜減算回路4で構成されている。   The light shielding correction arithmetic circuit 4 is composed of LUT1 to LUT4 and subtracting circuit 1 to subtracting circuit 4.

次に図4に示す回路の動作例を説明する。   Next, an operation example of the circuit shown in FIG. 4 will be described.

まず、撮像信号D1は遮光部画素信号加算器3aに加えられ、水平1ライン毎に遮光部の画素信号を累積加算した信号D1addを生成する。遮光部Opは24画素であるが例えばタイミング制御回路3cの加算範囲Adにより雑音の影響の少ない中心部の16画素に制限して加算する。そしてこの加算結果を加算結果保持回路3bに次の水平1ライン期間の加算結果が得られるまで遮光部補正値Pcutとして保持する。   First, the imaging signal D1 is added to the light-shielding part pixel signal adder 3a to generate a signal D1add obtained by cumulatively adding the pixel signals of the light-shielding part for each horizontal line. Although the light shielding part Op is 24 pixels, for example, the addition is limited to 16 pixels in the central part where the influence of noise is small due to the addition range Ad of the timing control circuit 3c. Then, this addition result is held in the addition result holding circuit 3b as the light shielding portion correction value Pcut until the addition result for the next horizontal one line period is obtained.

次に遮光部補正値Pcutは遮光補正演算回路4に入力される。そして、遮光補正演算回路4のルックアップテーブル(以下、LUT1〜LUT4とする)により所定の演算を行い、補正信号PL1〜補正信号PL4として減算回路1〜減算回路4へ入力する。   Next, the light shielding part correction value Pcut is input to the light shielding correction calculation circuit 4. Then, a predetermined calculation is performed according to a lookup table (hereinafter referred to as LUT1 to LUT4) of the light shielding correction calculation circuit 4, and the correction signal PL1 to the correction signal PL4 is input to the subtraction circuit 1 to the subtraction circuit 4.

前記LUT1〜LUT4の各変換テーブルは、各撮像エリアごとに異なる直流分レベルを一致させるよう、遮光部補正値と各撮像エリアから得られた撮像信号の直流分レベルの関係から、予め各撮像信号のシフト量を求め、それぞれの各補正信号を生成するための変換テーブルとして設定したものである。   Each of the conversion tables of LUT1 to LUT4 is preliminarily determined based on the relationship between the shading part correction value and the DC component level of the imaging signal obtained from each imaging area so as to match different DC component levels for each imaging area. Are set as a conversion table for generating each correction signal.

変換テーブルの内容としては、補正開始点、補正利得、補正リミット等の非線形特性を考慮してテーブルを設定する。   As the contents of the conversion table, the table is set in consideration of nonlinear characteristics such as a correction start point, a correction gain, and a correction limit.

次に、変換テーブルの算出例を、図5及び図6を用いて説明する。   Next, a calculation example of the conversion table will be described with reference to FIGS.

図5は撮像信号補正回路における補正時の信号波形を示す図であり、図6は直流分を補正する際のフローチャートを示す図である。   FIG. 5 is a diagram illustrating a signal waveform at the time of correction in the imaging signal correction circuit, and FIG. 6 is a diagram illustrating a flowchart for correcting the DC component.

この変換テーブルの算出においては、最初に、各撮像エリアごとの直流分レベルのシフト量を算出し、次に前記LUT1〜LUT4の各変換テーブルを生成する。   In the calculation of the conversion table, first, the shift amount of the DC component level for each imaging area is calculated, and then the conversion tables of the LUT1 to LUT4 are generated.

まず、図5(A)は撮像素子1の被写体光像からの入射光量を全て遮断した場合の、撮像エリアA1〜撮像エリアA4における水平方向1ラインのデジタル撮像信号D1〜デジタル撮像信号D4の直流分レベルを示す。   First, FIG. 5A shows a direct current of digital imaging signals D1 to D4 of one horizontal line in the imaging area A1 to imaging area A4 when all of the incident light quantity from the subject optical image of the imaging element 1 is blocked. Indicates the minute level.

点線部を0レベルとして、撮像エリアA1の遮光部OpはS00、撮像部はS10の直流分レベルとする。この場合はS00=S10であり直流分の標準レベルとする。以下、撮像エリアA2はS20、撮像エリアA3はS30、撮像エリアA4はS40の直流分レベルで表す。   The dotted line portion is set to 0 level, and the light shielding portion Op of the imaging area A1 is set to S00 and the imaging portion is set to the DC component level of S10. In this case, S00 = S10, which is the standard level for DC. Hereinafter, the imaging area A2 is represented by the direct current level of S20, the imaging area A3 is represented by S30, and the imaging area A4 is represented by S40.

この状態で各撮像エリアの直流分レベルを揃えるための補正値を算出する。   In this state, a correction value for aligning the DC component level of each imaging area is calculated.

まず、撮像エリアA1の補正値E1はE1=S10−S00=0である。以下同様に撮像装置A2の補正値E2はE2=S20−S00,撮像装置A3の補正値E3はE3=S30−S00,撮像装置A4の補正値E4はE4=S40−S00として算出する。   First, the correction value E1 of the imaging area A1 is E1 = S10−S00 = 0. Similarly, the correction value E2 of the imaging device A2 is calculated as E2 = S20-S00, the correction value E3 of the imaging device A3 is calculated as E3 = S30-S00, and the correction value E4 of the imaging device A4 is calculated as E4 = S40-S00.

この算出した補正値E1〜補正値E4を各撮像エリアのデジタル撮像信号から減算すれば各撮像エリアの直流分レベルは、被写体光像からの入射光量を全て遮断した場合において、均一な直流分S00のレベルとなり、この直流分S00が直流分基準値となる。   If the calculated correction values E1 to E4 are subtracted from the digital imaging signal of each imaging area, the DC component level of each imaging area is uniform DC component S00 when all the incident light quantity from the subject light image is blocked. The DC component S00 becomes the DC component reference value.

次に(B)は、図2に示されるように撮像信号レベルに換算して50%以下の均一光が全体に照射されているものとし、その中に撮像エリアA3にスポット光を照射した場合の、撮像エリアA1〜撮像エリアA4における水平方向1ライン分のデジタル撮像信号D1〜デジタル撮像信号D4を示す。   Next, in (B), as shown in FIG. 2, it is assumed that 50% or less of uniform light is irradiated to the whole in terms of the imaging signal level, and the imaging area A3 is irradiated with spot light therein. The digital imaging signals D1 to D4 for one horizontal line in the imaging areas A1 to A4 are shown.

ここでは、撮像エリアA1の遮光部Opはスポット光によるストリーキングの影響を受けてS00より低いレベルのS01となる。そしてS00との差分St=S01−S00を演算し、差分Stを得る。   Here, the light-shielding part Op in the imaging area A1 is affected by the streaking caused by the spot light and becomes S01 at a level lower than S00. Then, a difference St = S01−S00 with S00 is calculated to obtain a difference St.

この差分Stを補正値E1〜補正値E4から減算し、更に、この減算した補正値を各撮像エリアのデジタル撮像信号毎に減算すれば直流分が揃った各撮像信号を得られる。   By subtracting this difference St from the correction values E1 to E4 and further subtracting the subtracted correction value for each digital image pickup signal in each image pickup area, each image pickup signal with a uniform DC component can be obtained.

それでまず、差分Stを補正値E1〜補正値E4から減算した補正値を算出する。   First, a correction value obtained by subtracting the difference St from the correction values E1 to E4 is calculated.

遮光部Opでは前述したようにE1=0であるから、
S02=S01−(St−E1)=S01−S01+S00
=S00 .....直流分基準値
撮像エリアA1も同様にE1=0であるから、
S12=S11−(St−E1)=S11−S01+S00−S10+S00
=S11−S01−S10+2xS00
=S11−S01+S00
撮像エリアA2は、
S22=S21−(St−E2)=S21−S01+S00−S20+S00
=S21−S01−S20+2xS00
以下同様に、
撮像エリアA3は、
S32=S31−S01−S30+2xS00
スポット光部分は、
S32W=S31W−S01−S30+2xS00
撮像エリアA4は、
S42=S41−S01−S40+2xS00
となる。
As described above, E1 = 0 in the light shielding part Op.
S02 = S01− (St−E1) = S01−S01 + S00
= S00. . . . . DC component reference value Since the imaging area A1 is also E1 = 0,
S12 = S11− (St−E1) = S11−S01 + S00−S10 + S00
= S11-S01-S10 + 2xS00
= S11-S01 + S00
The imaging area A2 is
S22 = S21− (St−E2) = S21−S01 + S00−S20 + S00
= S21-S01-S20 + 2xS00
Similarly,
The imaging area A3 is
S32 = S31-S01-S30 + 2xS00
Spot light part
S32W = S31W-S01-S30 + 2xS00
The imaging area A4 is
S42 = S41-S01-S40 + 2xS00
It becomes.

更に図5(A)に示される直流分レベルは予め固定値として設定出来るから、例えば撮像エリアA1の固定値をK1とすると、
S12=S11−S01−S10+2xS00から
=S11−S01−K1 (K1:S10−2xS00)
に変換出来る。
Furthermore, since the DC component level shown in FIG. 5A can be set as a fixed value in advance, for example, if the fixed value of the imaging area A1 is K1,
From S12 = S11-S01-S10 + 2xS00
= S11-S01-K1 (K1: S10-2xS00)
Can be converted to

以下同様に、
S22=S21−S01−K2 (K2:S20−2xS00)
S32=S31−S01−K3 (K3:S30−2xS00)
S42=S41−S01−K4 (K4:S40−2xS00)
が成立する。
Similarly,
S22 = S21-S01-K2 (K2: S20-2xS00)
S32 = S31-S01-K3 (K3: S30-2xS00)
S42 = S41-S01-K4 (K4: S40-2xS00)
Is established.

図4においてのPcutは直流分S01、撮像信号D1〜撮像信号D4はS11〜S41に相当する。従ってLUT1〜LUT4でPcutをS01として入力し、(S01+K1)〜(S01+K4)の演算を行った後、得られた補正信号PL1〜PL4を減算回路1〜減算回路4へ撮像信号D1〜撮像信号D4と共に入力すれば、S12〜S42に相当する補正信号Out1〜Out4が得られる。   In FIG. 4, Pcut corresponds to the direct current component S01, and the imaging signals D1 to D4 correspond to S11 to S41. Accordingly, Pcut is input as S01 in the LUT1 to LUT4, and the calculation of (S01 + K1) to (S01 + K4) is performed. If input together, correction signals Out1 to Out4 corresponding to S12 to S42 are obtained.

以上により、直流分レベルをS00の直流分基準値に固定し、ストリーキング補正も同時に行うことが出来る。   As described above, the DC component level is fixed to the DC component reference value of S00, and the streaking correction can be performed simultaneously.

また、各LUTには撮像エリア毎に、撮像信号レベルによる直線性や飽和レベル或いは直流分のシフト量が異なるといった非線形の固有な特性がある場合は、予め前記固定値と共にテーブルに組み込んで設定しておけばより良好な補正を行うことが出来る。   In addition, if each LUT has non-linear inherent characteristics such as linearity depending on the imaging signal level, saturation level, or shift amount of DC component for each imaging area, it is set in advance together with the fixed value in the table. If so, a better correction can be performed.

このようにして、撮像エリアA1の遮光部の撮像信号の加算信号PcutをLUT1〜LUT4に加え、得られた補正信号PL1〜補正信号PL4を減算回路1〜減算回路4に加えれば、それぞれの減算回路の一方の入力には、各撮像エリアから得られたディジタル撮像信号D1〜ディジタル撮像信号D4が入力されており、この結果、減算回路1〜減算回路4からは(撮像信号D1−補正信号PL1)〜(ディジタル撮像信号D4−補正信号PL4)の演算により直流分レベルの一致した出力信号Out1〜出力信号Out4が得られる。   In this way, if the addition signal Pcut of the imaging signal of the light shielding portion in the imaging area A1 is added to the LUT1 to LUT4, and the obtained correction signals PL1 to PL4 are added to the subtraction circuit 1 to the subtraction circuit 4, the respective subtractions are performed. The digital imaging signal D1 to digital imaging signal D4 obtained from each imaging area are inputted to one input of the circuit. As a result, the subtraction circuit 1 to the subtraction circuit 4 (imaging signal D1−correction signal PL1). ) To (digital imaging signal D4-correction signal PL4), output signals Out1 to Out4 having the same DC component level are obtained.

以上の様な構成をとることにより、スポット光など部分的な強い光が入射した場合でも、スポット光により発生したストリーキング部分の遮光部におけるシフト量を検出し、その値をもとにストリーキング部分の撮像信号を補正することによって、尾引き状の横縞が消滅された均一な撮像信号を得ることが出来る。   By adopting the configuration as described above, even when partially intense light such as spot light is incident, the shift amount in the light shielding part of the streaking part generated by the spot light is detected, and the streaking part is detected based on the value. By correcting the imaging signal, it is possible to obtain a uniform imaging signal in which the trailing horizontal stripes are eliminated.

また、遮光部の加算信号Pcutとデジタル撮像信号D1〜デジタル撮像信号D4のシフト量の関係が線形演算による特性に近似可能な場合は、LUTの代わりに単なる線形演算回路(例えば、乗算器や加算器)に置き換えることが出来る。   In addition, when the relationship between the shift amount of the addition signal Pcut of the light shielding unit and the digital image pickup signal D1 to the digital image pickup signal D4 can be approximated by a characteristic by linear calculation, a simple linear calculation circuit (for example, a multiplier or addition) is used instead of the LUT. Can be replaced.

さらに、本実施例においては、分割された4つの撮像エリアの内、左端の撮像エリアA1に遮光部Opを設けた場合を想定しているが、右端の撮像エリアA4の最右端にも遮光部を設け、両方の遮光部から検出したシフト量から、前記した遮光部補正値を求めることも出来る。   Further, in the present embodiment, it is assumed that the light shielding portion Op is provided in the leftmost imaging area A1 among the four divided imaging areas, but the light shielding portion is also provided at the rightmost edge of the rightmost imaging area A4. And the above-described light-shielding portion correction value can be obtained from the shift amount detected from both light-shielding portions.

実施例2は電源供給路の抵抗値が大きい場合の撮像信号補正回路例である。   Example 2 is an example of an imaging signal correction circuit when the resistance value of the power supply path is large.

以下実施例2の内容について説明する。   The contents of Example 2 will be described below.

図7は電源供給路の抵抗値が大きい場合の水平方向撮像信号レベル波形例を示す。   FIG. 7 shows an example of the horizontal direction imaging signal level waveform when the resistance value of the power supply path is large.

まず、図7(A)はスポット光が撮像素子に照射された例を示す。この図7の(A)に示すようにスポット光Pwによりストリーキングが発生するが、同図に示すように、電源供給開始ラインが遮光部Opの方に接続されていると、ストリーキングのレベルが遮光部Opに近いほど大きく、離れるほど小さくなる。   First, FIG. 7A shows an example in which spot light is applied to an image sensor. As shown in FIG. 7A, streaking occurs due to the spot light Pw. As shown in FIG. 7, when the power supply start line is connected to the light shielding part Op, the streaking level is shielded. The closer to the part Op, the larger, and the further away, the smaller.

一方、図7(B)は均一光が撮像素子に照射された場合の水平信号波形を示す図であり、均一光であっても遮光部Opに近い方は電圧降下が少ないため信号レベルが大きく、離れるほど電圧降下の影響が大きくなり信号レベルが低下する。撮像素子を照射する光が明るいほど遮光部Opに近い方と遠いほうのレベル差は大きくなる。   On the other hand, FIG. 7B is a diagram showing a horizontal signal waveform when the imaging device is irradiated with uniform light. Even in the case of uniform light, the signal level is large because the voltage drop is smaller near the light shielding portion Op. As the distance increases, the influence of the voltage drop increases and the signal level decreases. The brighter the light that irradiates the image sensor, the greater the difference in level between the closer and farther from the light shielding part Op.

そして、図4の遮光補正演算回路4に相当する実施例2の遮光補正演算回路4‘を図8に示す。   FIG. 8 shows a light-shielding correction arithmetic circuit 4 ′ according to the second embodiment corresponding to the light-shielding correction arithmetic circuit 4 of FIG.

この遮光補正演算回路4‘は撮像領域全体の撮像信号レベル変動による電力消費状態の影響を受けて劣化する画質を予め各撮像エリアのラインメモリ毎に記憶した各撮像エリア毎の補正データMdata1〜Mdata4により補正する。   The shading correction calculation circuit 4 ′ stores correction data Mdata1 to Mdata4 for each imaging area in which image quality that deteriorates due to the influence of the power consumption state due to fluctuations in the imaging signal level of the entire imaging area is stored in advance for each line memory of each imaging area. Correct by

遮光補正演算回路4‘は図8に示されるように、LUT1〜LUT4,補正波形用ラインメモリ1〜補正波形用ラインメモリ4、乗算回路1〜乗算回路4、減算回路1〜減算回路4で構成されている。   As shown in FIG. 8, the shading correction arithmetic circuit 4 ′ includes LUT 1 to LUT 4, correction waveform line memory 1 to correction waveform line memory 4, multiplication circuit 1 to multiplication circuit 4, and subtraction circuit 1 to subtraction circuit 4. Has been.

この遮光補正演算回路4‘の動作例を次に説明する。他の動作については実施例1と同様である。   An example of the operation of the shading correction arithmetic circuit 4 'will now be described. Other operations are the same as those in the first embodiment.

まず、予め各撮像エリア毎に標準の均一光を撮像素子に入射して得た各水平1ライン分のデータMdata1〜Mdata14を各補正波形用ラインメモリ1〜ラインメモリ4に記憶して置く。   First, data Mdata1 to Mdata14 for each horizontal line obtained by making standard uniform light incident on the image sensor for each imaging area are stored in the correction waveform line memories 1 to 4 in advance.

そして遮光部Opの信号PcutがLUT1〜LUT4に加えられ実施例1と同様に補正開始点、補正利得、補正リミット点などの非線形特性を考慮した適正値に補正されたのち乗算回路1〜乗算回路4に加えられる。乗算回路1〜乗算回路4には、電圧降下量をそれぞれ予め測定して算出した補正波形用ラインメモリ1〜ラインメモリ4に記憶されている補正データMdata1〜Mdata4が、各画素の乗数として提供され、この補正データにより適正値に補正された遮光部の信号Pcutを撮像エリアA1〜A4用の遮光部信号Pcut1〜Pcut4として生成する。   Then, the signal Pcut of the light shielding part Op is added to the LUT1 to LUT4 and corrected to an appropriate value taking into consideration nonlinear characteristics such as a correction start point, a correction gain, a correction limit point, and the like, as in the first embodiment. 4 is added. The multiplication circuit 1 to the multiplication circuit 4 are provided with correction data Mdata1 to Mdata4 stored in the correction waveform line memory 1 to the line memory 4 calculated by measuring the voltage drop amounts in advance as multipliers of the respective pixels. Then, the light shielding part signal Pcut corrected to an appropriate value by the correction data is generated as the light shielding part signals Pcut1 to Pcut4 for the imaging areas A1 to A4.

次に減算回路1〜減算回路4に撮像信号D1〜撮像信号4を加え、この撮像信号D1〜撮像信号4から撮像エリアA1〜A4用の遮光部信号Pcut1〜Pcut4を差し引けば、スポット光Pwに電圧降下が加算されて発生したストリーキングを削除した出力信号Out1〜出力信号Out4を得ることが出来る。   Next, when the imaging signal D1 to imaging signal 4 are added to the subtracting circuit 1 to subtracting circuit 4, and the light shielding part signals Pcut1 to Pcut4 for the imaging areas A1 to A4 are subtracted from the imaging signal D1 to imaging signal 4, the spot light Pw Output signal Out1 to output signal Out4 in which the streaking generated by the voltage drop is added to the output signal can be obtained.

実施例3においては、電源供給路の抵抗値が大きく距離が長くなるほど電圧降下が大きい場合の実施例2の補正に加え、電源供給部自体の消費電力量による電圧変動の影響をさらに補正するものである。   In the third embodiment, in addition to the correction in the second embodiment in which the voltage drop is larger as the resistance value of the power supply path is larger and the distance is longer, the effect of voltage fluctuation due to the power consumption of the power supply unit itself is further corrected. It is.

図9に撮像信号レベルの大小による供給電源部の変動の影響をさらに軽減するために、水平方向全画素の撮像信号を累積加算して電圧低下によるストリーキング発生の補正を行う回路構成例を示す。   FIG. 9 shows an example of a circuit configuration for correcting the occurrence of streaking due to a voltage drop by cumulatively adding the imaging signals of all pixels in the horizontal direction in order to further reduce the influence of fluctuations in the power supply unit due to the magnitude of the imaging signal level.

この補正回路は撮像素子1、A/D2、遮光部演算回路3、撮像信号累積回路5、総合補正回路6から構成される。   This correction circuit includes an image sensor 1, A / D 2, a light-shielding unit arithmetic circuit 3, an image signal accumulation circuit 5, and a general correction circuit 6.

この回路の動作を以下に説明する。   The operation of this circuit will be described below.

撮像素子1から出力された撮像信号P1〜P4をA/D2でデジタル信号D1〜デジタル信号D4に変換した後撮像信号累積回路で1ライン全ての画素の撮像信号を加算した加算信号Paddを生成し、総合補正回路6にPcutとデジタル信号D1〜デジタル信号D4と共に加えてより詳細な補正を行い、出力信号Out1〜出力信号Out4を得る。   After the image pickup signals P1 to P4 output from the image pickup device 1 are converted into digital signals D1 to D4 by A / D2, an addition signal Padd is generated by adding the image pickup signals of all pixels in one line in the image pickup signal accumulation circuit. Then, in addition to Pcut and the digital signal D1 to the digital signal D4, the detailed correction is performed on the total correction circuit 6 to obtain the output signal Out1 to the output signal Out4.

そして、図10に撮像信号累積回路5の詳細図を示す。   FIG. 10 shows a detailed view of the image signal accumulation circuit 5.

この回路は、加算器、1画素遅延回路、全画素加算器より構成される。   This circuit includes an adder, a one-pixel delay circuit, and an all-pixel adder.

各撮像エリア毎に1ライン分の画素を加算器と1画素遅延回路により加算した後、1ライン加算終了後ラインパルスPmのON時にまとめて全画素加算器で1ライン分の全画素を加算し、そのまま次の1ライン期間記憶する。この時1ライン分時間が遅れるから補正演算では撮像信号を1ライン遅延させてから用いる。   After adding one line of pixels for each imaging area using an adder and a one-pixel delay circuit, after completing the addition of one line, all the pixels for one line are added together by all the pixel adders when the line pulse Pm is turned ON. The next one line period is stored as it is. At this time, since the time for one line is delayed, the correction calculation is performed after the imaging signal is delayed by one line.

このように全画素の撮像信号を累積加算することにより、電力消費量を算出して供給電源部の電圧降下を補正することにより、良好な画像を得ることが出来る。   In this way, by accumulatively adding the imaging signals of all the pixels, it is possible to obtain a good image by calculating the power consumption and correcting the voltage drop of the power supply unit.

本発明に係る複数のエリアを持つ撮像素子例を示す構成図である。It is a block diagram which shows the example of an image pick-up element with several areas based on this invention. スポット光が撮像素子を照射したときに生ずるストリーキングの状態を模式的に示した図である。It is the figure which showed typically the state of the streaking which arises when spot light irradiates an image sensor. 本発明の撮像信号補正回路の実施例1を示す図である。It is a figure which shows Example 1 of the imaging signal correction circuit of this invention. 本発明の撮像信号補正回路の実施例1における遮光部演算回路を示す図である。It is a figure which shows the light-shielding part arithmetic circuit in Example 1 of the imaging signal correction circuit of this invention. 撮像信号補正回路における補正時の信号波形を示す図である。It is a figure which shows the signal waveform at the time of correction | amendment in an imaging signal correction circuit. 本発明の直流分を補正する際のフローチャートを示す図である。It is a figure which shows the flowchart at the time of correct | amending the direct current | flow component of this invention. 電源供給時の抵抗値が大きい場合に、スポット光が撮像素子を照射したときに生ずるストリーキングの状態を模式的に示した図である。It is the figure which showed typically the state of the streaking which arises when spot light irradiates an image sensor, when the resistance value at the time of power supply is large. 本発明の撮像信号補正回路の実施例2における遮光部演算回路を示す図である。It is a figure which shows the light-shielding part arithmetic circuit in Example 2 of the imaging signal correction circuit of this invention. 本発明の撮像信号補正回路の実施例3を示す図である。It is a figure which shows Example 3 of the imaging signal correction circuit of this invention. 本発明の撮像信号補正回路の実施例3における撮像信号累積回路を示す図である。It is a figure which shows the imaging signal accumulation circuit in Example 3 of the imaging signal correction circuit of this invention.

符号の説明Explanation of symbols

1 撮像素子
2 A/D:アナログ/デジタル変換
3 遮光部演算回路
4 遮光補正演算回路
5 撮像信号累積回路
6 総合補正演算回路
A1 撮像エリア
Op 遮光部
P1,P2,P3,P4 撮像信号
DESCRIPTION OF SYMBOLS 1 Image sensor 2 A / D: Analog / digital conversion 3 Light-shielding part arithmetic circuit 4 Light-shielding correction arithmetic circuit 5 Imaging signal accumulation circuit 6 Total correction arithmetic circuit A1 Imaging area Op Light-shielding part P1, P2, P3, P4 Imaging signal

Claims (1)

被写体光学像を受光する受光面(A1〜A4)と、
前記受光面の垂直方向及び水平方向に亘り多数の画素をマトリクス状に配置してなりかつ前記水平方向に配置されている前記多数の画素を所定数毎に前記水平方向に分割して得た複数の画素群と、
前記複数の画素群の両端又は片端に位置する前記画素群のうち前記垂直方向が前記受光面の端部に対応し前記水平方向が所定数の画素に対応する画素領域全体を遮光した遮光部と、を有する撮像素子から出力し、
前記遮光部及び前記複数の画素群のそれぞれから取り出す撮像信号を用いて、少なくともストリーキング現象を除去する撮像信号補正回路であって、
前記撮像素子が受光する光が遮断されている時に、前記各複数の画素群をライン方向に走査して得た撮像信号の直流レベルを得る第1の手段と、
前記撮像素子が受光する光が遮断されている時に前記遮光部のみから出力する直流レベルに対する、前記第1の手段から得られた直流レベルの差分を検出する第2の手段と、
前記被写体光像が撮像されている時に、前記各複数の画素群をライン方向に走査して得た撮像信号を得る第3の手段と、
前記被写体光像が撮像されている時の前記遮光部のみから出力する直流レベルから、前記撮像素子が受光する光を遮断されている時の前記遮光部のみから出力する直流レベルの差分を検出する第4の手段と、
前記第3の手段から得られた撮像信号から、前記第2の手段から得られた直流レベルの差分を減算し、かつ前記第4の手段から得られた直流レベルの差分を減算する第5の手段と、
を有することを特徴とする撮像信号補正回路。

A light receiving surface (A1 to A4) for receiving a subject optical image;
A plurality of pixels obtained by arranging a large number of pixels in a matrix in the vertical direction and the horizontal direction of the light receiving surface and dividing the large number of pixels arranged in the horizontal direction in the horizontal direction every predetermined number. A group of pixels,
A light-shielding portion that shields light from the entire pixel region in which the vertical direction corresponds to an end portion of the light-receiving surface and the horizontal direction corresponds to a predetermined number of pixels among the pixel groups located at both ends or one end of the plurality of pixel groups; , And output from an image sensor having
An imaging signal correction circuit that removes at least a streaking phenomenon using an imaging signal extracted from each of the light shielding unit and the plurality of pixel groups,
First means for obtaining a DC level of an imaging signal obtained by scanning each of the plurality of pixel groups in a line direction when light received by the imaging element is blocked;
Second means for detecting a difference in DC level obtained from the first means with respect to a DC level output only from the light-shielding portion when light received by the imaging device is blocked;
Third means for obtaining an imaging signal obtained by scanning each of the plurality of pixel groups in a line direction when the subject light image is captured;
A difference between a direct current level output only from the light shielding portion when the light received by the image sensor is blocked is detected from a direct current level output only from the light shielding portion when the subject light image is captured. A fourth means;
Subtracting the difference in DC level obtained from the second means from the imaging signal obtained from the third means, and subtracting the difference in DC level obtained from the fourth means Means,
An imaging signal correction circuit comprising:

JP2003365622A 2003-10-27 2003-10-27 Image pickup signal correction circuit Pending JP2005130331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003365622A JP2005130331A (en) 2003-10-27 2003-10-27 Image pickup signal correction circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003365622A JP2005130331A (en) 2003-10-27 2003-10-27 Image pickup signal correction circuit

Publications (1)

Publication Number Publication Date
JP2005130331A true JP2005130331A (en) 2005-05-19

Family

ID=34644234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003365622A Pending JP2005130331A (en) 2003-10-27 2003-10-27 Image pickup signal correction circuit

Country Status (1)

Country Link
JP (1) JP2005130331A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1973337A2 (en) 2007-03-20 2008-09-24 Sony Corporation Streaking correction and imaging
EP2053842A2 (en) 2007-10-22 2009-04-29 Sony Corporation Noise correction circuit, imaging apparatus, and noise correction method
JP2009284424A (en) * 2008-05-26 2009-12-03 Sony Corp Imaging apparatus, imaging method, and program
US8111306B2 (en) 2007-07-17 2012-02-07 Sony Corporation Apparatus, method and computer-readable medium for eliminating dark current components of an image pickup device
JP2013062601A (en) * 2011-09-12 2013-04-04 Canon Inc Imaging apparatus and image processing method
US9106853B2 (en) 2013-10-22 2015-08-11 Kabushiki Kaisha Toshiba Solid-state imaging device
WO2020022120A1 (en) * 2018-07-27 2020-01-30 ソニーセミコンダクタソリューションズ株式会社 Streaking correction circuit, image capture device, and electronic apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1973337A2 (en) 2007-03-20 2008-09-24 Sony Corporation Streaking correction and imaging
US7982785B2 (en) 2007-03-20 2011-07-19 Sony Corporation Streaking correction signal generating circuit, streaking correction signal generating method, program, streaking correcting circuit, and imaging device
US8111306B2 (en) 2007-07-17 2012-02-07 Sony Corporation Apparatus, method and computer-readable medium for eliminating dark current components of an image pickup device
EP2053842A2 (en) 2007-10-22 2009-04-29 Sony Corporation Noise correction circuit, imaging apparatus, and noise correction method
US8233737B2 (en) 2007-10-22 2012-07-31 Sony Corporation Noise correction circuit, imaging apparatus, and noise correction method adding random number after noise removal
JP2009284424A (en) * 2008-05-26 2009-12-03 Sony Corp Imaging apparatus, imaging method, and program
US8405744B2 (en) 2008-05-26 2013-03-26 Sony Corporation Image-capturing apparatus, image-capturing method, and program
JP2013062601A (en) * 2011-09-12 2013-04-04 Canon Inc Imaging apparatus and image processing method
US9106853B2 (en) 2013-10-22 2015-08-11 Kabushiki Kaisha Toshiba Solid-state imaging device
WO2020022120A1 (en) * 2018-07-27 2020-01-30 ソニーセミコンダクタソリューションズ株式会社 Streaking correction circuit, image capture device, and electronic apparatus
US11463638B2 (en) 2018-07-27 2022-10-04 Sony Semiconductor Solutions Corporation Streaking correction circuit, imaging apparatus, and electronic equipment

Similar Documents

Publication Publication Date Title
JP4806584B2 (en) Image processing method and image processing circuit
US7593569B2 (en) Pixel defect correction device
CN102265600B (en) Image processing apparatus and on-vehicle camera apparatus
US7773130B2 (en) Signal processing apparatus and signal processing method for solid-state image pickup element and image pickup apparatus
US20130258155A1 (en) Image pickup apparatus including image pickup element having image pickup pixel and focus detection pixel and signal processing method
JP2008244947A (en) Fixed pattern noise elimination circuit, fixed pattern noise elimination method, program, and imaging apparatus
JP2012090051A (en) Imaging device and imaging method
US20100194935A1 (en) Image capturing apparatus, control method therefor and program
KR100730544B1 (en) Image sensor for producing vertically-striped noise
JP2005130331A (en) Image pickup signal correction circuit
JP2011040976A (en) Solid-state imaging apparatus, method of driving the same and electronic device
JP5084439B2 (en) Signal processing apparatus and signal processing method
JP2006041687A (en) Image processing apparatus, image processing method, image processing program, electronic camera, and scanner
JP4364867B2 (en) Imaging device
US8508613B2 (en) Image capturing apparatus
JP5299159B2 (en) Imaging apparatus and program
JP7134786B2 (en) Imaging device and control method
JP4397869B2 (en) Smear correction method and smear correction circuit
JP2004336244A (en) Correction apparatus
JP2012109794A (en) Solid state image pickup device
EP1475032A1 (en) Color misregistration reducer
JPH1042201A (en) Picture defect correction circuit
JP3618645B2 (en) Imaging device and method for correcting degraded pixel signal thereof
JP2013115470A (en) Signal processing circuit for solid-state imaging element, signal processing method for solid-state imaging element, and electronic apparatus
JP4439841B2 (en) Imaging apparatus and image processing method thereof