JP2005126728A - Cold storage method, cold storage system, cold storage agent, and method for taking out cold - Google Patents

Cold storage method, cold storage system, cold storage agent, and method for taking out cold Download PDF

Info

Publication number
JP2005126728A
JP2005126728A JP2004367878A JP2004367878A JP2005126728A JP 2005126728 A JP2005126728 A JP 2005126728A JP 2004367878 A JP2004367878 A JP 2004367878A JP 2004367878 A JP2004367878 A JP 2004367878A JP 2005126728 A JP2005126728 A JP 2005126728A
Authority
JP
Japan
Prior art keywords
melting point
clathrate hydrate
aqueous solution
concentration
cold storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004367878A
Other languages
Japanese (ja)
Other versions
JP4134982B2 (en
Inventor
Hidemasa Ogose
英雅 生越
Shingo Takao
信吾 高雄
Shigenori Matsumoto
繁則 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2004367878A priority Critical patent/JP4134982B2/en
Publication of JP2005126728A publication Critical patent/JP2005126728A/en
Application granted granted Critical
Publication of JP4134982B2 publication Critical patent/JP4134982B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cold storage method using a clathrate hydrate having a large heat storage density (heat reserving volume) and excellent thermal properties, excellent in economy and safety and easily treatable. <P>SOLUTION: The cold storage method comprises a step for preparing an aqueous solution containing a clathrate hydrate-generating material of a concentration lower than the concentration giving a congruent melting point and a step for cooling the aqueous solution to generate the clathrate hydrate and to store cold at a lower temperature than the congruent melting point. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、冷房などの空調設備や、食品等の冷却装置などに用いられる、蓄冷方法、蓄冷システム、蓄冷剤、および冷熱の取り出し方法に関する。   The present invention relates to a cold storage method, a cold storage system, a cold storage agent, and a method of extracting cold heat, which are used for air conditioning equipment such as cooling, and cooling devices for foods and the like.

この種の用途に使用される従来公知の蓄冷方法として以下のものがある。   Conventionally known cold storage methods used for this type of application include the following.

(1)冷水の温度差による蓄冷空調では、冷房用の冷水温度は5〜7℃であり、負荷の小さい時間に冷凍機により冷水を貯蔵タンク(蓄熱槽)に貯蔵する。冷水の比熱は1kcal/kgKであるため、利用温度差を7℃とすると、1kg冷水あたり7kcal/kgと単位重量当りの蓄冷量が少ないという欠点がある。   (1) In the cold storage air conditioning by the temperature difference of cold water, the cold water temperature for cooling is 5-7 degreeC, and cold water is stored in a storage tank (heat storage tank) with a refrigerator at the time of a small load. Since the specific heat of cold water is 1 kcal / kgK, there is a drawback that if the utilization temperature difference is 7 ° C., the amount of cold storage per unit weight is 7 kcal / kg per kg cold water.

(2)氷などの凝固・融解潜熱を用いた蓄冷氷の融解潜熱は、約80kcal/kgであるため、氷水の一部を氷にして蓄冷することで、蓄熱密度は冷水より高くできる。例えば、冷水中の氷の体積割合を20%とすると、氷の潜熱及び冷水の顕熱(温度差12℃の場合)を含めた蓄熱密度は、約28kcal/kgとなる。   (2) Since the latent heat of fusion of the cold storage ice using solidification / melting latent heat of ice or the like is about 80 kcal / kg, the heat storage density can be made higher than that of the cold water by storing a part of the ice water as ice. For example, if the volume ratio of ice in cold water is 20%, the heat storage density including the latent heat of ice and the sensible heat of cold water (temperature difference of 12 ° C.) is about 28 kcal / kg.

しかし、氷を生成させるためには、冷水を0℃以下に冷却しなければならず、冷水を5℃に冷却するよりも冷凍機の動力は大きくなるのが欠点である。   However, in order to generate ice, cold water must be cooled to 0 ° C. or lower, and the disadvantage is that the power of the refrigerator becomes larger than that of cooling cold water to 5 ° C.

(3)氷以外の固液相変化物質を用いた蓄冷水や氷以外の冷熱蓄熱材として利用可能な物質として、LiClO2・3H2OやNa2SO4・10H2O+NH4Clなどの無機水和塩類や気体水和物が知られている(非特許文献1、非特許文献2参照)。しかし、LiClO2・3H2OやNa2SO4・10H2O+NH4Clなどの無機水和塩類は、比較的潜熱量は大きいものの、調和融点(後述)を持たず、無水塩の濃度によって水和物が変化する。このため、冷却・加熱過程で相分離をおこし、所定の蓄熱量が得られなくなる問題が生ずる。 (3) Inorganic materials such as LiClO 2 .3H 2 O and Na 2 SO 4 .10H 2 O + NH 4 Cl that can be used as cold storage water using solid-liquid phase change materials other than ice and cold heat storage materials other than ice Hydrated salts and gaseous hydrates are known (see Non-Patent Document 1 and Non-Patent Document 2). However, inorganic hydrated salts such as LiClO 2 .3H 2 O and Na 2 SO 4 .10H 2 O + NH 4 Cl have a relatively large amount of latent heat but do not have a harmonic melting point (described later). Japanese products change. For this reason, there arises a problem that phase separation is performed in the cooling / heating process, and a predetermined heat storage amount cannot be obtained.

また、非特許文献1に記載されている気体水和物は、R11やR12などのオゾン破壊係数の大きい物質であったり、また、大気圧下では気体であるため、加圧された密閉容器や配管を用いる必要があり、蓄冷装置が高価なものとなる。
川崎、秋谷「気体水和物の冷熱蓄熱材への応用」:ケミカルエンジニアリングvol.27,No.8,603-608,1982 日本伝熱学会編「環境と省エネルギーのためのエネルギー新技術体系」p.802
Further, the gas hydrate described in Non-Patent Document 1 is a substance having a large ozone depletion coefficient such as R11 or R12, or is a gas under atmospheric pressure. It is necessary to use piping, and the cold storage device becomes expensive.
Kawasaki, Akiya “Application of gaseous hydrates to cold storage materials”: Chemical Engineering vol.27, No.8, 603-608, 1982 “The New Energy Technology System for Environment and Energy Conservation” edited by the Heat Transfer Society of Japan p. 802

以上のように、今までに実用化あるいは提案されてきた蓄冷方法には、それぞれ問題点があった。本発明は、これらの課題を解決すべくなされたもので、蓄冷材に求められる蓄熱密度(潜熱量)が大きく、安定した熱特性を有し、経済性、安全性があり取り扱いが容易である包接水和物を用いた蓄冷方法、蓄冷システム、蓄熱剤、および冷熱の取り出し方法を提供することを目的とする。   As described above, the cold storage methods that have been put to practical use or proposed so far have problems. The present invention has been made to solve these problems, has a large heat storage density (latent heat amount) required for a cold storage material, has stable thermal characteristics, is economical, safe and easy to handle. An object is to provide a cold storage method using a clathrate hydrate, a cold storage system, a heat storage agent, and a method of extracting cold.

すなわち本発明は、
(1)包接水和物生成物質を含み、その濃度が調和融点を与える濃度未満に設定された水溶液を用意する工程と、この水溶液を冷却して包接水和物を生成し調和融点より低い温度で冷熱を蓄冷する工程とを有することを特徴とする蓄冷方法。
That is, the present invention
(1) A step of preparing an aqueous solution containing a clathrate hydrate-forming substance, the concentration of which is set to a concentration lower than that which gives a harmonic melting point, and cooling the aqueous solution to produce a clathrate hydrate. And a step of storing cold energy at a low temperature.

(2)前記水溶液が、融点降下剤を含むことを特徴とする(1)に記載の蓄冷方法。   (2) The cold storage method according to (1), wherein the aqueous solution contains a melting point depressant.

(3)前記包接水和物生成物質は、テトラ−n−ブチルアンモニウム塩、テトラiso−アミルアンモニウム塩、テトラ−n−ブチルフォスフォニウム塩、及びトリiso−アミルサルフォニウム塩の群から選択される一種又は二種以上であることを特徴とする(1)又は(2)に記載の蓄冷方法。   (3) The clathrate hydrate-forming substance is selected from the group consisting of tetra-n-butylammonium salt, tetraiso-amylammonium salt, tetra-n-butylphosphonium salt, and triiso-amylsulfonium salt. The cold storage method according to (1) or (2), wherein one or two or more types are selected.

(4)調和融点を与える濃度未満に設定された包接水和物生成物質の水溶液を収容する手段と、この収容手段に収容された水溶液を冷却して、包接水和物を生成し調和融点より低い温度で冷熱を蓄冷する手段とを備えることを特徴とする蓄冷システム。   (4) A means for containing an aqueous solution of clathrate hydrate-generating substance set to a concentration that gives a harmonic melting point, and an aqueous solution contained in the containing means are cooled to produce clathrate hydrate and harmonize And a means for storing cold energy at a temperature lower than the melting point.

(5)調和融点を与える濃度未満に設定された包接水和物生成物質の水溶液を収容する手段と、この収容手段に収容された水溶液を冷却して、包接水和物を生成し調和融点より低い温度で冷熱を蓄冷する手段と、この包接水和物に蓄冷された冷熱を取り出す熱交換器を備えることを特徴とする蓄冷システム。   (5) A means for containing an aqueous solution of clathrate hydrate-generating substance set to a concentration that gives a harmonic melting point, and an aqueous solution contained in the containing means are cooled to produce clathrate hydrate to harmonize A cold storage system comprising: means for storing cold heat at a temperature lower than the melting point; and a heat exchanger for taking out the cold heat stored in the clathrate hydrate.

(6)包接水和物生成物質を含む水溶液であって、その調和融点を与える濃度未満に設定されていて、調和融点より低い温度で冷却されることを特徴とする蓄冷剤。   (6) A cold storage agent characterized in that it is an aqueous solution containing a clathrate hydrate-forming substance, and is set at a concentration lower than the concentration giving its harmonic melting point and cooled at a temperature lower than the harmonic melting point.

(7)前記水溶液が、融点降下剤を含むことを特徴とする(6)に記載の蓄冷剤。   (7) The cold storage agent according to (6), wherein the aqueous solution contains a melting point depressant.

(8)前記包接水和物生成物質は、テトラ−n−ブチルアンモニウム塩、テトラiso−アミルアンモニウム塩、テトラ−n−ブチルフォスフォニウム塩、及びトリiso−アミルサルフォニウム塩の群から選択される一種又は二種以上であることを特徴とする(6)又は(7)に記載の蓄冷剤。   (8) The clathrate hydrate-forming substance is selected from the group consisting of tetra-n-butylammonium salt, tetraiso-amylammonium salt, tetra-n-butylphosphonium salt, and triiso-amylsulfonium salt. The regenerator according to (6) or (7), wherein the regenerator is one or more selected.

(9)包接水和物生成物質を含み、その濃度が調和融点を与える濃度未満に設定された水溶液を用意する工程と、この水溶液を冷却して包接水和物を生成し調和融点より低い温度で冷熱を蓄冷する工程と、この包接水和物に蓄冷された冷熱を熱交換により取り出す工程を有することを特徴とする冷熱の取り出し方法、である。   (9) a step of preparing an aqueous solution containing a clathrate hydrate-forming substance, the concentration of which is set to less than a concentration that gives a harmonic melting point; A method for extracting cold energy, comprising: a step of storing cold energy at a low temperature; and a step of extracting cold energy stored in the clathrate hydrate by heat exchange.

本発明に係る蓄冷剤を用いれば、蓄熱密度が大きく、安定した熱特性を有する。また、従来は触媒として用いられており、容易に入手可能であり、経済的かつ安全である。特に、調和融点を与える上記水溶液濃度より低い濃度に設定した水溶液を用いると、所望の低い温度範囲で冷熱を蓄冷でき、その結果、低い温度で取出せる。そして、熱交換効率が高いので、熱交換器をコンパクトにでき、さらに、コストも安く、水和物スラリの輸送や貯蔵のハンドリングが容易となる。   If the cool storage agent which concerns on this invention is used, a heat storage density is large and it has the stable thermal characteristic. Moreover, it is conventionally used as a catalyst, is easily available, and is economical and safe. In particular, when an aqueous solution set to a concentration lower than the above aqueous solution concentration giving a harmonic melting point is used, cold energy can be stored in a desired low temperature range, and as a result, it can be taken out at a low temperature. Further, since the heat exchange efficiency is high, the heat exchanger can be made compact, the cost is low, and the transportation and storage handling of the hydrate slurry is facilitated.

さらに、水より融点の低い物質を混入させることによって、同じ塩を用いた水溶液で任意の融点を持つ蓄冷剤を作ることができるため、汎用性が高く、コスト安にもなる。   Further, by incorporating a substance having a melting point lower than that of water, a regenerator having an arbitrary melting point can be made with an aqueous solution using the same salt, so that the versatility is high and the cost is low.

本発明に係る包接水和物とは、水分子(ホスト分子)で構成された籠状の包接格子内に以下の様なゲスト分子が包み込まれて結晶化する化合物をいう。ゲスト分子として、テトラ−n−ブチルアンモニウム塩、テトラiso−アミルアンモニウム塩、テトラ−n−フォスフォニウム塩、トリiso−アミルサルフォニウム塩の例として、テトラ−n−ブチルアンモニウム塩としてフッ化テトラ−n−ブチルアンモニウム(n−C494NF),塩化テトラ−n−ブチルアンモニウム((n−C494NCl),臭化テトラ−n−ブチルアンモニウム((n−C494NBr)などがある。 The clathrate hydrate according to the present invention refers to a compound that crystallizes by encapsulating the following guest molecules in a cage-like clathrate composed of water molecules (host molecules). Examples of guest molecules include tetra-n-butylammonium salt, tetraiso-amylammonium salt, tetra-n-phosphonium salt, triiso-amylsulfonium salt, fluoride as tetra-n-butylammonium salt tetra -n- butylammonium (n-C 4 H 9) 4 NF), chloride tetra -n- butylammonium ((n-C 4 H 9 ) 4 NCl), tetra -n- butylammonium ((n- C 4 H 9 ) 4 NBr).

これらF,Cl,Brの代わりに酢酸(CH3CO2),重炭酸(HCO2),クロム酸(CrO4),タングステン酸(WO4),シュウ酸(C24),リン酸(HPO4)でもよい。その他の上記塩も同様である。 Instead of these F, Cl and Br, acetic acid (CH 3 CO 2 ), bicarbonate (HCO 2 ), chromic acid (CrO 4 ), tungstic acid (WO 4 ), oxalic acid (C 2 O 4 ), phosphoric acid ( HPO 4 ) may also be used. The same applies to the other salts.

以下、臭化テトラ−n−ブチルアンモニウム((n−C494NBr)を例にとり、本発明の蓄冷システムを説明する。水溶液濃度と融点の関係を図1に示す。また、包接水和物が生成、分解するときの反応式を式(1)に示す。 Hereinafter, the cold storage system of the present invention will be described by taking tetra-n-butylammonium bromide ((n-C 4 H 9 ) 4 NBr) as an example. The relationship between the aqueous solution concentration and the melting point is shown in FIG. The reaction formula when the clathrate hydrate is generated and decomposed is shown in Formula (1).

(n-C4H9)4NBr+n・H2O←→(n-C4H9)4NBr・n・H2O…式(1)
ここで、nは水和数で、その値はおよそ26で常に一定である。
(nC 4 H 9 ) 4 NBr + n · H 2 O ← → (nC 4 H 9 ) 4 NBr · n · H 2 O Formula (1)
Here, n is a hydration number, and its value is approximately 26 and is always constant.

図1に示されるように、この包接水和物生成物質を含む水溶液は、水溶液濃度約40wt%で融点が極大値、11.8℃である。この水溶液濃度の融点は調和融点と呼ばれ、ここでは水溶液中の濃度と包接水和物中の塩分濃度が等しい。   As shown in FIG. 1, the aqueous solution containing the clathrate hydrate-forming substance has an aqueous solution concentration of about 40 wt% and a melting point at a maximum value of 11.8 ° C. The melting point of this aqueous solution concentration is called the harmonic melting point, and here, the concentration in the aqueous solution is equal to the salinity concentration in the clathrate hydrate.

従って、調和融点を与える水溶液濃度(この例では常温における塩濃度が40wt%)に設定した水溶液を用いてこれを冷却すると、調和融点(11.8℃)で包接水和物が生成しはじめ、水溶液が全て包接水和物になるまでこの融点で一定になる。分解(融解)時も同様にこの融点一定で冷熱を放出する。なお、潜熱量は約46kcal/kgであり、利用上限温度を12℃とすると、水和物の体積割合が56%で蓄熱密度は26kcal/kgとなる。   Therefore, when an aqueous solution set to a concentration of an aqueous solution giving a harmonic melting point (in this example, the salt concentration at room temperature is 40 wt%) is cooled, clathrate hydrate begins to form at the harmonic melting point (11.8 ° C.). The melting point remains constant until the aqueous solution is all clathrate hydrate. Similarly, at the time of decomposition (melting), cold heat is released with this constant melting point. The latent heat amount is about 46 kcal / kg. If the upper limit temperature of use is 12 ° C., the volume ratio of hydrate is 56% and the heat storage density is 26 kcal / kg.

このようにこの蓄冷剤は、蓄熱密度が大きく、安定した熱特性を有する。また、従来は触媒として用いられているので容易に入手可能であり、経済的かつ安全である。   Thus, this cool storage agent has a large heat storage density and stable thermal characteristics. Further, since it is conventionally used as a catalyst, it can be easily obtained, and is economical and safe.

また、調和融点を与える上記水溶液濃度より低い濃度に設定した水溶液(例えば常温で27.2wt%の水溶液)を用いて冷却すると、約9.4℃で水和物が生成しはじめ、次第に水溶液中の塩分濃度が低下していき、それにつれて水和物の生成温度も低下していく。すなわち、図1の曲線に沿って包接水和物の生成温度も下がる。空調に適する15℃程度の水・空気を作るために水溶液を5℃まで冷却すると、水溶液中の塩分濃度は約17wt%になる。このとき、水溶液の43%が水和物になる。また蓄熱量は、およそ26kcal/kgとなる(水和物の比熱を0.53kcal/kgK,水溶液の比熱を0.96kcal/kgKとした)。また、包接水和物の潜熱を利用する場合には常温で濃度4%以上の濃度にする必要がある。   Further, when cooling with an aqueous solution set to a concentration lower than the above aqueous solution concentration giving a harmonic melting point (for example, an aqueous solution of 27.2 wt% at room temperature), a hydrate begins to be formed at about 9.4 ° C., and gradually in the aqueous solution. As the salt concentration of the hydrate decreases, the hydrate formation temperature also decreases. That is, the production temperature of clathrate hydrate also decreases along the curve of FIG. When the aqueous solution is cooled to 5 ° C. in order to produce water / air at about 15 ° C. suitable for air conditioning, the salt concentration in the aqueous solution becomes about 17 wt%. At this time, 43% of the aqueous solution becomes a hydrate. The heat storage amount is approximately 26 kcal / kg (the specific heat of the hydrate is 0.53 kcal / kgK and the specific heat of the aqueous solution is 0.96 kcal / kgK). Further, when utilizing the latent heat of clathrate hydrate, it is necessary to make the concentration 4% or more at room temperature.

このように、調和融点を与える上記水溶液濃度より低い濃度に設定した水溶液を用いると、更に以下の利点を備える。   Thus, when the aqueous solution set to a concentration lower than the concentration of the aqueous solution giving a harmonic melting point is used, the following advantages are further provided.

(1)融点(生成温度)が低温側に変化するため、低い温度の冷熱を蓄冷でき、その結果、所望の低い温度で取出することができる。   (1) Since the melting point (generation temperature) changes to the low temperature side, cold heat at a low temperature can be stored, and as a result, it can be taken out at a desired low temperature.

(2)融点(生成温度)が低温側に変化していくため、水和物と水又は空気と熱交換させる場合、その温度差がほぼ一定でしかも大きい。このため熱交換効率が高く、熱交換器をコンパクトとすることができる。即ち、熱交換器で20℃の水または空気を冷却して15℃とするに際し、図2のaに示す調和融点濃度の場合、水又は空気の出側(蓄冷剤の入り側)の蓄冷剤の温度が11.8℃であり、その温度差が3.8℃しかないが、図2のbに示す調和融点濃度より低い場合、例えば水又は空気の出側(蓄冷剤の入り側)の蓄冷剤の温度が5℃であり、その温度差を10℃とすることができる。   (2) Since the melting point (generation temperature) changes to the low temperature side, when heat exchange is performed with hydrate and water or air, the temperature difference is substantially constant and large. For this reason, heat exchange efficiency is high and a heat exchanger can be made compact. That is, when the water or air at 20 ° C. is cooled to 15 ° C. with a heat exchanger, the regenerator on the outlet side of water or air (on the side of the regenerator) in the case of the harmonic melting point concentration shown in FIG. The temperature is 11.8 ° C. and the temperature difference is only 3.8 ° C., but is lower than the harmonic melting point concentration shown in FIG. The temperature of the cold storage agent is 5 ° C., and the temperature difference can be 10 ° C.

(3)ほぼ同じ利用上限温度で蓄熱密度が同じ場合、水溶液中の塩分濃度を低くできるため、その分低コストになる。   (3) When the heat storage density is the same at almost the same use upper limit temperature, the salinity concentration in the aqueous solution can be lowered, and the cost is reduced accordingly.

(4)ほぼ同じ利用上限温度で蓄熱密度が同じ場合、水和物の体積割合は小さくてすむため、水和物スラリの輸送や貯蔵のハンドリングが容易となる。顕熱分が大きくなる。即ち、蓄熱量は「潜熱」+「顕熱」で示されるが、蓄熱量を同じとした場合、調和融点より低い濃度の方が顕熱分が大きいため、水和物の体積割合が小さくてすむ。この試算を表1に示す。

Figure 2005126728
(4) When the heat storage density is the same at almost the same upper limit temperature of use, the volume ratio of the hydrate can be small, so that the hydrate slurry can be easily transported and handled. Sensible heat increases. That is, the amount of heat stored is expressed as “latent heat” + “sensible heat”, but when the amount of stored heat is the same, the sensible heat content is larger at a concentration lower than the harmonic melting point, so the volume ratio of the hydrate is small. I'm sorry. This trial calculation is shown in Table 1.
Figure 2005126728

次に本発明では、水溶液に水よりも凝固点の小さい物質を混入させて、包接水和物の生成温度(融点)を低下させることができる。臭化テトラ−n−ブチルアンモニウム((n−C494NBr)を例に取ると、その調和融点は、11.8℃であり、水溶液濃度と融点の関係は上述したように図1のようになる。 Next, in the present invention, a production temperature (melting point) of clathrate hydrate can be lowered by mixing a substance having a freezing point smaller than water in the aqueous solution. Taking tetra-n-butylammonium bromide ((n-C 4 H 9 ) 4 NBr) as an example, its harmonic melting point is 11.8 ° C., and the relationship between the aqueous solution concentration and the melting point is as shown above. It becomes like 1.

この水溶液に、エチレングリコール、プロピレングリコールなど融点降下剤(水よりも融点の低い物質)を混入させると、水溶液の融点は、この物質の混入量によって低下する。そこで、用途により利用温度幅を下げる必要がある場合、これら物質を適量混入させることにより、任意の融点を持つ蓄冷剤を作ることができる。   When a melting point depressant (a substance having a melting point lower than that of water) such as ethylene glycol or propylene glycol is mixed in this aqueous solution, the melting point of the aqueous solution is lowered depending on the amount of this substance. Therefore, when it is necessary to lower the use temperature range depending on the application, a regenerator having an arbitrary melting point can be made by mixing an appropriate amount of these substances.

包接水和物生成物質を含む水溶液濃度と融点との関係を示す図。The figure which shows the relationship between the aqueous solution density | concentration containing a clathrate hydrate production | generation substance, and melting | fusing point. 包接水和物生成物質を含む水溶液を蓄冷剤として用いた場合の熱交換器内の温度変化を示す説明図で、aは調和融点濃度の包接水和物生成物質を含む水溶液を蓄冷剤として用いた場合、bは調和融点濃度より低い包接水和物を含む水溶液を蓄冷剤として用いた場合をそれぞれ示す。It is explanatory drawing which shows the temperature change in a heat exchanger at the time of using the aqueous solution containing a clathrate hydrate production | generation substance as a cool storage agent, a is a cold storage agent using the aqueous solution containing the clathrate hydrate formation substance of a harmonic melting point density | concentration When b is used, b shows the case where an aqueous solution containing clathrate hydrate lower than the harmonic melting point concentration is used as the regenerator.

Claims (9)

包接水和物生成物質を含み、その濃度が調和融点を与える濃度未満に設定された水溶液を用意する工程と、この水溶液を冷却して包接水和物を生成し調和融点より低い温度で冷熱を蓄冷する工程とを有することを特徴とする蓄冷方法。   A step of preparing an aqueous solution containing a clathrate hydrate-forming substance, the concentration of which is set below a concentration that gives a harmonic melting point; and cooling the aqueous solution to produce an clathrate hydrate at a temperature lower than the harmonic melting point. And a step of storing cold heat. 前記水溶液が、融点降下剤を含むことを特徴とする請求項1記載の蓄冷方法。   The cold storage method according to claim 1, wherein the aqueous solution contains a melting point depressant. 前記包接水和物生成物質は、テトラ−n−ブチルアンモニウム塩、テトラiso−アミルアンモニウム塩、テトラ−n−ブチルフォスフォニウム塩、及びトリiso−アミルサルフォニウム塩の群から選択される一種又は二種以上であることを特徴とする請求項1又は2記載の蓄冷方法。   The clathrate hydrate-forming substance is selected from the group of tetra-n-butylammonium salt, tetraiso-amylammonium salt, tetra-n-butylphosphonium salt, and triiso-amylsulfonium salt. The cold storage method according to claim 1 or 2, wherein the method is one type or two or more types. 調和融点を与える濃度未満に設定された包接水和物生成物質の水溶液を収容する手段と、この収容手段に収容された水溶液を冷却して、包接水和物を生成し調和融点より低い温度で冷熱を蓄冷する手段とを備えることを特徴とする蓄冷システム。   A means for containing an aqueous solution of clathrate hydrate-generating substance set to a concentration that gives a harmonic melting point and a solution containing clathrate hydrate are cooled to produce an clathrate hydrate, which is lower than the harmonic melting point. A cold storage system comprising: means for storing cold heat at a temperature. 調和融点を与える濃度未満に設定された包接水和物生成物質の水溶液を収容する手段と、この収容手段に収容された水溶液を冷却して、包接水和物を生成し調和融点より低い温度で冷熱を蓄冷する手段と、この包接水和物に蓄冷された冷熱を取り出す熱交換器を備えることを特徴とする蓄冷システム。   A means for containing an aqueous solution of clathrate hydrate-generating substance set to a concentration that gives a harmonic melting point and a solution containing clathrate hydrate are cooled to produce an clathrate hydrate, which is lower than the harmonic melting point. A cold storage system comprising: means for storing cold heat at a temperature; and a heat exchanger for taking out the cold heat stored in the clathrate hydrate. 包接水和物生成物質を含む水溶液であって、その調和融点を与える濃度未満に設定されていて、調和融点より低い温度で冷却されることを特徴とする蓄冷剤。   A cold storage agent characterized in that it is an aqueous solution containing a clathrate hydrate-forming substance, and is set at a concentration lower than its harmonic melting point and cooled at a temperature lower than the harmonic melting point. 前記水溶液が、融点降下剤を含むことを特徴とする請求項6記載の蓄冷剤。   The cold storage agent according to claim 6, wherein the aqueous solution contains a melting point depressant. 前記包接水和物生成物質は、テトラ−n−ブチルアンモニウム塩、テトラiso−アミルアンモニウム塩、テトラ−n−ブチルフォスフォニウム塩、及びトリiso−アミルサルフォニウム塩の群から選択される一種又は二種以上であることを特徴とする請求項6又は7記載の蓄冷剤。   The clathrate hydrate-forming substance is selected from the group of tetra-n-butylammonium salt, tetraiso-amylammonium salt, tetra-n-butylphosphonium salt, and triiso-amylsulfonium salt. The regenerator according to claim 6 or 7, which is one kind or two or more kinds. 包接水和物生成物質を含み、その濃度が調和融点を与える濃度未満に設定された水溶液を用意する工程と、この水溶液を冷却して包接水和物を生成し調和融点より低い温度で冷熱を蓄冷する工程と、この包接水和物に蓄冷された冷熱を熱交換により取り出す工程を有することを特徴とする冷熱の取り出し方法。   A step of preparing an aqueous solution containing a clathrate hydrate-forming substance, the concentration of which is set to a concentration lower than a concentration that gives a harmonic melting point; and cooling the aqueous solution to form an clathrate hydrate at a temperature lower than the harmonic melting point. A method for extracting cold heat, comprising: a step of storing cold heat, and a step of extracting the cold heat stored in the clathrate hydrate by heat exchange.
JP2004367878A 2004-12-20 2004-12-20 Cold storage method, cold storage system, cold storage agent, and method of extracting cold Expired - Lifetime JP4134982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004367878A JP4134982B2 (en) 2004-12-20 2004-12-20 Cold storage method, cold storage system, cold storage agent, and method of extracting cold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004367878A JP4134982B2 (en) 2004-12-20 2004-12-20 Cold storage method, cold storage system, cold storage agent, and method of extracting cold

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP06890198A Division JP3641362B2 (en) 1998-03-18 1998-03-18 Cold storage method using cold clathrate, cold storage system, and cold storage agent

Publications (2)

Publication Number Publication Date
JP2005126728A true JP2005126728A (en) 2005-05-19
JP4134982B2 JP4134982B2 (en) 2008-08-20

Family

ID=34651042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004367878A Expired - Lifetime JP4134982B2 (en) 2004-12-20 2004-12-20 Cold storage method, cold storage system, cold storage agent, and method of extracting cold

Country Status (1)

Country Link
JP (1) JP4134982B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007161894A (en) * 2005-12-14 2007-06-28 Jfe Engineering Kk Cold insulator and cold-insulating material
JP2007246778A (en) * 2006-03-17 2007-09-27 Jfe Engineering Kk Heat storing agent and method of preparing heat storing agent
JP2007321996A (en) * 2006-05-30 2007-12-13 Matsushita Electric Ind Co Ltd Heat storage system
JP2008101115A (en) * 2006-10-19 2008-05-01 Jfe Engineering Kk Refrigerating agent and refrigerating material
WO2008108307A1 (en) * 2007-03-02 2008-09-12 Jfe Engineering Corporation Method for production of phosphate salt of tetra-n-butylammonium and method for production of latent heat storage medium
WO2008108308A1 (en) 2007-03-02 2008-09-12 Jfe Engineering Corporation Latent heat storage substance, inclusion hydrate or slurry thereof, method for producing inclusion hydrate or slurry thereof, and latent heat storage agent
JP2008214482A (en) * 2007-03-02 2008-09-18 Jfe Engineering Kk Aqueous solution having property for producing clathrate hydrate, clathrate hydrate and its slurry, method for producing clathrate hydrate slurry and latent heat storage agent
JP2008214483A (en) * 2007-03-02 2008-09-18 Jfe Engineering Kk Latent heat-storing substance, aqueous solution, clathrate hydrate and its slurry, method for adjusting melting point of clathrate hydrate, method for increasing latent heat storage quantity of slurry of clathrate hydrate, and method for producing clathrate hydrate or its slurry
JP2009051906A (en) * 2007-08-24 2009-03-12 Jfe Engineering Kk Raw material for forming clathrate hydrate, method for producing clathrate hydrate or slurry thereof, and method for reducing pressure loss caused when cooling aqueous solution for forming clathrate hydrate
WO2009041396A1 (en) * 2007-09-26 2009-04-02 Jfe Engineering Corporation Aqueous solution for clathrate hydrate formation, heat-storage agent, process for producing clathrate hydrate or slurry thereof, method of storing/radiating heat, and process for preparing aqueous solution for forming latent-heat-storage agent or major component thereof
JP2009079108A (en) * 2007-09-26 2009-04-16 Jfe Engineering Kk Aqueous solution for forming clathrate hydrate, heat storing agent, method for producing clathrate hydrate or its slurry, heat storing and releasing method, and method for preparing aqueous solution for forming latent heat storing agent or its principal component
JP2009079114A (en) * 2007-09-26 2009-04-16 Jfe Engineering Kk Aqueous solution for forming clathrate hydrate, heat storage agent, method for producing clathrate hydrate or slurry thereof, heat storage and release method, and method for preparing latent heat storage agent or aqueous solution for forming principal component thereof
JP2010037446A (en) * 2008-08-06 2010-02-18 Jfe Engineering Corp Aqueous solution for clathrate hydrate formation, heat-storage agent, process for producing clathrate hydrate or slurry thereof, method for storing/radiating heat, and method for preparing aqueous solution for forming latent-heat-storage agent or major component thereof
JP2010230228A (en) * 2009-03-26 2010-10-14 Jfe Engineering Corp Hydrate forming method, heat storage method, and heat storage device
US7875749B2 (en) 2007-03-06 2011-01-25 Jfe Engineering Corporation Clathrate hydrate containing quaternary ammonium salt as guest compound
WO2016075941A1 (en) * 2014-11-14 2016-05-19 株式会社デンソー Super-cooling release material and method for producing same
JP2016204622A (en) * 2014-11-14 2016-12-08 株式会社デンソー Overcooling cancellation material and manufacturing method therefor

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007161894A (en) * 2005-12-14 2007-06-28 Jfe Engineering Kk Cold insulator and cold-insulating material
JP2007246778A (en) * 2006-03-17 2007-09-27 Jfe Engineering Kk Heat storing agent and method of preparing heat storing agent
JP2007321996A (en) * 2006-05-30 2007-12-13 Matsushita Electric Ind Co Ltd Heat storage system
JP2008101115A (en) * 2006-10-19 2008-05-01 Jfe Engineering Kk Refrigerating agent and refrigerating material
JP2008214485A (en) * 2007-03-02 2008-09-18 Jfe Engineering Kk Methods for producing tetra-n-butyl ammonium phosphate and latent heat storage medium
WO2008108308A1 (en) 2007-03-02 2008-09-12 Jfe Engineering Corporation Latent heat storage substance, inclusion hydrate or slurry thereof, method for producing inclusion hydrate or slurry thereof, and latent heat storage agent
JP2008214482A (en) * 2007-03-02 2008-09-18 Jfe Engineering Kk Aqueous solution having property for producing clathrate hydrate, clathrate hydrate and its slurry, method for producing clathrate hydrate slurry and latent heat storage agent
JP2008214483A (en) * 2007-03-02 2008-09-18 Jfe Engineering Kk Latent heat-storing substance, aqueous solution, clathrate hydrate and its slurry, method for adjusting melting point of clathrate hydrate, method for increasing latent heat storage quantity of slurry of clathrate hydrate, and method for producing clathrate hydrate or its slurry
WO2008108307A1 (en) * 2007-03-02 2008-09-12 Jfe Engineering Corporation Method for production of phosphate salt of tetra-n-butylammonium and method for production of latent heat storage medium
US7875749B2 (en) 2007-03-06 2011-01-25 Jfe Engineering Corporation Clathrate hydrate containing quaternary ammonium salt as guest compound
JP2009051906A (en) * 2007-08-24 2009-03-12 Jfe Engineering Kk Raw material for forming clathrate hydrate, method for producing clathrate hydrate or slurry thereof, and method for reducing pressure loss caused when cooling aqueous solution for forming clathrate hydrate
JP2009079108A (en) * 2007-09-26 2009-04-16 Jfe Engineering Kk Aqueous solution for forming clathrate hydrate, heat storing agent, method for producing clathrate hydrate or its slurry, heat storing and releasing method, and method for preparing aqueous solution for forming latent heat storing agent or its principal component
JP2009079114A (en) * 2007-09-26 2009-04-16 Jfe Engineering Kk Aqueous solution for forming clathrate hydrate, heat storage agent, method for producing clathrate hydrate or slurry thereof, heat storage and release method, and method for preparing latent heat storage agent or aqueous solution for forming principal component thereof
WO2009041396A1 (en) * 2007-09-26 2009-04-02 Jfe Engineering Corporation Aqueous solution for clathrate hydrate formation, heat-storage agent, process for producing clathrate hydrate or slurry thereof, method of storing/radiating heat, and process for preparing aqueous solution for forming latent-heat-storage agent or major component thereof
JP2010037446A (en) * 2008-08-06 2010-02-18 Jfe Engineering Corp Aqueous solution for clathrate hydrate formation, heat-storage agent, process for producing clathrate hydrate or slurry thereof, method for storing/radiating heat, and method for preparing aqueous solution for forming latent-heat-storage agent or major component thereof
JP2010230228A (en) * 2009-03-26 2010-10-14 Jfe Engineering Corp Hydrate forming method, heat storage method, and heat storage device
WO2016075941A1 (en) * 2014-11-14 2016-05-19 株式会社デンソー Super-cooling release material and method for producing same
JP2016204622A (en) * 2014-11-14 2016-12-08 株式会社デンソー Overcooling cancellation material and manufacturing method therefor

Also Published As

Publication number Publication date
JP4134982B2 (en) 2008-08-20

Similar Documents

Publication Publication Date Title
JP3641362B2 (en) Cold storage method using cold clathrate, cold storage system, and cold storage agent
JP4134982B2 (en) Cold storage method, cold storage system, cold storage agent, and method of extracting cold
Fopah-Lele et al. A review on the use of SrBr2· 6H2O as a potential material for low temperature energy storage systems and building applications
Lin et al. Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials
Purohit et al. Inorganic salt hydrate for thermal energy storage application: A review
N’Tsoukpoe et al. A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage
Li et al. A target‐oriented solid‐gas thermochemical sorption heat transformer for integrated energy storage and energy upgrade
Zhou et al. Modelling and experimental validation of a fluidized bed based CO2 hydrate cold storage system
JP2006219557A (en) Heat storage material composition, heat storage body using the same and heat storage apparatus
JP5163738B2 (en) Cladding hydrate having latent heat storage performance, manufacturing method and manufacturing apparatus thereof, latent heat storage medium, method of increasing latent heat storage amount of clathrate hydrate, and processing device for increasing latent heat storage amount of clathrate hydrate
Shi et al. Thermodynamic model of phase equilibria of tetrabutyl ammonium halide (fluoride, chloride, or bromide) plus methane or carbon dioxide semiclathrate hydrates
JP2006300492A (en) Heat transport system
Babu et al. Experimental measurements and modeling of the dissociation conditions of semiclathrate hydrates of tetrabutyl ammonium nitrate and carbon dioxide
JP6389891B2 (en) Strontium bromide phase change material
JP5136121B2 (en) Inclusion hydrate having latent heat storage performance, method and apparatus for manufacturing the same, latent heat storage medium, method for increasing latent heat storage amount of clathrate hydrate, and processing apparatus for increasing the amount
JP2001280875A (en) Method for cool storing using mixture slurry of inclusion hydrate and ice and cool storage system
JP4304848B2 (en) Cold heat transport method, cold heat transport system, operation method of cold heat transport system, storage device, and hydrate production device
JP2006249197A (en) Method of storing and transporting hydrate
JP5034441B2 (en) Method for producing latent heat storage medium, latent heat storage medium
JP2006336018A5 (en) Cryogenic transport method, hydrate slurry transport device, and district cooling and heating system
JP7137495B2 (en) Method for using heat storage material, heat storage material container, and heat storage material composition
JP2009051905A (en) Aqueous solution having property for forming clathrate hydrate, clathrate hydrate containing quaternary ammonium salt as guest compound, slurry of the clathrate hydrate, method for producing clathrate hydrate, method for increasing rate of generating or growing clathrate hydrate, and method for preventing or reducing supercooling phenomenon caused when generating or growing clathrate hydrate
KR100614173B1 (en) Composition for heat storage and preparation method thereof
JP2007277443A (en) Heat storage agent and heat storage solution
JP5482769B2 (en) Apparatus and method for changing latent heat storage performance of clathrate hydrate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

EXPY Cancellation because of completion of term