JP2005126604A - Rubber composition and tire obtained by using the same - Google Patents

Rubber composition and tire obtained by using the same Download PDF

Info

Publication number
JP2005126604A
JP2005126604A JP2003364913A JP2003364913A JP2005126604A JP 2005126604 A JP2005126604 A JP 2005126604A JP 2003364913 A JP2003364913 A JP 2003364913A JP 2003364913 A JP2003364913 A JP 2003364913A JP 2005126604 A JP2005126604 A JP 2005126604A
Authority
JP
Japan
Prior art keywords
weight
rubber
molecular weight
rubber composition
butadiene rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003364913A
Other languages
Japanese (ja)
Inventor
Toshiaki Matsuo
俊朗 松尾
Akihiro Mine
章弘 峯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2003364913A priority Critical patent/JP2005126604A/en
Publication of JP2005126604A publication Critical patent/JP2005126604A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rubber composition having excellent processability and reduced rolling resistance characteristics, and a tire using the same for a tread. <P>SOLUTION: The rubber composition comprises a rubber component comprising at least 50 wt% of a solution polymerization styrene-butadiene rubber, at most 40 wt% of a natural rubber and at most 40 wt% of a butadiene rubber and a reinforcing agent comprising at least 55 wt% of silica and at most 40 wt% of carbon black, where the solution polymerization styrene-butadiene rubber comprises (a) at most 25 wt% of a low-molecular weight solution polymerization styrene-butadiene rubber having a weight-average molecular weight of at most 5,000 and (b) a high-molecular weight solution polymerization styrene-butadiene rubber obtained by coupling using Sn or Si and the whole solution polymerization styrene-butadiene rubber has a weight-average molecular weight of at least 500,000. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ゴム組成物および、それを用いたタイヤに関し、とりわけ優れた加工性および低減された転がり抵抗特性を有するゴム組成物、ならびにそれをトレッドに用いたタイヤに関する。   The present invention relates to a rubber composition and a tire using the rubber composition, and more particularly to a rubber composition having excellent processability and reduced rolling resistance characteristics, and a tire using the rubber composition.

従来、タイヤの転がり抵抗を低減させるために、ゴム成分として、溶液重合スチレンブタジエンゴム(S−SBR)を用い、S−SBRの分子量を高く設定し、分子量分布をシャープにすることが行なわれてきた。また、シリカを補強剤として配合することにより、さらなる低燃費化が図られるようになった。しかし、シリカを配合すると、転がり抵抗の低減とウェットグリップ特性の向上を両立できるが、ゴム練り中にシリカがポリマーと結合してゲルを生成しやすく、ゲルが生成されると、練りゴムの粘度が上がるので、ゴム生地がわるくなるという工程上の問題が多発し、生産性が大きく低下した。   Conventionally, in order to reduce the rolling resistance of tires, solution-polymerized styrene butadiene rubber (S-SBR) is used as a rubber component, the molecular weight of S-SBR is set high, and the molecular weight distribution has been sharpened. It was. Further, by adding silica as a reinforcing agent, further reduction in fuel consumption has been achieved. However, when silica is blended, it is possible to achieve both reduction in rolling resistance and improvement in wet grip properties, but silica is likely to combine with the polymer during rubber kneading to form a gel. As a result, problems in the process of breaking the rubber fabric occurred frequently, and the productivity was greatly reduced.

また、ウェットグリップ特性の向上を目的として、低分子量および高分子量のポリマーを配合したゴム組成物について報告されている(特許文献1参照)。しかし、これらの技術によると、転がり抵抗が低減されない、または別々に配合する場合の低分子量ポリマーの分散性および加工性が悪化するという問題があった。   A rubber composition containing a low molecular weight polymer and a high molecular weight polymer has been reported for the purpose of improving wet grip characteristics (see Patent Document 1). However, according to these techniques, there has been a problem that the rolling resistance is not reduced, or the dispersibility and processability of the low molecular weight polymer when blended separately is deteriorated.

また、末端変性またはカップリングされたゴム成分と充填剤を使用し、ゴム組成物の性質を改善することも知られている(特許文献2参照)。しかし、これらの技術によると、アミンを末端に用いるため、シリカとの反応性が高くなく、ゴム組成物の性質改善効果が充分ではないという問題があった。   It is also known to improve the properties of a rubber composition by using a rubber component and a filler that are terminal-modified or coupled (see Patent Document 2). However, according to these techniques, since amine is used at the terminal, there is a problem that the reactivity with silica is not high and the property improving effect of the rubber composition is not sufficient.

特開2002―322317号公報JP 2002-322317 A 特開2002−322319号公報JP 2002-322319 A

本発明は、優れた加工性および低減された転がり抵抗を有するゴム組成物、およびそれをトレッドに用いたタイヤを提供することを目的とする。   An object of the present invention is to provide a rubber composition having excellent processability and reduced rolling resistance, and a tire using the rubber composition.

すなわち、本発明は、溶液重合スチレン−ブタジエンゴム50重量%以上、天然ゴム40重量%以下、およびブタジエンゴム40重量%以下からなるゴム成分、ならびに55重量%以上のシリカおよびカーボンブラック40重量%以下からなる補強剤からなるゴム組成物であって、該溶液重合スチレン−ブタジエンゴムは、(a)重量平均分子量が5000以下の低分子量溶液重合スチレン−ブタジエンゴムを25重量%以下、および(b)SnまたはSiでのカップリングにより高分子量溶液重合スチレン−ブタジエンゴムを含み、かつ該溶液重合スチレン−ブタジエンゴム全体の重量平均分子量が50万以上であり、該カーボンブラックは、チッ素吸着比表面積が145m2/g以上であり、かつセチルトリメチルアンモニウムブロマイド吸着比表面積(m2/g)がヨウ素吸着量(mg/g)に対して1.1倍以上であるゴム組成物に関する。 That is, the present invention relates to a rubber component composed of 50% by weight or more of solution-polymerized styrene-butadiene rubber, 40% by weight or less of natural rubber, and 40% by weight or less of butadiene rubber, and 40% by weight or less of silica and carbon black of 55% by weight or more. A rubber composition comprising a reinforcing agent comprising: (a) 25% by weight or less of a low molecular weight solution polymerized styrene-butadiene rubber having a weight average molecular weight of 5000 or less, and (b) Coupling with Sn or Si includes a high molecular weight solution-polymerized styrene-butadiene rubber, and the weight average molecular weight of the whole solution-polymerized styrene-butadiene rubber is 500,000 or more, and the carbon black has a nitrogen adsorption specific surface area. 145m and 2 / g or more, and cetyltrimethylammonium My Adsorption specific surface area (m 2 / g) is relates to a rubber composition is 1.1 times or more with respect to iodine adsorption (mg / g).

前記低分子量溶液重合スチレン−ブタジエンゴムは、アルキルシリル基で末端変性されていることが好ましい。   The low molecular weight solution polymerized styrene-butadiene rubber is preferably end-modified with an alkylsilyl group.

前記ゴム組成物のトルエン膨潤度は180〜320であることが好ましい。   The rubber composition preferably has a toluene swelling degree of 180 to 320.

シランカップリング剤はシリカ100重量部に対して、2〜12重量部配合され、160℃以上の温度で混練りされることが好ましい。   The silane coupling agent is preferably blended in an amount of 2 to 12 parts by weight with respect to 100 parts by weight of silica and kneaded at a temperature of 160 ° C. or higher.

また、本発明は、前記ゴム組成物をトレッドに用いたタイヤに関する。   The present invention also relates to a tire using the rubber composition in a tread.

本発明によれば、低分子量(5000以下)および高分子量のS−SBRを混合することにより、混合時や押出し時のゴム生地を改善することができる。さらに、その低分子量BRを末端変性することにより、シリカとの反応性を高め、混練り時の加工性の悪さを改善し、タイヤに用いた際の転がり抵抗を低減することができる。   According to the present invention, by mixing low molecular weight (5000 or less) and high molecular weight S-SBR, the rubber fabric at the time of mixing and extrusion can be improved. Furthermore, by terminal-modifying the low molecular weight BR, the reactivity with silica can be increased, the poor workability during kneading can be improved, and the rolling resistance when used in a tire can be reduced.

本発明のゴム組成物は、ゴム成分および補強剤からなる。   The rubber composition of the present invention comprises a rubber component and a reinforcing agent.

本発明で使用するゴム成分としては、溶液重合スチレン−ブタジエンゴム(S−SBR)、天然ゴム(NR)およびブタジエンゴム(BR)を用いる。   As the rubber component used in the present invention, solution-polymerized styrene-butadiene rubber (S-SBR), natural rubber (NR) and butadiene rubber (BR) are used.

S−SBRの含有量は、ゴム成分中に50重量%以上である。下限については、好ましくは65重量%である。上限については好ましくは90重量%、より好ましくは80重量%である。前記S−SBRの含有量が50重量%未満ではグリップ特性、特にウェットグリップ特性が低下する傾向がある。また、90重量%をこえると、低温特性、例えば脆化特性やアイスウェットグリップ特性が劣る傾向がある。   The content of S-SBR is 50% by weight or more in the rubber component. The lower limit is preferably 65% by weight. The upper limit is preferably 90% by weight, more preferably 80% by weight. When the content of S-SBR is less than 50% by weight, grip characteristics, particularly wet grip characteristics tend to deteriorate. On the other hand, if it exceeds 90% by weight, the low temperature characteristics such as embrittlement characteristics and ice wet grip characteristics tend to be inferior.

S−SBRのスチレン単位量は5〜45重量%であることが好ましい。下限については20重量%であることが好ましい。また、上限については65重量%であることが好ましい。スチレン単位量が5重量%未満でビニル単位量が65重量%をこえると、ゴムの加硫特性が悪くなり、加硫時間が延びたり、加硫後の引き裂きや引っ張り特性が劣る傾向がある。また、ビニル単位量が20重量%未満でスチレン単位量が45重量%をこえると、転がり抵抗が低減されない傾向がある。   The amount of styrene unit in S-SBR is preferably 5 to 45% by weight. The lower limit is preferably 20% by weight. The upper limit is preferably 65% by weight. If the styrene unit amount is less than 5% by weight and the vinyl unit amount exceeds 65% by weight, the vulcanization characteristics of the rubber are deteriorated, the vulcanization time is prolonged, and the tearing and tensile properties after vulcanization tend to be inferior. On the other hand, when the vinyl unit amount is less than 20% by weight and the styrene unit amount exceeds 45% by weight, the rolling resistance tends not to be reduced.

S−SBRの重量平均分子量は50万以上である。下限については80万であることが好ましい。上限については200万であることが好ましい。重量平均分子量が50万未満では転がり抵抗が低減されない傾向がある。また、200万をこえると生ゴムのムーニー粘度が上昇して、バンバリーでの混練り時にポリマー分散が悪くなったり、練りゴムの粘度が上昇しすぎる傾向がある。   The weight average molecular weight of S-SBR is 500,000 or more. The lower limit is preferably 800,000. The upper limit is preferably 2 million. If the weight average molecular weight is less than 500,000, the rolling resistance tends not to be reduced. On the other hand, if it exceeds 2 million, the Mooney viscosity of the raw rubber will increase, and there will be a tendency for the polymer dispersion to deteriorate during kneading in Banbury, or the viscosity of the kneaded rubber will increase too much.

また、S−SBRの分子量分布(Mw/Mn)は、1.5〜3.0であることが好ましい。   Moreover, it is preferable that the molecular weight distribution (Mw / Mn) of S-SBR is 1.5-3.0.

S−SBRは低分子量S−SBRおよび高分子量S−SBRを含む。   S-SBR includes low molecular weight S-SBR and high molecular weight S-SBR.

前記S−SBRは、低分子量S−SBRを25重量%以下含む。下限については5重量%であることが好ましく、10重量%であることがより好ましい。上限については20重量%であることが好ましい。配合量が5重量%未満では、練りゴムの生地が悪くなる、あるいは粘度が上昇する。また、配合量が25重量%をこえると、転がり抵抗が低減されない、あるいは生ゴムのフロー性が悪くなる。   The S-SBR contains 25% by weight or less of low molecular weight S-SBR. The lower limit is preferably 5% by weight, and more preferably 10% by weight. The upper limit is preferably 20% by weight. If the blending amount is less than 5% by weight, the kneaded rubber dough becomes worse or the viscosity increases. On the other hand, if the blending amount exceeds 25% by weight, the rolling resistance is not reduced or the raw rubber has poor flowability.

低分子量S−SBRの重量平均分子量は5000以下である。下限については1000であることが好ましく、2000であることがより好ましい。上限については3500であることが好ましく、3000であることがより好ましい。1000未満では、生地は良好であるが、転がり抵抗が低減される、発熱性が劣る、または耐摩耗性が劣る傾向がある。また、5000をこえると、練りゴムの生地の改善がみられない。   The weight average molecular weight of the low molecular weight S-SBR is 5000 or less. The lower limit is preferably 1000, more preferably 2000. The upper limit is preferably 3500, and more preferably 3000. If it is less than 1000, the fabric is good, but the rolling resistance is reduced, the heat generation is inferior, or the wear resistance tends to be inferior. Moreover, when it exceeds 5000, the improvement of kneaded rubber dough is not seen.

シリカとの接着性を向上させるために、低分子量S−SBRは、末端変性されていることが好ましい。低分子量S−SBRに導入される官能基としては、アルキルシリル基、水酸基、エポキシ基などが導入される。なかでもシリカとの反応性や、ポリマー粘度の上昇が小さいという点から、アルキルシリル基が好ましい。   In order to improve the adhesion to silica, it is preferable that the low molecular weight S-SBR is terminal-modified. As the functional group introduced into the low molecular weight S-SBR, an alkylsilyl group, a hydroxyl group, an epoxy group, or the like is introduced. Of these, alkylsilyl groups are preferred from the standpoint of reactivity with silica and small increase in polymer viscosity.

高分子量S−SBRには、S−SBRをSnやSiでカップリングしたものを用いる。   As the high molecular weight S-SBR, one obtained by coupling S-SBR with Sn or Si is used.

S−SBRは高分子量S−SBRを75〜95重量%含む。下限については80重量%であることが好ましい。上限については90重量%であることが好ましい。配合量が75重量%未満では、転がり抵抗が低減されない、または耐摩耗性が劣る傾向がある。また、配合量が90重量%をこえると、低温脆性やアイスウェットグリップ特性が劣る傾向がある。   S-SBR contains 75-95 wt% of high molecular weight S-SBR. The lower limit is preferably 80% by weight. The upper limit is preferably 90% by weight. If the blending amount is less than 75% by weight, the rolling resistance tends not to be reduced or the wear resistance tends to be inferior. On the other hand, if the blending amount exceeds 90% by weight, the low temperature brittleness and ice wet grip characteristics tend to be inferior.

S−SBRのカップリング方法は、常法に従って、たとえば、S−SBRの分子鎖末端のアルカリ金属(Liなど)またはアルカリ土類金属(Mgなど)を、たとえばハロゲン化スズまたはハロゲン化ケイ素と反応させることによって得ることができる。   The coupling method of S-SBR is performed by, for example, reacting an alkali metal (such as Li) or alkaline earth metal (such as Mg) at the molecular chain end of S-SBR with, for example, tin halide or silicon halide. Can be obtained.

本発明で使用するゴム成分としては、さらに、天然ゴム(NR)を用いる。NRの含有量は、ゴム成分中に40重量%以下、好ましくは35重量%以下である。NRの含有量が40重量%をこえると転がり抵抗がより低減され、ゴムの生地も良好であるが、ウェットグリップ特性が劣る。   As the rubber component used in the present invention, natural rubber (NR) is further used. The content of NR is 40% by weight or less, preferably 35% by weight or less in the rubber component. When the NR content exceeds 40% by weight, the rolling resistance is further reduced and the rubber fabric is good, but the wet grip characteristics are inferior.

本発明で使用するゴム成分としては、さらに、ブタジエンゴム(BR)を用いる。BRの含有量は、ゴム成分中に40重量%以下、好ましくは25重量%以下である。BRの含有量が40重量%をこえると転がり抵抗が低減され、耐摩耗性も優れるが、ウェットグリップ特性、ドライグリップ特性が劣る。   As the rubber component used in the present invention, butadiene rubber (BR) is further used. The content of BR is 40% by weight or less, preferably 25% by weight or less in the rubber component. When the content of BR exceeds 40% by weight, rolling resistance is reduced and wear resistance is excellent, but wet grip characteristics and dry grip characteristics are inferior.

つぎに、本発明では補強剤として、シリカおよびカーボンブラックを用いる。前記ゴム成分に対して、補強剤としてのシリカを多く用いることは、従来のカーボンブラック配合用のポリマーにシリカを用いることよりも効果的である。カーボンブラックと比較してシリカは表面活性が大きく、分子鎖末端などの変性による効果が生じやすい。したがって、シリカとカーボンブラックの比率は、シリカの比率を多くする必要がある。   Next, silica and carbon black are used as a reinforcing agent in the present invention. Using a large amount of silica as a reinforcing agent for the rubber component is more effective than using silica in a conventional polymer for blending carbon black. Silica has a higher surface activity than carbon black and is likely to have an effect due to modification of molecular chain ends and the like. Therefore, the ratio of silica to carbon black needs to be increased.

本発明では、補強剤としてシリカを用いる。シリカの含有量は、補強剤中に55重量%以上である。下限については60重量%であることが好ましい。上限については80重量%であることが好ましい。シリカの含有量が55重量%未満では、転がり抵抗が低減されない。   In the present invention, silica is used as a reinforcing agent. The content of silica is 55% by weight or more in the reinforcing agent. The lower limit is preferably 60% by weight. The upper limit is preferably 80% by weight. When the content of silica is less than 55% by weight, rolling resistance is not reduced.

さらに、本発明では、補強剤としてカーボンブラックを用いる。従来より、カーボンブラックをシリカと併用する場合には、シリカの電気抵抗の高さを考慮して表面積の大きな(粒子径の小さな)カーボンブラックを用いることが多い。この場合、転がり抵抗の増大が懸念されるので、分子鎖末端との反応性を高くするためにカーボンブラックの表面活性を高く(セチルトリメチルアンモニウムブロマイド吸着比表面積/ヨウ素吸着量の比を大きく)して、転がり抵抗値を低くする必要がある。   Furthermore, in the present invention, carbon black is used as a reinforcing agent. Conventionally, when carbon black is used in combination with silica, carbon black having a large surface area (small particle diameter) is often used in consideration of the high electric resistance of silica. In this case, since there is a concern about an increase in rolling resistance, the surface activity of carbon black is increased to increase the reactivity with the molecular chain end (the ratio of cetyltrimethylammonium bromide adsorption specific surface area / iodine adsorption amount is increased). Therefore, it is necessary to lower the rolling resistance value.

本発明で使用するカーボンブラックのチッ素吸着比表面積(N2SA)は、145m2/g以上である。下限については160m2/gであることが好ましく、170m2/gであることがより好ましい。また、上限については220m2/gであることが好ましく、190m2/gであることがより好ましい。N2SAが145m2/g未満ではカーボンブラック比率を下げた場合の電気導電性が劣る。また、220m2/gをこえると転がり抵抗が低減されない、または練りゴムの粘度が上昇しすぎる傾向がある。 The carbon black used in the present invention has a nitrogen adsorption specific surface area (N 2 SA) of 145 m 2 / g or more. The lower limit is preferably 160 m 2 / g, and more preferably 170 m 2 / g. The upper limit is preferably 220 m 2 / g, and more preferably 190 m 2 / g. When N 2 SA is less than 145 m 2 / g, the electrical conductivity when the carbon black ratio is lowered is inferior. Moreover, when it exceeds 220 m < 2 > / g, there exists a tendency for rolling resistance not to be reduced or for the viscosity of kneaded rubber to rise too much.

カーボンブラックのセチルトリメチルアンモニウムブロマイド(CTAB)吸着比表面積は、140〜200m2/gであることが好ましい。CTAB吸着比表面積が140m2/g未満ではカーボンブラックの比率を下げた時の電気導電性が劣り、ドライグリップ特性の低下が大きくなる傾向がある。また、200m2/gをこえると、転がり抵抗が低減されない、または練りゴムの粘度が上昇しすぎる傾向がある。 The cetyltrimethylammonium bromide (CTAB) adsorption specific surface area of carbon black is preferably 140 to 200 m 2 / g. When the CTAB adsorption specific surface area is less than 140 m 2 / g, the electric conductivity when the ratio of carbon black is lowered tends to be inferior, and the dry grip characteristics tend to decrease greatly. Moreover, when it exceeds 200 m < 2 > / g, there exists a tendency for rolling resistance not to be reduced or the viscosity of kneaded rubber to rise too much.

カーボンブラックのヨウ素吸着量(IA)は、140〜200mg/gであることが好ましい。IAが140mg/g未満ではカーボンブラックの比率を下げた時の電気導電性が劣り、ドライグリップ特性の低下が大きくなる傾向がある。また、200mg/gをこえると転がり抵抗が低減されない、または練りゴムの粘度が上昇しすぎる傾向がある。   The iodine adsorption amount (IA) of carbon black is preferably 140 to 200 mg / g. If the IA is less than 140 mg / g, the electrical conductivity when the ratio of carbon black is lowered tends to be inferior, and the dry grip characteristics tend to decrease greatly. Moreover, when it exceeds 200 mg / g, there exists a tendency for rolling resistance not to be reduced or for the viscosity of kneaded rubber to rise too much.

CTAB(m2/g)のIA(mg/g)に対する比(CTAB/IA比)は、1.1以上である。下限については1.15であることが好ましく、1.18であることがより好ましい。上限については1.29であることが好ましく、1.25であることがより好ましい。CTAB/IA比が1.1未満では転がり抵抗の低減効果とドライグリップ特性のバランスが悪くなり、カーボンブラックの生産性が大きく劣る傾向がある。 The ratio of CTAB (m 2 / g) to IA (mg / g) (CTAB / IA ratio) is 1.1 or more. The lower limit is preferably 1.15, more preferably 1.18. The upper limit is preferably 1.29, and more preferably 1.25. If the CTAB / IA ratio is less than 1.1, the balance between the reduction effect of rolling resistance and the dry grip characteristics is poor, and the productivity of carbon black tends to be greatly inferior.

カーボンブラックの含有量は、補強剤中に40重量%以下である。下限については20重量%であることが好ましい。上限については35重量%であることが好ましい。カーボンブラックの含有量が40重量%をこえると転がり抵抗が低減されない。   The content of carbon black is 40% by weight or less in the reinforcing agent. The lower limit is preferably 20% by weight. The upper limit is preferably 35% by weight. When the content of carbon black exceeds 40% by weight, rolling resistance is not reduced.

前記ゴム成分と補強剤を混練りする際には、ゴム成分と補強剤との反応を効率よく行なうために、混練り機(バンバリーミキサーなど)中での反応温度を高く設定することが好ましい。具体的には、160℃以上、好ましくは160〜180℃に設定する。この場合、シリカ用のカップリング剤を従来のSi69(1分子中に硫黄原子4個)などからSi266(1分子中に硫黄原子2個含む、高純度)などに変更して、耐熱性を向上させたうえで混練りすることが望ましい。   When kneading the rubber component and the reinforcing agent, it is preferable to set a high reaction temperature in a kneading machine (Banbury mixer or the like) in order to efficiently react the rubber component and the reinforcing agent. Specifically, it is set to 160 ° C. or higher, preferably 160 to 180 ° C. In this case, the coupling agent for silica is changed from conventional Si69 (four sulfur atoms in one molecule) to Si266 (two sulfur atoms in one molecule, high purity), etc. to improve heat resistance. It is desirable to knead after mixing.

シランカップリング剤は、シリカ100重量部に対して2〜12重量部使用することが好ましい。シランカップリング剤が2重量部未満ではシリカの性能を充分に引き出せずに、ウェットグリップ特性および耐摩耗性が劣る傾向がある。また、12重量部をこえるとカップリング剤が過多でコスト高になり、耐摩耗性が劣る傾向がある。   The silane coupling agent is preferably used in an amount of 2 to 12 parts by weight based on 100 parts by weight of silica. When the silane coupling agent is less than 2 parts by weight, the performance of silica cannot be sufficiently obtained, and wet grip characteristics and wear resistance tend to be inferior. On the other hand, when the amount exceeds 12 parts by weight, the amount of the coupling agent is excessive and the cost becomes high, and the wear resistance tends to be inferior.

このようにして得られる本発明のゴム組成物は、トルエン膨潤度が180〜320%であることが好ましい。下限については220%であることがより好ましい。上限については310%であることがより好ましい。トルエン膨潤度が180%未満ではゴムの耐久性が劣り、耐摩耗性が悪化する傾向がある。また、320%をこえるとドライグリップ特性や転がり抵抗の低減効果が劣る傾向がある。ここで、トルエン膨潤度は、一辺が5mm程度に調整されたゴムの立方体を、トルエン中に24時間浸漬したのち、浸漬後と浸漬前の重量比率を測定することにより求められる。   The rubber composition of the present invention thus obtained preferably has a toluene swelling degree of 180 to 320%. The lower limit is more preferably 220%. The upper limit is more preferably 310%. When the toluene swelling degree is less than 180%, the durability of the rubber is inferior and the wear resistance tends to deteriorate. Moreover, when it exceeds 320%, there exists a tendency for the dry grip characteristic and the reduction effect of rolling resistance to be inferior. Here, the degree of toluene swelling is determined by immersing a rubber cube whose side is adjusted to about 5 mm in toluene for 24 hours, and then measuring the weight ratio after immersion and before immersion.

本発明のゴム組成物は、タイヤに使用すると転がり抵抗が低減されているため、タイヤトレッドに好適に用いられる。   Since the rolling resistance of the rubber composition of the present invention is reduced when used in a tire, it is suitably used for a tire tread.

以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these.

以下に実施例および比較例で用いた材料をまとめて説明する。
NR:RSS♯3
ポリマーA:日本ゼオン(株)製のSBR NS116(SnでカップリングしたS−SBR、スチレン単位量:20重量%、ビニル単位量:60重量%、末端基:カプロラクタム)
ポリマーB:試作SBR(重量平均分子量:50万、末端変性基として、アルキルシリル基を有し、10重量%の分子量4800のSBRを含む)
ポリマーC:Sartomer Company Inc製のライコン100(液状SBR、ビニル単位量:75重量%、末端基:なし)
ポリマーD:日本ゼオン(株)製のリキッドBR、POLYOIL130
シリカ:ローディア社製の115GR(N2SA:115m2/g)
シランカップリング剤:デグサ製のSi266
カーボンブラックN134:三菱化学(株)製のSAF(N2SA:145m2/g、CTAB吸着比表面積:136m2/g、IA:142mg/g)
アロマオイル:出光興産(株)製のAH40
硫黄:鶴見化学(株)製の粉末硫黄
加硫促進剤CBS:鶴見化学工業(株)製のノクセラーCZ−G
加硫促進剤DPG:住友化学工業(株)製のソクソシールD
The materials used in the examples and comparative examples will be described together below.
NR: RSS # 3
Polymer A: SBR NS116 manufactured by Nippon Zeon Co., Ltd. (S-SBR coupled with Sn, styrene unit amount: 20% by weight, vinyl unit amount: 60% by weight, end group: caprolactam)
Polymer B: Prototype SBR (weight average molecular weight: 500,000, including an alkylsilyl group as a terminal modification group, and containing 10% by weight of SBR having a molecular weight of 4800)
Polymer C: Rycon 100 manufactured by Sartomer Company Inc. (Liquid SBR, vinyl unit amount: 75% by weight, end group: none)
Polymer D: Liquid BR, POLYOIL130 manufactured by Nippon Zeon Co., Ltd.
Silica: 115GR manufactured by Rhodia (N 2 SA: 115 m 2 / g)
Silane coupling agent: Si266 from Degussa
Carbon black N134: SAF manufactured by Mitsubishi Chemical Corporation (N 2 SA: 145 m 2 / g, CTAB adsorption specific surface area: 136 m 2 / g, IA: 142 mg / g)
Aroma oil: AH40 made by Idemitsu Kosan Co., Ltd.
Sulfur: Powder sulfur vulcanization accelerator made by Tsurumi Chemical Co., Ltd. CBS: Noxeller CZ-G made by Tsurumi Chemical Co., Ltd.
Vulcanization accelerator DPG: Soxoseal D manufactured by Sumitomo Chemical Co., Ltd.

実施例1〜2および比較例1〜3
表1の配合にしたがって、硫黄および加硫促進剤以外の材料を160℃で1分間混練りした。さらに、硫黄および加硫促進剤を加えて120℃で1.5分間混練りした。つぎに、得られたゴム組成物を250kPa、180℃の条件で加硫した。得られた加硫ゴムについて、以下の試験を実施した。試験結果を表1に示す。
Examples 1-2 and Comparative Examples 1-3
According to the formulation in Table 1, materials other than sulfur and the vulcanization accelerator were kneaded at 160 ° C. for 1 minute. Furthermore, sulfur and a vulcanization accelerator were added and kneaded at 120 ° C. for 1.5 minutes. Next, the obtained rubber composition was vulcanized under the conditions of 250 kPa and 180 ° C. The following tests were performed on the obtained vulcanized rubber. The test results are shown in Table 1.

(ゴム硬度)
調製したゴム組成物の硬度(Hs)を、25℃でJIS−A硬度計で測定した。
(Rubber hardness)
The hardness (Hs) of the prepared rubber composition was measured with a JIS-A hardness meter at 25 ° C.

(損失正接)
(株)岩本製作所製のVES−F−3を用いて、周波数10Hz、初期歪み10%、動歪み2%で60℃における損失正接(tanδ)を測定した。このtanδ値が小さいほど発熱しにくい。
(Loss tangent)
Using a VES-F-3 manufactured by Iwamoto Seisakusho, loss tangent (tan δ) at 60 ° C. was measured at a frequency of 10 Hz, an initial strain of 10%, and a dynamic strain of 2%. The smaller the tan δ value, the less heat is generated.

(練り生地)
120℃にて押し出し、トレッドを作製し、目視にて判断することにより、練り生地の状態を3段階で評価した。
○:滑らかな生地
△:サメ肌状の生地
×:でこぼこを多数有する生地
(Kneaded dough)
Extrusion was performed at 120 ° C., a tread was prepared, and the state of the kneaded dough was evaluated in three stages by visual judgment.
○: Smooth fabric △: Shark-like fabric ×: Fabric with many bumps

Figure 2005126604
Figure 2005126604

Claims (5)

溶液重合スチレン−ブタジエンゴム50重量%以上、天然ゴム40重量%以下、およびブタジエンゴム40重量%以下からなるゴム成分、ならびに55重量%以上のシリカおよびカーボンブラック40重量%以下からなる補強剤からなるゴム組成物であって、
該溶液重合スチレン−ブタジエンゴムは、(a)重量平均分子量が5000以下の低分子量溶液重合スチレン−ブタジエンゴムを25重量%以下、および(b)SnまたはSiでのカップリングにより高分子量溶液重合スチレン−ブタジエンゴムを含み、かつ該溶液重合スチレン−ブタジエンゴム全体の重量平均分子量が50万以上であり、
該カーボンブラックは、チッ素吸着比表面積が145m2/g以上であり、かつセチルトリメチルアンモニウムブロマイド吸着比表面積(m2/g)がヨウ素吸着量(mg/g)に対して1.1倍以上であるゴム組成物。
Solution polymerization styrene-butadiene rubber 50% by weight, natural rubber 40% by weight and butadiene rubber 40% by weight rubber component, and 55% by weight silica and carbon black 40% by weight reinforcing agent A rubber composition comprising:
The solution polymerized styrene-butadiene rubber comprises (a) a low molecular weight solution polymerized styrene-butadiene rubber having a weight average molecular weight of 5000 or less and 25% by weight or less, and (b) a high molecular weight solution polymerized styrene by coupling with Sn or Si. -Containing butadiene rubber, and the weight average molecular weight of the whole solution polymerized styrene-butadiene rubber is 500,000 or more,
The carbon black has a nitrogen adsorption specific surface area of 145 m 2 / g or more, and a cetyltrimethylammonium bromide adsorption specific surface area (m 2 / g) of 1.1 times or more with respect to the iodine adsorption amount (mg / g). A rubber composition.
前記低分子量溶液重合スチレン−ブタジエンゴムがアルキルシリル基で末端変性されている請求項1記載のゴム組成物。 The rubber composition according to claim 1, wherein the low molecular weight solution polymerized styrene-butadiene rubber is terminal-modified with an alkylsilyl group. ゴム組成物のトルエン膨潤度が180〜320である請求項1または2記載のゴム組成物。 The rubber composition according to claim 1 or 2, wherein the toluene swelling degree of the rubber composition is 180 to 320. シランカップリング剤がシリカ100重量部に対して、2〜12重量部配合され、160℃以上の温度で混練りされる請求項1、2または3記載のゴム組成物。 The rubber composition according to claim 1, 2 or 3, wherein the silane coupling agent is blended in an amount of 2 to 12 parts by weight with respect to 100 parts by weight of silica and kneaded at a temperature of 160 ° C or higher. 請求項1、2、3または4記載のゴム組成物からなるトレッドを有するタイヤ。 A tire having a tread comprising the rubber composition according to claim 1, 2, 3 or 4.
JP2003364913A 2003-10-24 2003-10-24 Rubber composition and tire obtained by using the same Pending JP2005126604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003364913A JP2005126604A (en) 2003-10-24 2003-10-24 Rubber composition and tire obtained by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003364913A JP2005126604A (en) 2003-10-24 2003-10-24 Rubber composition and tire obtained by using the same

Publications (1)

Publication Number Publication Date
JP2005126604A true JP2005126604A (en) 2005-05-19

Family

ID=34643753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003364913A Pending JP2005126604A (en) 2003-10-24 2003-10-24 Rubber composition and tire obtained by using the same

Country Status (1)

Country Link
JP (1) JP2005126604A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100608139B1 (en) 2005-06-09 2006-08-02 금호타이어 주식회사 Tire tread rubber composition friendly silica
KR20070000089A (en) * 2005-06-27 2007-01-02 금호타이어 주식회사 Tire tread rubber composition having an improved wear resistance
JP2009138157A (en) * 2007-12-10 2009-06-25 Yokohama Rubber Co Ltd:The Rubber composition for tire
EP2060604A4 (en) * 2006-09-04 2009-12-02 Bridgestone Corp Rubber composition and pneumatic tire using the same
EP2366558A1 (en) 2010-03-17 2011-09-21 Sumitomo Rubber Industries, Ltd. Tire rubber composition and heavy-load tire
JP2012071722A (en) * 2010-09-29 2012-04-12 Honda Motor Co Ltd Tire composition for motorcycle and tire for motorcycle
DE102010061469A1 (en) * 2010-12-22 2012-06-28 Continental Reifen Deutschland Gmbh Rubber compound with improved rolling resistance behavior
EP2511106A1 (en) 2011-04-13 2012-10-17 Sumitomo Rubber Industries, Ltd. Diene polymer and production method thereof
EP2465704A4 (en) * 2009-09-10 2013-05-22 Bridgestone Corp Run-flat tire
US8857482B2 (en) 2011-07-28 2014-10-14 Sumitomo Rubber Industries, Ltd. Rubber composition for tread, method for producing the same, and heavy-load tire
US8875765B2 (en) 2011-10-25 2014-11-04 Sumitomo Rubber Industries, Ltd. Rubber composition for clinch apex and pneumatic tire
WO2014189102A1 (en) * 2013-05-24 2014-11-27 株式会社ブリヂストン Rubber composition
US8952091B2 (en) 2010-01-18 2015-02-10 Sumitomo Rubber Industries, Ltd. Rubber composition for inner liner and pneumatic tire
US9068060B2 (en) 2013-01-10 2015-06-30 Sumitomo Rubber Industries, Ltd. Composite and method for producing the same, rubber composition, and pneumatic tire
US20150191586A1 (en) * 2014-01-08 2015-07-09 Sumitomo Rubber Industries, Ltd. Pneumatic tire
US9181355B2 (en) 2010-06-10 2015-11-10 Sumitomo Rubber Industries, Ltd. Modified natural rubber, method for producing same, rubber composition, and pneumatic tire
US9217075B2 (en) 2012-01-24 2015-12-22 Sumitomo Rubber Industries, Ltd. Rubber composition for tire, and pneumatic tire
EP2957433A1 (en) 2014-06-16 2015-12-23 Sumitomo Rubber Industries, Ltd. Truck or bus tires
US9410033B2 (en) 2011-11-11 2016-08-09 Sumitomo Rubber Industries, Ltd. Rubber composition for undertread, and pneumatic tire
EP3418073A1 (en) * 2017-06-19 2018-12-26 The Goodyear Tire & Rubber Company Rubber composition containing styrene/butadiene elastomer and silica reinforcement and tire
US10336890B2 (en) 2014-03-17 2019-07-02 Sumitomo Rubber Industries, Ltd. Rubber composition for studless winter tires, and studless winter tire
CN114656699A (en) * 2022-03-15 2022-06-24 中策橡胶集团股份有限公司 Low rolling resistance and high grip ground tread rubber compound composition, mixing method thereof and tire
CN114835959A (en) * 2022-04-20 2022-08-02 中策橡胶集团股份有限公司 Ultralow rolling resistance rubber composition for four-season tire, mixing method thereof and tire

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61283635A (en) * 1985-06-10 1986-12-13 Asahi Carbon Kk Soft carbon black
JPH01188501A (en) * 1988-01-25 1989-07-27 Bridgestone Corp Production of rubber composition
JPH0232137A (en) * 1988-07-21 1990-02-01 Tokai Carbon Co Ltd Carbon black for blending of tire tread rubber
JPH02308867A (en) * 1989-05-23 1990-12-21 Showa Kiyabotsuto Kk Carbon black having high specific surface area and rubber composition
JPH0415268A (en) * 1990-05-08 1992-01-20 Showa Kiyabotsuto Kk Carbon black and rubber composition containing the same
JPH05311004A (en) * 1992-05-13 1993-11-22 Toyo Tire & Rubber Co Ltd Rubber composition for tire tread
JPH09143311A (en) * 1995-11-24 1997-06-03 Bridgestone Corp Pneumatic tire
JPH1036559A (en) * 1996-04-22 1998-02-10 Sumitomo Rubber Ind Ltd Rubber composition for tire side wall and tire
JPH11181157A (en) * 1997-12-22 1999-07-06 Bridgestone Corp Rubber composition and pneumatic tire produced therefrom
JPH11199709A (en) * 1998-01-06 1999-07-27 Toyo Tire & Rubber Co Ltd Rubber composition for tire tread
JPH11217004A (en) * 1998-02-03 1999-08-10 Bridgestone Corp Pneumatic tire
JP2000204129A (en) * 1998-11-10 2000-07-25 Jsr Corp Conjugated diolefin copolymerization rubber and rubber composition
JP2001139729A (en) * 1999-08-31 2001-05-22 Yokohama Rubber Co Ltd:The Rubber composition and method for producing the same
JP2001158836A (en) * 1999-12-02 2001-06-12 Bridgestone Corp Rubber composition, oil-extended rubber and pneumatic tire
JP2001261891A (en) * 1999-05-17 2001-09-26 Yokohama Rubber Co Ltd:The Rubber composition
JP2002060437A (en) * 2000-06-07 2002-02-26 Nippon Zeon Co Ltd Conjugated diene rubber gel, rubber composition containing the same and process for producing conjugated diene rubber gel
JP2002201307A (en) * 2000-12-27 2002-07-19 Nippon Zeon Co Ltd Rubber composition and crosslinked material
JP2003155302A (en) * 2001-11-20 2003-05-27 Bridgestone Corp Modified diene polymer, rubber composition and pneumatic tire
JP2003268041A (en) * 2002-03-15 2003-09-25 Nippon Zeon Co Ltd Diene-based rubber, method for producing the rubber, rubber composition, method for producing the composition, and cross-linked product
JP2005126556A (en) * 2003-10-23 2005-05-19 Sumitomo Rubber Ind Ltd Rubber composition and tire obtained by using the same

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61283635A (en) * 1985-06-10 1986-12-13 Asahi Carbon Kk Soft carbon black
JPH01188501A (en) * 1988-01-25 1989-07-27 Bridgestone Corp Production of rubber composition
JPH0232137A (en) * 1988-07-21 1990-02-01 Tokai Carbon Co Ltd Carbon black for blending of tire tread rubber
JPH02308867A (en) * 1989-05-23 1990-12-21 Showa Kiyabotsuto Kk Carbon black having high specific surface area and rubber composition
JPH0415268A (en) * 1990-05-08 1992-01-20 Showa Kiyabotsuto Kk Carbon black and rubber composition containing the same
JPH05311004A (en) * 1992-05-13 1993-11-22 Toyo Tire & Rubber Co Ltd Rubber composition for tire tread
JPH09143311A (en) * 1995-11-24 1997-06-03 Bridgestone Corp Pneumatic tire
JPH1036559A (en) * 1996-04-22 1998-02-10 Sumitomo Rubber Ind Ltd Rubber composition for tire side wall and tire
JPH11181157A (en) * 1997-12-22 1999-07-06 Bridgestone Corp Rubber composition and pneumatic tire produced therefrom
JPH11199709A (en) * 1998-01-06 1999-07-27 Toyo Tire & Rubber Co Ltd Rubber composition for tire tread
JPH11217004A (en) * 1998-02-03 1999-08-10 Bridgestone Corp Pneumatic tire
JP2000204129A (en) * 1998-11-10 2000-07-25 Jsr Corp Conjugated diolefin copolymerization rubber and rubber composition
JP2001261891A (en) * 1999-05-17 2001-09-26 Yokohama Rubber Co Ltd:The Rubber composition
JP2001139729A (en) * 1999-08-31 2001-05-22 Yokohama Rubber Co Ltd:The Rubber composition and method for producing the same
JP2001158836A (en) * 1999-12-02 2001-06-12 Bridgestone Corp Rubber composition, oil-extended rubber and pneumatic tire
JP2002060437A (en) * 2000-06-07 2002-02-26 Nippon Zeon Co Ltd Conjugated diene rubber gel, rubber composition containing the same and process for producing conjugated diene rubber gel
JP2002201307A (en) * 2000-12-27 2002-07-19 Nippon Zeon Co Ltd Rubber composition and crosslinked material
JP2003155302A (en) * 2001-11-20 2003-05-27 Bridgestone Corp Modified diene polymer, rubber composition and pneumatic tire
JP2003268041A (en) * 2002-03-15 2003-09-25 Nippon Zeon Co Ltd Diene-based rubber, method for producing the rubber, rubber composition, method for producing the composition, and cross-linked product
JP2005126556A (en) * 2003-10-23 2005-05-19 Sumitomo Rubber Ind Ltd Rubber composition and tire obtained by using the same

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100608139B1 (en) 2005-06-09 2006-08-02 금호타이어 주식회사 Tire tread rubber composition friendly silica
KR20070000089A (en) * 2005-06-27 2007-01-02 금호타이어 주식회사 Tire tread rubber composition having an improved wear resistance
EP2060604A4 (en) * 2006-09-04 2009-12-02 Bridgestone Corp Rubber composition and pneumatic tire using the same
US8580885B2 (en) 2006-09-04 2013-11-12 Bridgestone Corporation Rubber composition and pneumatic tire using the same
JP2009138157A (en) * 2007-12-10 2009-06-25 Yokohama Rubber Co Ltd:The Rubber composition for tire
EP2465704A4 (en) * 2009-09-10 2013-05-22 Bridgestone Corp Run-flat tire
US8952091B2 (en) 2010-01-18 2015-02-10 Sumitomo Rubber Industries, Ltd. Rubber composition for inner liner and pneumatic tire
EP2366558A1 (en) 2010-03-17 2011-09-21 Sumitomo Rubber Industries, Ltd. Tire rubber composition and heavy-load tire
US8163821B2 (en) 2010-03-17 2012-04-24 Sumitomo Rubber Industries, Ltd. Tire rubber composition and heavy-load tire
US9181355B2 (en) 2010-06-10 2015-11-10 Sumitomo Rubber Industries, Ltd. Modified natural rubber, method for producing same, rubber composition, and pneumatic tire
JP2012071722A (en) * 2010-09-29 2012-04-12 Honda Motor Co Ltd Tire composition for motorcycle and tire for motorcycle
DE102010061469A1 (en) * 2010-12-22 2012-06-28 Continental Reifen Deutschland Gmbh Rubber compound with improved rolling resistance behavior
EP2511106A1 (en) 2011-04-13 2012-10-17 Sumitomo Rubber Industries, Ltd. Diene polymer and production method thereof
US9035001B2 (en) 2011-04-13 2015-05-19 Sumitomo Rubber Industries, Ltd. Diene polymer and production method thereof
US8857482B2 (en) 2011-07-28 2014-10-14 Sumitomo Rubber Industries, Ltd. Rubber composition for tread, method for producing the same, and heavy-load tire
US8875765B2 (en) 2011-10-25 2014-11-04 Sumitomo Rubber Industries, Ltd. Rubber composition for clinch apex and pneumatic tire
US9410033B2 (en) 2011-11-11 2016-08-09 Sumitomo Rubber Industries, Ltd. Rubber composition for undertread, and pneumatic tire
US9217075B2 (en) 2012-01-24 2015-12-22 Sumitomo Rubber Industries, Ltd. Rubber composition for tire, and pneumatic tire
US9068060B2 (en) 2013-01-10 2015-06-30 Sumitomo Rubber Industries, Ltd. Composite and method for producing the same, rubber composition, and pneumatic tire
US10280278B2 (en) 2013-05-24 2019-05-07 Bridgestone Corporation Rubber composition
WO2014189102A1 (en) * 2013-05-24 2014-11-27 株式会社ブリヂストン Rubber composition
EP3006495A4 (en) * 2013-05-24 2016-08-31 Bridgestone Corp Rubber composition
US9096742B2 (en) 2014-01-08 2015-08-04 Sumitomo Rubber Industries, Ltd. Pneumatic tire
US20150191586A1 (en) * 2014-01-08 2015-07-09 Sumitomo Rubber Industries, Ltd. Pneumatic tire
EP2905305A1 (en) 2014-01-08 2015-08-12 Sumitomo Rubber Industries, Ltd. Pneumatic tire
US10336890B2 (en) 2014-03-17 2019-07-02 Sumitomo Rubber Industries, Ltd. Rubber composition for studless winter tires, and studless winter tire
EP2957433A1 (en) 2014-06-16 2015-12-23 Sumitomo Rubber Industries, Ltd. Truck or bus tires
EP3147136A1 (en) 2014-06-16 2017-03-29 Sumitomo Rubber Industries, Ltd. Truck or bus tires
US9550889B2 (en) 2014-06-16 2017-01-24 Sumitomo Rubber Industries, Ltd. Truck or bus tires
EP3418073A1 (en) * 2017-06-19 2018-12-26 The Goodyear Tire & Rubber Company Rubber composition containing styrene/butadiene elastomer and silica reinforcement and tire
US10584236B2 (en) 2017-06-19 2020-03-10 The Goodyear Tire & Rubber Company Rubber composition containing specialized styrene/butadiene elastomer and precipitated silica reinforcement and tire with component
CN114656699A (en) * 2022-03-15 2022-06-24 中策橡胶集团股份有限公司 Low rolling resistance and high grip ground tread rubber compound composition, mixing method thereof and tire
CN114835959A (en) * 2022-04-20 2022-08-02 中策橡胶集团股份有限公司 Ultralow rolling resistance rubber composition for four-season tire, mixing method thereof and tire

Similar Documents

Publication Publication Date Title
JP2005126604A (en) Rubber composition and tire obtained by using the same
JP4138729B2 (en) Rubber composition and tire comprising the same
JP4783356B2 (en) Rubber composition
JP4294070B2 (en) Rubber composition for tire
JP4895576B2 (en) Rubber composition and high-performance tire using the same
JP2006249403A (en) Rubber composition and tyre having tread using the same
JP2013036025A (en) Rubber composition for tires
JP2008169314A (en) Pneumatic tire
JP2008019334A (en) Rubber composition for tire tread
JP2005263998A (en) Rubber composition for pneumatic tire and pneumatic tire
JP3363539B2 (en) Rubber composition for tire tread
JP2013001795A (en) Rubber composition for tire tread
US5500482A (en) Rubber composition for tire tread
JP2005146115A (en) Tire tread rubber composition
JPWO2013157545A1 (en) Rubber composition for tire, pneumatic tire
EP3385091B1 (en) Rubber composition and tire
JP2006036822A (en) Rubber composition and pneumatic tire
JP5003011B2 (en) Rubber composition
JP2005126556A (en) Rubber composition and tire obtained by using the same
EP3381713B1 (en) Rubber composition and tire
JP4405874B2 (en) Rubber composition and tire using the same
EP3165565B1 (en) Vulcanized rubber composition and tire using same
TW202022035A (en) Polymer composition, crosslinked polymer, and tire
JP2008174608A (en) Pneumatic tire
JP2005213381A (en) Rubber composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101214