JP2005126499A - Acetylene black containing boron in the form of solid solution, method for producing the same and composition - Google Patents

Acetylene black containing boron in the form of solid solution, method for producing the same and composition Download PDF

Info

Publication number
JP2005126499A
JP2005126499A JP2003361407A JP2003361407A JP2005126499A JP 2005126499 A JP2005126499 A JP 2005126499A JP 2003361407 A JP2003361407 A JP 2003361407A JP 2003361407 A JP2003361407 A JP 2003361407A JP 2005126499 A JP2005126499 A JP 2005126499A
Authority
JP
Japan
Prior art keywords
acetylene black
solid solution
gas
boron
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003361407A
Other languages
Japanese (ja)
Other versions
JP4112473B2 (en
Inventor
Takushi Sakashita
拓志 坂下
Yoshiteru Yamazaki
義照 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2003361407A priority Critical patent/JP4112473B2/en
Publication of JP2005126499A publication Critical patent/JP2005126499A/en
Application granted granted Critical
Publication of JP4112473B2 publication Critical patent/JP4112473B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an acetylene black containing boron in the form of a solid solution, wherein a structure is developed and the acetylene black has high conductivity, to provide a method for easily producing the same, and to provide a highly conductive resin, rubber or coating in which strength is not significantly reduced. <P>SOLUTION: The acetylene black containing boron in the form of a solid solution has a DBP absorption according to JIS K 6217 of 200-400 mL/100g and an electrical resistivity according to JIS K 1469 of 0.15 Ωcm or less. The method for producing the acetylene black containing boron in the form of a solid solution comprises adding carbon dioxide gas and oxygen gas with a volume ratio of carbon dioxide gas/oxygen gas of 0.3-1.0 to a mixed gas containing acetylene and an organic boron compound when the mixed gas is subjected to combustion reaction. A composition is prepared by adding the acetylene black containing boron in the form of a solid solution to a resin, rubber or coating. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ホウ素固溶アセチレンブラック、その製造方法及びそれを含有させた組成物に関する。   The present invention relates to a boron solid solution acetylene black, a method for producing the same, and a composition containing the same.

アセチレンブラックをゴム・樹脂・塗料に含有させた組成物においてはより高導電性が要求されている。これをアセチレンブラックの導電性を大きくして達成させるべく、その比表面積を大きくする、ホウ素を固溶させる(特許文献1)などの提案がある。
特開2000−281933号公報
Higher conductivity is required for a composition containing acetylene black in rubber, resin or paint. In order to achieve this by increasing the conductivity of acetylene black, there are proposals such as increasing the specific surface area and dissolving solid boron (Patent Document 1).
JP 2000-281933 A

ホウ素固溶アセチレンブラックを使用すれば、高導電性が得られやすく、また高比表面積アセチレンブラックの短所であった混合量増大に伴う著しい粘度上昇を抑えることができるので、混練時の作業性と取り扱い性を改善することができた。しかしながら、今日の要求は、更なる高いアセチレンブラックの導電性付与能力であり、より少ない混合量で高導電性の組成物を得、混合量の増大に伴う強度低下等をなくすることである。   If boron solid solution acetylene black is used, high conductivity can be easily obtained, and a significant increase in viscosity accompanying the increase in mixing amount, which was a disadvantage of high specific surface area acetylene black, can be suppressed. The handleability was improved. However, today's demand is to provide a higher conductivity of acetylene black, to obtain a highly conductive composition with a smaller amount of mixing, and to eliminate a decrease in strength associated with an increase in the amount of mixing.

本発明の目的は、上記に鑑み、少ない混合量で高導電の性組成物を得ることのできるアセチレンブラックを提供することである。本発明の目的は、アセチレンと有機ホウ素化合物を含む混合ガスを燃焼反応させる方法において、二酸化炭素ガスと酸素ガスの特定量を存在させ、DBP吸収量が200〜400ml/100g、電気抵抗率が0.15Ωcm以下のホウ素固溶アセチレンブラックを製造することによって達成することができる。   In view of the above, an object of the present invention is to provide acetylene black capable of obtaining a highly conductive composition with a small mixing amount. An object of the present invention is a method in which a mixed gas containing acetylene and an organic boron compound is subjected to a combustion reaction in which a specific amount of carbon dioxide gas and oxygen gas is present, DBP absorption is 200 to 400 ml / 100 g, and electric resistivity is 0. This can be achieved by producing a boron solid solution acetylene black of 15 Ωcm or less.

すなわち、本発明は、JIS K 6217によるDBP吸収量が200〜400ml/100g、JIS K 1469による電気抵抗率が0.15Ωcm以下であることを特徴とするホウ素固溶アセチレンブラックである。また、本発明は、アセチレンと有機ホウ素化合物を含む混合ガスを燃焼反応させる際、該混合ガスに、更に二酸化炭素ガスと酸素ガスとを、二酸化炭素ガス/酸素ガスの体積比を0.3〜1.0として存在させることを特徴とする上記ホウ素固溶アセチレンブラックの製造方法である。この場合において、混合ガスの体積比率が、アセチレンガスが30〜80%、有機ホウ素化合物ガスが1〜10%、二酸化炭素ガスが5〜20%、酸素ガスが5〜40%を含むものであることが好ましい。更に、本発明は、樹脂、ゴム又は塗料に上記ホウ素固溶アセチレンブラックを含有させてなることを特徴とする組成物である。   That is, the present invention is a boron solid solution acetylene black characterized in that the DBP absorption amount according to JIS K 6217 is 200 to 400 ml / 100 g, and the electrical resistivity according to JIS K 1469 is 0.15 Ωcm or less. Further, in the present invention, when the mixed gas containing acetylene and the organic boron compound is subjected to a combustion reaction, the mixed gas is further mixed with carbon dioxide gas and oxygen gas, and the volume ratio of carbon dioxide gas / oxygen gas is set to 0.3 to 0.3. It is a manufacturing method of the said boron solid solution acetylene black characterized by making it exist as 1.0. In this case, the volume ratio of the mixed gas may include 30 to 80% acetylene gas, 1 to 10% organic boron compound gas, 5 to 20% carbon dioxide gas, and 5 to 40% oxygen gas. preferable. Furthermore, the present invention is a composition comprising the resin, rubber or paint containing the boron solid solution acetylene black.

本発明によれば、ストラクチャーの発達した高導電性を有するホウ素固溶アセチレンブラックと、その生産性の容易な製造方法が提供される。また、強度を著しく損なわせない高導電性の樹脂・ゴム又は塗料が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the boron solid solution acetylene black which has the high conductivity which the structure developed, and the manufacturing method with easy productivity are provided. Further, a highly conductive resin / rubber or paint that does not significantly impair strength is provided.

本発明のホウ素固溶アセチレンブラックは、例えばアセチレンブラックと有機ホウ素化合物を含む混合ガスを、二酸化炭素ガスと酸素ガスを含む雰囲気下、燃焼反応させることによって製造することができる。本発明のホウ素固溶アセチレンブラックは、ホウ素を同等量含むがそれを固溶してないアセチレンブラックに比べて著しく導電性が大きい特徴がある。本発明において、ホウ素固溶量は、0.5質量%以上、特に0.6質量%以上であることが望ましい。   The boron solid solution acetylene black of the present invention can be produced, for example, by subjecting a mixed gas containing acetylene black and an organic boron compound to a combustion reaction in an atmosphere containing carbon dioxide gas and oxygen gas. The boron solid solution acetylene black of the present invention is characterized by remarkably large conductivity as compared with acetylene black containing an equivalent amount of boron but not solid solution. In the present invention, the boron solid solution amount is preferably 0.5% by mass or more, particularly 0.6% by mass or more.

アセチレンブラックのホウ素固溶量は、以下に従って測定された全ホウ素量から可溶ホウ素量を差し引くことによって求めることができる。   The boron solid solution amount of acetylene black can be determined by subtracting the soluble boron amount from the total boron amount measured according to the following.

全ホウ素量は、試料0.5gを白金皿に取り、1.5質量%Ca(OH)2溶液20ml、アセトン5mlを加え、超音波洗浄器で1時間分散させる。それをサンドバスで乾固させた後、電気炉を用い、酸素気流中、800℃で3時間かけて灰化させる。ついで、HCl(1+1)溶液10mlを加えサンドバス中で加熱して溶出させる。溶出液を100mlに定容し、ICP−AESでホウ素量を定量し、全ホウ素量とする。 For the total boron amount, 0.5 g of a sample is placed in a platinum dish, 20 ml of a 1.5 mass% Ca (OH) 2 solution and 5 ml of acetone are added, and dispersed for 1 hour with an ultrasonic cleaner. After drying it in a sand bath, it is incinerated for 3 hours at 800 ° C. in an oxygen stream using an electric furnace. Next, 10 ml of HCl (1 + 1) solution is added and heated in a sand bath to elute. The eluate is made up to a volume of 100 ml, and the amount of boron is quantified by ICP-AES to obtain the total amount of boron.

可溶ホウ素量は、試料1gを石英ガラス製三角フラスコに取り、水100mlとアセトン1mlを加える。それをウォーターバスで24時間還流させ、0.8μmメンブランフィルターで濾過する。濾液のホウ素量をICP−AESで定量し、可溶ホウ素量とする。   As for the amount of soluble boron, 1 g of a sample is placed in a quartz glass Erlenmeyer flask, and 100 ml of water and 1 ml of acetone are added. It is refluxed for 24 hours in a water bath and filtered through a 0.8 μm membrane filter. The amount of boron in the filtrate is quantified by ICP-AES to obtain the amount of soluble boron.

本発明のホウ素固溶アセチレンブラックは、JIS K 6217によるDBP吸収量が200〜400ml/100gで、JIS K 1469による電気抵抗率が0.15Ωcm以下のものである。DBP吸収量と電気抵抗率は、アセチレンブラックと有機ホウ素化合物を含む混合ガスを、酸素ガスと二酸化炭素ガスを含む雰囲気下、燃焼反応させる際、各ガスの割合、特に酸素ガスと二酸化炭素ガスの比率、燃焼温度などによって調節することができる。たとえば、DBP吸収量を高めるときは二酸化炭素ガスの酸素ガスに対する比率を上げる。また、電気抵抗率をより小さくするにはDBP吸収量を高くする。   The boron solid solution acetylene black of the present invention has a DBP absorption amount of 200 to 400 ml / 100 g according to JIS K 6217 and an electrical resistivity according to JIS K 1469 of 0.15 Ωcm or less. The amount of DBP absorption and electrical resistivity are determined when the gas mixture containing acetylene black and an organic boron compound is subjected to a combustion reaction in an atmosphere containing oxygen gas and carbon dioxide gas. It can be adjusted by the ratio, combustion temperature, and the like. For example, when increasing the DBP absorption amount, the ratio of carbon dioxide gas to oxygen gas is increased. In order to reduce the electrical resistivity, the DBP absorption amount is increased.

DBP吸収量が200ml/100g未満であると、ストラクチャーの発達が十分でないために、樹脂・ゴム又は塗料の組成物を調製しても、高導電性を付与するために必要なホウ素固溶アセチレンブラック同士の連絡が十分でなくなり、またDBP吸収量が400ml/100gを超えると、組成物を調製する際に混練不良が生じやすくなるので、ホウ素固溶アセチレンブラックの分散性が悪くなり、いずれの場合も少ない混合量で高導電性を得ることができない。特に好ましいDBP吸収量は220〜330ml/100gである。一方、電気抵抗率が0.15Ωcmを超えても、少ない混合量で高導電性の組成物を得ることができない。電気抵抗率は小さいほど好ましい。   If the DBP absorption is less than 200 ml / 100 g, the structure will not be sufficiently developed, so even if a resin / rubber or paint composition is prepared, boron solid solution acetylene black is necessary to give high conductivity. When the amount of DBP absorption exceeds 400 ml / 100 g, poor kneading tends to occur when preparing the composition, so that the dispersibility of boron solid solution acetylene black deteriorates. However, high conductivity cannot be obtained with a small mixing amount. A particularly preferable DBP absorption amount is 220 to 330 ml / 100 g. On the other hand, even if the electrical resistivity exceeds 0.15 Ωcm, a highly conductive composition cannot be obtained with a small amount of mixing. The smaller the electrical resistivity, the better.

本発明のホウ素固溶アセチレンブラックによる効果は、例えばポリプロピレン100質量部に対してホウ素固溶アセチレンブラック10質量部を充填してポリプロピレン樹脂組成物を調製すると、10Ωcm以下の体積固有抵抗にしてIZOD衝撃強度が10kJ/m以上となり、高導電性にして衝撃強度は無混合時の4.8kJ/mよりも増大する。これは、予想外の効果である。 The effect of the boron solid solution acetylene black of the present invention is that, for example, when a polypropylene resin composition is prepared by filling 10 parts by mass of boron solid solution acetylene black with respect to 100 parts by mass of polypropylene, the volume resistivity of 10 Ωcm or less is obtained. The strength becomes 10 kJ / m 2 or more, and the impact strength is increased from 4.8 kJ / m 2 when no mixing is performed with high conductivity. This is an unexpected effect.

本発明のホウ素固溶カーボンブラックの製造方法は、アセチレンと有機ホウ素化合物を含む混合ガスを燃焼反応させる際、上記混合ガスに二酸化炭素ガスと酸素ガスとを、二酸化炭素ガス/酸素ガスの体積比が0.3〜1.0で存在させるものである。有機ホウ素化合物としては、ホウ酸トリメチル、ホウ酸トリエチル、トリエチルボラン、トリブチルボラン等が使用できるが、入手と取り扱い性の点からホウ酸トリメチルが好ましい。   In the method for producing a boron solid solution carbon black of the present invention, when a mixed gas containing acetylene and an organic boron compound is subjected to a combustion reaction, the mixed gas is mixed with carbon dioxide gas and oxygen gas, and the volume ratio of carbon dioxide gas / oxygen gas is set. Is present at 0.3 to 1.0. As the organic boron compound, trimethyl borate, triethyl borate, triethylborane, tributylborane and the like can be used, but trimethyl borate is preferable from the viewpoint of availability and handling.

本発明において、二酸化炭素ガス/酸素ガスの体積比を0.3〜1.0とした理由は以下のとおりである。アセチレンブラックの生成機構は核生成と表面生長からなり、高温領域ではアセチレンブラックの脱水素化反応による核生成が加速されるが、二酸化炭素ガスを、二酸化炭素ガス/酸素ガスの体積比を0.3以上にして存在させると、核生成よりも表面生長が促される。つまり、酸素ガスとの燃焼による反応温度の高温部と二酸化炭素ガスの冷却による低温部の適度な温度分布が形成され、低温部では酸素ガスによるカーボン燃焼が抑えられると同時に、ガス中のカーボン濃度を維持することにより表面生長が促進される。核生成は比表面積と関係し、表面生長は近傍の核同士を結びつけるストラクチャーの発達に関係していることから、二酸化炭素ガスの所定量を存在させることによって高いDBP吸収量を得ることができる。上記特許文献1の実施例では二酸化炭素ガスを、アセチレンと有機ホウ素化合物を含む混合ガスに存在させていないため、DBP吸収量が200ml/100g以上のもを製造することはできない。一方、二酸化炭素ガス量を、二酸化炭素ガス/酸素ガスの体積比を1.0を超えて混合ガスに存在させると、反応温度が低下し過ぎてストラクチャーを形成しうる核の生成が少なくDBP吸収量は低下してしまう。好ましい二酸化炭素ガス/酸素ガスの体積比は0.35〜0.85、特に0.40〜0.60である。   In the present invention, the reason why the volume ratio of carbon dioxide gas / oxygen gas is set to 0.3 to 1.0 is as follows. The generation mechanism of acetylene black consists of nucleation and surface growth. Nucleation by acetylene black dehydrogenation reaction is accelerated in the high temperature region, but the volume ratio of carbon dioxide gas / carbon dioxide gas / oxygen gas is set to 0. When it is present at 3 or more, surface growth is promoted rather than nucleation. In other words, an appropriate temperature distribution is formed in the high temperature part of the reaction temperature due to combustion with oxygen gas and the low temperature part due to cooling of the carbon dioxide gas, and in the low temperature part, carbon combustion due to oxygen gas is suppressed and at the same time the carbon concentration in the gas Maintaining the surface promotes surface growth. Nucleation is related to the specific surface area, and surface growth is related to the development of a structure that connects neighboring nuclei, so that a high amount of DBP absorption can be obtained by the presence of a predetermined amount of carbon dioxide gas. In the example of Patent Document 1, carbon dioxide gas is not present in a mixed gas containing acetylene and an organoboron compound, so that a DBP absorption amount of 200 ml / 100 g or more cannot be produced. On the other hand, if the volume ratio of carbon dioxide gas / oxygen gas exceeds 1.0 in the mixed gas, the reaction temperature decreases too much and the production of nuclei that can form a structure is reduced and DBP absorption occurs. The amount will fall. The preferred carbon dioxide gas / oxygen gas volume ratio is 0.35 to 0.85, especially 0.40 to 0.60.

以上のように、本発明の製造方法においては、アセチレンガスと、有機ホウ素化合物ガスと、特定比率の二酸化炭素ガスと酸素ガスを含む混合ガスを燃焼反応させるものであるが、中でも、体積比率で、アセチレンガスが30〜80%、有機ホウ素化合物ガスが1〜10%、二酸化炭素ガス5〜20%、酸素ガス5〜40%を含む混合ガスを燃焼反応させることが好ましい。また、燃焼反応温度は、2500〜2700℃であることが好ましい。燃焼反応温度は、ガス混合の体積比率によって調節することができる。   As described above, in the production method of the present invention, a acetylene gas, an organic boron compound gas, and a mixed gas containing a specific ratio of carbon dioxide gas and oxygen gas are subjected to a combustion reaction. It is preferable to subject the mixed gas containing 30 to 80% acetylene gas, 1 to 10% organic boron compound gas, 5 to 20% carbon dioxide gas, and 5 to 40% oxygen gas to combustion reaction. Moreover, it is preferable that combustion reaction temperature is 2500-2700 degreeC. The combustion reaction temperature can be adjusted by the volume ratio of the gas mixture.

本発明の組成物で使用される樹脂としては、例えば汎用プラスチックではポリプロピレン、ポリエチレン、エチレン/酢酸ビニル樹脂、エチレン/ビニルアルコール樹脂、ポリメチルペンテン、環状オレフィン共重合体等のオレフィン系樹脂、ポリ塩化ビニル、エチレン/塩化ビニル樹脂等の塩化ビニル系樹脂、ポリスチレン、スチレン/アクリロニトリル樹脂、アクリロニトリル/ブタジエン/スチレン樹脂等のスチレン系樹脂、ポリメタクリル酸メチル等のアクリル系樹脂、汎用エンジニアリングプラスチックでは、ポリエチレンテレフタレート、ポリブチレンテレフタレート等の熱可塑性ポリエステル、ポリアミド、ポリアセタール、ポリカーボネート、変性ポリフェニレンエーテル、スーパーエンジニアリングプラスチックでは、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等のフッ素樹脂、ポリフェニレンスルフィド、液晶ポリマー、ポリアリレート、熱可塑性ポリイミド、ケトン系樹脂、スルホン系樹脂、その他樹脂としては、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル、アルキド樹脂、シリコーン樹脂、エポキシ樹脂、ウレタン樹脂、ポリビニルエステル、ポリイミド、フラン樹脂、キシレン樹脂、熱硬化性強化プラスチックやポリマーアロイ等である。   Examples of the resin used in the composition of the present invention include polypropylene, polyethylene, ethylene / vinyl acetate resin, ethylene / vinyl alcohol resin, polymethylpentene, cyclic olefin copolymer and other olefin resins, polychlorinated resins for general-purpose plastics. Polyethylene terephthalate for vinyl, vinyl chloride resins such as ethylene / vinyl chloride resins, polystyrene, styrene / acrylonitrile resins, styrene resins such as acrylonitrile / butadiene / styrene resins, acrylic resins such as polymethyl methacrylate, and general engineering plastics In the case of thermoplastic polyester such as polybutylene terephthalate, polyamide, polyacetal, polycarbonate, modified polyphenylene ether, super engineering plastic, Fluorine resin such as tetrafluoroethylene and polyvinylidene fluoride, polyphenylene sulfide, liquid crystal polymer, polyarylate, thermoplastic polyimide, ketone resin, sulfone resin, and other resins include phenol resin, urea resin, melamine resin, unsaturated polyester Alkyd resin, silicone resin, epoxy resin, urethane resin, polyvinyl ester, polyimide, furan resin, xylene resin, thermosetting reinforced plastic, polymer alloy, and the like.

また、ゴムとしては、例えば天然ゴム、スチレンブタジエンゴム、アクリロニトリルブタジエンゴム、ブチルゴム、アクリルゴム、エチレンプロピレンゴム、エチレンプロピレンターポリマー、エチレンとα−オレフィンとの共重合ゴム、シリコーンゴム、フッ素ゴム、ポリエステル等の熱可塑性エラストマー、クロロプレンゴム、ポリブタジエン、ヒドリンゴム、クロロスルホン化ポリエチレン等である。   Examples of the rubber include natural rubber, styrene butadiene rubber, acrylonitrile butadiene rubber, butyl rubber, acrylic rubber, ethylene propylene rubber, ethylene propylene terpolymer, copolymer rubber of ethylene and α-olefin, silicone rubber, fluorine rubber, and polyester. And other thermoplastic elastomers such as chloroprene rubber, polybutadiene, hydrin rubber, and chlorosulfonated polyethylene.

本発明の樹脂組成物又はゴム組成物は、上記各材料の所定量をブレンダーやヘンシェルミキサー等によりブレンドした後、必要に応じ、加熱ロール、ニーダー、一軸又は二軸押し出し機等により混練したものを冷却後、必要に応じて粉砕することによって製造することができる。また、塗料は、上記樹脂及び/又はゴムに顔料、乾燥調整剤、分散剤、界面活性剤、バインダー等を配合し、水、硫酸水溶液、水酸化カリウム水溶液等の水系溶剤、メタノール、アセトン、プロピレンカーボネート、テトラヒドロフラン、ジメチルスルホキシド等の非水系溶剤でスラリー化したものである。いずれの組成物にあっても、ホウ素固溶アセチレンブラックの混合量は任意であり、その一例を示せば、樹脂及び/又はゴム成分100質量部に対して、5〜100質量部である。   The resin composition or rubber composition of the present invention is obtained by blending a predetermined amount of each of the above materials with a blender or Henschel mixer, and then kneading with a heating roll, kneader, uniaxial or biaxial extruder, etc., if necessary. It can manufacture by grind | pulverizing as needed after cooling. In addition, the paint is blended with the above resin and / or rubber with pigments, drying regulators, dispersants, surfactants, binders, etc., water, aqueous solvents such as aqueous sulfuric acid, aqueous potassium hydroxide, methanol, acetone, propylene It is slurried with a non-aqueous solvent such as carbonate, tetrahydrofuran or dimethyl sulfoxide. In any composition, the mixing amount of boron solid solution acetylene black is arbitrary, and an example thereof is 5 to 100 parts by mass with respect to 100 parts by mass of the resin and / or rubber component.

実施例1〜3 比較例1〜4
アセチレンガスと、気化させたホウ酸トリメチル、酸素ガス、二酸化炭素ガスを表1に示す割合で混合し、この混合ガスを、炉全長4m、炉直径0.5mの燃焼反応に上部に設置されたノズルから噴霧し、アセチレン燃焼反応を利用してホウ素固溶アセチレンブラックを製造した。なお、比較例4は、特許文献1の実施例4によって製造されたホウ素固溶アセチレンブラックである。なお、表1の燃焼反応温度は、式1に従って計算された理論到達温度である。
Examples 1-3 Comparative Examples 1-4
Acetylene gas, vaporized trimethyl borate, oxygen gas, and carbon dioxide gas were mixed in the proportions shown in Table 1, and this mixed gas was placed at the top in a combustion reaction with a furnace length of 4 m and a furnace diameter of 0.5 m. It sprayed from the nozzle and boron solid solution acetylene black was manufactured using the acetylene combustion reaction. In addition, the comparative example 4 is boron solid solution acetylene black manufactured by Example 4 of patent document 1. FIG. Note that the combustion reaction temperature in Table 1 is the theoretical temperature reached according to Equation 1.

Figure 2005126499
Figure 2005126499

得られたホウ素固溶アセチレンブラックについて、(1)上記方法によるホウ素固溶量、(2)窒素ガス吸着によるBET1点法の比表面積、(3)JIS K 6217によるDBP吸収量、(4)JIS K 1469による電気抵抗率を測定した。また、以下に従い、(5)組成物の体積固有抵抗、(6)組成物のIZOD衝撃強度を測定した。それらの結果を表1に示す。   About the obtained boron solid solution acetylene black, (1) Boron solid solution amount by the above method, (2) Specific surface area of BET single point method by nitrogen gas adsorption, (3) DBP absorption amount by JIS K 6217, (4) JIS The electrical resistivity according to K 1469 was measured. Further, according to the following, (5) the volume resistivity of the composition and (6) the IZOD impact strength of the composition were measured. The results are shown in Table 1.

(5)組成物の体積固有抵抗:カーボンブラック10質量部とポリプロピレン(三井化学製「J3H−G」)100質量部とを内容量60mlの混練試験機(東洋精機製作所製「ラボプラストミル50MR」)でブレード回転数30rpm、温度200℃で10分間混練し、得られた混練物を温度210℃の加熱下150kg/cm2の圧力で加圧成形して2×20×70mmの試験片を作製し、体積固有抵抗をデジタルマルチメーター(横河電機製「デジタルマルチメーター7562」)を用いてSRIS2301に準じて測定した。   (5) Volume resistivity of the composition: a kneading tester (“Labo Plast Mill 50MR” manufactured by Toyo Seiki Seisakusho Co., Ltd.) having a capacity of 60 ml of 10 parts by mass of carbon black and 100 parts by mass of polypropylene (“J3H-G” manufactured by Mitsui Chemicals) ) At a blade rotation speed of 30 rpm and a temperature of 200 ° C. for 10 minutes. The volume resistivity was measured according to SRIS2301 using a digital multimeter (“Digital Multimeter 7562” manufactured by Yokogawa Electric Corporation).

(6)組成物の強度:IZOT衝撃強度をJIS K 7110に従い測定した。   (6) Strength of composition: IZOT impact strength was measured according to JIS K 7110.

Figure 2005126499
Figure 2005126499

表1から、本発明のホウ素固溶アセチレンブラックは、比較例に比べて電気抵抗率が低く、DBP吸収量が大であるので、同一混合量で調製された組成物の体積固有抵抗が格段に低下した。また、本発明の組成物のIZOD衝撃強度は、ホウ素固溶アセチレンブラックを混合しない強度4.8kJ/mよりも増大した。 From Table 1, the boron solid solution acetylene black of the present invention has a lower electrical resistivity than that of the comparative example and a large DBP absorption, so that the volume specific resistance of the composition prepared with the same mixing amount is remarkably high. Declined. Moreover, the IZOD impact strength of the composition of the present invention was increased from a strength of 4.8 kJ / m 2 in which no boron solid solution acetylene black was mixed.

本発明のホウ素固溶アセチレンブラックは、樹脂・ゴム・塗料への利用の他に、一次電池、二次電池、燃料電池、キャパシタ等の電池用導電剤、帯電防止剤、導電紙用導電剤、更にはホウ素固溶により発現した親水性特性を利用した水系分散体として利用することができる。   The boron solid solution acetylene black of the present invention is used for resins, rubbers and paints, as well as conductive agents for batteries such as primary batteries, secondary batteries, fuel cells, capacitors, antistatic agents, conductive agents for conductive paper, Furthermore, it can be used as an aqueous dispersion utilizing the hydrophilic property expressed by boron solid solution.

Claims (4)

JIS K 6217によるDBP吸収量が200〜400ml/100g、JIS K 1469による電気抵抗率が0.15Ωcm以下であることを特徴とするホウ素固溶アセチレンブラック。   Boron solid solution acetylene black characterized in that DBP absorption by JIS K 6217 is 200 to 400 ml / 100 g, and electrical resistivity by JIS K 1469 is 0.15 Ωcm or less. アセチレンと有機ホウ素化合物を含む混合ガスを燃焼反応させる際、該混合ガスに、更に二酸化炭素ガスと酸素ガスとを、二酸化炭素ガス/酸素ガスの体積比を0.3〜1.0として存在させることを特徴とする請求項1のホウ素固溶アセチレンブラックの製造方法。   When a mixed gas containing acetylene and an organic boron compound is subjected to a combustion reaction, carbon dioxide gas and oxygen gas are further present in the mixed gas at a volume ratio of carbon dioxide gas / oxygen gas of 0.3 to 1.0. The method for producing a boron solid solution acetylene black according to claim 1. 混合ガスの体積比率が、アセチレンガスが30〜80%、有機ホウ素化合物ガスが1〜10%、二酸化炭素ガスが5〜20%、酸素ガスが5〜40%を含むものであることを特徴とする請求項2記載のホウ素固溶アセチレンブラックの製造方法。   The volume ratio of the mixed gas includes 30 to 80% of acetylene gas, 1 to 10% of organic boron compound gas, 5 to 20% of carbon dioxide gas, and 5 to 40% of oxygen gas. Item 3. A process for producing a boron solid solution acetylene black according to Item 2. 樹脂、ゴム又は塗料に請求項1記載のホウ素固溶アセチレンブラックを含有させてなることを特徴とする組成物。   A composition comprising a resin, rubber, or paint containing the boron solid solution acetylene black according to claim 1.
JP2003361407A 2003-10-22 2003-10-22 Method for producing boron solid solution acetylene black Expired - Fee Related JP4112473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003361407A JP4112473B2 (en) 2003-10-22 2003-10-22 Method for producing boron solid solution acetylene black

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003361407A JP4112473B2 (en) 2003-10-22 2003-10-22 Method for producing boron solid solution acetylene black

Publications (2)

Publication Number Publication Date
JP2005126499A true JP2005126499A (en) 2005-05-19
JP4112473B2 JP4112473B2 (en) 2008-07-02

Family

ID=34641361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003361407A Expired - Fee Related JP4112473B2 (en) 2003-10-22 2003-10-22 Method for producing boron solid solution acetylene black

Country Status (1)

Country Link
JP (1) JP4112473B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047775A1 (en) * 2014-09-26 2016-03-31 電気化学工業株式会社 Carbon black and fuel cell catalyst using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047775A1 (en) * 2014-09-26 2016-03-31 電気化学工業株式会社 Carbon black and fuel cell catalyst using same

Also Published As

Publication number Publication date
JP4112473B2 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
US8114937B2 (en) Carbon black, method for producing the same, and its use
JP6096806B2 (en) Resin composition for electromagnetic shielding containing composite carbon material
JP4817772B2 (en) Conductive resin composition, production method and use thereof
KR102141482B1 (en) Carbon black, electrically conductive resin composition, and electrode mixture
Xu et al. Effect of molybdenum trioxide-loaded graphene and cuprous oxide-loaded graphene on flame retardancy and smoke suppression of polyurethane elastomer
KR20070046204A (en) Conductive thermosets by extrusion
CN101730917A (en) Transparent electroconductive thin film and process for producing the transparent electroconductive thin film
JP3406470B2 (en) Particulate acetylene black and its production method and use
Krishnamoorthy et al. Mechanochemical reinforcement of graphene sheets into alkyd resin matrix for the development of electrically conductive paints
JP6381141B2 (en) Carbon black, method for producing the same, power storage device, and conductive resin composition
Oraby et al. Optimization of electromagnetic shielding and mechanical properties of reduced graphene oxide/polyurethane composite foam
JP4163142B2 (en) Carbon black, method for producing the same, and composition containing the same
Kim et al. Structure Stability, Flame Retardancy, and Antimicrobial Properties of Polyurethane Composite Nanofibers Containing Tannic Acid and Boron‐Doped Carbon Nanotubes
JP2000281933A (en) Carbon black and its preparation and electrically- conductive composition
Dong et al. Nickel modified two-dimensional bimetallic nanosheets, M (OH)(OCH3)(M= Co, Ni), for improving fire retardancy and smoke suppression of epoxy resin
JP4112473B2 (en) Method for producing boron solid solution acetylene black
JP2005264134A (en) Conductive polymer, its preparation process and its application
Qian et al. CNT modified layered α-MnO 2 hybrid flame retardants: preparation and their performance in the flame retardancy of epoxy resins
TW201323502A (en) Resin composite material having high dielectric constant and method for producing same
JP2012012450A (en) Carbon black and low odor composition comprising the same
EP2752520B1 (en) Carbon nanofibers, and dispersion liquid and composition thereof
JP2010077313A (en) Carbon black composite body and method for producing the same
Yan et al. Electrical conductivity of carbon black/single‐wall carbon nanotube/low‐density polyethylene ternary composite foam
US7381352B2 (en) Dispersion of thin particles having a skeleton consisting of carbons
JP7126666B1 (en) Carbon material granules, method for producing carbon material granules, and conductive resin composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080409

R150 Certificate of patent or registration of utility model

Ref document number: 4112473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees