JP2005126288A - Hydrogen storage and release apparatus - Google Patents

Hydrogen storage and release apparatus Download PDF

Info

Publication number
JP2005126288A
JP2005126288A JP2003364826A JP2003364826A JP2005126288A JP 2005126288 A JP2005126288 A JP 2005126288A JP 2003364826 A JP2003364826 A JP 2003364826A JP 2003364826 A JP2003364826 A JP 2003364826A JP 2005126288 A JP2005126288 A JP 2005126288A
Authority
JP
Japan
Prior art keywords
hydrogen
proton conductor
electrode
electrodes
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003364826A
Other languages
Japanese (ja)
Inventor
Akira Tsujiko
曜 辻子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003364826A priority Critical patent/JP2005126288A/en
Publication of JP2005126288A publication Critical patent/JP2005126288A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen storage and release apparatus having a high energy efficiency. <P>SOLUTION: The hydrogen storage and release apparatus comprises a proton conductor layer, a pair of electrodes provided on the two main surfaces of the proton conductor layer and having a catalyst which separates hydrogen molecules into protons and electrons, and an organic hydride layer formed on the side opposite to the face with which the proton conductor layer of either of the electrodes is in contact, provided that the electrodes are connected to a secondary battery. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電気化学的に水素の貯蔵・放出を行う水素貯蔵・放出装置に関する。   The present invention relates to a hydrogen storage / release device that electrochemically stores and releases hydrogen.

近年、大気汚染等の環境問題と長期安定供給のエネルギー問題の観点から、化石燃料に代わるエネルギー源として水素が注目されている。しかしながら、水素をエネルギー源として用いる場合の最大の問題点はその貯蔵・運搬にある。すなわち、水素を気体として貯蔵・運搬するには高圧ガスボンベが用いられ、このような高圧貯蔵は単純ではあるが、肉厚の容器が必要であり、そのため容器の重量が重くなり貯蔵・輸送効率が低く、特に車載等への実用化には困難である。また、水素を液体として貯蔵・輸送する場合、気体水素に比べて貯蔵・輸送効率は向上するが、液体水素製造には高純度の水素が必要であり、ガスの液化に多量の熱を除去しなければならず、液化温度が−252℃と低温であるため、超低温用の特殊な容器が必要であるという問題がある。   In recent years, hydrogen has attracted attention as an energy source to replace fossil fuels from the viewpoint of environmental problems such as air pollution and energy problems of long-term stable supply. However, the biggest problem in using hydrogen as an energy source is its storage and transportation. That is, high-pressure gas cylinders are used to store and transport hydrogen as a gas. Such high-pressure storage is simple, but requires a thick container, which increases the weight of the container and increases storage and transport efficiency. Low, especially difficult to put into practical use in vehicles. In addition, when hydrogen is stored and transported as a liquid, the storage and transport efficiency is improved compared to gaseous hydrogen, but high-purity hydrogen is required for liquid hydrogen production, and a large amount of heat is removed to liquefy the gas. Since the liquefaction temperature is as low as −252 ° C., there is a problem that a special container for ultra-low temperature is required.

そこで最近、有機ハイドライドの脱水素化により水素を供給することが提案されている。すなわち、デカリンを貯留タンクに貯留しておき、加熱した触媒上に液膜状にデカリンを供給し、デカリンの脱水素反応により水素を供給する水素ガス生成装置が記載されている(例えば、特許文献1参照)。   Therefore, recently, it has been proposed to supply hydrogen by dehydrogenation of organic hydride. That is, a hydrogen gas generator that stores decalin in a storage tank, supplies decalin in the form of a liquid film on a heated catalyst, and supplies hydrogen by dehydrogenation of decalin is described (for example, Patent Documents). 1).

特開2002−255503号公報JP 2002-255503 A

ところが、この従来の水素ガス生成装置では、デカリンから水素を生成させるために触媒を加熱する必要があり、この加熱に用いたエネルギーは廃熱として捨てられるため、エネルギー効率が悪く、また、デカリンから水素を生成させた後のナフタレンと水素を分離させるために別ユニットが必要であり、さらに水素生成速度制御が困難である、といった問題がある。   However, in this conventional hydrogen gas generator, it is necessary to heat the catalyst in order to generate hydrogen from decalin, and the energy used for this heating is discarded as waste heat. There is a problem that a separate unit is required to separate the naphthalene and hydrogen after hydrogen is generated, and that it is difficult to control the hydrogen generation rate.

本発明は、上記問題点を解決すべくなされたものであり、触媒を加熱することなく、電気化学的に有機ハイドライドに水素を貯蔵させ又は有機ハイドライドから水素を放出させる、水素貯蔵・放出装置を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, and provides a hydrogen storage / release device for electrochemically storing hydrogen in an organic hydride or releasing hydrogen from the organic hydride without heating the catalyst. The purpose is to provide.

上記目的を達成するために第1の発明によれば、プロトン伝導体層と、このプロトン伝導体層の2つの主要面上に設けられた、水素分子をプロトンと電子に分離する触媒を有する1対の電極と、前記電極のうち一方の電極のプロトン伝導体層と接する面と反対面側に設けられた有機ハイドライド層を有し、前記電極が二次電池に接続されている、水素貯蔵・放出装置が提供される。   In order to achieve the above object, according to the first invention, there is provided a proton conductor layer and a catalyst provided on two main surfaces of the proton conductor layer for separating hydrogen molecules into protons and electrons. A pair of electrodes, and an organic hydride layer provided on the opposite side of the electrode in contact with the proton conductor layer of one of the electrodes, wherein the electrode is connected to a secondary battery, A discharge device is provided.

上記目的を達成するために第2の発明によれば、有機ハイドライド層と、この有機ハイドライド層の上面と下面に設けられた、1対の、水素分子をプロトンと電子に分離する触媒を有する1対の電極を2つの主要面に有するプロトン伝導体層を有し、前記電極が二次電池に接続されている、水素貯蔵・放出装置が提供される。   In order to achieve the above object, according to the second invention, there is provided an organic hydride layer and a pair of catalysts provided on the upper and lower surfaces of the organic hydride layer for separating hydrogen molecules into protons and electrons. There is provided a hydrogen storage / release device having a proton conductor layer having a pair of electrodes on two main surfaces, the electrodes being connected to a secondary battery.

第1の発明によれば、触媒を有する電極上で水素化−脱水素化反応を行い、電極を二次電池に接続しているため、水素化反応による水素貯蔵時は余剰電気エネルギーを蓄え、脱水素化時にはこの蓄えた電気エネルギーを用い、水素を放出するため、外部から新たに加えるエネルギーが不要になる。   According to the first invention, since the hydrogenation-dehydrogenation reaction is performed on the electrode having the catalyst and the electrode is connected to the secondary battery, the surplus electrical energy is stored during the hydrogen storage by the hydrogenation reaction, When dehydrogenating, this stored electrical energy is used to release hydrogen, so that no additional energy is required from the outside.

第2の発明によれば、脱水素物は水素化物に比べて比重が高いため、有機ハイドライト層中において下方に蓄積し、水素化物は上方において濃度が高くなる。従って、上部で脱水素化、下部で水素化を行うことにより効率よく水素の貯蔵・放出を行うことができる。   According to the second invention, since the dehydrogenated material has a higher specific gravity than the hydride, it accumulates downward in the organic hydride layer, and the hydride has a higher concentration upward. Accordingly, hydrogen can be efficiently stored and released by performing dehydrogenation at the top and hydrogenation at the bottom.

以下、図面を参照して本発明の水素貯蔵・放出装置を説明する。図1は、第1の発明の水素貯蔵・放出装置の一態様を示す断面図であり、この水素貯蔵・放出装置1は、プロトン伝導体層4と、このプロトン伝導体層4の2つの主要面上に設けられた、水素分子をプロトンと電子に分離する触媒を有する1対の電極3及び3’と、前記一対の電極3及び3’のうちの一方の電極3のプロトン伝導体層と接する面と反対面側に設けられた有機ハイドライド層2を有し、前記電極が二次電池5に接続されている。   Hereinafter, the hydrogen storage / release apparatus of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing an embodiment of the hydrogen storage / release device of the first invention. The hydrogen storage / release device 1 includes a proton conductor layer 4 and two main components of the proton conductor layer 4. A pair of electrodes 3 and 3 'having a catalyst for separating hydrogen molecules into protons and electrons provided on the surface, and a proton conductor layer of one of the pair of electrodes 3 and 3'; An organic hydride layer 2 is provided on the side opposite to the contact surface, and the electrode is connected to the secondary battery 5.

プロトン伝導体層4を構成するプロトン伝導体としては、プロトンを移動させることができる材料を適切に選択して用いることができる。このような材料としては、例えば、スルホン酸基を有するポリエチレン系の陽イオン交換膜、フルオロカーボンスルホン酸とポリビニリデンフルオライドとの混合膜、フルオロカーボンマトリックスにトリフルオロエチレンをグラフトしたもの、パーフルオロカーボンスルホン酸膜(例えば、デュポン社の商品名ナフィオン)等を用いることができる。このプロトン伝導体層4の厚さは10〜100μmであることが好ましく、30〜50μmであることがより好ましい。層の厚さが余りに薄いと、電子短絡やクロスオーバー現象が生ずることになり、あまりに厚いとプロトンを移動させることが困難になるからである。   As a proton conductor constituting the proton conductor layer 4, a material capable of moving protons can be appropriately selected and used. Examples of such materials include polyethylene cation exchange membranes having sulfonic acid groups, mixed membranes of fluorocarbon sulfonic acid and polyvinylidene fluoride, trifluoroethylene grafted on a fluorocarbon matrix, perfluorocarbon sulfonic acid A membrane (for example, Nafion, trade name of DuPont) or the like can be used. The thickness of the proton conductor layer 4 is preferably 10 to 100 μm, and more preferably 30 to 50 μm. This is because if the thickness of the layer is too thin, an electron short circuit or a crossover phenomenon occurs, and if it is too thick, it is difficult to move protons.

このプロトン伝導体層4の2つの主要面上に設けられた電極3及び3’は、水素分子をプロトンと電子に分離する触媒を有する。この触媒としては、例えばPt、Ir、Au、Re、Fe、Cr、Co、Ce等を用いることができる。電極3は、これらの触媒を多孔質炭素材料に担持させて構成される。多孔質炭素材料としては、粒径が好ましくは100nm〜10μm、より好ましくは1〜5μmであるカーボン粉末を用いることができる。   The electrodes 3 and 3 ′ provided on the two main surfaces of the proton conductor layer 4 have a catalyst for separating hydrogen molecules into protons and electrons. As this catalyst, for example, Pt, Ir, Au, Re, Fe, Cr, Co, Ce and the like can be used. The electrode 3 is configured by supporting these catalysts on a porous carbon material. As the porous carbon material, carbon powder having a particle size of preferably 100 nm to 10 μm, more preferably 1 to 5 μm can be used.

この電極3及び3’は、例えば、上記触媒を含む溶液もしくはスラリーにカーボン粉末を浸漬し、乾燥することによって、カーボン粉末に上記触媒を1〜50wt%担持させ、このカーボン粉末を上記プロトン伝導体材料と、溶媒(メタノール、エタノール、イソプロパノール、水等)中で混合することによりペーストを形成し、このペーストを上記プロトン伝導体層4の2つの主要面上に、ホットプレス法により圧着することにより形成される。   For example, the electrodes 3 and 3 ′ are obtained by immersing the carbon powder in a solution or slurry containing the catalyst and drying the carbon powder so that 1 to 50 wt% of the catalyst is supported on the carbon powder. By mixing the material with a solvent (methanol, ethanol, isopropanol, water, etc.), a paste is formed, and this paste is pressed onto the two main surfaces of the proton conductor layer 4 by hot pressing. It is formed.

こうして形成された一対の電極3及び3’のうちの一方の電極3のプロトン伝導体層と接する面と反対面側には、有機ハイドライド層2が設けられる。この有機ハイドライドとしては、例えば、デカリン、シクロヘキサン、メチルシクロヘキサン、メチルデカリン、イソプロパノール等を用いることができる。   The organic hydride layer 2 is provided on the side of the pair of electrodes 3 and 3 ′ formed on the side opposite to the surface in contact with the proton conductor layer of one electrode 3. As this organic hydride, for example, decalin, cyclohexane, methylcyclohexane, methyldecalin, isopropanol and the like can be used.

以上のようにして構成された本発明の水素貯蔵・放出装置においては以下の反応により水素を貯蔵・放出することができる。ここでは有機ハイドライドとしてシクロヘキサンを用いた場合について説明するが、他の有機ハイドライドを用いた場合も同様である。   In the hydrogen storage / release apparatus of the present invention configured as described above, hydrogen can be stored / released by the following reaction. Although the case where cyclohexane is used as the organic hydride will be described here, the same applies to the case where other organic hydrides are used.

水素放出時
水素を放出する場合は、一対の電極3及び3’間に0.3〜1V程度の電圧を印加し、有機ハイドライドとしてのシクロヘキサンの層と接触している電極3を陽極とし、一方の電極3’を陰極とする。陽極である電極3では、シクロヘキサン→ベンゼン+6H++6e-の反応が起こり、電子e-は二次電池5に蓄えられる。プロトンH+はプロトン伝導体内を陰極である電極3’に向かって移動し、電極3’上で6H++6e-→3H2の反応により水素を生成する。こうして生成された水素が放出される。
At the time of releasing hydrogen When releasing hydrogen, a voltage of about 0.3 to 1 V is applied between the pair of electrodes 3 and 3 ', the electrode 3 in contact with the cyclohexane layer as the organic hydride is used as an anode, and one electrode 3 ′ is a cathode. In the electrode 3 that is an anode, a reaction of cyclohexane → benzene + 6H + + 6e occurs, and electrons e are stored in the secondary battery 5. The proton H + moves in the proton conductor toward the electrode 3 ′ which is a cathode, and generates hydrogen by a reaction of 6H + + 6e → 3H 2 on the electrode 3 ′. The hydrogen thus produced is released.

水素貯蔵時
水素を貯蔵する場合は、電極3’側に水素分子を供給する。すると、電極3’上において3H2→6H++6e-の反応が起こり、電子e-は二次電池5に蓄えられる。プロトンH+はプロトン伝導体内を電極3に向かって移動し、電極3上でベンゼン+6H++6e-→シクロヘキサンの反応により有機ハイドライドに水素を貯蔵する。
When storing hydrogen When hydrogen is stored, hydrogen molecules are supplied to the electrode 3 'side. Then, a reaction of 3H 2 → 6H + + 6e occurs on the electrode 3 ′, and electrons e are stored in the secondary battery 5. The proton H + moves in the proton conductor toward the electrode 3, and stores hydrogen in the organic hydride by the reaction of benzene + 6H + + 6e → cyclohexane on the electrode 3.

このように、本発明の水素貯蔵・放出装置においては、水素を供給することにより電気化学反応によって水素分子をプロトンと電子に分離し、この電子を二次電池に蓄え、このエネルギーを利用することができるためエネルギー効率が向上する。また、事前に触媒を加熱する必要がないため始動性がよい。さらに、加熱する場合はこの熱が廃熱として逃げるが、本発明では加熱の必要がないため、さらにエネルギー効率が向上する。   As described above, in the hydrogen storage / release device of the present invention, by supplying hydrogen, hydrogen molecules are separated into protons and electrons by an electrochemical reaction, and the electrons are stored in the secondary battery, and this energy is used. Energy efficiency is improved. Moreover, since it is not necessary to heat a catalyst beforehand, startability is good. Furthermore, in the case of heating, this heat escapes as waste heat. However, in the present invention, since heating is not necessary, energy efficiency is further improved.

有機ハイドライド・脱水素化物の組み合わせとしては、上記のシクロヘキサン/ベンゼンのほかに、デカリン/ナフタレン、メチルシクロヘキサン/トルエン、メチルデカリン/メチルナフタレン、イソプロパノール/アセトン等を用いることができる。   As a combination of the organic hydride / dehydrogenation product, decalin / naphthalene, methylcyclohexane / toluene, methyldecalin / methylnaphthalene, isopropanol / acetone and the like can be used in addition to the above cyclohexane / benzene.

図2は、第2の発明の水素貯蔵・放出装置の一態様を示す断面図であり、この水素貯蔵・放出装置1’は、有機ハイドライド層2と、この有機ハイドライド層2の上面と下面に設けられた、1対の、水素分子をプロトンと電子に分離する触媒を有する1対の電極3及び3’を2つの主要面に有するプロトン伝導体層4を有し、前記電極が二次電池5に接続されている。   FIG. 2 is a cross-sectional view showing an embodiment of the hydrogen storage / release device of the second invention. This hydrogen storage / release device 1 ′ includes an organic hydride layer 2 and an upper surface and a lower surface of the organic hydride layer 2. And a pair of electrodes 3 and 3 ′ having a catalyst for separating hydrogen molecules into protons and electrons, the proton conductor layer 4 having two main surfaces, the electrodes being a secondary battery 5 is connected.

この水素貯蔵・放出装置1’において、プロトン伝導体層4を構成するプロトン伝導体、触媒3及び3’、並びに有機ハイドライド層2を構成する有機ハイドライドとしては、発明1の水素貯蔵・放出装置を構成するものと同一である。   In this hydrogen storage / release device 1 ′, the proton conductor constituting the proton conductor layer 4, the catalysts 3 and 3 ′, and the organic hydride constituting the organic hydride layer 2 are the same as the hydrogen storage / release device of the invention 1. It is the same as what constitutes.

すなわち、有機ハイドライドとしては、例えば、デカリン、シクロヘキサン、メチルシクロヘキサン、メチルデカリン、イソプロパノール等を用いることができる。プロトン伝導体としては、プロトンを移動させることができる材料、例えば、スルホン酸基を有するポリエチレン系の陽イオン交換膜、フルオロカーボンスルホン酸とポリビニリデンフルオライドとの混合膜、フルオロカーボンマトリックスにトリフルオロエチレンをグラフトしたもの、パーフルオロカーボンスルホン酸膜(例えば、デュポン社の商品名ナフィオン)等を用いることができる。電極3及び3’は、水素分子をプロトンと電子に分離する触媒を有する。この触媒としては、例えばPt、Ir、Au、Re、Fe、Cr、Co、Ce等を用いることができ、電極3及び3’は、これらの触媒を多孔質炭素材料に担持させて構成される。   That is, as the organic hydride, for example, decalin, cyclohexane, methylcyclohexane, methyldecalin, isopropanol and the like can be used. Examples of proton conductors include materials that can transfer protons, such as polyethylene-based cation exchange membranes having sulfonic acid groups, mixed membranes of fluorocarbon sulfonic acid and polyvinylidene fluoride, and trifluoroethylene in a fluorocarbon matrix. A grafted material, a perfluorocarbon sulfonic acid membrane (for example, Nafion, a trade name of DuPont) or the like can be used. The electrodes 3 and 3 'have a catalyst that separates hydrogen molecules into protons and electrons. As this catalyst, for example, Pt, Ir, Au, Re, Fe, Cr, Co, Ce and the like can be used, and the electrodes 3 and 3 ′ are configured by supporting these catalysts on a porous carbon material. .

発明1の水素貯蔵・放出装置においては、水素放出時に、反応が進むにつれて脱水素化物、例えばベンゼンの電極表面に置ける濃度が増加し、それにより過電圧が増加し、反応速度が低下するおそれがある。また、水素貯蔵時では反応が進むにつれて水素化物、例えばシクロヘキサンの電極表面における濃度が増加し、それにより過電圧が増加し、反応速度が低下するおそれがある。   In the hydrogen storage / release device according to the first aspect of the present invention, when hydrogen is released, the concentration of a dehydrogenated product, such as benzene, on the electrode surface increases as the reaction proceeds, thereby increasing the overvoltage and reducing the reaction rate. . In addition, during hydrogen storage, as the reaction proceeds, the concentration of a hydride such as cyclohexane on the electrode surface increases, which may increase the overvoltage and decrease the reaction rate.

一方、脱水素化物(ベンゼン、ナフタレン、トルエン等)はその水素化物(シクロヘキサン、デカリン、メチルシクロヘキサン等)に比べて比重が高いことが知られている。具体的には、シクロヘキサン/ベンゼンの比重は0.778/0.879、デカリン/ナフタレンの比重は0.89/1.14である。そこで、発明2の水素貯蔵・放出装置1’では、1対の電極3及び3’を有機ハイドライド層2の上下に配置し、下部の電極において水素を貯蔵し、上部の電極において水素を放出するようにしている。   On the other hand, it is known that dehydrogenated products (benzene, naphthalene, toluene, etc.) have a higher specific gravity than hydrides (cyclohexane, decalin, methylcyclohexane, etc.). Specifically, the specific gravity of cyclohexane / benzene is 0.778 / 0.879, and the specific gravity of decalin / naphthalene is 0.89 / 1.14. Therefore, in the hydrogen storage / release apparatus 1 ′ of the invention 2, a pair of electrodes 3 and 3 ′ are arranged above and below the organic hydride layer 2, hydrogen is stored in the lower electrode, and hydrogen is released in the upper electrode. I am doing so.

下部の電極に水素を供給すると、電極3’上において3H2→6H++6e-の反応が起こり、電子e-は二次電池5に蓄えられる。プロトンH+はプロトン伝導体内を電極3に向かって移動し、電極3上でベンゼン+6H++6e-→シクロヘキサンの反応により有機ハイドライドに水素を貯蔵する。 When hydrogen is supplied to the lower electrode, a reaction of 3H 2 → 6H + + 6e occurs on the electrode 3 ′, and electrons e are stored in the secondary battery 5. The proton H + moves in the proton conductor toward the electrode 3, and stores hydrogen in the organic hydride by the reaction of benzene + 6H + + 6e → cyclohexane on the electrode 3.

シクロヘキサンはベンゼンに比べて比重が低いため、有機ハイドライド層2中を上部の電極に向かって移動し、下部の電極3表面におけるシクロヘキサンの濃度が低下し、相対的にベンゼンの濃度が増加する。その結果、ベンゼン+6H++6e-→シクロヘキサンの水素貯蔵反応の反応速度の低下を防ぐことができる。 Since cyclohexane has a lower specific gravity than benzene, it moves in the organic hydride layer 2 toward the upper electrode, the concentration of cyclohexane on the surface of the lower electrode 3 decreases, and the concentration of benzene relatively increases. As a result, a decrease in the reaction rate of the hydrogen storage reaction of benzene + 6H + + 6e → cyclohexane can be prevented.

一方、電極3及び3’間に電圧を印加すると、上部の電極3においてシクロヘキサン→ベンゼン+6H++6e-の反応が起こり、電子e-は二次電池5に蓄えられる。プロトンH+はプロトン伝導体内を電極3’に向かって移動し、電極3’上で6H++6e-→3H2の反応により水素を生成する。こうして生成された水素が放出される。 On the other hand, when a voltage is applied between the electrodes 3 and 3 ′, a reaction of cyclohexane → benzene + 6H + + 6e occurs in the upper electrode 3, and electrons e are stored in the secondary battery 5. The proton H + moves in the proton conductor toward the electrode 3 ′, and generates hydrogen by a reaction of 6H + + 6e → 3H 2 on the electrode 3 ′. The hydrogen thus produced is released.

電極3において形成したベンゼンはシクロヘキサンに比べて比重が高いため、有機ハイドライド層中を下部の電極に向かって移動し、上部の電極3表面付近におけるベンゼンの濃度が低下する。その結果、シクロヘキサン→ベンゼン+6H++6e-の反応の反応速度の低下を防ぐことができる。 Since benzene formed in the electrode 3 has a higher specific gravity than cyclohexane, it moves in the organic hydride layer toward the lower electrode, and the concentration of benzene in the vicinity of the upper electrode 3 surface decreases. As a result, it is possible to prevent a reduction in the reaction rate of the reaction of cyclohexane → benzene + 6H + + 6e .

本発明の水素貯蔵・放出装置は車両に搭載可能であり、かつ車両に搭載された燃料電池に水素を供給することができる。   The hydrogen storage / release device of the present invention can be mounted on a vehicle and can supply hydrogen to a fuel cell mounted on the vehicle.

本発明の水素貯蔵・放出装置の一態様を示す断面図である。It is sectional drawing which shows the one aspect | mode of the hydrogen storage / release apparatus of this invention. 本発明の水素貯蔵・放出装置の一態様を示す断面図である。It is sectional drawing which shows the one aspect | mode of the hydrogen storage / release apparatus of this invention.

符号の説明Explanation of symbols

1、1’…水素貯蔵・放出装置
2…有機ハイドライド層
3、3’…電極
4…プロトン伝導体
5…二次電池
DESCRIPTION OF SYMBOLS 1, 1 '... Hydrogen storage / release apparatus 2 ... Organic hydride layer 3, 3' ... Electrode 4 ... Proton conductor 5 ... Secondary battery

Claims (2)

プロトン伝導体層と、
このプロトン伝導体層の2つの主要面上に設けられた、水素分子をプロトンと電子に分離する触媒を有する1対の電極と、
前記電極のうち一方の電極のプロトン伝導体層と接する面と反対面側に設けられた有機ハイドライド層
を有し、前記電極が二次電池に接続されている、水素貯蔵・放出装置。
A proton conductor layer;
A pair of electrodes provided on the two major surfaces of the proton conductor layer and having a catalyst for separating hydrogen molecules into protons and electrons;
A hydrogen storage / release device, comprising: an organic hydride layer provided on a side opposite to a surface in contact with the proton conductor layer of one of the electrodes, wherein the electrode is connected to a secondary battery.
有機ハイドライド層と、
この有機ハイドライド層の上面と下面に設けられた、1対の、水素分子をプロトンと電子に分離する触媒を有する1対の電極を2つの主要面に有するプロトン伝導体層
を有し、前記電極が二次電池に接続されている、水素貯蔵・放出装置。
An organic hydride layer;
A proton conductor layer provided on the upper and lower surfaces of the organic hydride layer and having a pair of electrodes having a catalyst for separating hydrogen molecules into protons and electrons on two main surfaces; Is a hydrogen storage / release device connected to a secondary battery.
JP2003364826A 2003-10-24 2003-10-24 Hydrogen storage and release apparatus Pending JP2005126288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003364826A JP2005126288A (en) 2003-10-24 2003-10-24 Hydrogen storage and release apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003364826A JP2005126288A (en) 2003-10-24 2003-10-24 Hydrogen storage and release apparatus

Publications (1)

Publication Number Publication Date
JP2005126288A true JP2005126288A (en) 2005-05-19

Family

ID=34643693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003364826A Pending JP2005126288A (en) 2003-10-24 2003-10-24 Hydrogen storage and release apparatus

Country Status (1)

Country Link
JP (1) JP2005126288A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008502568A (en) * 2004-06-15 2008-01-31 ナッサール,タレク A system for cation-electron intrusion and collisions in non-conductive materials.
WO2012091128A1 (en) 2010-12-28 2012-07-05 Jx日鉱日石エネルギー株式会社 Organic compound hydrogenation device and hydrogenation method
WO2013111585A1 (en) 2012-01-24 2013-08-01 Jx日鉱日石エネルギー株式会社 Electrochemical reduction device and method for producing hydride of nitrogen-containing-heterocyclic aromatic compound or aromatic hydrocarbon compound
WO2013111586A1 (en) 2012-01-24 2013-08-01 Jx日鉱日石エネルギー株式会社 Electrochemical reduction device and method for producing hydride of nitrogen-containing-heterocyclic aromatic compound or aromatic hydrocarbon compound
WO2013145782A1 (en) 2012-03-29 2013-10-03 Jx日鉱日石エネルギー株式会社 Electrochemical reduction device, and method for producing hydrogenated product of aromatic hydrocarbon compound or nitrogen-containing heterocyclic aromatic compound
WO2013187066A1 (en) 2012-06-12 2013-12-19 Jx日鉱日石エネルギー株式会社 Electrochemical reduction device, and method for producing hydrogenated product of aromatic hydrocarbon compound or nitrogenated heterocyclic aromatic compound
WO2014006872A1 (en) 2012-07-03 2014-01-09 Jx日鉱日石エネルギー株式会社 Electrochemical reduction device and process for producing product of hydrogenation of aromatic hydrocarbon compound or nitrogenous heterocyclic aromatic compound
WO2014156125A1 (en) 2013-03-29 2014-10-02 Jx日鉱日石エネルギー株式会社 Electrochemical reduction device and production method for hydrogenated product of aromatic compound
WO2014156126A1 (en) 2013-03-29 2014-10-02 Jx日鉱日石エネルギー株式会社 Electrochemical reduction device and production method for hydrogenated product of aromatic compound
WO2015015769A1 (en) 2013-07-30 2015-02-05 Jx日鉱日石エネルギー株式会社 Electrochemical reduction apparatus, and production method for hydrogenated aromatic compound
WO2015029366A1 (en) 2013-08-30 2015-03-05 Jx日鉱日石エネルギー株式会社 Electrochemical reduction device
WO2015029367A1 (en) 2013-08-30 2015-03-05 Jx日鉱日石エネルギー株式会社 Electrochemical reduction device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008502568A (en) * 2004-06-15 2008-01-31 ナッサール,タレク A system for cation-electron intrusion and collisions in non-conductive materials.
WO2012091128A1 (en) 2010-12-28 2012-07-05 Jx日鉱日石エネルギー株式会社 Organic compound hydrogenation device and hydrogenation method
WO2013111585A1 (en) 2012-01-24 2013-08-01 Jx日鉱日石エネルギー株式会社 Electrochemical reduction device and method for producing hydride of nitrogen-containing-heterocyclic aromatic compound or aromatic hydrocarbon compound
WO2013111586A1 (en) 2012-01-24 2013-08-01 Jx日鉱日石エネルギー株式会社 Electrochemical reduction device and method for producing hydride of nitrogen-containing-heterocyclic aromatic compound or aromatic hydrocarbon compound
WO2013145782A1 (en) 2012-03-29 2013-10-03 Jx日鉱日石エネルギー株式会社 Electrochemical reduction device, and method for producing hydrogenated product of aromatic hydrocarbon compound or nitrogen-containing heterocyclic aromatic compound
US9752239B2 (en) 2012-06-12 2017-09-05 Jx Nippon Oil & Energy Corporation Electrochemical reduction device and method for manufacturing hydride of aromatic hydrocarbon compound or nitrogen-containing heterocyclic aromatic compound
WO2013187066A1 (en) 2012-06-12 2013-12-19 Jx日鉱日石エネルギー株式会社 Electrochemical reduction device, and method for producing hydrogenated product of aromatic hydrocarbon compound or nitrogenated heterocyclic aromatic compound
WO2014006872A1 (en) 2012-07-03 2014-01-09 Jx日鉱日石エネルギー株式会社 Electrochemical reduction device and process for producing product of hydrogenation of aromatic hydrocarbon compound or nitrogenous heterocyclic aromatic compound
WO2014156126A1 (en) 2013-03-29 2014-10-02 Jx日鉱日石エネルギー株式会社 Electrochemical reduction device and production method for hydrogenated product of aromatic compound
WO2014156125A1 (en) 2013-03-29 2014-10-02 Jx日鉱日石エネルギー株式会社 Electrochemical reduction device and production method for hydrogenated product of aromatic compound
US10815575B2 (en) 2013-03-29 2020-10-27 Eneos Corporation Electrochemical reduction device and method for manufacturing hydride of aromatic compound
WO2015015769A1 (en) 2013-07-30 2015-02-05 Jx日鉱日石エネルギー株式会社 Electrochemical reduction apparatus, and production method for hydrogenated aromatic compound
US10174431B2 (en) 2013-07-30 2019-01-08 Jxtg Nippon Oil & Energy Corporation Electrochemical reduction device and method for manufacturing hydride of aromatic compound
WO2015029366A1 (en) 2013-08-30 2015-03-05 Jx日鉱日石エネルギー株式会社 Electrochemical reduction device
WO2015029367A1 (en) 2013-08-30 2015-03-05 Jx日鉱日石エネルギー株式会社 Electrochemical reduction device

Similar Documents

Publication Publication Date Title
Cao et al. A direct 2-propanol polymer electrolyte fuel cell
Pan et al. Performance of a hybrid direct ethylene glycol fuel cell
US6706431B2 (en) Fuel cell
CN101189182B (en) Hydrogen production apparatus, fuel cell power generator using the same, electric vehicle, submersible ship and hydrogen supply system
An et al. Transport phenomena in direct borohydride fuel cells
JP2005126288A (en) Hydrogen storage and release apparatus
EP1661199A2 (en) Hydrogen storage-based rechargeable fuel cell system
Liu et al. Development and performance evaluation of a passive direct ammonia fuel cell
US3416966A (en) Power system functioning alternately for producing or consuming electrical energy
CN111095641B (en) Method for producing membrane electrode assembly and laminate
JP2005240064A (en) Reforming device, fuel cell system and equipment
Lokhande et al. Hydrogen fuel cell: Parametric analysis of their stockpiling and different types
JP2003308869A (en) Fuel cell
WO2004032270A1 (en) Fuel cell and method for driving fuel cell
TW200409400A (en) A fuel cell, an operation method of the same and a portable information device that have the same
US20060078764A1 (en) Dissolved fuel alkaline fuel cell
KR20150057007A (en) Solid Oxide Fuel Cell System
US20060083959A1 (en) Polymer electrolyte fuel cell cartridge and polymer electrolyte fuel cell
JP2018070964A (en) Dehydrogenation apparatus
KR102090860B1 (en) Polymer electrolyte membrane, membrane electrode assembly comprising the same and fuel cell comprising the membrane electrode assembly
JP3818312B2 (en) Electric car
JP2007250461A (en) Fuel cell system, and control method thereof
JP2005166486A (en) Direct type fuel cell system
Barak Fuel cells—present position and outstanding problems
JP2003317790A (en) Cell for fuel cell, fuel cell system and its manufacturing method