JP2005123282A - Magnetic core and inductance component using it - Google Patents

Magnetic core and inductance component using it Download PDF

Info

Publication number
JP2005123282A
JP2005123282A JP2003354502A JP2003354502A JP2005123282A JP 2005123282 A JP2005123282 A JP 2005123282A JP 2003354502 A JP2003354502 A JP 2003354502A JP 2003354502 A JP2003354502 A JP 2003354502A JP 2005123282 A JP2005123282 A JP 2005123282A
Authority
JP
Japan
Prior art keywords
magnetic core
magnet
core
magnetic
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003354502A
Other languages
Japanese (ja)
Inventor
Teruhiko Fujiwara
照彦 藤原
Keita Isotani
桂太 磯谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2003354502A priority Critical patent/JP2005123282A/en
Publication of JP2005123282A publication Critical patent/JP2005123282A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic core having excellent core-loss characteristics and DC overlapping characteristics, and provide an inductance component using the magnetic core. <P>SOLUTION: The magnetic core 11 has gaps at least at one place or more of a magnetic path. Rare-earth magnet powder has an intrinsic coercive force of 10×10<SP>3</SP>×(1/4π)kA/m or more in the gaps, Tc at 500°C or higher, and a powder mean grain size of 2.5 to 50 μm. The surfaces thereof are coated with a low melting-point metal and a metallic oxide. The inductance component is composed of the magnetic core 11, to which a magnet 3 mixed with the powder and a resin and with a specific resistance of 1.0 Ω cm or more is inserted, and a winding 4 of at least one turn or more wound on the magnetic core 11 is provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、スイッチング電源などに使用されるチョークコイル用及びトランス用に好適な磁芯およびそれを用いたインダクタンス部品に関する。   The present invention relates to a magnetic core suitable for a choke coil and a transformer used for a switching power supply and the like, and an inductance component using the same.

チョークコイル用及びトランス用磁芯には、良好な直流重畳特性が求められており、高周波用の磁芯にはフェライトや圧粉磁芯が使用されている。フェライト磁芯は初透磁率が高く飽和磁束密度が小さい、圧粉磁芯は初透磁率が低く飽和磁束密度が高い、という材料物性に由来した特徴がある。従って、圧粉磁芯はトロイダル形状で用いられることが多く、フェライトは、例えばE型コアの中足にギャップを挿入してEE型コアで用いられることが多い。   Good DC superposition characteristics are required for choke coil and transformer cores, and ferrite or dust cores are used for high frequency cores. Ferrite cores have characteristics derived from material properties such as high initial magnetic permeability and low saturation magnetic flux density, and dust cores having low initial magnetic permeability and high saturation magnetic flux density. Accordingly, the dust core is often used in a toroidal shape, and the ferrite is often used in an EE type core, for example, by inserting a gap in the middle leg of the E type core.

しかし、近年の電子機器の小型化要請に伴う電子部品の小型化の要求により、より大きな重畳磁界における、より高い透磁率が強く求められている。一般に、直流重畳特性を向上させるためには、飽和磁化の高い磁芯を選択すること、つまり高磁界で磁気飽和しない磁芯の選択が必須とされている。しかし、飽和磁化は材料の組成で必然的に決まるものであり、無限に高く出来るものではない。そのため、従来の直流重畳特性を向上させる手段は、わずかな飽和磁化の向上に多大な労力が費やされている割には、直流重畳特性は期待されている程伸びていないのが現状であった。   However, due to the recent demand for miniaturization of electronic components accompanying the demand for miniaturization of electronic equipment, higher magnetic permeability in a larger superimposed magnetic field is strongly demanded. In general, in order to improve the DC superimposition characteristics, it is essential to select a magnetic core with high saturation magnetization, that is, to select a magnetic core that does not become magnetically saturated with a high magnetic field. However, the saturation magnetization is inevitably determined by the composition of the material and cannot be made infinitely high. For this reason, the conventional means for improving the DC superimposition characteristic is that the DC superimposition characteristic has not increased as much as expected, although a great deal of effort has been expended in improving the slight saturation magnetization. It was.

その解決手段として、磁路の一箇所以上にギャップを挿入し、そのギャップに永久磁石を挿入することが従来から検討されてきた。この方法は、直流重畳特性を向上させるには優れた方法であるが、一方で金属焼結磁石を用いると磁芯のコアロスの増大が著しく、またフェライト磁石を用いると重畳特性が安定しないなど、とても実用に耐え得るものではなかった。これらを解決する手段として、例えば特許文献1では、永久磁石として保磁力の高い希土類磁石粉末とバインダーとを混合し圧縮成形したボンド磁石を挿入することが示されており、直流重畳特性とコアの温度上昇が改善されたことが示されている。   As a solution to this problem, it has heretofore been studied to insert a gap at one or more locations in the magnetic path and insert a permanent magnet into the gap. This method is an excellent method for improving the DC superposition characteristics, but on the other hand, when using a sintered metal magnet, the core loss of the magnetic core is remarkably increased, and when using a ferrite magnet, the superposition characteristics are not stable. It was not very practical. As a means for solving these problems, for example, Patent Document 1 shows that a bonded magnet obtained by mixing and molding a rare earth magnet powder having a high coercive force and a binder as a permanent magnet is inserted. It has been shown that the temperature rise has been improved.

しかし近年、電源に対する電力変換効率向上の要求は、ますます厳しくなっており、チョークコイル用及びトランス用のコアについても単にコア温度を測定するだけでは優劣が判断不能なレベルとなっている。そのため、コアロス測定装置による測定結果の判断が不可欠であり、実際本発明者等が検討を行った結果、特許文献1に示された低抗率の値ではコアロス特性が劣化することが明らかになった。   However, in recent years, demands for improving power conversion efficiency for power supplies have become increasingly severe, and the cores for choke coils and transformers cannot be judged by simply measuring the core temperature. Therefore, determination of the measurement result by the core loss measuring device is indispensable, and as a result of actual examination by the present inventors, it has become clear that the core loss characteristic deteriorates at the low resistance value shown in Patent Document 1. It was.

そこで我々は、先願特許として特許文献2にギャップに挿入する永久磁石として、10×103×(1/4π)kA/mの固有保磁力、500℃以上のTc、1.0ΩCm以上の比抵抗の永久磁石を挿入することでコアロスを低下させることなく、良好な直流重畳特性が得られることを発見している。また、希土類磁石粉末の磁気特性の信頼性を向上させるために、粉末表面を低融点金属で被覆すれば良い事も発見した。しかしながら、昨今の電力変換効率の更なる改善要求を満足するためには、永久磁石のヒステリシス損失の低減が新たに求められている。また、磁芯の更なる小型化を図るためには、ボンド磁石の更なる高特性化を比抵抗を維持しながら達成することが求められている。 Therefore, as a permanent magnet to be inserted into the gap in Patent Document 2 as a prior application patent, an intrinsic coercive force of 10 × 10 3 × (1 / 4π) kA / m, a Tc of 500 ° C. or higher, and a ratio of 1.0ΩCm or higher It has been discovered that by inserting a permanent magnet of resistance, good DC superposition characteristics can be obtained without reducing core loss. Moreover, in order to improve the reliability of the magnetic properties of the rare earth magnet powder, it was discovered that the powder surface may be coated with a low melting point metal. However, in order to satisfy the recent demand for further improvement in power conversion efficiency, a reduction in hysteresis loss of the permanent magnet is newly demanded. In order to further reduce the size of the magnetic core, it is required to achieve further enhancement of the properties of the bonded magnet while maintaining the specific resistance.

特開昭50−133453号公報JP 50-133453 A 特開2003−007519号公報JP 2003-007519 A

本発明の課題は、上記問題点に鑑み、優れたコアロス特性と直流重畳特性を有する磁芯およびそれを用いたインダクタンス部品を提供することである。   In view of the above problems, an object of the present invention is to provide a magnetic core having excellent core loss characteristics and direct current superposition characteristics, and an inductance component using the same.

本発明の磁芯は、前記課題を達成するべく挿入する永久磁石について検討した結果、固有保磁力が10×103×(1/4π)kA/m以上で、磁石の比抵抗が1.0Ω・cm以上の永久磁石を使用した時、優れた直流重畳特性が得られ、しかもコアロス特性の劣化が生じない磁芯を形成できることを発見した。比抵抗が高く、しかも固有保磁力が高い磁石は、一般的には希土類磁石粉末をバインダーとともに混合して成形した希土類ボンド磁石である。希土類磁石粉末の種類は、SmCo系、NdFeB系、SmFeN系がある。リフロー条件及び耐酸化性を考慮すると、Tcが500℃以上、保磁力が10×103×(1/4π)kA/m以上の磁石が、最も有望である。 As for the magnetic core of the present invention, as a result of studying a permanent magnet to be inserted in order to achieve the above-mentioned problem, the intrinsic coercive force is 10 × 10 3 × (1 / 4π) kA / m or more, and the specific resistance of the magnet is 1.0Ω.・ It has been discovered that when a permanent magnet of cm or more is used, it is possible to form a magnetic core in which excellent DC superposition characteristics are obtained and core loss characteristics are not deteriorated. A magnet having a high specific resistance and a high intrinsic coercive force is generally a rare earth bonded magnet formed by mixing rare earth magnet powder with a binder. The types of rare earth magnet powders include SmCo, NdFeB, and SmFeN. Considering reflow conditions and oxidation resistance, a magnet having a Tc of 500 ° C. or higher and a coercive force of 10 × 10 3 × (1 / 4π) kA / m or higher is most promising.

ここで、Sm2Co17系磁石のような希土類磁石について、耐食、耐酸化性を向上させるために、低融点金属の添加量として3重量%〜7重量%、金属酸化物の添加量として0.5重量%〜3重量%で被覆されることにより、耐食・耐酸化性および磁気特性の両方を兼ね備えた永久磁石が得られる。 Here, for rare earth magnets such as Sm 2 Co 17- based magnets, in order to improve corrosion resistance and oxidation resistance, the addition amount of the low melting point metal is 3 to 7% by weight and the addition amount of the metal oxide is 0. By coating with 5 wt% to 3 wt%, a permanent magnet having both corrosion resistance / oxidation resistance and magnetic properties can be obtained.

即ち、本発明は、磁路の少なくとも1箇所以上にギャップを有する磁芯であって、そのギャップに固有保磁力が10×103×(1/4π)kA/m以上、Tcが500℃以上の粉末平均粒径が2.5〜50μmの希土類磁石粉末で、かつその表面が低融点金属と金属酸化物で被覆された粉末であって、その粉末と樹脂とを混合した比抵抗が1.0Ω・cm以上のボンド磁石を挿入した磁芯である。 That is, the present invention is a magnetic core having a gap in at least one location of the magnetic path, and the intrinsic coercive force is 10 × 10 3 × (1 / 4π) kA / m or more, and Tc is 500 ° C. or more. A rare earth magnet powder having an average particle size of 2.5 to 50 μm and a surface of which is coated with a low-melting-point metal and a metal oxide, and the specific resistance obtained by mixing the powder and the resin is 1. A magnetic core into which a bonded magnet of 0 Ω · cm or more is inserted.

また、本発明は、前記低融点金属は、Zn、Al、Bi、Ga、In、Mg、Pb、Sb、Snの中から選択された少なくとも一種またはその合金であって、前記金属酸化物は、SiO2、Al23の何れか、またはSiO2とB23、Al23、CaOとの何れか1種または2種以上の混合物である磁芯である。 In the present invention, the low melting point metal is at least one selected from Zn, Al, Bi, Ga, In, Mg, Pb, Sb, and Sn, or an alloy thereof, one of SiO 2, Al 2 O 3, or a magnetic core is SiO 2 and B 2 O 3, Al 2 O 3, either one or a mixture of two or more of CaO.

また、本発明は、前記金属酸化物のSiO2またはAl23は、有機金属化合物を加水分解するか、微小粒径のSiO2、Al23を適当な溶媒に分散させたコロイド溶液から得られたものである磁芯である。 In the present invention, the metal oxide SiO 2 or Al 2 O 3 is a colloidal solution obtained by hydrolyzing an organometallic compound or dispersing SiO 2 and Al 2 O 3 having a small particle size in a suitable solvent. It is the magnetic core which is obtained from.

また、本発明は、前記ボンド磁石において、磁石粉末は重量比で3重量%〜7重量%の低融点金属と0.5重量%〜3重量%の金属酸化物で被覆された磁芯である。   In the bonded magnet, the present invention provides a magnetic core in which the magnet powder is coated with a low melting point metal of 3 to 7% by weight and a metal oxide of 0.5 to 3% by weight. .

また、本発明は、前記ボンド磁石は、270℃、大気中で30分熱処理をした時の減磁率(不可逆減磁率+永久減磁率)が8%以内で、かつ挿入前に比べて、その磁芯のヒステリシス損失の増加が20%以内であるボンド磁石を挿入した磁芯である。   Further, according to the present invention, the bond magnet has a demagnetization factor (irreversible demagnetization factor + permanent demagnetization factor) within 8% when heat-treated in the atmosphere at 270 ° C. for 30 minutes, and the magnetism thereof is smaller than that before insertion. This is a magnetic core into which a bonded magnet having an increase in the hysteresis loss of the core within 20% is inserted.

また、本発明は、前記磁芯と、前記磁芯に巻かれた少なくとも1ターン以上の巻線とで構成されたインダクタンス部品である。   Moreover, this invention is an inductance component comprised by the said magnetic core and the winding of at least 1 turn wound around the said magnetic core.

本発明によれば、優れたコアロス特性と直流重畳特性を有する磁芯およびそれを用いたインダクタンス部品提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the magnetic core which has the outstanding core loss characteristic and the direct current | flow superimposition characteristic, and an inductance component using the same can be provided.

本発明の実施の形態による磁芯およびそれを用いたインダクタンス部品について、以下に説明する。  A magnetic core according to an embodiment of the present invention and an inductance component using the same will be described below.

本発明の磁芯は、磁路の少なくとも1箇所以上にギャップを有する磁芯であって、そのギャップに固有保磁力が10×103×(1/4π)kA/m以上、Tcが500℃以上で、粉末平均粒径が2.5〜50μmの希土類磁石粉末で、かつ、その表面が低融点金属と金属酸化物で被覆され、比抵抗が1.0Ω・cm以上のボンド磁石を使用して優れた直流重畳特性を得、しかもコアロス特性の劣化が生じない磁芯である。希土類磁石粉末の種類は、SmCo系、NdFeB系、SmFeN系とあるが、リフロー条件及び耐酸化性を考慮するとTcが500℃以上、保磁力が10×10×(1/4π)kA/m以上の磁石は、現状ではSm2Co17系磁石を用いることができる。 The magnetic core of the present invention is a magnetic core having a gap in at least one position of a magnetic path, and the intrinsic coercive force is 10 × 10 3 × (1 / 4π) kA / m or more and Tc is 500 ° C. As described above, a rare earth magnet powder having a powder average particle diameter of 2.5 to 50 μm, the surface of which is coated with a low melting point metal and a metal oxide, and a specific resistance of 1.0 Ω · cm or more is used. The magnetic core has excellent DC superposition characteristics and does not cause deterioration of core loss characteristics. The types of rare earth magnet powders are SmCo, NdFeB, and SmFeN, but considering reflow conditions and oxidation resistance, Tc is 500 ° C. or higher, and the coercive force is 10 × 10 3 × (1 / 4π) kA / m. At present, the above magnets can be Sm 2 Co 17 magnets.

ここで、Sm2Co17系磁石について、耐食、耐酸化性を向上させるために、低融点金属の添加量として3重量%〜7重量%、金属酸化物の添加量として0.5重量%〜3重量%にすることにより、耐食・耐酸化性および磁気特性の両方を兼ね備えたSm2Co17系磁石を提供することが可能になる。 Here, for the Sm 2 Co 17- based magnet, in order to improve corrosion resistance and oxidation resistance, the addition amount of the low melting point metal is 3 wt% to 7 wt%, and the addition amount of the metal oxide is 0.5 wt% to By making it 3% by weight, it becomes possible to provide an Sm 2 Co 17- based magnet having both corrosion resistance / oxidation resistance and magnetic properties.

このように、ギャップに挿入される永久磁石に対する要求特性は、固有保磁力については信頼性の確保とヒステリシス損失を抑えるため10×103×(1/4π)kA/m以上の保磁力が必要であり、また比抵抗は大きいほど良いが、1.0Ω・cm以上であれば渦電流損失劣化の大きな要因にはならない。粉末の平均最大粒径が50μm以上になるとコアロス特性が劣化するので、粉末の最大粒径は50μm以下であることが望ましく、最小粒径が2.5μm以下になると粉末熱処理及びリフロー時に粉末の酸化による磁化の減少が顕著になるため2.5μm以上の粒径が必要で有る。 As described above, the required characteristic for the permanent magnet inserted into the gap is that the coercive force of 10 × 10 3 × (1 / 4π) kA / m or more is required for the intrinsic coercive force to ensure reliability and suppress hysteresis loss. In addition, the larger the specific resistance, the better, but if it is 1.0 Ω · cm or more, it will not be a major factor in the deterioration of eddy current loss. Since the core loss characteristics deteriorate when the average maximum particle size of the powder is 50 μm or more, it is desirable that the maximum particle size of the powder is 50 μm or less. When the minimum particle size is 2.5 μm or less, the powder is oxidized during heat treatment and reflow. Therefore, the particle size of 2.5 μm or more is necessary.

また、耐食性を向上させるために行う低融点金属の添加は、Zn、Al、Bi、Ga、In、Mg、Pb、Sb、Snの中から適宜選択して、3重量%〜7重量%を混合し、不活性雰囲気中300℃〜600℃で熱処理することにより、270℃・大気中で30分熱処理をした時のボンド磁石の減磁率が8%以内とすることができる。また、金属酸化物について0.5重量%〜3重量%混合したとき比抵抗が高く、しかも耐食性、高効率を満足するボンド磁石を得ることが可能になる。   In addition, the addition of a low melting point metal to improve the corrosion resistance is appropriately selected from Zn, Al, Bi, Ga, In, Mg, Pb, Sb, and Sn and mixed in an amount of 3 to 7% by weight. Then, by performing heat treatment at 300 ° C. to 600 ° C. in an inert atmosphere, the demagnetization factor of the bond magnet when heat treated at 270 ° C. in the air for 30 minutes can be within 8%. In addition, when the metal oxide is mixed in an amount of 0.5 to 3% by weight, it is possible to obtain a bonded magnet having a high specific resistance and satisfying corrosion resistance and high efficiency.

使用したSm2Co17磁石粉末、Zn粉末の平均粒径は、それぞれ12μm、7μmであり、Sm2Co17磁石粉末に対し低融点金属としてZnを総重量の2〜8重量%をそれぞれ加え、V型混合機で30分間、混合した。これらの粉末を真空中で350℃熱処理し、SmCo粉末にZnコーティングを施した。 The average particle diameters of the used Sm 2 Co 17 magnet powder and Zn powder were 12 μm and 7 μm, respectively, and Zn was added as 2 to 8% by weight of the total weight as a low melting point metal to the Sm 2 Co 17 magnet powder, Mix for 30 minutes in a V-type mixer. These powders were heat-treated at 350 ° C. in vacuum, and Zn coating was applied to the SmCo powder.

次に、その粉末を平均粒径が10nmのSiO2粉末がIPA溶液に分散されたシリカゾル溶液の中に投入し、溶媒が乾燥するまで攪拌した。この時、シリカゾル溶液はシリカ純分として0.25〜4.0重量%になるように添加した。 Next, the powder was put into a silica sol solution in which an SiO 2 powder having an average particle size of 10 nm was dispersed in an IPA solution, and stirred until the solvent was dried. At this time, the silica sol solution was added so that the silica content was 0.25 to 4.0% by weight.

このSm2Co17磁石粉末に5重量%に相当する量のバインダー(エポキシ樹脂)を混合した後、プレス圧5ton/cm2・無磁場中で金型成形を行い、その後、150℃・30分、大気中で乾燥を行った。以下に試料の作製条件・測定条件の詳細を示す。 This Sm 2 Co 17 magnet powder was mixed with a binder (epoxy resin) in an amount corresponding to 5% by weight, and then molded in a press pressure of 5 ton / cm 2 / no magnetic field, and then 150 ° C./30 minutes. And drying in the atmosphere. Details of sample preparation conditions and measurement conditions are shown below.

〔作製条件〕
組成:Sm(Fe0.2Cu0.7Zr0.028CoBal8.3
平均粉末粒径:12μm
バインダー:エポキシ樹脂(EP128:セメダイン社製)5重量%
ボンド磁石形状:円柱φ13mm×高さ9mm(磁気特性測定用)
:10.9mm×7.5mm×1.5mm(減磁率測定用)
:10.2mm×7.8mm×0.5mm(ヒステリシス損失評価用)
プレス圧:5ton/cm2
着磁:4Tパルス着磁
[Production conditions]
Composition: Sm (Fe 0.2 Cu 0.7 Zr 0.028 Co Bal ) 8.3
Average powder particle size: 12 μm
Binder: Epoxy resin (EP128: manufactured by Cemedine) 5% by weight
Bond magnet shape: cylinder φ13mm x height 9mm (for magnetic property measurement)
: 10.9mm x 7.5mm x 1.5mm (for demagnetization measurement)
: 10.2mm x 7.8mm x 0.5mm (for hysteresis loss evaluation)
Press pressure: 5 ton / cm 2
Magnetization: 4T pulse magnetization

〔ヒステリシス損失測定〕
・測定装置:東英工業社製B−Hトレーサー(軟磁性測定)
・測定コア材:FEEフェライトコア(BH2)に500μmのSmCoボンド挿入
・測定磁場:Hm=800〜1200A/m
・巻線:1次75ターン、2次30ターン
・測定温度:50℃(恒温層内にて測定)
[Hysteresis loss measurement]
・ Measuring device: BH tracer manufactured by Toei Kogyo Co., Ltd. (soft magnetic measurement)
Measurement core material: 500 μm SmCo bond inserted into FEE ferrite core (BH2) Measurement magnetic field: Hm = 800 to 1200 A / m
-Winding: 75 turns primary, 30 turns secondary-Measurement temperature: 50 ° C (measured in a constant temperature layer)

〔コアロス測定〕
・測定装置:岩崎通信機 交流B−Hトレーサー(軟磁性測定)
・測定コア材:FEEフェライトコア(BH2)に500μmのSmCoボンド挿入
・測定条件:周波数;100kHz、Bm;0.2T
・測定温度:100℃(恒温層内にて測定)
[Core loss measurement]
・ Measuring device: Iwasaki Tsushinki AC BH tracer (soft magnetic measurement)
・ Measurement core material: 500 μm SmCo bond inserted into FEE ferrite core (BH2) ・ Measurement conditions: Frequency: 100 kHz, Bm; 0.2T
-Measurement temperature: 100 ° C (measured in a constant temperature layer)

〔B−H特性測定(Br測定)〕
・測定装置:東英工業社製B−Hトレーサー(硬磁性測定)
・形状:φ13×9(mm)の円柱型
・最大印加磁界:2000A/m(2000A/m以上の保磁力は外挿して導出)
・検出コイル:25ターン、16ターン
[BH characteristic measurement (Br measurement)]
・ Measuring device: BH tracer manufactured by Toei Kogyo Co., Ltd. (hard magnetic measurement)
・ Shape: Cylindrical shape of φ13 × 9 (mm) ・ Maximum applied magnetic field: 2000 A / m (Coercive force of 2000 A / m or more is derived by extrapolation)
・ Detection coil: 25 turns, 16 turns

〔減磁率測定〕
・測定装置:TOEI TDF−5 DIGITAL FLUXMETER
・76ターンの巻線を施した15×15×50(mm)のパーマロイの磁芯にシート磁石を貼り付け、そこを零点とし、シート磁石を引き剥がした時の磁束の変化を測定し、この磁束の変化により、減磁率を求めた。
・測定5回の平均値であって、測定温度条件は、室温状態に保持した。
[Demagnetization measurement]
・ Measuring device: TOEI TDF-5 DIGITAL FLUXMETER
・ Attach a sheet magnet to a 15 × 15 × 50 (mm) permalloy core with 76 turns of winding, and measure the change in magnetic flux when the sheet magnet is peeled off. The demagnetization factor was obtained from the change in magnetic flux.
-It was an average value of five measurements, and the measurement temperature condition was kept at room temperature.

表1に、Znとシリカの添加量を変化させた場合の残留磁束密度Brと減磁率とコアロス特性についての結果を示す。なお、保磁力についてはどの水準についても、約20×103×(1/4π)kA/mで、ほとんど変化は無かった。また、ヒステリシス損失についても、どの水準も挿入前の磁芯に対して約10%以内の値を示した。 Table 1 shows the results of the residual magnetic flux density Br, the demagnetization factor, and the core loss characteristics when the addition amounts of Zn and silica are changed. The coercive force was about 20 × 10 3 × (1 / 4π) kA / m at any level, and there was almost no change. In addition, as for hysteresis loss, all levels showed values within about 10% with respect to the magnetic core before insertion.

Figure 2005123282
Figure 2005123282

表1より、No.1ではZn量が3%を下回ると減磁率が8%を超えるので、耐食性に問題が発生することがわかる。No.4では、シリカ添加重が0.5%を下回るとコアロス特性が急激に悪化することがわかる。これは、シリカ量が少ない時、ボンド磁石の比抵抗が劣化するために、磁石の渦電流損が大きくなるためと推測される。No.9では、シリカ添加量が多すぎても減磁率とコアロス特性に劣化が生じないのにBrが劣化するので、シリカ量が3%以内で充分なことが分かる。No.12では、Zn添加量が多すぎるとBrとコアロス特性が劣化するのでZn添加量は7%以内である必要が有ることが分かる。   From Table 1, No. 1 shows that when the Zn content is less than 3%, the demagnetization rate exceeds 8%, which causes a problem in corrosion resistance. No. 4, it can be seen that when the weight of silica added is less than 0.5%, the core loss characteristics deteriorate rapidly. This is presumed to be because the eddy current loss of the magnet increases because the specific resistance of the bonded magnet deteriorates when the amount of silica is small. No. No. 9 shows that even if the amount of silica added is too large, Br is deteriorated even though the demagnetization factor and core loss characteristics are not deteriorated. No. No. 12 shows that if the Zn addition amount is too large, the Br and core loss characteristics deteriorate, so the Zn addition amount must be within 7%.

使用したSm2Co17磁石粉末、Zn粉末の平均粒径は、それぞれ12μm、7μmであり、Sm2Co17磁石粉末の総重量に対し5重量%のZnをV型混合機で30分間、混合した。これらの粉末を不活性雰囲気において350℃で2時間熱処理し、Sm2Co17磁石粉末にZnコーティングを施した。 The average particle diameters of the Sm 2 Co 17 magnet powder and Zn powder used were 12 μm and 7 μm, respectively, and 5% by weight of Zn was mixed with the V-type mixer for 30 minutes with respect to the total weight of the Sm 2 Co 17 magnet powder. did. These powders were heat-treated at 350 ° C. for 2 hours in an inert atmosphere, and Zn coating was applied to the Sm 2 Co 17 magnet powder.

これらのZnコーティングしたSm2Co17磁石粉末に1重量%に当たる量のシリカをエチルシリケートの加水分解でコーティングした。その後、更にB23をメタノールに溶解後、0.5〜3重量%添加後、400℃、Ar中で熱処理した。これにバインダーを3重量%混合し、プレス圧5ton/cm2・磁場零の状態で金型成形を行い、その後、150℃で30分、大気中で乾燥を行った。 These Zn coated Sm 2 Co 17 magnet powders were coated with 1 wt% silica by hydrolysis of ethyl silicate. Thereafter, B 2 O 3 was further dissolved in methanol, 0.5 to 3 wt% was added, and heat treatment was performed in Ar at 400 ° C. This was mixed with 3% by weight of a binder, molded with a press pressure of 5 ton / cm 2 and a magnetic field of zero, and then dried in air at 150 ° C. for 30 minutes.

〔作製条件〕
組成:Sm(Fe0.2Cu0.7Zr0.028CoBal8.3
平均粉末粒径:12μm
バインダー:エポキシ樹脂(EP128:セメダイン社製)3重量%
ボンド磁石形状:円柱φ13mm×高さ9mm(磁気特性測定用)
:10.9mm×7.5mm×1.5mm(減磁率測定用)
:10.2mm×7.8mm×0.5mm(ヒステリシス損失評価用)
プレス圧:5ton/cm2
着磁:4Tパルス着磁
[Production conditions]
Composition: Sm (Fe 0.2 Cu 0.7 Zr 0.028 Co Bal ) 8.3
Average powder particle size: 12 μm
Binder: Epoxy resin (EP128: manufactured by Cemedine) 3% by weight
Bond magnet shape: cylinder φ13mm x height 9mm (for magnetic property measurement)
: 10.9mm x 7.5mm x 1.5mm (for demagnetization measurement)
: 10.2mm x 7.8mm x 0.5mm (for hysteresis loss evaluation)
Press pressure: 5 ton / cm 2
Magnetization: 4T pulse magnetization

〔ヒステリシス損失測定〕
・測定装置:東英工業社製B−Hトレーサー(軟磁性測定)
・測定コア材:FEEフェライトコア(BH2)に500μmのSmCoボンド挿入
・測定磁場:Hm=800〜1200A/m
・巻線:1次75ターン、2次30ターン
・測定温度:50℃(恒温層内にて測定)
[Hysteresis loss measurement]
・ Measuring device: BH tracer manufactured by Toei Kogyo Co., Ltd. (soft magnetic measurement)
Measurement core material: 500 μm SmCo bond inserted into FEE ferrite core (BH2) Measurement magnetic field: Hm = 800 to 1200 A / m
-Winding: 75 turns primary, 30 turns secondary-Measurement temperature: 50 ° C (measured in a constant temperature layer)

〔コアロス測定〕
・測定装置:岩崎通信機 交流B−Hトレーサー(軟磁性測定)
・測定コア材:FEEフェライトコア(BH2)に500μmのSmCoボンド挿入
・測定条件:周波数;100kHz、Bm;0.2T
・測定温度:100℃(恒温層内にて測定)
[Core loss measurement]
・ Measuring device: Iwasaki Tsushinki AC BH tracer (soft magnetic measurement)
・ Measurement core material: 500 μm SmCo bond inserted into FEE ferrite core (BH2) ・ Measurement conditions: Frequency: 100 kHz, Bm; 0.2T
-Measurement temperature: 100 ° C (measured in a constant temperature layer)

〔B−H特性測定(Br測定)〕
・測定装置:東英工業社製B−Hトレーサー(硬磁性測定)
・形状:φ13×9(mm)の円柱型
・最大印加磁界:2000A/m(2000A/m以上の保磁力は外挿して導出)
・検出コイル:25ターン、16ターン
[BH characteristic measurement (Br measurement)]
・ Measuring device: BH tracer manufactured by Toei Kogyo Co., Ltd. (hard magnetic measurement)
・ Shape: Cylindrical shape of φ13 × 9 (mm) ・ Maximum applied magnetic field: 2000 A / m (Coercive force of 2000 A / m or more is derived by extrapolation)
・ Detection coil: 25 turns, 16 turns

〔減磁率測定〕
・測定装置:TOEI TDF−5 DIGITAL FLUXMETER
・76ターンの巻線を施した15×15×50(mm)のパーマロイの磁芯にシート磁石を貼り付け、そこを零点とし、シート磁石を引き剥がした時の磁束の変化を測定し、この磁束の変化より、減磁率を求めた。
・測定5回の平均値であって、測定温度条件は、室温状態に保持した。
[Demagnetization measurement]
・ Measuring device: TOEI TDF-5 DIGITAL FLUXMETER
・ Attach a sheet magnet to a 15 × 15 × 50 (mm) permalloy core with 76 turns of winding, and measure the change in magnetic flux when the sheet magnet is peeled off. The demagnetization factor was obtained from the change in magnetic flux.
-It was an average value of five measurements, and the measurement temperature condition was kept at room temperature.

Figure 2005123282
Figure 2005123282

表2より、実施例1よりもバインダー添加量を少なくしているために、No.13ではBrは向上しているが、コアロス特性が著しく劣化していることが分かる。また、No.18ではB23の添加重が3%になると、即ちSiO2との複合添加量で4%になるとBrが著しく劣化することが分かる。 From Table 2, since the amount of the binder added was smaller than that in Example 1, 13 shows that Br is improved, but the core loss characteristic is remarkably deteriorated. No. 18 shows that when the weight of B 2 O 3 is 3%, that is, when the combined amount of SiO 2 is 4%, Br deteriorates remarkably.

以上の実験より、残留磁束密度Br、減磁率特性、コアロス損失のすべてを満足する低融点金属添加量は3〜7重量%、金属酸化物添加量は0.5〜3.0重量%である。この条件下でSm2Co17磁石粉末を処理すれば、270℃、大気中で30分熱処理をした時の減磁率が8%以内、コアロス特性がMnZnフェライトのコアに磁石を挿入しないときに比べ、20%以内の増加に抑えることが可能になり、高耐食性、高効率を満足するバイアスコア用のボンド磁石が得られることが明らかになった。 From the above experiment, the low melting point metal addition amount satisfying all of the residual magnetic flux density Br, the demagnetization characteristic and the core loss loss is 3 to 7% by weight, and the metal oxide addition amount is 0.5 to 3.0% by weight. . When the Sm 2 Co 17 magnet powder is processed under these conditions, the demagnetization rate is less than 8% when heat treated at 270 ° C. in the atmosphere for 30 minutes, and the core loss characteristic is compared with the case where no magnet is inserted into the core of MnZn ferrite. Thus, it became possible to suppress the increase to within 20%, and it became clear that a bonded magnet for a bias core satisfying high corrosion resistance and high efficiency can be obtained.

図1は、本発明のインダクタンス部品の説明図である。図1のインダクタンス部品は、E型のフェライトコア1と、E型のフェライトコア2と、その合体した中足部に磁石3が配置された磁芯11と、前記磁芯11の中足部に巻かれた巻線4とで構成されている。ここで、前記磁石3は、実施例1と実施例2で説明した製造方法にて作製された磁芯が用いられる。また、巻線4は、少なくとも1ターン以上巻かれている。    FIG. 1 is an explanatory diagram of an inductance component of the present invention. 1 includes an E-type ferrite core 1, an E-type ferrite core 2, a magnetic core 11 in which a magnet 3 is disposed on a combined middle leg portion, and a middle leg portion of the magnetic core 11. It is composed of a wound winding 4. Here, the magnet 3 is a magnetic core manufactured by the manufacturing method described in the first and second embodiments. The winding 4 is wound at least one turn or more.

本発明の実施例によるインダクタンス部品の説明図。Explanatory drawing of the inductance component by the Example of this invention.

符号の説明Explanation of symbols

1,2 フェライトコア
3 磁石
4 巻線
11 磁芯
10 インダクタンス部品
1, 2 Ferrite core 3 Magnet 4 Winding 11 Magnetic core 10 Inductance component

Claims (6)

磁路の少なくとも1箇所以上にギャップを有する磁芯であって、そのギャップに固有保磁力が10×103×(1/4π)kA/m以上、Tcが500℃以上の粉末平均粒径が2.5〜50μmの希土類磁石粉末で、かつその表面が低融点金属と金属酸化物で被覆された粉末であって、その粉末と樹脂とを混合した比抵抗が1.0Ω・cm以上のボンド磁石を挿入したことを特徴とする磁芯。 A magnetic core having a gap in at least one location of a magnetic path, wherein the gap has an intrinsic coercive force of 10 × 10 3 × (1 / 4π) kA / m or more, and an average particle diameter of Tc of 500 ° C. or more. A bond having a specific resistance of 1.0 Ω · cm or more, which is a rare earth magnet powder of 2.5 to 50 μm, the surface of which is coated with a low melting point metal and a metal oxide, and the powder and resin are mixed. A magnetic core characterized by inserting a magnet. 前記低融点金属は、Zn、Al、Bi、Ga、In、Mg、Pb、Sb、Snの中から選択された少なくとも一種またはその合金であって、前記金属酸化物は、SiO2、Al23の何れか、またはSiO2とB23、Al23、CaOとの何れか1種または2種以上の混合物であることを特徴とする請求項1に記載の磁芯。 The low melting point metal is at least one selected from Zn, Al, Bi, Ga, In, Mg, Pb, Sb, and Sn, or an alloy thereof, and the metal oxide includes SiO 2 , Al 2 O. 3. The magnetic core according to claim 1, wherein the magnetic core is any one of 3 or a mixture of one or more of SiO 2 and B 2 O 3 , Al 2 O 3 , and CaO. 前記金属酸化物のSiO2またはAl23は、有機金属化合物を加水分解するか、微小粒径のSiO2、Al23を溶媒に分散させたコロイド溶液から得られたものであることを特徴とする請求項1または2に記載の磁芯。 SiO 2 or Al 2 O 3 of the metal oxide, or an organic metal compound to hydrolysis, the SiO 2, Al 2 O 3 fine particle size is obtained from a colloidal solution dispersed in a solvent The magnetic core according to claim 1, wherein: 前記ボンド磁石において、磁石粉末は重量比で3重量%〜7重量%の低融点金属と0.5重量%〜3重量%の金属酸化物で被覆されたことを特徴とする請求項1ないし3のいずれかに記載の磁芯。   4. The bonded magnet according to claim 1, wherein the magnet powder is coated with a low melting point metal of 3% by weight to 7% by weight and a metal oxide of 0.5% by weight to 3% by weight. The magnetic core according to any one of the above. 前記ボンド磁石は、270℃、大気中で30分熱処理をした時の減磁率(不可逆減磁率+永久減磁率)が8%以内で、かつ挿入前に比べて、その磁芯のヒステリシス損失の増加が20%以内であるボンド磁石を挿入したことを特徴とする請求項1ないし4のいずれかに記載の磁芯。   The bonded magnet has a demagnetizing factor (irreversible demagnetizing factor + permanent demagnetizing factor) within 8% when heat-treated in the atmosphere for 30 minutes at 270 ° C., and an increase in hysteresis loss of the magnetic core compared to before insertion. A magnetic core according to any one of claims 1 to 4, wherein a bonded magnet having a thickness of 20% or less is inserted. 請求項1ないし5のいずれかに記載の磁芯と、前記磁芯に巻かれた少なくとも1ターン以上の巻線とで構成されたことを特徴とするインダクタンス部品。   An inductance component comprising the magnetic core according to any one of claims 1 to 5 and a winding of at least one turn wound around the magnetic core.
JP2003354502A 2003-10-15 2003-10-15 Magnetic core and inductance component using it Pending JP2005123282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003354502A JP2005123282A (en) 2003-10-15 2003-10-15 Magnetic core and inductance component using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003354502A JP2005123282A (en) 2003-10-15 2003-10-15 Magnetic core and inductance component using it

Publications (1)

Publication Number Publication Date
JP2005123282A true JP2005123282A (en) 2005-05-12

Family

ID=34612397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003354502A Pending JP2005123282A (en) 2003-10-15 2003-10-15 Magnetic core and inductance component using it

Country Status (1)

Country Link
JP (1) JP2005123282A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105908016A (en) * 2016-05-04 2016-08-31 无锡市嘉邦电力管道厂 Low-melting-point metal alloy heat conduction material and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105908016A (en) * 2016-05-04 2016-08-31 无锡市嘉邦电力管道厂 Low-melting-point metal alloy heat conduction material and preparation method thereof

Similar Documents

Publication Publication Date Title
KR100851450B1 (en) Magnetic core with magnet for bias and inductance parts using the same
KR100851459B1 (en) Permanent magnet, magnetic core having the magnet as bias magnet, and inductance parts using the core
US6621398B2 (en) Magnetic core comprising a bond magnet including magnetic powder whose particle&#39;s surface is coated with oxidation-resistant metal
KR20020042516A (en) Magnetic core including magnet for magnetic bias and inductor component using the same
EP1211699A2 (en) Magnetic core having magnetically biasing bond magnet and inductance part using the same
JP3860456B2 (en) Magnetic core and inductance component using the same
JP2005123282A (en) Magnetic core and inductance component using it
JP3974773B2 (en) Magnetic core having magnet for magnetic bias and inductance component using the same
JP2002231540A (en) Magnetic core having magnet for magnetic bias and inductance part using it
JP2003100509A (en) Magnetic core and inductance part using the same
JP4226817B2 (en) Magnetic core having magnetic bias magnet and inductance component using the same
JP2005303020A (en) Magnetic core having magnet for dc magnetic biasing and inductance component using the core
JP2006032466A (en) Magnetic core and coil component using it
JP2004356152A (en) Magnetic core and inductance component using it
JP2003109826A (en) Magnetic core and inductance part
JP2003007519A (en) Magnetic core equipped with magnetic bias magnet and inductance part using the same
JP2005019715A (en) Magnetic core and inductance component using the same
JP2003257753A (en) Magnetic core and inductance component
JP2002164223A (en) Magnetic core having magnet for magnetic bias, and inductance component using the same
JP2006245418A (en) Inductance component
JP2005011992A (en) Magnetic core and inductance component using it
JP2003059727A (en) Magnetic core and inductance component using it
JP3973968B2 (en) Magnetic core and inductance component using the same
JP2002175918A (en) Inductor
JP2004247409A (en) Magnetic core and inductance component using the same