JP2005116877A - Cooling system - Google Patents

Cooling system Download PDF

Info

Publication number
JP2005116877A
JP2005116877A JP2003350822A JP2003350822A JP2005116877A JP 2005116877 A JP2005116877 A JP 2005116877A JP 2003350822 A JP2003350822 A JP 2003350822A JP 2003350822 A JP2003350822 A JP 2003350822A JP 2005116877 A JP2005116877 A JP 2005116877A
Authority
JP
Japan
Prior art keywords
heat
radiator
igbt
temperature
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003350822A
Other languages
Japanese (ja)
Other versions
JP4052221B2 (en
Inventor
Yoshimitsu Inoue
美光 井上
Yusuke Morishita
祐介 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003350822A priority Critical patent/JP4052221B2/en
Priority to US10/959,029 priority patent/US20050077031A1/en
Publication of JP2005116877A publication Critical patent/JP2005116877A/en
Application granted granted Critical
Publication of JP4052221B2 publication Critical patent/JP4052221B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To miniaturize a heat radiator for radiating heat absorbed from a heating element such as an IGBT. <P>SOLUTION: The maximum heat radiation amount of the heat radiator 5 is turned to be equal to or less than the maximum heat generation of the IGBT 3. Then, even when the heat radiation capability of the heat radiator 5 is equal to or less than the maximum heat generation of the IGBT 3, since the rising speed of the temperature of cooling water returning to a heatsink 4 is sufficiently lower than the temperature rising speed of the IGBT 3 by heat capacity that the cooling water, the heatsink 4 and the heat radiator 5 or the like have, the temperature of the cooling water returning to the heatsink 4 is maintained low and the physical size of the heat radiator 5 is miniaturized. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は発熱体を冷却する冷却システムに関するもので、走行用動力を発生させる電動モータに駆動電流を供給するIGBT(パワートランジスタ)等の電気回路の冷却システムに適用して有効である。   The present invention relates to a cooling system that cools a heating element, and is effective when applied to a cooling system for an electric circuit such as an IGBT (power transistor) that supplies a drive current to an electric motor that generates driving power.

IGBT(パワートランジスタ)等の発熱体を冷却するに当たって、従来は、発熱体の最大発熱量より大きな放熱能力を有する放熱器にて冷却システムを構成していた。   In cooling a heating element such as an IGBT (power transistor), conventionally, a cooling system has been configured with a radiator having a heat dissipation capability larger than the maximum heat generation amount of the heating element.

具体的には、発熱体の最大発熱能力が最大9kWであるときには、放熱器の最大放熱能力を9kWより大きくしていた。   Specifically, when the maximum heat generation capacity of the heating element is 9 kW at the maximum, the maximum heat dissipation capacity of the radiator is set to be larger than 9 kW.

ところで、近年、走行用の電動モータの高出力化に伴ってIGBT等のインバータ回路での発熱量も増大してきており、これに呼応するように放熱器も大型化せざるを得なくなってきている。   By the way, in recent years, the amount of heat generated in an inverter circuit such as an IGBT has increased with the increase in the output of an electric motor for traveling, and the size of the heat sink has to be increased in response to this. .

しかし、IGBTでの発熱量の増大に対して単純に放熱器を大型化すると、車両用空調装置の放熱器をなすコンデンサやエンジン(内燃機関)の放熱器をなすラジエータの搭載スペースを浸食する、または車両先端側の意匠的デザインが大きく制約される等の搭載レイアウト上の問題が多く発生する。   However, simply increasing the size of the radiator against the increase in the amount of heat generated by the IGBT erodes the mounting space of the condenser that forms the radiator of the vehicle air conditioner and the radiator that forms the radiator of the engine (internal combustion engine). Or, there are many mounting layout problems such as the design design on the vehicle front end side being greatly restricted.

本発明は、上記点に鑑み、第1には、従来と異なる新規な冷却システムを提供し、第2には、発熱体から吸熱した熱を放熱するための放熱器を小型にすることを目的とする。   In view of the above points, the present invention firstly provides a novel cooling system different from the conventional one, and secondly aims to reduce the size of the radiator for radiating the heat absorbed from the heating element. And

本発明は、上記目的を達成するために、請求項1に記載の発明では、発熱体を冷却する冷却システムであって、発熱体(3)で発生する熱を吸熱し、その吸熱した熱を冷却用の流体に与える吸熱器(4)と、流体の有する熱を放熱させて流体を冷却する放熱器(5)と、放熱器(5)と吸熱器(4)とを接続して流体の循環経路を構成する配管手段(6)とを備え、放熱器(5)の最大放熱量は、発熱体(3)の最大発熱量以下であることを特徴とする。   In order to achieve the above object, the present invention provides a cooling system for cooling a heating element, wherein the heat generated by the heating element (3) is absorbed and the absorbed heat is absorbed. A heat absorber (4) applied to the cooling fluid, a heat radiator (5) that radiates the heat of the fluid and cools the fluid, and a heat radiator (5) and a heat absorber (4) are connected to each other. And a piping means (6) that constitutes a circulation path, wherein the maximum heat dissipation amount of the radiator (5) is less than or equal to the maximum heat generation amount of the heating element (3).

そして、放熱器(5)の放熱能力が発熱体(3)の最大発熱量以下であっても、吸熱器(4)に戻ってくる流体の温度の上昇速度は、流体、吸熱器(4)および放熱器(5)等が有する熱容量により、発熱体(3)の温度上昇速度に比べて十分に小さいので、吸熱器(4)に戻ってくる流体の温度を低く維持することができ、放熱器(5)の体格を小型にすることができる。   And even if the heat dissipation capability of the radiator (5) is less than or equal to the maximum heat generation amount of the heating element (3), the rate of temperature rise of the fluid returning to the heat absorber (4) is fluid, heat absorber (4). And the heat capacity of the radiator (5), etc. is sufficiently smaller than the temperature rise rate of the heating element (3), so that the temperature of the fluid returning to the heat absorber (4) can be kept low, and the heat dissipation The size of the vessel (5) can be reduced.

請求項2に記載の発明では、放熱器(5)と吸熱器(4)との間で流体を強制的に循環させるポンプ(7)を有することを特徴とするものである。   The invention according to claim 2 is characterized by having a pump (7) for forcibly circulating a fluid between the radiator (5) and the heat absorber (4).

請求項3に記載の発明では、走行用動力を発生させる電動モータ(2)を有する車両に適用され、電動モータ(2)に駆動電流を供給する電気回路(3)を冷却する冷却システムであって、電気回路(3)で発生する熱を吸熱し、その吸熱した熱を冷却用の流体に与える吸熱器(4)と、流体の有する熱を放熱させて流体を冷却する放熱器(5)と、放熱器(5)と吸熱器(4)とを接続して流体の循環経路を構成する配管手段(6)とを備え、放熱器(5)の最大放熱量は、電気回路(3)の最大発熱量以下であることを特徴とする。   The invention according to claim 3 is a cooling system that is applied to a vehicle having an electric motor (2) that generates driving power and cools an electric circuit (3) that supplies a drive current to the electric motor (2). A heat absorber (4) that absorbs the heat generated in the electric circuit (3) and applies the absorbed heat to the cooling fluid; and a radiator (5) that cools the fluid by radiating the heat of the fluid And a piping means (6) that connects the radiator (5) and the heat absorber (4) to form a fluid circulation path, and the maximum heat radiation amount of the radiator (5) is the electric circuit (3). It is characterized by being below the maximum calorific value.

そして、放熱器(5)の放熱能力が電気回路(3)の最大発熱量以下であっても、吸熱器(4)に戻ってくる流体の温度の上昇速度は、流体、吸熱器(4)および放熱器(5)等が有する熱容量により、電気回路(3)の温度上昇速度に比べて十分に小さいので、吸熱器(4)に戻ってくる流体の温度を低く維持することができ、放熱器(5)の体格を小型にすることができる。   And even if the heat dissipation capability of the radiator (5) is less than or equal to the maximum calorific value of the electric circuit (3), the rate of temperature rise of the fluid returning to the heat absorber (4) is fluid, heat absorber (4). The heat capacity of the radiator (5) and the like is sufficiently smaller than the temperature rise rate of the electric circuit (3), so that the temperature of the fluid returning to the heat absorber (4) can be kept low, and the heat dissipation The size of the vessel (5) can be reduced.

請求項4に記載の発明では、放熱器(5)と吸熱器(4)との間で流体を強制的に循環させるポンプ(7)を有することを特徴とするものである。   The invention described in claim 4 is characterized in that it has a pump (7) for forcibly circulating a fluid between the radiator (5) and the heat absorber (4).

因みに、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。   Incidentally, the reference numerals in parentheses of each means described above are an example showing the correspondence with the specific means described in the embodiments described later.

本実施形態は、本発明に係る冷却システムをハイブリッド自動車に搭載された走行用の電動モータに駆動電流を供給して電動モータの出力を制御するIGBT等からなるインバータ方式のモータ駆動回路を冷却する冷却システムに適用したものである。   In the present embodiment, the cooling system according to the present invention is used to cool an inverter type motor drive circuit composed of an IGBT or the like that supplies a drive current to an electric motor for traveling mounted on a hybrid vehicle to control the output of the electric motor. This is applied to the cooling system.

なお、図1は本実施形態に係る冷却システムの搭載状態の概要を示す模式図であり、図2はIGBT用冷却システムの概要を示す模式図であり、図3は吸熱器の概要を示す模式図である。   1 is a schematic diagram showing an outline of the mounted state of the cooling system according to the present embodiment, FIG. 2 is a schematic diagram showing an outline of the cooling system for IGBT, and FIG. 3 is a schematic diagram showing an outline of the heat absorber. FIG.

因みに、本実施形態に係るハイブリッド自動車は、図1に示すように、熱機関をなすエンジン(内燃機関)1および電動モータ2を共に走行用駆動源として利用するとともに、走行状態に応じてエンジン1および電動モータ2の運転状態を以下に述べるように制御する。   Incidentally, as shown in FIG. 1, the hybrid vehicle according to the present embodiment uses both the engine (internal combustion engine) 1 and the electric motor 2 that form a heat engine as a driving source for driving, and the engine 1 according to the driving state. And the operation state of the electric motor 2 is controlled as described below.

(1)車両が停止しているとき、つまり車速が約0km/hのときはエンジン1を停止させる。   (1) When the vehicle is stopped, that is, when the vehicle speed is about 0 km / h, the engine 1 is stopped.

(2)走行中は、減速時を除き、エンジン1で発生した駆動力を駆動輪に伝達する。なお、減速時は、エンジン1を停止させるとともに、電動モータ2にて車両の運動エネルギーを電気エネルギーに回生しながら回生制動を行う。   (2) During traveling, the driving force generated by the engine 1 is transmitted to the driving wheels except during deceleration. During deceleration, the engine 1 is stopped and the electric motor 2 performs regenerative braking while regenerating the kinetic energy of the vehicle into electric energy.

(3)発進時、加速時、登坂時及び高速走行時等の走行負荷が大きいときには、エンジン1で発生した駆動力に加えて、電動モータ2に発生した駆動力を駆動輪に伝達する。   (3) When the driving load such as starting, accelerating, climbing, and traveling at high speed is large, in addition to the driving force generated by the engine 1, the driving force generated in the electric motor 2 is transmitted to the driving wheels.

なお、本実施形態では、車速及びアクセルペダル踏み込み量から走行負荷を検出する。   In the present embodiment, the traveling load is detected from the vehicle speed and the accelerator pedal depression amount.

(4)バッテリ(図示せず。)の充電残量が充電開始目標値以下になったときには、エンジン1の動力を電動モータ2に伝達して電動モータ2を発電機として作動させてバッテリの充電を行う。   (4) When the remaining charge of the battery (not shown) is below the charge start target value, the power of the engine 1 is transmitted to the electric motor 2 to operate the electric motor 2 as a generator to charge the battery. I do.

(5)車両が停止しているときにバッテリの充電残量が充電開始目標値以下になったときには、エンジン1を始動させてエンジン1の動力を電動モータ2に伝達して発電する。   (5) When the remaining charge of the battery becomes equal to or less than the charge start target value when the vehicle is stopped, the engine 1 is started and the power of the engine 1 is transmitted to the electric motor 2 to generate electricity.

因みに、充電開始目標値とは、充電を開始する残充電量のしきい値であり、満充電状態を100とした百分率にて示される。   Incidentally, the charge start target value is a threshold value of the remaining charge amount at which charging is started, and is expressed as a percentage where the fully charged state is 100.

なお、ラジエータ1aはエンジン冷却水と空気とを熱交換してエンジン冷却水を冷却するもので、コンデンサ1bは、車両用空調装置の高圧冷媒と空気とを熱交換して冷媒を冷却するものである。   The radiator 1a cools the engine cooling water by exchanging heat between the engine cooling water and the air, and the condenser 1b cools the refrigerant by exchanging heat between the high-pressure refrigerant of the vehicle air conditioner and the air. is there.

そして、IGBT用冷却システムは、図2に示すように、発熱体をなすIGBT3で発生する熱を吸熱し、その吸熱した熱を冷却水に与える吸熱器4、冷却水と空気とを熱交換して冷却水の有する熱を大気中に放熱させて冷却水を冷却する放熱器5、放熱器5と吸熱器4とを接続して冷却水の循環経路を構成する配管6、および放熱器5と吸熱器4との間で冷却水を強制的に循環させる電動式のポンプ7等から構成されている。   As shown in FIG. 2, the IGBT cooling system absorbs heat generated by the IGBT 3 that forms a heating element, and heat-exchanges the heat absorber 4 that gives the absorbed heat to the cooling water, and the cooling water and air. The radiator 5 that radiates the heat of the cooling water into the atmosphere and cools the cooling water, the pipe 6 that connects the radiator 5 and the heat absorber 4 to form the circulation path of the cooling water, and the radiator 5 The electric pump 7 is configured to forcibly circulate cooling water between the heat absorber 4 and the like.

なお、放熱器5、コンデンサ1bおよびラジエータ1bは、冷却風流れ上流側、つまり車両の前方側から放熱器5、コンデンサ1b、ラジエータ1bの順に配置されている。   The radiator 5, the condenser 1b, and the radiator 1b are arranged in the order of the radiator 5, the condenser 1b, and the radiator 1b from the upstream side of the cooling air flow, that is, the front side of the vehicle.

なお、吸熱器4として、IGBT3の両面側から熱を回収するマイクロチャンネル方式のものを採用している。   As the heat absorber 4, a microchannel type that recovers heat from both sides of the IGBT 3 is adopted.

具体的には、吸熱器4は、図3に示すように、矩形板状のIGBT3の両面側に配置されて冷却水通路を構成するチューブ4a、およびこのチューブ4a内の冷却水通路を多数本の冷却通路に区画してチューブ4aと冷却水との熱交換を促進するフィン4b等から構成されている。   Specifically, as shown in FIG. 3, the heat absorber 4 is arranged on both sides of a rectangular plate-like IGBT 3 to form a cooling water passage and a plurality of cooling water passages in the tube 4 a. It is comprised from the fin 4b etc. which partition into the cooling passage of this and promote the heat exchange with the tube 4a and cooling water.

また、IGBT3は、熱伝導パッド4c、熱拡散板4dおよび電気絶縁板4eを介してチューブ4aの外表面に固定されており、IGBT3の熱は、熱伝導パッド4c→熱拡散板4d→電気絶縁板4e→チューブ4aの順に冷却水に伝導される。   Moreover, IGBT3 is being fixed to the outer surface of the tube 4a via the heat conductive pad 4c, the heat diffusion board 4d, and the electric insulation board 4e, and the heat | fever of IGBT3 is the heat conduction pad 4c-> heat diffusion board 4d-> electric insulation. It is conducted to the cooling water in the order of the plate 4e → the tube 4a.

なお、熱伝導パッド4cとは、シリコーングリース等の高い熱伝導率を有するペースト状のもので、IGBT3と熱拡散板4dとの間に大きな熱抵抗となる気泡が発生することを抑制するものである。   The heat conduction pad 4c is a paste-like material having a high heat conductivity such as silicone grease, and suppresses the generation of bubbles having a large heat resistance between the IGBT 3 and the heat diffusion plate 4d. is there.

また、熱拡散板4dは、IGBT3にて局所的に発生した熱を広範囲に拡散させて冷却水への吸熱効率を向上させるもので、沸騰式の熱拡散板や対向振動流型の熱拡散板等をを使用している。   The heat diffusion plate 4d diffuses the heat locally generated by the IGBT 3 over a wide range to improve the heat absorption efficiency to the cooling water. The boiling type heat diffusion plate and the counter vibration flow type heat diffusion plate are used. Etc. are used.

なお、沸騰式の熱拡散板とは、冷媒の相変化、つまり沸騰に伴う蒸発を利用して発熱体から吸熱し、蒸発して密度が低下した気相冷媒と熱輸送デバイス本体6a等の放熱対象に放熱して凝縮した液相冷媒との密度差を利用して冷媒を自然対流させながら熱を拡散させるものである。   Note that the boiling type heat diffusion plate is a heat release from the heating element by utilizing the phase change of the refrigerant, that is, evaporation accompanying boiling, and the density is reduced due to evaporation and the heat radiation of the heat transport device main body 6a and the like. The heat is diffused while naturally convection of the refrigerant by utilizing the density difference with the liquid phase refrigerant that has dissipated heat and condensed on the target.

また、対向振動流型の熱拡散板とは、隣り合う流路において流体を対向振動させることにより隣り合う流路間で熱交換させて熱を拡散させる、振動流による拡散促進効果を利用したものである。   The counter oscillating flow type heat diffusion plate utilizes the diffusion promotion effect by the oscillating flow that causes heat to exchange between adjacent channels by oscillating the fluid in adjacent channels to diffuse heat. It is.

因みに、本実施形態では、冷却水として、水にエチレングリコール等の不凍液を約50%混合した流体を採用している。   Incidentally, in this embodiment, a fluid obtained by mixing approximately 50% of an antifreeze such as ethylene glycol with water is used as the cooling water.

また、電子制御装置8は、ポンプ7の回転数、つまり冷却システム内を循環させる冷却水量、および放熱器5に冷却風を送風する送風機9の回転数、つまり冷却風量を制御するもので、この電子制御装置8は、IGBT3の温度に基づいて循環冷却水量および冷却風量を制御する。   The electronic control unit 8 controls the number of rotations of the pump 7, that is, the amount of cooling water circulating in the cooling system, and the number of rotations of the blower 9 that blows cooling air to the radiator 5, that is, the amount of cooling air. The electronic control unit 8 controls the circulating cooling water amount and the cooling air amount based on the temperature of the IGBT 3.

なお、IGBT3の温度を直接検出することは難しいので、本実施形態では、電気抵抗値が温度に応じて変化することを利用して温度を計測する抵抗法、またはチューブ4aのIGBT3側壁面をサーミスタ等の温度センサにて検出する方法等にて間接的にIGBT3の温度を検出している。   In addition, since it is difficult to directly detect the temperature of the IGBT 3, in this embodiment, a resistance method for measuring the temperature using the fact that the electric resistance value changes according to the temperature, or the side wall surface of the IGBT 3 on the tube 4 a is a thermistor. The temperature of the IGBT 3 is indirectly detected by a method of detecting by a temperature sensor or the like.

次に、循環冷却水量制御および冷却風量制御の一例を述べる。   Next, an example of circulating cooling water amount control and cooling air amount control will be described.

本実施形態では、電動モータ2の始動、つまりIGBT3への通電が開始されると同時にIGBT3の温度を監視し、IGBT3の温度上昇に応じて循環冷却水量および冷却風量を増大させてIGBT3の温度が所定温度以下となるようにする。   In the present embodiment, the temperature of the IGBT 3 is monitored simultaneously with the start of the electric motor 2, that is, the energization of the IGBT 3, and the temperature of the IGBT 3 is increased by increasing the circulating cooling water amount and the cooling air amount as the temperature of the IGBT 3 increases. Keep the temperature below a predetermined temperature.

そして、循環冷却水量および冷却風量が最大となった場合においても、IGBT3の温度が所定温度以下とならない場合には、IGBT3の出力、つまりインバータ回路(モータ駆動回路)の出力を低下させる。   Even when the circulating cooling water amount and the cooling air amount are maximized, the output of the IGBT 3, that is, the output of the inverter circuit (motor drive circuit) is reduced if the temperature of the IGBT 3 does not become a predetermined temperature or lower.

なお、図4は上記した作動説明を示すフローチャートの一例であり、以下、図4に示すフローチャートを説明する。   FIG. 4 is an example of a flowchart showing the above-described operation description, and the flowchart shown in FIG.

電動モータ2の始動、つまりIGBT3への通電が開始されると、先ず、ポンプ7および送風機9を停止した状態でIGBT3の温度を検出する(S1、S2)。   When the electric motor 2 is started, that is, the energization of the IGBT 3 is started, first, the temperature of the IGBT 3 is detected in a state where the pump 7 and the blower 9 are stopped (S1, S2).

そして、IGBT3の温度が所定温度以下か否かを判定し(S3)、IGBT3の温度を所定温度より高いときには、IGBT3の温度上昇に応じて循環冷却水量および冷却風量を増大させて、IGBT3の温度が所定温度以下となるようにする(S4)。   Then, it is determined whether or not the temperature of the IGBT 3 is equal to or lower than a predetermined temperature (S3). When the temperature of the IGBT 3 is higher than the predetermined temperature, the amount of circulating cooling water and the amount of cooling air are increased according to the temperature increase of the IGBT 3, and the temperature of the IGBT 3 is increased. Is set to a predetermined temperature or lower (S4).

具体的には、IGBT3の温度が所定温度より高いときには、循環冷却水量および冷却風量のうち少なくとも一方を所定量増大させ、循環冷却水量および冷却風量のうち少なくとも一方を所定量増大させた状態で、IGBT3の温度を再び検出してIGBT3の温度が所定温度以下となった場合には現状の循環冷却水量および冷却風量を維持し、IGBT3の温度が所定温度を超えたままであるときには、循環冷却水量および冷却風量のうち少なくとも一方を所定量増大させる。   Specifically, when the temperature of the IGBT 3 is higher than a predetermined temperature, at least one of the circulating cooling water amount and the cooling air amount is increased by a predetermined amount, and at least one of the circulating cooling water amount and the cooling air amount is increased by a predetermined amount, When the temperature of the IGBT 3 is detected again and the temperature of the IGBT 3 becomes equal to or lower than the predetermined temperature, the current circulating cooling water amount and cooling air amount are maintained, and when the IGBT 3 temperature remains above the predetermined temperature, the circulating cooling water amount and At least one of the cooling air amounts is increased by a predetermined amount.

そして、循環冷却水量および冷却風量が最大となったときには、IGBT3の温度を再び検出してIGBT3の温度が所定温度以下か否かを判定し(S5)、IGBT3の温度が所定温度を超えたままであるときには、循環冷却水量および冷却風量が最大としたまま、IGBT3の出力、つまりインバータ回路(モータ駆動回路)の出力を低下させる。   When the circulating cooling water amount and the cooling air amount become maximum, the temperature of the IGBT 3 is detected again to determine whether or not the temperature of the IGBT 3 is equal to or lower than a predetermined temperature (S5), and the temperature of the IGBT 3 remains above the predetermined temperature. In some cases, the output of the IGBT 3, that is, the output of the inverter circuit (motor drive circuit) is reduced while the circulating cooling water amount and the cooling air amount are maximized.

次に、本実施形態の作用効果を述べる。   Next, the function and effect of this embodiment will be described.

図5は、IGBT3の発熱量の時間的推移と、IGBT3の温度、チューブ4aの壁面温度および吸熱器4の冷却水入口側における冷却水の温度との関係示す試験結果を示すグラフである。   FIG. 5 is a graph showing test results showing the relationship between the temporal transition of the heat generation amount of the IGBT 3, the temperature of the IGBT 3, the wall surface temperature of the tube 4 a, and the temperature of the cooling water at the cooling water inlet side of the heat absorber 4.

なお、IGBT3の最大発熱量は約9kwであり、通常運転時の発熱量は約3kwである。また、吸熱器4は、65℃の冷却水が毎分12リットル供給されたときに約9kwのの吸熱能力が発生し、放熱器5は、40℃の冷却風が4m/sで供給されたときに約4kwの放熱能力が発生する。また、配管6の長さは約2mであり、冷却システムに封入された冷却水量は約0.4リットルである。   The maximum heat generation amount of the IGBT 3 is about 9 kW, and the heat generation amount during normal operation is about 3 kW. Further, the heat absorber 4 has an endothermic capacity of about 9 kw when 65 liters of cooling water is supplied at a rate of 12 liters per minute, and the radiator 5 is supplied with 40 ℃ cooling air at 4 m / s. Sometimes a heat dissipation capacity of about 4 kw is generated. The length of the pipe 6 is about 2 m, and the amount of cooling water sealed in the cooling system is about 0.4 liter.

そして、図5から明らかなように、IGBT3での発熱量が通常発熱量(3kw)から最大発熱量(9kw)に変化してIGBT3の温度が上昇しても、冷却水の有する熱容量が大きいため、吸熱器4に戻ってくる冷却水の温度は、IGBT3の温度上昇に対して時間差無く上昇することはない。   As is apparent from FIG. 5, even if the heat generation amount at the IGBT 3 changes from the normal heat generation amount (3 kW) to the maximum heat generation amount (9 kW) and the temperature of the IGBT 3 rises, the heat capacity of the cooling water is large. The temperature of the cooling water returning to the heat absorber 4 does not increase without a time difference with respect to the temperature increase of the IGBT 3.

このため、放熱器5の放熱能力がIGBT3の最大発熱量以下であっても、吸熱器4に戻ってくる冷却水の温度の上昇速度は、IGBT3の温度上昇速度に比べて十分に小さいので、吸熱器4に戻ってくる冷却水の温度を低く維持することができる。   For this reason, even if the heat dissipation capability of the radiator 5 is less than or equal to the maximum heat generation amount of the IGBT 3, the rate of increase in the temperature of the cooling water returning to the heat absorber 4 is sufficiently small compared to the temperature increase rate of the IGBT 3. The temperature of the cooling water returning to the heat absorber 4 can be kept low.

このとき、IGBT3の発熱量が最大となる状態が連続的に長時間続く場合には、吸熱器4に戻ってくる冷却水の温度を低く維持することはできないものの、IGBT3の発熱量が最大となる状態が連続的に長時間続く場合は殆どなく、通常は、IGBT3の発熱量が最大となる状態は数秒(例えば、2秒)程度である。   At this time, if the state in which the heat generation amount of the IGBT 3 is maximum continues continuously for a long time, the temperature of the cooling water returning to the heat absorber 4 cannot be kept low, but the heat generation amount of the IGBT 3 is maximum. In most cases, the state in which the amount of heat generated by the IGBT 3 is maximized is about several seconds (for example, 2 seconds).

したがって、放熱器5の最大放熱量がIGBT3の最大発熱量以下であっても、IGBT3を十分に冷却することができる。   Therefore, even if the maximum heat dissipation amount of the radiator 5 is less than or equal to the maximum heat generation amount of the IGBT 3, the IGBT 3 can be sufficiently cooled.

そこで、本実施形態では、放熱器5の体格を従来の約半分程度まで小型にすることにより、放熱器5の最大放熱量をIGBT3の最大発熱量以下として、IGBT3での発熱量の増大に対して単純に放熱器5を大型化することなく、コンデンサ1bやラジエータ1aの搭載スペースを浸食する、または車両先端側の意匠的デザインが大きく制約される等の搭載レイアウト上の問題を解決している。   Therefore, in the present embodiment, by reducing the size of the radiator 5 to about half that of the conventional one, the maximum heat dissipation amount of the radiator 5 is set to be equal to or less than the maximum heat generation amount of the IGBT 3, and the heat generation amount in the IGBT 3 is increased. Thus, the mounting layout problem such as eroding the mounting space of the capacitor 1b and the radiator 1a or greatly restricting the design design on the front end side of the vehicle is solved without simply increasing the size of the radiator 5. .

また、IGBT3での放熱量が増大しても放熱器5での放熱量が増大してしまうことおよび放熱器5の大型化を防止できるので、放熱器5の冷却風流れ下流側に配置されたコンデンサ1bおよびラジエータ1aに温度の低い冷却風を供給することができ、コンデンサ1bおよびラジエータ1aの冷却能力を高めることができる。   Further, even if the heat dissipation amount at the IGBT 3 is increased, the heat dissipation amount at the heat radiator 5 is increased and the enlargement of the heat radiator 5 can be prevented. Cooling air having a low temperature can be supplied to the condenser 1b and the radiator 1a, and the cooling capacity of the condenser 1b and the radiator 1a can be increased.

(その他の実施形態)
上述の実施形態では、発熱体としてIGBT3等の電気回路を例に説明したが、本発明はこれに限定されるものではない。
(Other embodiments)
In the above-described embodiment, the electric circuit such as the IGBT 3 is described as an example of the heating element, but the present invention is not limited to this.

また、上述の実施形態では、ハイブリッド自動車の冷却システムに本発明を適用したが、本発明の適用はこれに限定されるものではない。   In the above-described embodiment, the present invention is applied to the cooling system for a hybrid vehicle. However, the application of the present invention is not limited to this.

また、上述の実施形態では、ポンプ7にて冷却水を強制的に循環させたが、本発明はこれに限定されるものではなく、例えば沸騰式冷却装置のごとく、自然対流を利用して冷却水を循環させるように構成してもよい。   In the above-described embodiment, the cooling water is forcibly circulated by the pump 7, but the present invention is not limited to this, and cooling is performed using natural convection, for example, as in a boiling type cooling device. You may comprise so that water may be circulated.

また、本発明は、特許請求の範囲に記載された発明の趣旨に合致するものではればよく、上述の実施形態に限定されるものではない。   Further, the present invention is not limited to the above-described embodiment as long as it conforms to the gist of the invention described in the claims.

本発明の実施形態に係る冷却システムの搭載状態の概要を示す模式図である。It is a schematic diagram which shows the outline | summary of the mounting state of the cooling system which concerns on embodiment of this invention. IGBT用冷却システムの概要を示す模式図である。It is a schematic diagram which shows the outline | summary of the cooling system for IGBT. 吸熱器の概要を示す模式図である。It is a schematic diagram which shows the outline | summary of a heat absorber. 本発明の実施形態に係る冷却システムの作動説明を示すフローチャートである。It is a flowchart which shows the action | operation description of the cooling system which concerns on embodiment of this invention. IGBT3の発熱量の時間的推移と、IGBT3の温度、チューブ4aの壁面温度および吸熱器4の冷却水入口側における冷却水の温度との関係示す試験結果を示すグラフである。It is a graph which shows the test result which shows the time transition of the emitted-heat amount of IGBT3, the temperature of IGBT3, the wall surface temperature of the tube 4a, and the temperature of the cooling water in the cooling water inlet side of the heat absorber 4. FIG.

符号の説明Explanation of symbols

3…IGBT、4…吸熱器、5…放熱器、6…配管、7…ポンプ。   3 ... IGBT, 4 ... heat absorber, 5 ... radiator, 6 ... piping, 7 ... pump.

Claims (4)

発熱体を冷却する冷却システムであって、
前記発熱体(3)で発生する熱を吸熱し、その吸熱した熱を冷却用の流体に与える吸熱器(4)と、
前記流体の有する熱を放熱させて前記流体を冷却する放熱器(5)と、
前記放熱器(5)と前記吸熱器(4)とを接続して前記流体の循環経路を構成する配管手段(6)とを備え、
前記放熱器(5)の最大放熱量は、前記発熱体(3)の最大発熱量以下であることを特徴とする冷却システム。
A cooling system for cooling the heating element,
A heat absorber (4) that absorbs heat generated by the heating element (3) and gives the absorbed heat to a cooling fluid;
A radiator (5) for dissipating the heat of the fluid and cooling the fluid;
Piping means (6) for connecting the radiator (5) and the heat absorber (4) to form a circulation path of the fluid;
The cooling system according to claim 1, wherein a maximum heat dissipation amount of the radiator (5) is equal to or less than a maximum heat generation amount of the heating element (3).
前記放熱器(5)と前記吸熱器(4)との間で前記流体を強制的に循環させるポンプ(7)を有することを特徴とする請求項1に記載の冷却システム。 The cooling system according to claim 1, further comprising a pump (7) for forcibly circulating the fluid between the radiator (5) and the heat absorber (4). 走行用動力を発生させる電動モータ(2)を有する車両に適用され、
前記電動モータ(2)に駆動電流を供給する電気回路(3)を冷却する冷却システムであって、
前記電気回路(3)で発生する熱を吸熱し、その吸熱した熱を冷却用の流体に与える吸熱器(4)と、
前記流体の有する熱を放熱させて前記流体を冷却する放熱器(5)と、
前記放熱器(5)と前記吸熱器(4)とを接続して前記流体の循環経路を構成する配管手段(6)とを備え、
前記放熱器(5)の最大放熱量は、前記電気回路(3)の最大発熱量以下であることを特徴とする冷却システム。
Applied to a vehicle having an electric motor (2) for generating power for traveling;
A cooling system for cooling an electric circuit (3) for supplying a drive current to the electric motor (2),
A heat absorber (4) that absorbs heat generated in the electric circuit (3) and applies the absorbed heat to a cooling fluid;
A radiator (5) for dissipating the heat of the fluid and cooling the fluid;
Piping means (6) for connecting the radiator (5) and the heat absorber (4) to form a circulation path of the fluid;
The cooling system according to claim 1, wherein a maximum heat dissipation amount of the radiator (5) is equal to or less than a maximum heat generation amount of the electric circuit (3).
前記放熱器(5)と前記吸熱器(4)との間で前記流体を強制的に循環させるポンプ(7)を有することを特徴とする請求項3に記載の冷却システム。 The cooling system according to claim 3, further comprising a pump (7) for forcibly circulating the fluid between the radiator (5) and the heat absorber (4).
JP2003350822A 2003-10-09 2003-10-09 Cooling system Expired - Fee Related JP4052221B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003350822A JP4052221B2 (en) 2003-10-09 2003-10-09 Cooling system
US10/959,029 US20050077031A1 (en) 2003-10-09 2004-10-05 Cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003350822A JP4052221B2 (en) 2003-10-09 2003-10-09 Cooling system

Publications (2)

Publication Number Publication Date
JP2005116877A true JP2005116877A (en) 2005-04-28
JP4052221B2 JP4052221B2 (en) 2008-02-27

Family

ID=34419765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003350822A Expired - Fee Related JP4052221B2 (en) 2003-10-09 2003-10-09 Cooling system

Country Status (2)

Country Link
US (1) US20050077031A1 (en)
JP (1) JP4052221B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008275512A (en) * 2007-05-01 2008-11-13 Espec Corp Aging device
DE112007001424T5 (en) 2006-06-14 2009-04-23 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Heat sink and radiator

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101504578B1 (en) 2012-09-11 2015-03-20 주식회사 우진산전 Pump auto control apparatus of heat-block for a tarin
CN106984249A (en) * 2017-04-12 2017-07-28 浙江工业大学 Early warning type cooling water circulating device for laboratory

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04325734A (en) * 1991-04-24 1992-11-16 Mitsubishi Electric Corp Internal combustion engine controlling device for outboard motor
KR940010453A (en) * 1992-10-01 1994-05-26 가나이 쯔도무 Electric motor cooling system and electric motor used for this
WO1995034438A1 (en) * 1994-06-10 1995-12-21 Westinghouse Electric Corporation Electrical vehicle propulsion system
US6357517B1 (en) * 1994-07-04 2002-03-19 Denso Corporation Cooling apparatus boiling and condensing refrigerant
US5870267A (en) * 1996-07-25 1999-02-09 Konami Co., Ltd. Semiconductor integrated circuit device with overheating protector and method of protecting semiconductor integrated circuit against overheating
US6215682B1 (en) * 1998-09-18 2001-04-10 Mitsubishi Denki Kabushiki Kaisha Semiconductor power converter and its applied apparatus
US6246581B1 (en) * 1999-10-12 2001-06-12 International Business Machines Corporation Heated PCB interconnect for cooled IC chip modules
JP4337200B2 (en) * 1999-12-20 2009-09-30 株式会社デンソー Vehicle seat air conditioning system
US6808015B2 (en) * 2000-03-24 2004-10-26 Denso Corporation Boiling cooler for cooling heating element by heat transfer with boiling
EP2234154B1 (en) * 2000-04-19 2016-03-30 Denso Corporation Coolant cooled type semiconductor device
JP2002168547A (en) * 2000-11-20 2002-06-14 Global Cooling Bv Cpu cooling device using siphon
JP3607608B2 (en) * 2000-12-19 2005-01-05 株式会社日立製作所 Liquid cooling system for notebook computers
JP3594900B2 (en) * 2000-12-19 2004-12-02 株式会社日立製作所 Display integrated computer
JP3616005B2 (en) * 2000-12-20 2005-02-02 本田技研工業株式会社 Hybrid vehicle cooling system
US6792550B2 (en) * 2001-01-31 2004-09-14 Hewlett-Packard Development Company, L.P. Method and apparatus for providing continued operation of a multiprocessor computer system after detecting impairment of a processor cooling device
US6655922B1 (en) * 2001-08-10 2003-12-02 Rockwell Automation Technologies, Inc. System and method for detecting and diagnosing pump cavitation
US6898072B2 (en) * 2002-01-16 2005-05-24 Rockwell Automation Technologies, Inc. Cooled electrical terminal assembly and device incorporating same
TWI234063B (en) * 2002-05-15 2005-06-11 Matsushita Electric Ind Co Ltd Cooling apparatus for electronic equipment
US6600649B1 (en) * 2002-05-24 2003-07-29 Mei-Nan Tsai Heat dissipating device
US6664751B1 (en) * 2002-06-17 2003-12-16 Ford Motor Company Method and arrangement for a controlling strategy for electronic components in a hybrid electric vehicle
US6772603B2 (en) * 2002-12-20 2004-08-10 Ut-Battelle, Llc Methods and apparatus for thermal management of vehicle systems and components

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112007001424T5 (en) 2006-06-14 2009-04-23 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Heat sink and radiator
US8291967B2 (en) 2006-06-14 2012-10-23 Toyota Jidosha Kabushiki Kaisha Heat sink and cooler
JP2008275512A (en) * 2007-05-01 2008-11-13 Espec Corp Aging device

Also Published As

Publication number Publication date
US20050077031A1 (en) 2005-04-14
JP4052221B2 (en) 2008-02-27

Similar Documents

Publication Publication Date Title
Lajunen et al. Recent developments in thermal management of electrified powertrains
JP2005353410A (en) Cooling device for fuel cell, and vehicle with the same mounted thereon
JP2010532066A (en) Battery temperature control device for electric vehicle using thermoelectric semiconductor element
JPH11204151A (en) Battery cooling device of electric vehicle
JP2005335680A (en) Electric power train for vehicle having electrical dissipation element cooled with cooling liquid
CN105501071B (en) Automotive thermal tube manages system
JP2005191082A (en) Cooling device for electrical equipment
GB2414595A (en) Thermoelectric power generating system
JP2002059736A (en) Cooling device
JP2005151747A (en) Cooling structure of electric apparatus
JP2010284045A (en) Heat supply device
JP2020105943A (en) Vehicular heat management system
US20040250995A1 (en) Cooling system for vehicle
JP4052221B2 (en) Cooling system
CN205830244U (en) A kind of double cooling integrated systems for electric vehicle control system
KR20080053556A (en) Device for cooling inverter for hev
CN101977489A (en) Cooling device and method for heating elements
CN211700499U (en) High-efficient heat abstractor of car battery
KR100899269B1 (en) A Thermal Management System of a Fuel Cell Vehicle
CN208615707U (en) A kind of heat management system of the range extender system for new energy vehicle
KR20210033596A (en) Cooling structure of vehicle drive inverter and control system of the same
JPH07227092A (en) Thermoelectric type electricity generator
JP5903549B2 (en) COOLING DEVICE, ELECTRONIC DEVICE WITH THE SAME, AND ELECTRIC CAR
CN218241985U (en) Battery cooling system and mixer truck
JP2004224089A (en) Cooling device for hybrid vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees