JP2005116785A - Method for growing semiconductor material thin film - Google Patents

Method for growing semiconductor material thin film Download PDF

Info

Publication number
JP2005116785A
JP2005116785A JP2003349354A JP2003349354A JP2005116785A JP 2005116785 A JP2005116785 A JP 2005116785A JP 2003349354 A JP2003349354 A JP 2003349354A JP 2003349354 A JP2003349354 A JP 2003349354A JP 2005116785 A JP2005116785 A JP 2005116785A
Authority
JP
Japan
Prior art keywords
substrate
thin film
semiconductor material
nitride
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003349354A
Other languages
Japanese (ja)
Inventor
Masanobu Hiroki
正伸 廣木
Takashi Kobayashi
隆 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003349354A priority Critical patent/JP2005116785A/en
Publication of JP2005116785A publication Critical patent/JP2005116785A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for growing a semiconductor material thin film which reduces an amount of warping of a substrate or has the amount of warping when the semiconductor material thin film is grown, wherein an element manufacturing process required for accurate fine processing is enabled and a production yield is enhanced. <P>SOLUTION: A sapphire substrate 3 obtained by stacking in advance GaN or AlN4 serving as a nitride semiconductor material on the rear surface of the substrate is used for the rear surface of the substrate, and GaN2 of about 2 μm is deposited on the surface of the sapphire substrate 3 by an organic metal vapor growing method (MOVPE). Thereafter, a hetero structure of AlGaN1 of a thickness of the order of 30 nm having an Al composition 10% to 30% is grown. Both a lattice constant and a coefficient of the thermal expansion of the GaN2 are smaller than the sapphire substrate 3. By this element structure, the amount of warping of the sapphire substrate 3 can be reduced to the order of 5 μm (the amount of warping when nitride is not deposited on the rear surface of the substrate is 40 μm). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

基板の反り量が少ないか、もしくは基板の反り量が無い窒化物半導体薄膜の成長法に係り、精密で微細な素子構造を作製する際に、そのプロセスと歩留まり向上をはかる半導体材料薄膜の成長法に関する。   A method of growing a semiconductor material thin film that improves the process and yield when fabricating a precise and fine device structure in relation to a method of growing a nitride semiconductor thin film with little or no substrate warping. About.

窒化物半導体素子は、近年急激な進歩を遂げている。青色発光ダイオード、青紫色レーザーは、すでに量産化されており、電界効果トランジスタも実用化に間近なところまで、研究・開発が進んでいる。しかし、窒化物半導体材料は、他のIII-V族半導体材料と異なり、加工、プロセスが困難であり、それが素子の特性、歩留まりなどに大きな影響を与える。その加工、プロセスの困難さを招く一因として、ウエハの反りが挙げられる。ウエハの反りは、基板と窒化物半導体層の熱膨張係数差が異なることから、成長後の降温過程において発生する。ウエハが反ることにより、プロセス時にステッパーが通らない、あるいはアライメントがずれ、設計通りに素子構造を作製することができないなどの素子特性や歩留まりに大きな影響を与える。また、反りの量は、基板の直径の2乗に比例して大きくなるため、将来、大口径の基板を使用するようになった時には、より深刻な間題となり得ることが予想される。基板の反りを低減させるために、従来、以下に示す(1)および(2)のような手法が提案されている。   Nitride semiconductor devices have made rapid progress in recent years. Blue light-emitting diodes and blue-violet lasers have already been mass-produced, and field-effect transistors are being researched and developed to the point where they are close to practical use. However, unlike other III-V group semiconductor materials, nitride semiconductor materials are difficult to process and process, which has a great influence on device characteristics, yield, and the like. One factor that causes difficulty in processing and processing is wafer warpage. The warpage of the wafer occurs in the temperature lowering process after growth because the difference in thermal expansion coefficient between the substrate and the nitride semiconductor layer is different. When the wafer is warped, the stepper does not pass during the process, or the alignment is shifted, and the device characteristics and yield such as the device structure cannot be manufactured as designed are greatly affected. In addition, since the amount of warpage increases in proportion to the square of the diameter of the substrate, it is expected that it may become a more serious problem when a large-diameter substrate is used in the future. In order to reduce the warpage of the substrate, conventionally, the following methods (1) and (2) have been proposed.

(1)窒化物半導体層の膜厚を薄くする方法
結晶の弾性的性質から、堆積した薄膜より基板が圧倒的に厚い場合、反りの量は、薄膜の膜厚に比例して多くなる。したがって、例えば「非特許文献1」に示されているように、バッファ層の膜厚を薄くすることにより、反りを低減すことが試みられている。
(1) Method of reducing the thickness of the nitride semiconductor layer Due to the elastic properties of crystals, when the substrate is overwhelmingly thicker than the deposited thin film, the amount of warpage increases in proportion to the thickness of the thin film. Therefore, for example, as shown in “Non-Patent Document 1”, attempts have been made to reduce warpage by reducing the thickness of the buffer layer.

(2)バッファ層に中間層を挿入する方法
基板の反りは、前述のとおり、成長後の降温過程で生じる。基板と窒化物半導体薄膜の熱膨張係数差により発生する応力歪みを中間層により緩和させることで、反り量を低減することができる。例えば「非特許文献2」に示されているように、中間層として、GaNより弾性定数の小さいInGaNなどを挿入することで、基板の反り量を低減することが可能である。
(2) Method of Inserting Intermediate Layer into Buffer Layer As described above, the warpage of the substrate occurs in the temperature lowering process after growth. The amount of warpage can be reduced by relaxing the stress strain generated by the difference in thermal expansion coefficient between the substrate and the nitride semiconductor thin film by the intermediate layer. For example, as shown in “Non-Patent Document 2”, it is possible to reduce the amount of warpage of the substrate by inserting InGaN or the like having an elastic constant smaller than that of GaN as an intermediate layer.

大野泰男:「窒化ガリウムを用いる高周波デバイスの現状と展望」FED Review,vol.1,No.13(2001),14 March 2002,pp.1-11Yasuo Ohno: “Current Status and Prospects of High-Frequency Devices Using Gallium Nitride” FED Review, vol.1, No.13 (2001), 14 March 2002, pp.1-11 坂井正弘、江川孝志、石川博康、神保孝志:「中間層を用いたAlGaN/GaN HEMT構造の反り低減効果」第50回応用物理学関係連合講演会 講演予稿集(2003,3 神奈川大学)p1498 29p-ZF-11(2003)Masahiro Sakai, Takashi Egawa, Hiroyasu Ishikawa, Takashi Jimbo: "Effects of warpage reduction in AlGaN / GaN HEMT structure using intermediate layer" Proceedings of the 50th Joint Conference on Applied Physics (2003, 3 Kanagawa University) p1498 29p -ZF-11 (2003)

上述した従来の(1)、(2)の方法では、下記のような課題が挙げられる。
上記(1)の窒化物半導体層の膜厚を薄くする方法は、窒化物半導体と基板、特にサファイア基板は、格子不整が大きい。そのため、それらの基板上に窒化物半導体層を成長させたとき、界面に高密度の欠陥が発生する。このように、バッファ層を薄くすると、素子構造と界面との距離が近づくため、界面の欠陥が素子特性に与える影響が大きくなる恐れがある。また、同じ膜厚でも、ウエハサイズが大きくなると、反り量が大きくなる。したがって、大口径基板では、より膜厚を薄くする必要があるので、上記の問題がより顕著に現れるという課題が生じる。さらに、この方法では、反りを全く無くすことができないので、精密で微細な素子構造を作製する時、そのプロセスと歩留まりの向上をはかることができないという問題がある。
上記(2)のバッファ層に中間層を挿入する方法は、例えば、InGaNを中間層に用いた場合は電気的に活性であり、FET(電界効果トランジスタ)のように、横方向に電子を流す素子の場合、その特性に影響を与える恐れがある。また、上記(1)と同様に、この方法でも、反りを全く無くすことはできない。
The conventional methods (1) and (2) described above have the following problems.
In the method (1) for reducing the thickness of the nitride semiconductor layer, the nitride semiconductor and the substrate, particularly the sapphire substrate, have large lattice irregularities. Therefore, when a nitride semiconductor layer is grown on these substrates, high density defects are generated at the interface. As described above, when the buffer layer is thinned, the distance between the element structure and the interface approaches, so that the influence of defects at the interface on the element characteristics may increase. Even with the same film thickness, the amount of warpage increases as the wafer size increases. Therefore, since it is necessary to make the film thickness thinner in a large-diameter substrate, there arises a problem that the above problem appears more prominently. Furthermore, since this method cannot eliminate warpage at all, there is a problem that when manufacturing a precise and fine device structure, the process and yield cannot be improved.
The method of inserting the intermediate layer into the buffer layer of (2) is electrically active when, for example, InGaN is used for the intermediate layer, and causes electrons to flow in the lateral direction as in an FET (field effect transistor). In the case of an element, there is a risk of affecting its characteristics. Further, as in (1) above, this method cannot eliminate warpage at all.

本発明の目的は、半導体材料薄膜の成長時において、基板の反り量を少なくするか、もしくは基板の反り量が無い状態の半導体材料薄膜の成長法を提案し、精密で微細な加工を要求される素子作製プロセスを可能とし、かつ素子作製プロセスの歩留まりの向上を図るものである。   The object of the present invention is to propose a method for growing a semiconductor material thin film in which the amount of warpage of the substrate is reduced or there is no substrate warpage during the growth of the semiconductor material thin film, and precise and fine processing is required. The device manufacturing process can be performed, and the yield of the device manufacturing process can be improved.

本発明は、上述した従来技術における課題を鑑みて発明されたものであり、基本とするところは、基板の反対側に、窒化物半導体層を堆積させることで、基板の両面から等分の応カ歪みを発生させることにより、反り量を低減あるいは無くす方法である。   The present invention has been invented in view of the above-described problems in the prior art, and is basically based on the fact that a nitride semiconductor layer is deposited on the opposite side of the substrate, so that it can be equally divided from both sides of the substrate. This is a method for reducing or eliminating the amount of warpage by generating distortion.

上記課題を解決するための具体的方法として、本発明は特許請求の範囲に記載のような構成とするものである。すなわち、
請求項1に記載のように、基板上への半導体薄膜成長時において、その成長に用いる基板材料と成長させる半導体材料との格子定数が異なり、基板材料の格子定数が成長させる半導体材料の格子定数よりも小さい場合、あらかじめ基板の裏面に、当該基板の格子定数よりも小さい材料を積層させたものを基板として使用する半導体材料薄膜の成長法とするものである。
As a specific method for solving the above problems, the present invention is configured as described in the claims. That is,
According to the first aspect of the present invention, when a semiconductor thin film is grown on a substrate, the lattice constant of the substrate material used for the growth is different from that of the semiconductor material to be grown, and the lattice constant of the semiconductor material to be grown is Is smaller than the above, the semiconductor material thin film growth method uses a substrate in which a material smaller than the lattice constant of the substrate is previously laminated on the back surface of the substrate.

また、請求項2に記載のように、基板上への半導体薄膜成長時において、その成長に用いる基板材料と成長させる半導体材料との格子定数が異なり、基板材料の格子定数が成長させる半導体材料の格子定数よりも大きい場合、あらかじめ基板の裏面に、当該基板の格子定数よりも大きい材料を積層させたものを基板として使用する半導体材料薄膜の成長法とするものである。   In addition, as described in claim 2, when the semiconductor thin film is grown on the substrate, the substrate material used for the growth and the semiconductor material to be grown have different lattice constants, and the lattice constant of the substrate material is increased. When it is larger than the lattice constant, a method of growing a semiconductor material thin film using a substrate in which a material larger than the lattice constant of the substrate is previously laminated on the back surface of the substrate is used.

また、請求項3に記載のように、基板上への半導体薄膜成長時において、その成長に用いる基板材料と成長させる半導体材料との熱膨張係数が異なり、基板材料の熱膨張係数が成長させる半導体材料の熱膨張係数よりも小さい場合、あらかじめ基板の裏面に、当該基板の熱膨張係数よりも小さい材料を積層させたものを基板として使用する半導体材料薄膜の成長法とするものである。   Further, as described in claim 3, when a semiconductor thin film is grown on a substrate, the thermal expansion coefficient of the substrate material used for the growth is different from that of the semiconductor material to be grown, so that the thermal expansion coefficient of the substrate material is grown. When the thermal expansion coefficient is smaller than the material, the semiconductor material thin film growth method uses as the substrate a material in which a material smaller than the thermal expansion coefficient of the substrate is previously laminated on the back surface of the substrate.

また、請求項4に記載のように、基板上ヘの半導体薄膜成長時において、その成長に用いる基板材料と成長させる半導体材料との熱膨張係数が異なり、基板材料の熱膨張係数が成長させる半導体材料の熱膨張係数よりも大きい場合、あらかじめ基板の裏面に、当該基板の格子定数よりも大きい材料を積層させたものを基板として使用する半導体材料薄膜の成長法とするものである。   In addition, as described in claim 4, when a semiconductor thin film is grown on a substrate, the substrate material used for the growth has a different thermal expansion coefficient from the semiconductor material to be grown, and the semiconductor material has a thermal expansion coefficient that grows. When the thermal expansion coefficient of the material is larger, the semiconductor material thin film growth method uses a substrate in which a material larger than the lattice constant of the substrate is previously laminated on the back surface of the substrate.

また、請求項5に記載のように、請求項1ないし請求項4のいずれか1項に記載の半導体材料薄膜の成長法において、基板の表面、裏面の両面、またはいずれか一方の面に、窒化物半導体が堆積されている構造の半導体材料薄膜の成長法とするものである。   Further, as described in claim 5, in the method for growing a semiconductor material thin film according to any one of claims 1 to 4, on the surface of the substrate, both surfaces of the back surface, or any one surface, This is a method of growing a semiconductor material thin film having a structure in which a nitride semiconductor is deposited.

また、請求項6に記載のように、請求項1ないし請求項5のいずれか1項に記載の半導体材料薄膜の成長法において、基板はサファイア、炭化ケイ素、シリコンのいずれか1種よりなる半導体材料薄膜の成長法とするものである。   In addition, as described in claim 6, in the method for growing a semiconductor material thin film according to any one of claims 1 to 5, the substrate is a semiconductor made of any one of sapphire, silicon carbide, and silicon. This is a material thin film growth method.

また、請求項7に記載のように、請求項5において、表面に堆積される上記窒化物半導体層は、窒化ガリウム、窒化アルミニウム、窒化インジウムのうちより選択される1種以上を含む半導体材料薄膜の成長法とするものである。   Further, according to claim 7, in claim 5, the nitride semiconductor layer deposited on the surface includes a semiconductor material thin film containing at least one selected from gallium nitride, aluminum nitride, and indium nitride This is a growth method.

また、請求項8に記載のように、請求項5において、表面に堆積される窒化物半導体層は、窒化ガリウム、窒化アルミニウム、窒化インジウムのうちより選択される1種以上を含む3元混晶層もしくほ4元混晶層を含む半導体材料薄膜の成長法とするものである。   Further, as described in claim 8, in claim 5, the nitride semiconductor layer deposited on the surface includes a ternary mixed crystal containing at least one selected from gallium nitride, aluminum nitride, and indium nitride. This is a method of growing a semiconductor material thin film including a layer or a quaternary mixed crystal layer.

また、請求項9に記載のように、請求項5において、表面に堆積される窒化物半導体層は、窒化ガリウム、窒化アルミニウム、窒化インジウム、および、それらのうちより選択される1種以上を含む3元混晶層もしくは4元混晶層を複数層堆積してなる半導体材料薄膜の成長法とするものである。   Moreover, as described in claim 9, in claim 5, the nitride semiconductor layer deposited on the surface includes gallium nitride, aluminum nitride, indium nitride, and one or more selected from them. This is a method of growing a semiconductor material thin film formed by depositing a plurality of ternary mixed crystal layers or quaternary mixed crystal layers.

また、請求項10に記載のように、請求項5において、裏面に堆積される窒化物半導体層は、窒化ガリウム、窒化アルミニウム、窒化インジウムのうちより選択される1種以上を含む半導体材料薄膜の成長法とするものである。   Further, according to claim 10, in claim 5, the nitride semiconductor layer deposited on the back surface is a semiconductor material thin film containing at least one selected from gallium nitride, aluminum nitride, and indium nitride. It is a growth method.

また、請求項11に記載のように、請求項5において、裏面に堆積される窒化物半導体層は、窒化ガリウム、窒化アルミニウム、窒化インジウムのうちより選択される1種以上を含む3元混晶層もしくは4元混晶層を含む半導体材料薄膜の成長法とするものである。   In addition, as described in claim 11, in claim 5, the nitride semiconductor layer deposited on the back surface includes a ternary mixed crystal containing at least one selected from gallium nitride, aluminum nitride, and indium nitride. This is a method for growing a semiconductor material thin film including a layer or a quaternary mixed crystal layer.

また、請求項12に記載のように、請求項5において、裏面に堆積される窒化物半導体層は、窒化ガリウム、窒化アルミニウム、窒化インジウム、および、それらのうちより選択される1種以上を含む3元混晶層もしくは4元混晶層を複数層堆積してなる半導体材料薄膜の成長法とするものである。   In addition, as described in claim 12, in claim 5, the nitride semiconductor layer deposited on the back surface includes gallium nitride, aluminum nitride, indium nitride, and one or more selected from them. This is a method of growing a semiconductor material thin film formed by depositing a plurality of ternary mixed crystal layers or quaternary mixed crystal layers.

本発明の半導体材料薄膜の成長法によれば、基板の裏面に、窒化物層を堆積するので、膜厚などの、薄膜の構造や素子の特性に何ら影響を与えない。また、裏面の窒化物層の膜厚を、表面と等しくすれぱ、反り量をほぼ完全に無くすことが可能である。また、本発明を用いることで、反り量の少ない、あるいは反り量の無い窒化物半導体材料薄膜の作製が可能となり、精密で微細な加工を要求される素子のプロセスの実現と歩留まりの向上を可能とする。   According to the method for growing a semiconductor material thin film of the present invention, since a nitride layer is deposited on the back surface of the substrate, the structure of the thin film and the characteristics of the device such as the film thickness are not affected at all. Further, if the thickness of the nitride layer on the back surface is made equal to that of the front surface, the amount of warpage can be almost completely eliminated. In addition, by using the present invention, it is possible to manufacture a nitride semiconductor material thin film with little or no warpage, and it is possible to realize a process of an element that requires precise and fine processing and to improve the yield. And

図1(a)、図2(a)、図3(a)および図4(a)は、本発明の半導体材料薄膜の成長法の一例を示す模式図であって、本発明を実施するための最良の形態として例示する実施例1〜実施例4を示す。なお、図1(b)、図2(b)、図3(b)および図4(b)は、それぞれの実施例1〜実施例4における比較例1〜比較例4を示す。   FIG. 1A, FIG. 2A, FIG. 3A, and FIG. 4A are schematic views showing an example of a method for growing a semiconductor material thin film according to the present invention. Examples 1 to 4 illustrated as the best mode of the present invention will be described. 1B, FIG. 2B, FIG. 3B, and FIG. 4B show Comparative Examples 1 to 4 in Examples 1 to 4, respectively.

〈実施例1〉
図1(a)は、本発明のサファイア基板上にAlGaN/GaNヘテロ構造を堆積した場合を示し、これを実施例1とする。
まず、比較例1〔図1(b)〕に示すように、厚さ300μmのサファイア基板3の表面上に、MOVPE(有機金属気相成長法)により、2μmのGaN2を堆積した後、Al組成10%から30%の厚さ30nmのAlGaN1のヘテロ構造を成長した。GaN2の格子定数、熱膨張係数は、サファイア基板3に比べ共に小さい。この構造では、特に成長終了後の熱膨張係数に起因して、上に凸に40μmと大きく反った。
そこで、本発明の実施例1〔図1(a)〕に示すように、あらかじめ、サファイア基板3の裏面に、窒化物半導体材料であるGaNまたはAlN4を基板裏面に堆積した後に、上記図1(b)と同じ構造のAlGaN/GaNヘテロ構造を堆積したところ、サファイア基板3の反り量を5μm程度に低減することができた。
<Example 1>
FIG. 1A shows a case where an AlGaN / GaN heterostructure is deposited on a sapphire substrate of the present invention.
First, as shown in Comparative Example 1 (FIG. 1B), 2 μm of GaN 2 is deposited on the surface of a sapphire substrate 3 having a thickness of 300 μm by MOVPE (metal organic chemical vapor deposition). A heterostructure of 10 nm to 30% AlGaN1 with a thickness of 30 nm was grown. The lattice constant and thermal expansion coefficient of GaN 2 are both smaller than that of the sapphire substrate 3. In this structure, it was warped greatly by 40 μm upward, particularly due to the thermal expansion coefficient after completion of growth.
Therefore, as shown in Example 1 of the present invention (FIG. 1A), after GaN or AlN4, which is a nitride semiconductor material, is previously deposited on the back surface of the sapphire substrate 3, the above-described FIG. When an AlGaN / GaN heterostructure having the same structure as b) was deposited, the amount of warpage of the sapphire substrate 3 could be reduced to about 5 μm.

〈実施例2〉
図2(a)は、本発明のSiC基板上にAlGaN/GaNヘテロ構造を堆積した場合を示し、これを実施例2とする。
まず、比較例2〔図2(b)〕に示すように、厚さ300μmのSiC基板6の表面上に、100nmのAlNバッファ(緩衝)層5を堆積し、MOVPEにより1μmのGaN2を堆積した後、Al組成10%から30%の厚さ30nmのAlGaN1ヘテロ構造を成長した。GaN2の格子定数、熱膨張係数は、SiCに比べ共に大きい。この構造では、特に、成長終了後の熱膨張係数に起因して、下に凸に20μmと大きく反った。
そこで、本発明の実施例2〔図2(a)〕に示すように、あらかじめ、SiC基板6の裏面に、窒化物半導体材料であるGaN2、あるいはAlNバッファ層5を基板裏面に堆積した後に、上記図2(b)と同じ構造のAlGaN/GaNヘテロ構造を堆積したところ、SiC基板6の反り量を5μm程度に低減することができた。
<Example 2>
FIG. 2A shows a case where an AlGaN / GaN heterostructure is deposited on the SiC substrate of the present invention.
First, as shown in Comparative Example 2 (FIG. 2B), an AlN buffer (buffer) layer 5 having a thickness of 100 nm was deposited on the surface of a SiC substrate 6 having a thickness of 300 μm, and 1 μm of GaN 2 was deposited by MOVPE. Thereafter, an AlGaN1 heterostructure having a thickness of 30 nm and an Al composition of 10% to 30% was grown. The lattice constant and thermal expansion coefficient of GaN 2 are both larger than that of SiC. In this structure, in particular, due to the thermal expansion coefficient after the end of the growth, the convexly warped downward was 20 μm.
Therefore, as shown in Example 2 of the present invention (FIG. 2A), after depositing GaN2 or AlN buffer layer 5 which is a nitride semiconductor material on the back surface of the SiC substrate 6 in advance on the back surface of the substrate, When an AlGaN / GaN heterostructure having the same structure as in FIG. 2B was deposited, the amount of warpage of the SiC substrate 6 could be reduced to about 5 μm.

〈実施例3〉
図3(a)は、本発明のSi基板上にAlGaN/GaNヘテロ構造を堆積した場合を示し、これを実施例3とする。
まず、比較例3〔図3(b)〕に示すように、厚さ300μmのSi基板7の表面上に、100nmのAlNバッファ(緩衝)層5を堆積し、MOVPEにより1μmのGaN2を堆積した後、Al組成10%から30%の厚さ30nmのAlGaN1ヘテロ構造を成長した。GaN2の格子定数は、Siに比べ小さく、熱膨張係数は、Siに比べ大きい。この構造では、特に、成長終了後の熱膨張係数に起因して、下に凸に10μmと大きく反った。
そこで、本発明の実施例3〔図3(a)〕に示すように、あらかじめ、Si基板7の裏面に、窒化物半導体材料であるAlNバッファ層5、あるいはGaN2を基板裏面に堆積した後、上記図3(b)と同じ構造のAlGaN/GaNヘテロ構造を堆積したところ、Si基板7の反り量を5μm程度に低減することができた。
<Example 3>
FIG. 3A shows the case where an AlGaN / GaN heterostructure is deposited on the Si substrate of the present invention.
First, as shown in Comparative Example 3 (FIG. 3B), a 100 nm AlN buffer (buffer) layer 5 was deposited on the surface of a 300 μm thick Si substrate 7, and 1 μm GaN 2 was deposited by MOVPE. Thereafter, an AlGaN1 heterostructure having a thickness of 30 nm and an Al composition of 10% to 30% was grown. The lattice constant of GaN2 is smaller than that of Si, and the thermal expansion coefficient is larger than that of Si. In this structure, in particular, due to the thermal expansion coefficient after completion of the growth, the protrusion was greatly warped as 10 μm downward.
Therefore, as shown in Example 3 of the present invention (FIG. 3A), after the AlN buffer layer 5 or GaN 2 that is a nitride semiconductor material is deposited on the back surface of the Si substrate 7 in advance, When an AlGaN / GaN heterostructure having the same structure as in FIG. 3B was deposited, the amount of warpage of the Si substrate 7 could be reduced to about 5 μm.

〈実施例4〉
図4(a)は、本発明のサファイア基板上に青紫色LD(レーザダイオード)構造を堆積した場合を示し、これを実施例4とする。
まず、図4(b)〔比較例4〕に示すように、厚さ300μmのサファイア基板14の表面上に、MOVPE法により2μmのSiドープn型GaN13を堆積した後、Al組成10%のSiドープn型AlGaNクラッド層12、Siドープn型GaNキャリア閉じ込め層11、InGaN/InGaN量子井戸活性層10、Mgドープp型GaNキャリア閉じ込め層9、Mgドープp型AlGaNクラッド層8を順次堆積して、青紫色LD構造を成長した。上記GaN、AlGaN、InGaNの格子定数、熱膨張係数は、サファイアに比べ共に小さい。この構造では、特に成長終了後の熱膨張係数に起因して、上に凸に40μmと、大きく反った。
そこで、本発明の実施例4〔図4(a)〕に示すように、あらかじめ、サファイア基板14の裏面に、窒化物半導体材料であるGaNまたはAlN15を裏面に堆積した後に、上記図4(b)と同じ構造のAlGaN/GaNヘテロ構造を堆積したところ、反り量を5μm程度に低減することができた。
<Example 4>
FIG. 4A shows the case where a blue-violet LD (laser diode) structure is deposited on the sapphire substrate of the present invention.
First, as shown in FIG. 4B [Comparative Example 4], after depositing 2 μm Si-doped n-type GaN 13 by MOVPE method on the surface of a sapphire substrate 14 having a thickness of 300 μm, Si having an Al composition of 10% is deposited. A doped n-type AlGaN cladding layer 12, a Si-doped n-type GaN carrier confinement layer 11, an InGaN / InGaN quantum well active layer 10, an Mg-doped p-type GaN carrier confinement layer 9, and an Mg-doped p-type AlGaN cladding layer 8 are sequentially deposited. A blue-violet LD structure was grown. The lattice constants and thermal expansion coefficients of GaN, AlGaN, and InGaN are all smaller than sapphire. In this structure, the warpage was greatly warped to 40 μm upward, particularly due to the thermal expansion coefficient after completion of growth.
Therefore, as shown in Example 4 of the present invention (FIG. 4A), after GaN or AlN15, which is a nitride semiconductor material, is previously deposited on the back surface of the sapphire substrate 14, the above-described FIG. As a result of depositing an AlGaN / GaN heterostructure having the same structure as), the amount of warpage could be reduced to about 5 μm.

上述の実施例1〜4で説明したように、本発明は基板上に、基板とは格子定数もしくは熱膨張係数の異なる半導体薄膜を成長する際に生じる「反り」を低減するため、あらかじめ基板の反対側(例えば裏面)に、同種の半導体薄膜を成長させておくことを特徴とするものである。本発明によれば「反り」の小さい窒化物系化合物半導体薄膜ウエハを製造することができ、加工の精度や歩留まりが大幅に向上できるという顕著な効果を奏するものである。   As described in Examples 1 to 4 above, the present invention reduces the “warpage” that occurs when a semiconductor thin film having a lattice constant or thermal expansion coefficient different from that of the substrate is grown on the substrate. A semiconductor thin film of the same kind is grown on the opposite side (for example, the back surface). According to the present invention, a nitride-based compound semiconductor thin film wafer having a small “warp” can be manufactured, and a remarkable effect can be obtained in that processing accuracy and yield can be greatly improved.

本発明は基板上への半導体薄膜成長の際に、その成長に用いる基板材料と成長させる半導体材料との格子定数が異なり、基板材料の格子定数が成長させる半導体材料の格子定数よりも小さい場合、あらかじめ基板の裏面に、当該基板の格子定数よりも小さい材料を積層させたものを基板として使用して、基板の両面から等分の応力歪みを発生させることにより、反り量を低減あるいは無くす方法である。   In the present invention, when a semiconductor thin film is grown on a substrate, the lattice constant of the substrate material used for the growth is different from that of the semiconductor material to be grown, and the lattice constant of the substrate material is smaller than the lattice constant of the semiconductor material to be grown. A method in which a material with a material smaller than the lattice constant of the substrate is previously laminated on the back surface of the substrate is used as the substrate, and stress distortion is equally generated from both sides of the substrate, thereby reducing or eliminating the amount of warpage. is there.

また、本発明は基板上への半導体薄膜成長の際、その成長に用いる基板材料と成長させる半導体材料との格子定数が異なり、基板材料の格子定数が成長させる半導体材料の格子定数よりも大きい場合、あらかじめ基板の裏面に、基板の格子定数よりも大きい材料を積層させたものを基板として使用して、基板の両面から等分の応力歪みを発生させることにより、反り量を低減あるいは無くす方法である。   In the present invention, when a semiconductor thin film is grown on a substrate, the lattice constant of the substrate material used for the growth is different from that of the semiconductor material to be grown, and the lattice constant of the substrate material is larger than the lattice constant of the semiconductor material to be grown. A method that reduces or eliminates the amount of warping by using a material that is previously laminated on the back surface of the substrate with a material that is larger than the lattice constant of the substrate as the substrate and generating equal stress strain from both sides of the substrate. is there.

また、本発明は基板上への半導体薄膜成長の際、その成長に用いる基板材料と成長させる半導体材料との熱膨張係数が異なり、基板材料の熱膨張係数が成長させる半導体材料の熱膨張係数よりも小さい場合、あらかじめ基板の裏面に、基板の熱膨張係数よりも小さい材料を積層させたものを基板として使用して、基板の両面から等分の応力歪みを発生させることにより、反り量を低減あるいは無くす方法である。   In the present invention, when the semiconductor thin film is grown on the substrate, the thermal expansion coefficient of the substrate material used for the growth is different from that of the semiconductor material to be grown, and the thermal expansion coefficient of the substrate material is higher than that of the semiconductor material to be grown. If it is too small, the amount of warpage can be reduced by generating equal stress strain from both sides of the substrate by using a substrate with a material that is smaller than the thermal expansion coefficient of the substrate in advance. Or it is a method of eliminating.

また本発明は基板上ヘの半導体薄膜成長の際、その成長に用いる基板材料と成長させる半導体材料との熱膨張係数が異なり、基板材料の熱膨張係数が成長させる半導体材料の熱膨張係数よりも大きい場合、あらかじめ基板の裏面に、基板の格子定数よりも大きい材料を積層させたものを基板として使用して、基板の両面から等分の応力歪みを発生させることにより、反り量を低減あるいは無くす方法である。   Further, according to the present invention, when a semiconductor thin film is grown on a substrate, the thermal expansion coefficient of the substrate material used for the growth is different from that of the semiconductor material to be grown, and the thermal expansion coefficient of the substrate material is larger than the thermal expansion coefficient of the semiconductor material to be grown. If it is large, the amount of warpage is reduced or eliminated by using as the substrate a material that is previously laminated on the back surface of the substrate with a material larger than the lattice constant of the substrate, and generating equal stress strain from both sides of the substrate. Is the method.

また、本発明は半導体材料薄膜の成長法の際、基板の表面、裏面の両面、またはいずれか一方の面に、窒化物半導体を堆積させておくもので、サファイア、炭化ケイ素、シリコンのいずれか1種よりなる基板を用いるものである。   In addition, the present invention deposits a nitride semiconductor on the front surface, the back surface, or either one of the surfaces of the substrate when the semiconductor material thin film is grown, and is either sapphire, silicon carbide, or silicon. One type of substrate is used.

また、基板の表面に堆積される窒化物半導体層は、窒化ガリウム、窒化アルミニウム、窒化インジウムのうちより選択される1種以上を含む半導体材料薄膜となし、上記窒化物半導体層は、窒化ガリウム、窒化アルミニウム、窒化インジウムのうちより選択される1種以上を含む3元混晶層もしくほ4元混晶層を含む半導体材料薄膜とするか、さらに、窒化物半導体層は、窒化ガリウム、窒化アルミニウム、窒化インジウム、および、それらのうちより選択される1種以上を含む3元混晶層もしくは4元混晶層を複数層堆積させる半導体材料薄膜の成長法とするものである。   Further, the nitride semiconductor layer deposited on the surface of the substrate is a semiconductor material thin film containing at least one selected from gallium nitride, aluminum nitride, and indium nitride, and the nitride semiconductor layer includes gallium nitride, A semiconductor material thin film including a ternary mixed crystal layer or a quaternary mixed crystal layer including at least one selected from aluminum nitride and indium nitride is used, or the nitride semiconductor layer is formed of gallium nitride, nitride A semiconductor material thin film growth method in which a plurality of ternary mixed crystal layers or quaternary mixed crystal layers containing aluminum, indium nitride, and one or more selected from them is deposited.

また、基板の裏面に堆積される窒化物半導体層は、上記表面と同じ、窒化ガリウム、窒化アルミニウム、窒化インジウムのうちより選択される1種以上を含む半導体材料薄膜となし、上記窒化物半導体層は、窒化ガリウム、窒化アルミニウム、窒化インジウムのうちより選択される1種以上を含む3元混晶層もしくは4元混晶層を含む半導体材料薄膜とするか、さらに窒化物半導体層は、窒化ガリウム、窒化アルミニウム、窒化インジウム、および、それらのうちより選択される1種以上を含む3元混晶層もしくは4元混晶層を複数層堆積させる半導体材料薄膜の成長法とするものである。   Further, the nitride semiconductor layer deposited on the back surface of the substrate is the same as the above surface, and is a semiconductor material thin film containing one or more selected from gallium nitride, aluminum nitride, and indium nitride, and the nitride semiconductor layer Is a semiconductor material thin film including a ternary mixed crystal layer or a quaternary mixed crystal layer including at least one selected from gallium nitride, aluminum nitride, and indium nitride, or the nitride semiconductor layer is formed of gallium nitride. In this method, a semiconductor material thin film is grown by depositing a plurality of ternary mixed crystal layers or quaternary mixed crystal layers containing aluminum nitride, indium nitride, and one or more selected from them.

図1(a)は本発明の実施例1で例示した半導体材料薄膜の成長法を示す模式図であり、図1(b)は実施例1に対応する比較例を示す図。FIG. 1A is a schematic diagram showing a method for growing a semiconductor material thin film exemplified in Example 1 of the present invention, and FIG. 1B is a diagram showing a comparative example corresponding to Example 1. FIG. 図2(a)は本発明の実施例2で例示した半導体材料薄膜の成長法を示す模式図であり、図2(b)は実施例2に対応する比較例を示す図。FIG. 2A is a schematic diagram showing a method for growing a semiconductor material thin film exemplified in Example 2 of the present invention, and FIG. 2B is a diagram showing a comparative example corresponding to Example 2. FIG. 図3(a)は本発明の実施例3で例示した半導体材料薄膜の成長法を示す模式図であり、図3(b)は実施例3に対応する比較例を示す図。FIG. 3A is a schematic diagram showing a method for growing a semiconductor material thin film exemplified in Example 3 of the present invention, and FIG. 3B is a diagram showing a comparative example corresponding to Example 3. FIG. 図4(a)は本発明の実施例4で例示した半導体材料薄膜の成長法を示す模式図であり、図4(b)は実施例4に対応する比較例を示す図。FIG. 4A is a schematic diagram showing a method for growing a semiconductor material thin film exemplified in Example 4 of the present invention, and FIG. 4B is a diagram showing a comparative example corresponding to Example 4. FIG.

符号の説明Explanation of symbols

1 AlGaN
2 GaN
3 サファイア基板
4 GaNまたはAlN
5 AlNバッファ層
6 SiC基板
7 Si基板
8 Mgドープp型AlGaNクラッド層
9 Mgドープp型GaNキャリア閉じ込め層
10 InGaN/InGaN量子井戸活性層
11 Siドープn型GaNキャリア閉じ込め層
12 Siドープn型AlGaNクラッド層
13 Siドープn型GaN
14 サファイア基板
15 GaNまたはAlN
1 AlGaN
2 GaN
3 Sapphire substrate 4 GaN or AlN
5 AlN buffer layer 6 SiC substrate 7 Si substrate 8 Mg-doped p-type AlGaN cladding layer 9 Mg-doped p-type GaN carrier confinement layer 10 InGaN / InGaN quantum well active layer 11 Si-doped n-type GaN carrier confinement layer 12 Si-doped n-type AlGaN Clad layer 13 Si-doped n-type GaN
14 Sapphire substrate 15 GaN or AlN

Claims (12)

基板上への半導体薄膜成長時において、その成長に用いる基板材料と成長させる半導体材料との格子定数が異なり、基板材料の格子定数が成長させる半導体材料の格子定数よりも小さい場合、あらかじめ基板の裏面に、当該基板の格子定数よりも小さい材料を積層させたものを基板として使用することを特微とする半導体材料薄膜の成長法。   When a semiconductor thin film is grown on a substrate, if the lattice constant of the substrate material used for the growth is different from that of the semiconductor material to be grown and the lattice constant of the substrate material is smaller than the lattice constant of the semiconductor material to be grown, the back surface of the substrate in advance And a method for growing a semiconductor material thin film, characterized in that a substrate in which materials smaller than the lattice constant of the substrate are stacked is used as the substrate. 基板上への半導体薄膜成長時において、その成長に用いる基板材料と成長させる半導体材料との格子定数が異なり、基板材料の格子定数が成長させる半導体材料の格子定数よりも大きい場合、あらかじめ基板の裏面に、当該基板の格子定数よりも大きい材料を積層させたものを基板として使用することを特徴とする半導体材料薄膜の成長法。   When a semiconductor thin film is grown on a substrate, if the lattice constant of the substrate material used for the growth is different from that of the semiconductor material to be grown and the lattice constant of the substrate material is larger than the lattice constant of the semiconductor material to be grown, the back surface of the substrate in advance A method for growing a semiconductor material thin film, wherein a substrate in which a material larger than a lattice constant of the substrate is stacked is used as the substrate. 基板上への半導体薄膜成長時において、その成長に用いる基板材料と成長させる半導体材料との熱膨張係数が異なり、基板材料の熱膨張係数が成長させる半導体材料の熱膨張係数よりも小さい場合、あらかじめ基板の裏面に、当該基板の熱膨張係数よりも小さい材料を積層させたものを基板として使用することを特徴とする半導体材料薄膜の成長法。   When a semiconductor thin film is grown on a substrate, the thermal expansion coefficient of the substrate material used for the growth is different from that of the semiconductor material to be grown, and the thermal expansion coefficient of the substrate material is smaller than the thermal expansion coefficient of the semiconductor material to be grown. A method for growing a thin film of a semiconductor material, comprising using, on a back surface of a substrate, a material in which a material smaller than a thermal expansion coefficient of the substrate is laminated as the substrate. 基板上ヘの半導体薄膜成長時において、その成長に用いる基板材料と成長させる半導体材料との熱膨張係数が異なり、基板材料の熱膨張係数が成長させる半導体材料の熱膨張係数よりも大きい場合、あらかじめ基板の裏面に、当該基板の格子定数よりも大きい材料を積層させたものを基板として使用することを特徴とする半導体材料薄膜の成長法。   When the semiconductor thin film is grown on the substrate, the thermal expansion coefficient of the substrate material used for the growth is different from that of the semiconductor material to be grown, and the thermal expansion coefficient of the substrate material is larger than the thermal expansion coefficient of the semiconductor material to be grown. A method for growing a thin film of a semiconductor material, comprising using a substrate on which a material larger than a lattice constant of the substrate is laminated on the back surface of the substrate. 請求項1ないし請求項4のいずれか1項に記載の半導体材料薄膜の成長法において、基板の表面、裏面の両面、またはいずれか一方の面に、窒化物半導体が堆積されていることを特徴とする半導体材料薄膜の成長法。   5. The method for growing a semiconductor material thin film according to claim 1, wherein a nitride semiconductor is deposited on a front surface, a back surface, or any one surface of the substrate. A method for growing semiconductor material thin films. 請求項1ないし請求項5のいずれか1項に記載の半導体材料薄膜の成長法において、基板はサファイア、炭化ケイ素、シリコンのいずれか1種よりなることを特徴とする半導体材料薄膜の成長法。   6. The method for growing a semiconductor material thin film according to claim 1, wherein the substrate is made of any one of sapphire, silicon carbide, and silicon. 請求項5において、表面に堆積される上記窒化物半導体層は、窒化ガリウム、窒化アルミニウム、窒化インジウムのうちより選択される1種以上を含むことを特徴とする半導体材料薄膜の成長法。   6. The method for growing a semiconductor material thin film according to claim 5, wherein the nitride semiconductor layer deposited on the surface contains at least one selected from gallium nitride, aluminum nitride, and indium nitride. 請求項5において、表面に堆積される窒化物半導体層は、窒化ガリウム、窒化アルミニウム、窒化インジウムのうちより選択される1種以上を含む3元混晶層もしくほ4元混晶層を含むことを特徴とする半導体材料薄膜の成長法。   6. The nitride semiconductor layer deposited on the surface includes a ternary mixed crystal layer or a quaternary mixed crystal layer containing at least one selected from gallium nitride, aluminum nitride, and indium nitride. A method for growing a semiconductor material thin film. 請求項5において、表面に堆積される窒化物半導体層は、窒化ガリウム、窒化アルミニウム、窒化インジウム、および、それらのうちより選択される1種以上を含む3元混晶層もしくは4元混晶層を複数層堆積してなることを特徴とする半導体材料薄膜の成長法。   6. The ternary mixed crystal layer or the quaternary mixed crystal layer according to claim 5, wherein the nitride semiconductor layer deposited on the surface includes gallium nitride, aluminum nitride, indium nitride, and one or more selected from them. A method of growing a semiconductor material thin film, comprising depositing a plurality of layers. 請求項5において、裏面に堆積される窒化物半導体層は、窒化ガリウム、窒化アルミニウム、窒化インジウムのうちより選択される1種以上を含むことを特徴とする半導体材料薄膜の成長法。   6. The method for growing a semiconductor material thin film according to claim 5, wherein the nitride semiconductor layer deposited on the back surface includes at least one selected from gallium nitride, aluminum nitride, and indium nitride. 請求項5において、裏面に堆積される窒化物半導体層は、窒化ガリウム、窒化アルミニウム、窒化インジウムのうちより選択される1種以上を含む3元混晶層もしくは4元混晶層を含むことを特徴とする半導体材料薄膜の成長法。   6. The nitride semiconductor layer deposited on the back surface according to claim 5, including a ternary mixed crystal layer or a quaternary mixed crystal layer including at least one selected from gallium nitride, aluminum nitride, and indium nitride. A method for growing a thin film of semiconductor material. 請求項5において、裏面に堆積される窒化物半導体層は、窒化ガリウム、窒化アルミニウム、窒化インジウム、および、それらのうちより選択される1種以上を含む3元混晶層もしくは4元混晶層を複数層堆積してなることを特徴とする半導体材料薄膜の成長法。   6. The ternary mixed crystal layer or the quaternary mixed crystal layer according to claim 5, wherein the nitride semiconductor layer deposited on the back surface includes gallium nitride, aluminum nitride, indium nitride, and one or more selected from them. A method of growing a semiconductor material thin film, comprising depositing a plurality of layers.
JP2003349354A 2003-10-08 2003-10-08 Method for growing semiconductor material thin film Pending JP2005116785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003349354A JP2005116785A (en) 2003-10-08 2003-10-08 Method for growing semiconductor material thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003349354A JP2005116785A (en) 2003-10-08 2003-10-08 Method for growing semiconductor material thin film

Publications (1)

Publication Number Publication Date
JP2005116785A true JP2005116785A (en) 2005-04-28

Family

ID=34541242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003349354A Pending JP2005116785A (en) 2003-10-08 2003-10-08 Method for growing semiconductor material thin film

Country Status (1)

Country Link
JP (1) JP2005116785A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074436A1 (en) * 2009-12-17 2011-06-23 東京エレクトロン株式会社 Substrate and method for manufacturing same
CN102751412A (en) * 2011-04-22 2012-10-24 夏普株式会社 Chip used for forming nitride semiconductor element and manufacturing method thereof, nitride semiconductor element and manufacturing method thereof
EP2519982A1 (en) * 2009-12-29 2012-11-07 Shenzhen BYD Auto R&D Company Limited Epitaxial wafer, method for manufacturing the same and method for manufacturing led chip
JP2013062409A (en) * 2011-09-14 2013-04-04 Toshiba Corp Method of manufacturing nitride semiconductor stacked structure
JP2013513944A (en) * 2009-12-11 2013-04-22 ナショナル セミコンダクター コーポレーション Backside stress compensation of gallium nitride or other nitride-based semiconductor devices
EP3442038A4 (en) * 2016-04-08 2019-11-06 Stanley Electric Co., Ltd. Semiconductor wafer
CN117476743A (en) * 2023-10-27 2024-01-30 中环领先半导体材料有限公司 Gallium nitride epitaxial wafer and preparation method thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018190988A (en) * 2009-12-11 2018-11-29 ナショナル セミコンダクター コーポレーションNational Semiconductor Corporation Backside stress compensation for gallium nitride or other nitride-based semiconductor devices
JP7273279B2 (en) 2009-12-11 2023-05-15 ナショナル セミコンダクター コーポレーション Backside stress compensation of gallium nitride or other nitride-based semiconductor devices
JP2013513944A (en) * 2009-12-11 2013-04-22 ナショナル セミコンダクター コーポレーション Backside stress compensation of gallium nitride or other nitride-based semiconductor devices
JP2021158391A (en) * 2009-12-11 2021-10-07 ナショナル セミコンダクター コーポレーションNational Semiconductor Corporation Backside stress compensation for gallium nitride or other nitride-based semiconductor device
WO2011074436A1 (en) * 2009-12-17 2011-06-23 東京エレクトロン株式会社 Substrate and method for manufacturing same
EP2519982A1 (en) * 2009-12-29 2012-11-07 Shenzhen BYD Auto R&D Company Limited Epitaxial wafer, method for manufacturing the same and method for manufacturing led chip
EP2519982A4 (en) * 2009-12-29 2013-11-27 Shenzhen Byd Auto R & D Co Ltd Epitaxial wafer, method for manufacturing the same and method for manufacturing led chip
US8932892B2 (en) 2009-12-29 2015-01-13 Shenzhen Byd Auto R&D Company Limited Epitaxiay wafer, method for manufacturing the same and method for manufacturing LED chip
CN102751412A (en) * 2011-04-22 2012-10-24 夏普株式会社 Chip used for forming nitride semiconductor element and manufacturing method thereof, nitride semiconductor element and manufacturing method thereof
US8980664B2 (en) 2011-09-14 2015-03-17 Kabushiki Kaisha Toshiba Method for fabricating stacked nitride-compound semiconductor structure and method for fabricating nitride-compound semiconductor light emitting device
TWI478393B (en) * 2011-09-14 2015-03-21 Toshiba Kk Method for fabricating stacked nitride-compound semiconductor structure and method for fabricating nitride-compound semiconductor light emmiting device
KR101370742B1 (en) 2011-09-14 2014-03-06 가부시끼가이샤 도시바 Method for fabricating stacked nitride-compound semiconductor structure and method for fabricating nitride-compound semiconductor light emitting device
JP2013062409A (en) * 2011-09-14 2013-04-04 Toshiba Corp Method of manufacturing nitride semiconductor stacked structure
EP3442038A4 (en) * 2016-04-08 2019-11-06 Stanley Electric Co., Ltd. Semiconductor wafer
US10770621B2 (en) 2016-04-08 2020-09-08 Stanley Electric Co., Ltd. Semiconductor wafer
CN117476743A (en) * 2023-10-27 2024-01-30 中环领先半导体材料有限公司 Gallium nitride epitaxial wafer and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4005701B2 (en) Method of forming nitrogen compound semiconductor film and nitrogen compound semiconductor element
JP3785970B2 (en) Method for manufacturing group III nitride semiconductor device
US8013320B2 (en) Nitride semiconductor device and method for fabricating the same
US8772831B2 (en) III-nitride growth method on silicon substrate
US20100044719A1 (en) III-V Compound Semiconductor Epitaxy Using Lateral Overgrowth
JP2828002B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP3500281B2 (en) Gallium nitride based semiconductor device and method of manufacturing the same
JPH11150335A (en) Nitride-compound semiconductor light-emitting element
KR100705886B1 (en) Nitride semiconductor layer structure and a nitride semiconductor laser incorporating a portion of same
TW201009896A (en) Method of forming a circuit structure
JP2007266577A (en) Nitride semiconductor device and manufacturing method thereof
JPH11233391A (en) Crystalline substrate, semiconductor device using the same and manufacture of the semiconductor device
JP2000223417A (en) Growing method of semiconductor, manufacture of semiconductor substrate, and manufacture of semiconductor device
JPH11340505A (en) Gallium nitride-based compound semiconductor light emitting element
US8222639B2 (en) Nitride based semiconductor device and method of manufacturing the same
JP2007036255A (en) SILICON CARBON GERMANIUM (SiCGe) SUBSTRATE FOR GROUP III NITRIDE-BASED DEVICE
JP2018098401A (en) Nitride semiconductor laser element
WO2016072122A1 (en) Semiconductor device and production method therefor
JP2005116785A (en) Method for growing semiconductor material thin film
JPH10341060A (en) Crystal growth method of nitride compound semiconductor and gallium nitride light-emitting diode
JP3239812B2 (en) Crystal growth method of gallium nitride based semiconductor layer including InGaN layer, gallium nitride based light emitting device and method of manufacturing the same
JP3252779B2 (en) Semiconductor light emitting element and semiconductor light emitting device
JP6242238B2 (en) Method for producing nitride semiconductor multi-element mixed crystal
JP3900196B2 (en) Group III nitride semiconductor optical device
JP4631214B2 (en) Manufacturing method of nitride semiconductor film