JP2005114414A - Flow cell - Google Patents

Flow cell Download PDF

Info

Publication number
JP2005114414A
JP2005114414A JP2003345857A JP2003345857A JP2005114414A JP 2005114414 A JP2005114414 A JP 2005114414A JP 2003345857 A JP2003345857 A JP 2003345857A JP 2003345857 A JP2003345857 A JP 2003345857A JP 2005114414 A JP2005114414 A JP 2005114414A
Authority
JP
Japan
Prior art keywords
flow cell
fluororesin
base plate
cover plate
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003345857A
Other languages
Japanese (ja)
Other versions
JP4365182B2 (en
Inventor
Shuichi Shoji
習一 庄子
Masaki Kanai
正樹 叶井
Hiroaki Nakanishi
博昭 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Waseda University
Original Assignee
Shimadzu Corp
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Waseda University filed Critical Shimadzu Corp
Priority to JP2003345857A priority Critical patent/JP4365182B2/en
Publication of JP2005114414A publication Critical patent/JP2005114414A/en
Application granted granted Critical
Publication of JP4365182B2 publication Critical patent/JP4365182B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Measuring Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flow cell having resistance to chemicals suitable for practical use. <P>SOLUTION: A cover plate 2 and a base plate 4 are constituted of a PDSM that is a kind of silicone rubber. A through holes serving as a sample introducing port 6 and a discharge port 8 are provided in the cover plate 2, and a groove serving as a flow passage 10 is formed in the base plate 4 to make a sample flow therethrough. Surfaces in a side, jointed to each among respective surfaces of the cover plate 2 and the base plate 4, a groove inside and a through hole inside are coated with a fluororesin coated film 12, and the flow cell of structure with the inner wall of the flow passage coated by the fluororesin coated film 12 is formed by bonding each other the fellow surfaces coated with the fluororesin coated film 12. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は,例えばμTAS(Micro Total Analysis System)分野のような、チップ上で微量な流体試料を用いて化学分析や化学反応を行う際に用いられるフローセルに関するものである。   The present invention relates to a flow cell used when a chemical analysis or a chemical reaction is performed using a small amount of fluid sample on a chip, such as in the field of μTAS (Micro Total Analysis System).

微量な流体試料について化学分析や化学反応を行うための、微細な流路や反応容器を形成したμTASデバイスの材料として、近年、樹脂材料が広く使用されてきている。なかでも、成型(モールディング)技術を用いて微細な構造を容易に形成することができるためシリコーンゴムが注目されている。   In recent years, resin materials have been widely used as materials for μTAS devices in which fine flow paths and reaction vessels are formed for performing chemical analysis and chemical reaction on a small amount of fluid sample. Among these, silicone rubber has attracted attention because it can easily form a fine structure using a molding technique.

図5にシリコーンゴムを用いたフローセルの例を示す。そのフローセルは、シリコーンゴム製のカバープレート2及びベースプレート4で構成され、カバープレート2には試料導入口6、排出口8となる貫通穴があけられており、ベースプレート4には試料を流すための流路10となる溝が形成されている。カバープレート2とベースプレート4を貼り合せることにより内部流路10が形成される。   FIG. 5 shows an example of a flow cell using silicone rubber. The flow cell includes a cover plate 2 and a base plate 4 made of silicone rubber. The cover plate 2 has through holes serving as a sample introduction port 6 and a discharge port 8, and allows the sample to flow through the base plate 4. A groove that becomes the flow path 10 is formed. The internal flow path 10 is formed by bonding the cover plate 2 and the base plate 4 together.

しかしながら、シリコーンゴムは一般的に有機溶剤に対し膨潤や溶解するという欠点を持つ。また、生化学分野での計測に用いられるような蛍光物質を表面に吸着させやすい。これらは有機合成や生化学分析に応用する際に大きな問題となる。
そこで、そのような問題を解決するため、シリコーンゴムのシリコーンゴムの一種であるポリジメチルシロキサン(Poly-dimethylsiloxane、以下PDMSという)によりフローセルを形成し、液に接する部分の表面に水ガラスをコーティングした報告がなされている(非特許文献1参照。)。
B.J・Jo,J.Moorthy,I].J.Beebe,“Polymer Microfluidic Valves,Membranes and Coatings”,Prco of the μTAS Symposuim 2000,pp335−338
However, silicone rubber generally has a drawback of swelling and dissolving in an organic solvent. Moreover, it is easy to adsorb | suck to a surface the fluorescent substance used for the measurement in the biochemical field. These are major problems when applied to organic synthesis and biochemical analysis.
Therefore, in order to solve such problems, a flow cell is formed from poly-dimethylsiloxane (hereinafter referred to as PDMS), which is a kind of silicone rubber, and water glass is coated on the surface in contact with the liquid. A report has been made (see Non-Patent Document 1).
B. J. Jo, J .; Moorthy, I]. J. Beebe, “Polymer Microfluidic Valves, Membranes and Coatings”, Prco of the μTAS Symposuim 2000, pp 335-338

しかし、PDMS表面を水ガラスでコーティングすると、水ガラス被膜がひび割れてしまうことも報告されている(非特許文献1参照。)。そのため、水ガラス被膜は実用に適さない。
そこで、本発明はシリコーンゴムのような耐薬品性に問題のある材料を用いてフローセルを製作しても耐薬品性を備え、かつ実用に適するようにすることを目的とするものである。
However, it has also been reported that when the PDMS surface is coated with water glass, the water glass film is cracked (see Non-Patent Document 1). Therefore, a water glass film is not suitable for practical use.
Accordingly, an object of the present invention is to provide chemical resistance even when a flow cell is manufactured using a material having a chemical resistance problem such as silicone rubber, and to be suitable for practical use.

本発明のフローセルは、基板を構成する2つの部材の少なくとも一方の部材の表面に溝が形成され、両部材が前記溝を内側にして接合されていることにより、基板内部の前記溝を含む流路を備えているフローセルであって、前記2つの部材のうち少なくとも一方は熱硬化性樹脂からなり、かつ熱硬化性樹脂からなる部材の表面のうち少なくとも前記流路に面する部分の表面がフッ素樹脂被膜により被覆されていることを特徴とするものである。   In the flow cell of the present invention, a groove is formed on the surface of at least one of the two members constituting the substrate, and both the members are joined with the groove inside, whereby the flow including the groove inside the substrate is formed. A flow cell having a path, wherein at least one of the two members is made of a thermosetting resin, and at least a portion of the surface of the member made of a thermosetting resin faces the flow path is a fluorine. It is characterized by being covered with a resin film.

ここで、「流路」とは部材の接合面側の表面に形成された溝により構成される基板内部の流路は少なくとも含む意味で使用している。したがって、基板内部のその流路に面する部分の表面は必ずフッ素樹脂被膜により被覆することを意味している。
基板内部の流路から基板表面に設けられる試料注入口や試料排出口につながる部材貫通穴が存在する場合には、それらの貫通穴も流路に含めて貫通穴の内壁もフッ素樹脂被膜により被覆しておくのが好ましい。しかし、試料注入口や試料排出口につながる部材貫通穴の内壁に接触することなく基板内部の流路に試料を注入したり、基板内部の流路から試料を排出したりすることができる場合には、それらの部材貫通穴の内壁はフッ素樹脂被膜により被覆しなくてもよい。
Here, the “flow path” is used to include at least a flow path inside the substrate constituted by a groove formed on the surface on the joint surface side of the member. Therefore, it means that the surface of the part facing the flow path inside the substrate is always covered with the fluororesin coating.
If there are through-holes for members connecting from the flow path inside the substrate to the sample inlet and sample outlet provided on the substrate surface, these through-holes are included in the flow path and the inner wall of the through-hole is covered with a fluororesin coating. It is preferable to keep it. However, when the sample can be injected into the flow path inside the substrate or the sample can be discharged from the flow path inside the substrate without contacting the inner wall of the member through hole connected to the sample injection port or the sample discharge port The inner wall of these member through holes may not be covered with the fluororesin coating.

熱硬化性樹脂としては成型により微細な構造を形成するのに適する材料が好ましく、シリコーンゴム、エポキシ樹脂などを用いることができる。シリコーンゴムの一例としてはPDMSがある。   As the thermosetting resin, a material suitable for forming a fine structure by molding is preferable, and silicone rubber, epoxy resin, or the like can be used. One example of silicone rubber is PDMS.

フッ素樹脂は耐薬品性の被膜を形成するものであり、フッ素アモルファス樹脂、PTFE(ポリ四フッ化エチレン(poly−tetrafluoroethylene))、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(tetrafluoroethylene-perfluoro alkylvinyl ether copolymer))などを用いることができる。フッ素アモルファス樹脂の一例としてサイトップ(CYTOP(登録商標)、旭ガラス株式会社製)がある。   Fluorine resin forms a chemical-resistant film, and is made of fluorine amorphous resin, PTFE (poly-tetrafluoroethylene), PFA (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (tetrafluoroethylene-perfluoro). alkylvinyl ether copolymer))) can be used. An example of a fluorine amorphous resin is CYTOP (registered trademark) manufactured by Asahi Glass Co., Ltd.

2つの部材はどのような方法で接合してもよいが、好ましい接合方法は、接合面にも流路に面する部分の表面を被覆しているフッ素樹脂の層が存在し、そのフッ素樹脂層が接着層となっているものである。   The two members may be joined by any method, but a preferred joining method is that the joining surface has a fluororesin layer covering the surface of the portion facing the flow path, and the fluororesin layer. Is an adhesive layer.

本発明のフローセルでは、熱硬化性樹脂からなる部材の表面のうち少なくとも流路に面する部分の表面がフッ素樹脂被膜により被覆されているので、熱硬化性樹脂の成型性に優れるという利点を維持しつつ、フッ素樹脂被膜により有機溶剤への耐性を改善させるとともに、フローセルの流路表面への物質の吸着を低減させることができる。   In the flow cell of the present invention, the surface of at least the portion facing the flow path of the surface of the member made of the thermosetting resin is covered with the fluororesin coating, so that the advantage of excellent thermosetting resin moldability is maintained. However, it is possible to improve the resistance to the organic solvent by the fluororesin coating and reduce the adsorption of the substance on the flow channel surface of the flow cell.

2つの部材の接合を流路に面する部分の表面を被覆しているフッ素樹脂と同じフッ素樹脂層により行うことにより、流路に存在するフッ素樹脂被膜上に他の材質の層が介在してくるのを防ぐことができ、フッ素樹脂被膜の耐薬品性などの本来の特性を維持することができる。
また、流路に面する部分の表面を被覆しているフッ素樹脂の塗布と接着層の塗布を兼用できるので、フローセル製造工程が簡略化される。
By joining the two members with the same fluororesin layer as the fluororesin covering the surface of the portion facing the flow path, a layer of another material is interposed on the fluororesin coating existing in the flow path. It can be prevented from coming and the original properties such as chemical resistance of the fluororesin coating can be maintained.
In addition, since the application of the fluororesin covering the surface of the portion facing the flow path can be used together with the application of the adhesive layer, the flow cell manufacturing process is simplified.

本発明の一実施例を図面に基づいて説明する。
図1に一実施例のフローセルを示す。
カバープレート2及びベースプレート4はシリコーンゴムの一種であるPDMSで構成されている。カバープレート2には試料導入口6、排出口8となる貫通穴があけられており、ベースプレート4には試料を流すための内部流路10となる溝が形成されている。カバープレート2、ベースプレート4それぞれの表面のうち、互いに接合される側の表面、溝内及び貫通穴内にフッ素樹脂被膜12が被覆されており、そのフッ素樹脂被膜12が被覆されている表面同士を貼り合わせることにより、流路内壁がフッ素樹脂被膜12で覆われた構造のフローセルが形成されている。
An embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a flow cell of one embodiment.
The cover plate 2 and the base plate 4 are made of PDMS which is a kind of silicone rubber. The cover plate 2 is provided with through holes serving as the sample introduction port 6 and the discharge port 8, and the base plate 4 is formed with a groove serving as an internal channel 10 for flowing the sample. Of the surfaces of the cover plate 2 and the base plate 4, the fluororesin coating 12 is coated on the surfaces to be joined to each other, in the grooves and in the through holes, and the surfaces coated with the fluororesin coating 12 are pasted together. By combining them, a flow cell having a structure in which the inner wall of the flow path is covered with the fluororesin coating 12 is formed.

フッ素樹脂被膜12の厚さは、流路を流れる試料がカバープレート2とベースプレート4に直接に接触するのを防ぐことができる厚さであればよい。また、フッ素樹脂被膜12が接着層を兼ねる場合には所定の接合強度が得られる厚さであればよい。そのようなフッ素樹脂被膜12の厚さとしては、0.2μmから5μm程度が適当である。
このようなフローセルでは、流路を流れる試料はカバープレート2とベースプレート4のPDMSに直接に接触することがないため、カバープレート2とベースプレート4が有機溶剤等で膨潤や溶解することを防ぐことができる。
The thickness of the fluororesin coating 12 may be a thickness that can prevent the sample flowing through the flow path from directly contacting the cover plate 2 and the base plate 4. In addition, when the fluororesin coating 12 also serves as an adhesive layer, it may be of a thickness that provides a predetermined bonding strength. The thickness of such a fluororesin coating 12 is suitably about 0.2 μm to 5 μm.
In such a flow cell, the sample flowing through the flow path does not directly contact the PDMS of the cover plate 2 and the base plate 4, so that the cover plate 2 and the base plate 4 can be prevented from swelling or dissolving with an organic solvent or the like. it can.

図2に同実施例のフローセルの作製方法の一例を示す。
(A)カバープレート2とベースプレート4をモールド成型により形成するために、それぞれの反転パターンをもつ鋳型20を製作しておく。その鋳型製作は、例えば、シリコン基板にホトレジストを塗布し、マスクを介して露光、現像とリンスを経てレジストパターンを形成した後、そのレジストパターンをマスクとして例えばドライエッチングによりシリコン基板をエッチングすることにより行うことができる。
FIG. 2 shows an example of a method for manufacturing the flow cell of the embodiment.
(A) In order to form the cover plate 2 and the base plate 4 by molding, molds 20 having respective reversal patterns are manufactured. For example, the mold is manufactured by applying a photoresist to a silicon substrate, forming a resist pattern through exposure, development and rinsing through a mask, and then etching the silicon substrate by dry etching, for example, using the resist pattern as a mask. It can be carried out.

その鋳型20を用いてカバープレート2とベースプレート4をモールド成型するが、そのモールド成型は次のように行なう。成型する樹脂としてPDMSを用いる。PDMSは2液硬化性のシリコーンゴムであり、主材と硬化剤の2液を混ぜ合わせ、加熱することにより硬化する。そこで、その2液を混ぜ合わせた後に、鋳型20上に流し込み、加熱することによってPDMS部材上に流路パターンが形成される。
図2(A)はベースプレート4の成型工程を示しているが、試料注入口、排出口となる貫通穴を備えたカバープレート2も同様にPDMSにより形成する。
The cover plate 2 and the base plate 4 are molded using the mold 20, and the molding is performed as follows. PDMS is used as the resin to be molded. PDMS is a two-component curable silicone rubber, which is cured by mixing two components of a main material and a curing agent and heating. Therefore, after the two liquids are mixed, the flow pattern is formed on the PDMS member by pouring onto the mold 20 and heating.
FIG. 2 (A) shows the molding process of the base plate 4, but the cover plate 2 having through holes serving as the sample inlet and outlet is also formed by PDMS.

(B)次に、カバープレート2とベースプレート4の表面で、流路が形成される側の面、すなわち互いに接合される側の面に酸素プラズマ処理を行なう。処理条件の一例、例えばRIE(Reactive Ion Etching)装置において、酸素流量50sccm、圧力150mTorr、印加電力50Wで処理時間40秒である。
この酸素プラズマ処理は、次工程で塗布するフッ素樹脂剤の塗れ性の改善のために行なう。
(B) Next, oxygen plasma treatment is performed on the surfaces of the cover plate 2 and the base plate 4 on the side where the flow path is formed, that is, on the side where they are joined to each other. In an example of processing conditions, for example, in an RIE (Reactive Ion Etching) apparatus, an oxygen flow rate is 50 sccm, a pressure is 150 mTorr, an applied power is 50 W, and a processing time is 40 seconds.
This oxygen plasma treatment is performed to improve the wettability of the fluororesin agent applied in the next step.

次に、カバープレート2とベースプレート4の表面で、酸素プラズマ処理を施した面にフッ素アモルファス樹脂(サイトップ(CYTOP(登録商標)、旭ガラス株式会社製))12をスピンコートにより塗布(例えば3000rpmで30秒)し、その後、75℃で30秒加熱して硬化させる。フッ素アモルファス樹脂層の塗布はスピンコート法に替えて塗布液に浸漬するディップコート法により行なってもよい。   Next, the surface of the cover plate 2 and the base plate 4 is coated with a fluorine amorphous resin (CYTOP (registered trademark), manufactured by Asahi Glass Co., Ltd.) 12 on the surface subjected to the oxygen plasma treatment by spin coating (for example, 3000 rpm). And then cured by heating at 75 ° C. for 30 seconds. The fluorine amorphous resin layer may be applied by a dip coating method in which the fluorine amorphous resin layer is immersed in a coating solution instead of the spin coating method.

(C)その後、カバープレート2とベースプレート4を、フッ素アモルファス樹脂層12を形成した面を対向させて重ね合わせ、一定温度に制御された熱プレス機22,24により加圧、加熱して接合をおこなう。この条件は例えば115℃、40kPaである。
このようにして、流路内壁がすべてフッ素樹脂12で覆われたシリコーンゴム製のフローセルが完成する。
(C) After that, the cover plate 2 and the base plate 4 are overlapped with the surface on which the fluorine amorphous resin layer 12 is formed facing each other, and bonded by pressing and heating with the hot press machines 22 and 24 controlled to a constant temperature. Do it. This condition is, for example, 115 ° C. and 40 kPa.
In this way, a flow cell made of silicone rubber in which the inner walls of the flow path are all covered with the fluororesin 12 is completed.

PDMSは熱硬化性樹脂であり、フッ素アモルファス樹脂は熱可塑性樹脂であるため、PDMSの微細形状を熱変形させずにフッ素アモルファス樹脂層を熱融着することができる。   Since PDMS is a thermosetting resin and the fluorine amorphous resin is a thermoplastic resin, the fluorine amorphous resin layer can be heat-sealed without thermally deforming the fine shape of PDMS.

図3にPDMS成型品と、本発明によりフッ素樹脂被膜で表面を被覆したPDMS成型品について、有機溶剤耐性の評価実験を行った結果を示す。
微細な構造を形成したそれぞれの基板を、フッ化テトラブチルアンモニウムを1mMの濃度になるようにテトラヒドロフラン(THF)に溶解した溶液に1分間浸漬した後の顕微鏡観察像を示している。図3(1)はフッ素樹脂をコートしていないPDMS成型品であるが、この場合はパターンが溶解してしまっているのがわかる。それに対し、図3(2)はフッ素樹脂被膜で被覆したPDMS成型品であり、この場合にはパターンに変化がみられない。この結果から、フッ素樹脂により有機溶剤耐性が改善されていることが分かる。
FIG. 3 shows the results of an organic solvent resistance evaluation experiment conducted on a PDMS molded product and a PDMS molded product whose surface was coated with a fluororesin coating according to the present invention.
The microscopic observation image is shown after each substrate on which a fine structure has been formed is immersed for 1 minute in a solution of tetrabutylammonium fluoride dissolved in tetrahydrofuran (THF) to a concentration of 1 mM. FIG. 3A shows a PDMS molded product that is not coated with a fluororesin. In this case, it can be seen that the pattern is dissolved. On the other hand, FIG. 3 (2) shows a PDMS molded product coated with a fluororesin film, and in this case, no change is observed in the pattern. From this result, it is understood that the organic solvent resistance is improved by the fluororesin.

図4に蛍光物質の吸着に対する評価実験結果を示す。PDMS製のフローセルと、本発明によりフッ素樹脂被膜で流路表面を被覆したPDMS製フローセルにそれぞれ蛍光物質(ローダミンB)を10μMの濃度で含む溶液を流し、その後、純水でセル内をリンスした後の蛍光像を示している。図4(1)は純水で30分リンスした後のPDMSフローセルでの結果を示しており、流路内壁に蛍光物質が吸着していることが分かる。一方、図4(2)はフッ素樹脂被膜で流路表面を被覆したフローセルの場合で、純水で10秒間のみリンスした後での結果を示している。図4(2)には何の画像もなく、図中に示した破線は流路を示すためのものである。図4(2)を図4(1)の結果と比較すると、蛍光物質の吸着が低減していることが分かる。   FIG. 4 shows the evaluation experiment results for the adsorption of the fluorescent substance. A PDMS flow cell and a PDMS flow cell coated with a fluororesin coating according to the present invention were each flowed with a solution containing a fluorescent substance (rhodamine B) at a concentration of 10 μM, and then the inside of the cell was rinsed with pure water. The latter fluorescence image is shown. FIG. 4 (1) shows the result of the PDMS flow cell after rinsing with pure water for 30 minutes, and it can be seen that the fluorescent substance is adsorbed on the inner wall of the flow path. On the other hand, FIG. 4 (2) shows the result after rinsing with pure water only for 10 seconds in the case of a flow cell in which the flow path surface is covered with a fluororesin coating. There is no image in FIG. 4 (2), and the broken line shown in the figure is for showing the flow path. When FIG. 4 (2) is compared with the result of FIG. 4 (1), it can be seen that the adsorption of the fluorescent substance is reduced.

本発明のフローセルは、化学、生化学、生物、医学などの分野において、微量な流体試料を用いて化学分析や化学反応を行なうのに利用することができる。   The flow cell of the present invention can be used for chemical analysis and chemical reaction using a small amount of fluid sample in the fields of chemistry, biochemistry, biology, medicine, and the like.

一実施例のフローセルを示す図であり、(A)は斜視図、(B)はそのA−A線位置での断面図である。It is a figure which shows the flow cell of one Example, (A) is a perspective view, (B) is sectional drawing in the AA line position. 同実施例のフローセルを製作する方法の一例を示す工程断面図である。It is process sectional drawing which shows an example of the method of manufacturing the flow cell of the Example. 有機溶剤耐性の評価実験結果を示す画像であり、(1)はPDMS成型品、(2)はフッ素樹脂被膜で表面を被覆したPDMS成型品である。It is an image which shows the evaluation experiment result of organic-solvent tolerance, (1) is a PDMS molded article, (2) is a PDMS molded article which coat | covered the surface with the fluororesin film. 蛍光物質の吸着に対する評価実験結果を示す画像であり、(1)はPDMS成型品、(2)はフッ素樹脂被膜で流路の表面を被覆したPDMS成型品である。It is an image which shows the evaluation experiment result with respect to adsorption | suction of a fluorescent substance, (1) is a PDMS molded product, (2) is a PDMS molded product which coat | covered the surface of the flow path with the fluororesin film. 従来のフローセルを示す図であり、(A)は斜視図、(B)はそのA−A線位置での断面図である。It is a figure which shows the conventional flow cell, (A) is a perspective view, (B) is sectional drawing in the AA line position.

符号の説明Explanation of symbols

2 カバープレート
4 ベースプレート
6 試料導入口
8 試料排出口
10 内部流路
12 フッ素樹脂被膜
2 Cover plate 4 Base plate 6 Sample inlet 8 Sample outlet 10 Internal flow path 12 Fluororesin coating

Claims (4)

基板を構成する2つの部材の少なくとも一方の部材の表面に溝が形成され、両部材が前記溝を内側にして接合されていることにより、基板内部の前記溝を含む流路を備えているフローセルであって、
前記2つの部材のうち少なくとも一方は熱硬化性樹脂からなり、
かつ熱硬化性樹脂からなる部材の表面のうち少なくとも前記流路に面する部分の表面がフッ素樹脂被膜により被覆されていることを特徴とするフローセル。
A flow cell comprising a flow path including the groove inside the substrate by forming a groove on the surface of at least one member of the two members constituting the substrate and joining both members with the groove inside. Because
At least one of the two members is made of a thermosetting resin,
A flow cell characterized in that at least a part of the surface of the member made of thermosetting resin that faces the flow path is covered with a fluororesin coating.
前記2つの部材の接合面にも前記フッ素樹脂の層が存在し、そのフッ素樹脂層が接着層となっている請求項1に記載のフローセル。   2. The flow cell according to claim 1, wherein the fluororesin layer is also present on the joining surface of the two members, and the fluororesin layer serves as an adhesive layer. 前記熱硬化性樹脂はポリジメチルシロキサンである請求項1又は2に記載のフローセル。   The flow cell according to claim 1, wherein the thermosetting resin is polydimethylsiloxane. 前記フッ素樹脂はフッ素アモルファス樹脂である請求項1,2又は3に記載のフローセル。
The flow cell according to claim 1, wherein the fluororesin is a fluoroamorphous resin.
JP2003345857A 2003-10-03 2003-10-03 Flow cell Expired - Lifetime JP4365182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003345857A JP4365182B2 (en) 2003-10-03 2003-10-03 Flow cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003345857A JP4365182B2 (en) 2003-10-03 2003-10-03 Flow cell

Publications (2)

Publication Number Publication Date
JP2005114414A true JP2005114414A (en) 2005-04-28
JP4365182B2 JP4365182B2 (en) 2009-11-18

Family

ID=34539003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003345857A Expired - Lifetime JP4365182B2 (en) 2003-10-03 2003-10-03 Flow cell

Country Status (1)

Country Link
JP (1) JP4365182B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279493A (en) * 2004-03-30 2005-10-13 Nippon Telegr & Teleph Corp <Ntt> Microreactor and production method of the same
JP2007075950A (en) * 2005-09-14 2007-03-29 Kobe Steel Ltd Micro fluid device and process of manufacture thereof
WO2007049332A1 (en) * 2005-10-25 2007-05-03 Shimadzu Corporation Flow cell and process for producing the same
WO2008087787A1 (en) * 2007-01-16 2008-07-24 Konica Minolta Opto, Inc. Microchip and process for producing microchip
WO2008108178A1 (en) * 2007-03-02 2008-09-12 Konica Minolta Opto, Inc. Microchip manufacturing method
JP2008284626A (en) * 2007-05-16 2008-11-27 Miraial Kk Micro-flow channel device
JP2021509477A (en) * 2017-12-28 2021-03-25 エスディー バイオセンサー インコーポレイテッド Flow path structure of nucleic acid extraction cartridge
WO2021152987A1 (en) * 2020-01-30 2021-08-05 株式会社日立ハイテク Flow-cell and automated analysis device
WO2023210761A1 (en) * 2022-04-30 2023-11-02 慶應義塾 Medical instrument and manufacturing method thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279493A (en) * 2004-03-30 2005-10-13 Nippon Telegr & Teleph Corp <Ntt> Microreactor and production method of the same
JP2007075950A (en) * 2005-09-14 2007-03-29 Kobe Steel Ltd Micro fluid device and process of manufacture thereof
JP4656149B2 (en) * 2005-10-25 2011-03-23 株式会社島津製作所 Flow cell and manufacturing method thereof
WO2007049332A1 (en) * 2005-10-25 2007-05-03 Shimadzu Corporation Flow cell and process for producing the same
JPWO2007049332A1 (en) * 2005-10-25 2009-04-30 株式会社島津製作所 Flow cell and manufacturing method thereof
WO2008087787A1 (en) * 2007-01-16 2008-07-24 Konica Minolta Opto, Inc. Microchip and process for producing microchip
JP5239870B2 (en) * 2007-01-16 2013-07-17 コニカミノルタアドバンストレイヤー株式会社 Microchip and manufacturing method of microchip
WO2008108178A1 (en) * 2007-03-02 2008-09-12 Konica Minolta Opto, Inc. Microchip manufacturing method
US7901527B2 (en) 2007-03-02 2011-03-08 Konica Minolta Opto, Inc. Microchip manufacturing method
JP5229215B2 (en) * 2007-03-02 2013-07-03 コニカミノルタアドバンストレイヤー株式会社 Microchip manufacturing method
JP2008284626A (en) * 2007-05-16 2008-11-27 Miraial Kk Micro-flow channel device
JP2021509477A (en) * 2017-12-28 2021-03-25 エスディー バイオセンサー インコーポレイテッド Flow path structure of nucleic acid extraction cartridge
US11383242B2 (en) 2017-12-28 2022-07-12 Sd Biosensor, Inc. Channel structure of nucleic acid extracting cartridge
JP7146923B2 (en) 2017-12-28 2022-10-04 エスディー バイオセンサー インコーポレイテッド Flow channel structure of cartridge for nucleic acid extraction
WO2021152987A1 (en) * 2020-01-30 2021-08-05 株式会社日立ハイテク Flow-cell and automated analysis device
WO2023210761A1 (en) * 2022-04-30 2023-11-02 慶應義塾 Medical instrument and manufacturing method thereof
JP2023164208A (en) * 2022-04-30 2023-11-10 慶應義塾 Medical instrument and manufacturing method thereof

Also Published As

Publication number Publication date
JP4365182B2 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
Grover et al. Teflon films for chemically-inert microfluidic valves and pumps
Friend et al. Fabrication of microfluidic devices using polydimethylsiloxane
Morbioli et al. A practical guide to rapid-prototyping of PDMS-based microfluidic devices: A tutorial
Subramanian et al. Surface modification of droplet polymeric microfluidic devices for the stable and continuous generation of aqueous droplets
Shiroma et al. Self-regenerating and hybrid irreversible/reversible PDMS microfluidic devices
Carlborg et al. A high-yield process for 3-D large-scale integrated microfluidic networks in PDMS
Agostini et al. Polydimethylsiloxane (PDMS) irreversible bonding to untreated plastics and metals for microfluidics applications
JP4365182B2 (en) Flow cell
Yang et al. Rapid and low cost replication of complex microfluidic structures with PDMS double casting technology
Simone et al. A microvalve for hybrid microfluidic systems
Martin et al. Fast and inexpensive method for the fabrication of transparent pressure-resistant microfluidic chips
KR100961850B1 (en) Microfluidic chip using hydrophillic film
Jiang et al. A single low-cost microfabrication approach for polymethylmethacrylate, polystyrene, polycarbonate and polysulfone based microdevices
JP2016520011A (en) Lab-on-chip manufacturing method and system
KR20080090410A (en) Fine line bonding and/or sealing system and method
Zips et al. Direct stereolithographic 3D printing of microfluidic structures on polymer substrates for printed electronics
Baraket et al. Development of a flexible microfluidic system based on a simple and reproducible sealing process between polymers and poly (dimethylsiloxane)
Damodara et al. Materials and methods for microfabrication of microfluidic devices
JP2001088098A (en) Micro chemical device with depressurized liquid feeding mechanism
Carlborg et al. Rapid permanent hydrophilic and hydrophobic patterning of polymer surfaces via off-stoichiometry thiol-ene (OSTE) photografting
US8420181B2 (en) Method of producing microfluidic devices based on a polymer
Lee et al. Polymer micromixers bonded to thermoplastic films combining soft‐lithography with plasma and aptes treatment processes
Karthikeyan et al. Dimension tolerances in fabrication of polymer microfluidic devices
Dinh et al. Development of reversible bonding for microfluidic applications
CN110227563B (en) Evaporation-proof sealing method for PDMS (polydimethylsiloxane) micro-fluidic chip and PDMS micro-fluidic chip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4365182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term