JP2005112599A - Control device for motor - Google Patents

Control device for motor Download PDF

Info

Publication number
JP2005112599A
JP2005112599A JP2003351602A JP2003351602A JP2005112599A JP 2005112599 A JP2005112599 A JP 2005112599A JP 2003351602 A JP2003351602 A JP 2003351602A JP 2003351602 A JP2003351602 A JP 2003351602A JP 2005112599 A JP2005112599 A JP 2005112599A
Authority
JP
Japan
Prior art keywords
storage device
power storage
circuit
motor
elevator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003351602A
Other languages
Japanese (ja)
Other versions
JP4613485B2 (en
Inventor
Hirohiko Tsutsumi
裕彦 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2003351602A priority Critical patent/JP4613485B2/en
Publication of JP2005112599A publication Critical patent/JP2005112599A/en
Application granted granted Critical
Publication of JP4613485B2 publication Critical patent/JP4613485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Elevator Control (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that a secondary battery has to be changed in a short period of time as frequent repetition of charging/discharging shortens its lifetime when a DC intermediate circuit absorbs generative energy by using the secondary battery in case a voltage type inverter is used for controlling an elevator. <P>SOLUTION: A chopper circuit for flowing current in both directions is connected to the DC intermediate circuit of the voltage type inverter. A DC circuit connecting a reactor and a high input/output density storage device is connected between the chopper circuit and a negative electrode of the DC intermediate circuit. Between a bridging point of the DC circuit and the negative electrode of the DC intermediate circuit, a DC circuit connecting a switch body and a high capacity storage device is connected. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は電動機の制御装置に係わり、特にエレベータ用電動機の制御装置に関するものである。   The present invention relates to an electric motor control device, and more particularly to an elevator electric motor control device.

エレベータ用電動機の制御装置として電圧形インバータが使用される場合がある。電圧形インバータは、交流電源を直流に変換する順変換部と、この順変換部の直流中間電圧を可変周波数可変電圧の交流に変換する逆変換部を有している。
この電圧形インバータにおいては、その負荷である電動機側からエネルギーが回生する運転では、直流中間回路電圧が上昇してインバータに使用されているスイッチング素子の耐電圧を越えてこの素子を破損する虞れを有している。このため、直流中間回路に回生抵抗を接続して回生エネルギーをこの抵抗によって熱消費させるか、電源への回生回路を設けるか、あるいは特許文献1のように直流中間回路に蓄電装置を設け、この蓄電装置にエネルギーを吸収して直流中間回路の電圧上昇を防いでいる。
特開昭61−267675号公報
A voltage source inverter may be used as a control device for an elevator motor. The voltage source inverter includes a forward conversion unit that converts an alternating current power source into direct current, and an inverse conversion unit that converts a direct current intermediate voltage of the forward conversion unit into alternating current of a variable frequency variable voltage.
In this voltage source inverter, during operation where energy is regenerated from the motor side that is the load, the DC intermediate circuit voltage may rise and exceed the withstand voltage of the switching element used in the inverter, possibly damaging this element. have. For this reason, a regenerative resistor is connected to the DC intermediate circuit and regenerative energy is consumed by this resistance, or a regenerative circuit to the power supply is provided, or a power storage device is provided in the DC intermediate circuit as in Patent Document 1, The energy storage device absorbs energy to prevent a voltage increase in the DC intermediate circuit.
JP-A 61-267675

直流中間回路に回生抵抗を接続し、電圧上昇時にこの抵抗に電流を流して熱消費させる方法は、省エネルギーの観点から望ましいものではない。また、順変換部とは逆並列に変換回路を接続して交流電源に回生する方法は、高効率で回生エネルギーを電源に回生する利点は有するが、変換回路のスイッチング動作によるノイズによって周囲機器を誤動作させる虞れを有すると共に、停電発生時に運転を継続するためには別の電源装置が必要となって高コストとなる。
また、直流中間回路に蓄電装置を設けて回生エネルギーを吸収する方法では、蓄電素子として二次電池を用いた場合、エレベータのように頻繁な充放電を繰り返すものでは電池寿命が短くなり、短期間で蓄電装置を交換しなければならない等の問題点を有していた。
A method in which a regenerative resistor is connected to the DC intermediate circuit and current is passed through the resistor when the voltage rises to dissipate heat is not desirable from the viewpoint of energy saving. In addition, the method of connecting the conversion circuit in reverse parallel to the forward conversion unit and regenerating to the AC power supply has the advantage of regenerating the regenerative energy to the power supply with high efficiency, but the surrounding equipment is affected by noise due to the switching operation of the conversion circuit. In addition to the possibility of malfunction, a separate power supply is required to continue operation when a power failure occurs, resulting in high costs.
Also, in the method of absorbing regenerative energy by providing a power storage device in the DC intermediate circuit, when a secondary battery is used as the power storage element, the battery life is shortened and shortened if it is repeatedly charged and discharged like an elevator. However, the power storage device had to be replaced.

本発明が目的とするところは、直流中間回路に蓄電装置を設ける方法での蓄電装置の長寿命化等が図れる電動機の制御装置を提供することにある。   An object of the present invention is to provide an electric motor control device capable of extending the life of a power storage device by a method of providing a power storage device in a DC intermediate circuit.

本発明の第1は、エレベータ制御に電圧型インバータを使用し、その直流中間回路に蓄電装置を接続し、制御部の制御指令にて回生エネルギーを蓄電装置に吸収するものにおいて、
前記電圧型インバータの直流中間回路に双方向に電流を流すチョッパ回路を接続し、このチョッパ回路と直流中間回路の負極間にリアクトルと高入出力密度蓄電装置との直流回路を接続し、且つ、この直流回路の橋絡点と直流中間回路の負極間にスイッチ体と高容量蓄電装置との直流回路を接続して構成したことを特徴としたものである。
In the first aspect of the present invention, a voltage type inverter is used for elevator control, a power storage device is connected to the DC intermediate circuit, and regenerative energy is absorbed into the power storage device by a control command of the control unit.
Connecting a chopper circuit that allows current to flow bidirectionally to the DC intermediate circuit of the voltage-type inverter, connecting a DC circuit of a reactor and a high input / output density power storage device between the negative electrode of the chopper circuit and the DC intermediate circuit, and A DC circuit of a switch body and a high-capacity power storage device is connected between the bridging point of the DC circuit and the negative electrode of the DC intermediate circuit.

本発明の第2は、前記スイッチ体は、停電でない通常運転時には開路状態に維持されて回生エネルギーの充放電を高入出力密度蓄電装置にて実行し、停電発生時に前記スイッチ体は閉路され、前記高容量蓄電装置よりリアクトル及びチョッパ回路を通して充電電荷を放電するよう構成したことを特徴としたものである。   According to a second aspect of the present invention, the switch body is maintained in an open circuit state during normal operation that is not a power failure, and charge / discharge of regenerative energy is performed by the high input / output density power storage device, and the switch body is closed when a power failure occurs, The high-capacity power storage device is configured to discharge charged charges through a reactor and a chopper circuit.

本発明の第3は、前記高入出力密度蓄電装置と高容量蓄電装置の電圧を比較し、両電圧が略同等となった時点にて前記スイッチ体を閉路するよう構成したことを特徴としたものである。   A third aspect of the present invention is characterized in that the switch body is closed when the voltages of the high input / output density power storage device and the high capacity power storage device are compared and when both voltages are substantially equal. Is.

本発明の第4は、前記高入出力密度蓄電装置の充電電圧を監視し、所定値以上となったときに前記スイッチ体を閉路して高容量蓄電装置で回生エネルギーを吸収し、電動機力行時にこの高容量蓄電装置より放電するよう構成したことを特徴としたものである。   According to a fourth aspect of the present invention, the charging voltage of the high input / output density power storage device is monitored. When the charge voltage exceeds a predetermined value, the switch body is closed and regenerative energy is absorbed by the high capacity power storage device. The high-capacity power storage device is configured to be discharged.

本発明の第5は、前記高容量蓄電装置の充電状態を監視する監視手段を設け、充電を必要とする任意時点にて前記スイッチ体を閉路し、チョッパ回路を介して充電を行うよう構成したことを特徴としたものである。   According to a fifth aspect of the present invention, there is provided monitoring means for monitoring a charge state of the high-capacity power storage device, and the switch body is closed at an arbitrary time point that requires charging, and charging is performed via a chopper circuit. It is characterized by that.

本発明の第6は、エレベータの運転待機中にチョッパ回路を介して高入出力密度蓄電装置に充電し、電動機力行時に高入出力密度蓄電装置より放電するよう構成したことを特徴としたものである。   The sixth aspect of the present invention is characterized in that the high input / output density power storage device is charged via the chopper circuit during standby of the elevator and is discharged from the high input / output density power storage device when the motor is powered. is there.

本発明の第7は、前記高容量蓄電装置に専用の充電器を設けたことを特徴としたものである。   A seventh aspect of the present invention is characterized in that a dedicated charger is provided in the high capacity power storage device.

本発明の第8は、前記制御部は、直流中間回路電圧若しくは停電検出信号をもとにスイッチ体をオンオフ制御するスイッチ制御手段と、電動機が駆動状態か回生状態かを判別する電動機状態判断手段と、この電動機状態に伴って充放電を判別してチョッパ回路を制御するチョッパ回路制御手段を有することを特徴とした
ものである。
According to an eighth aspect of the present invention, the control unit controls the switch body on / off based on the DC intermediate circuit voltage or the power failure detection signal, and the motor state determination unit determines whether the motor is in a driving state or a regenerative state. And chopper circuit control means for controlling the chopper circuit by discriminating charging / discharging in accordance with the state of the motor.

以上のとおり、本発明によれば、通常運転中の回生エネルギーの吸収は高入出力密度蓄電装置で行われるので、高容量蓄電装置による充放電の頻度が低下してこの高容量蓄電装置の長寿命が期待できるものである。
また、高入出力密度蓄電装置で回生エネルギーが吸収しきれないときには高容量蓄電装置にて吸収することによりダイナミックブレーキ回路で熱消費することがなく、エネルギーの有効利用が可能となる。
また、高容量蓄電装置に充電監視手段を設け、チョッパ回路によって高容量蓄電装置の充放電制御を行うようにした場合には、装置の部品点数を減らすことが可能となるものである。
As described above, according to the present invention, since the regenerative energy absorption during normal operation is performed by the high input / output density power storage device, the frequency of charging / discharging by the high capacity power storage device is reduced, and the length of the high capacity power storage device is increased. Life expectancy can be expected.
Further, when the regenerative energy cannot be absorbed by the high input / output density power storage device, it is absorbed by the high capacity power storage device, so that heat is not consumed by the dynamic brake circuit, and energy can be used effectively.
Further, when charge monitoring means is provided in the high-capacity power storage device and charge / discharge control of the high-capacity power storage device is performed by the chopper circuit, the number of parts of the device can be reduced.

また、高入出力密度蓄電装置と高容量蓄電装置の電圧が略同等となったときにスイッチ体を投入することにより、電圧のアンバランスによって生じる突入電流の防止が可能となり、大電流の充放電を要因とする蓄電装置の寿命低下を防止することが可能となる。
更には、エレベータの待機中にチョッパ回路を介して高入出力密度蓄電装置を充電し、電動機の力行時にその充電電荷を放電することにより駆動運転中の電源容量を低減することができ、電気設備容量を低減することが可能となる。
また、高容量蓄電装置に専用の充電器を設けることにより、蓄電池の種類に応じた最適な充電が可能となるものである。
In addition, by turning on the switch body when the voltages of the high input / output density power storage device and the high capacity power storage device are substantially equal, it is possible to prevent inrush current caused by voltage imbalance, and charge and discharge of large current It is possible to prevent the life of the power storage device from being reduced due to the above.
Furthermore, it is possible to reduce the power capacity during driving operation by charging the high input / output density power storage device via the chopper circuit while the elevator is on standby, and discharging the charged charge when the motor is powered. The capacity can be reduced.
In addition, by providing a dedicated charger for the high-capacity power storage device, optimal charging according to the type of the storage battery is possible.

図1は、本発明の実施例を示す構成図で、1は交流電源からの交流電力を直流に変換する順変換部、2は直流電圧を平滑するための平滑コンデンサ、3は直流電圧を可変周波数可変電圧の交流に変換する逆変換部で、IGBT等のスイッチング素子よりなってその出力は負荷である誘導電動機4に供給される。また、誘導電動機3が回生状態時には、電動機に誘起した電圧は逆変換部3のダイオードを通って直流中間回路に回生される。   FIG. 1 is a block diagram showing an embodiment of the present invention, wherein 1 is a forward conversion unit for converting AC power from an AC power source into DC, 2 is a smoothing capacitor for smoothing DC voltage, and 3 is a variable DC voltage. This is an inverse conversion unit that converts the frequency variable voltage into alternating current, and is composed of switching elements such as IGBTs, and its output is supplied to the induction motor 4 that is a load. Further, when the induction motor 3 is in the regenerative state, the voltage induced in the motor is regenerated to the DC intermediate circuit through the diode of the inverse conversion unit 3.

5は直流/直流変換を行うためのチョッパ回路で、ここではIGBT等のスイッチング素子SW1,SW2が直流中間回路の正,負の極間に直列に接続されている。チョッパ回路5のスイッチング素子SW1,SW2の橋絡点と直流中間回路の負極間には、リアクトル9と電気二重層コンデンサ等よりなる高入出力密度の蓄電装置6との直列回路が接続されている。また、このリアクトル9と蓄電装置6の橋絡点と直流中間回路の負極間にはスイッチ体8とNi−Cd電池の如き高容量の蓄電装置7との直列回路が接続されている。スイッチ体8は通常運転時には開路状態とされ、停電発生時に閉路状態に制御される。   Reference numeral 5 denotes a chopper circuit for performing DC / DC conversion. Here, switching elements SW1 and SW2 such as IGBTs are connected in series between positive and negative poles of a DC intermediate circuit. Between the bridging point of the switching elements SW1 and SW2 of the chopper circuit 5 and the negative electrode of the DC intermediate circuit, a series circuit of a reactor 9 and a power storage device 6 having a high input / output density composed of an electric double layer capacitor or the like is connected. . A series circuit of a switch body 8 and a high-capacity power storage device 7 such as a Ni-Cd battery is connected between the bridge point of the reactor 9 and the power storage device 6 and the negative electrode of the DC intermediate circuit. The switch body 8 is opened during normal operation, and is controlled to be closed when a power failure occurs.

10はダイナミックブレーキ回路で、後述するように回生エネルギーを吸収しきれない場合のみスイッチング素子SW3をオンにし、抵抗Rに電流を流して熱消費させる。11は制御部で、この制御部11には、図示省略された各検出部から種々の検出信号が入力され、この検出信号に基づいてチョッパ回路5、スイッチ体8及びスイッチング素子SW3が制御される。そのために、直流中間回路の電圧,電流検出部から電圧V1,電流Iを、逆変換部からの電動機駆動状態信号V3を、蓄電装置6から充電電圧VC、蓄電装置7から電圧VB、停電検出部又は直流中間回路の電圧検出部から停電検出信号V2がそれぞれ周知の検出手法によって検出されて制御部11に入力される。したがって、この制御部11は、直流中間回路電圧若しくは停電検出信号をもとにスイッチ体をオンオフ制御するスイッチ制御手段と、電動機が駆動状態か回生状態かを判別する電動機状態判断手段と、この電動機状態に伴って充放電を判別してチョッパ回路を制御するチョッパ回路制御手段を有している。 Reference numeral 10 denotes a dynamic brake circuit, which turns on the switching element SW3 only when regenerative energy cannot be absorbed, as will be described later, and causes a current to flow through the resistor R for heat consumption. Reference numeral 11 denotes a control unit. Various detection signals are input to the control unit 11 from each detection unit (not shown), and the chopper circuit 5, the switch body 8, and the switching element SW3 are controlled based on the detection signals. . For this purpose, the voltage of the DC intermediate circuit, the voltage V 1 and the current I from the current detector, the motor drive state signal V 3 from the inverse converter, the charging voltage V C from the power storage device 6, and the voltage V B from the power storage device 7. The power failure detection signal V 2 is detected by a known detection method from the power failure detection unit or the voltage detection unit of the DC intermediate circuit, and is input to the control unit 11. Therefore, the control unit 11 includes a switch control unit that controls on / off of the switch body based on the DC intermediate circuit voltage or the power failure detection signal, a motor state determination unit that determines whether the motor is in a driving state or a regeneration state, and the motor Chopper circuit control means for determining charge / discharge according to the state and controlling the chopper circuit is provided.

次に動作を説明する。
逆変換部3はエレベータの運転指令に基づき負荷に対応しながら例えばPWM制御方式で制御されるが、この制御については直接本発明とは関係ないのでその説明は省略する。
Next, the operation will be described.
The inverse conversion unit 3 is controlled by, for example, a PWM control method while responding to a load based on an elevator operation command. However, since this control is not directly related to the present invention, the description thereof is omitted.

図2は制御部11の動作フローを示したものである。
通常状態のエレベータ運転時にはスイッチ体8はオフ状態となっている。すなわち、スイッチ体8の制御手段は、導入された電圧V1(若しくはV2)からステップS1において交流電源に停電が発生していないことを検知し、S2でステップ体8をオフ状態に維持する。ステップS3で電動機状態判断手は電圧V3から電動機は駆動か回生かの運転状態を判定し、その結果現在は駆動状態であると判定したとき、S5において放電判断手段は蓄電装置6の電圧VCと電圧V1,電流Iから蓄電装置6からの放電が可能であるか否かを判断する。放電不可能の場合にはそのままの運転となるが、放電可能の場合には、チョッパ制御手段を介して放電のたるのチョッパ制御が行われる。すなわち、チョッパ回路5のスイッチング素子SW2をオンオフ制御することにより、蓄電装置6の電荷はリアクトル9,スイッチング素子SW1のダイオードを通して直流中間回路に放電する。
FIG. 2 shows an operation flow of the control unit 11.
During the elevator operation in the normal state, the switch body 8 is in an off state. That is, the control means of the switch body 8 detects from the introduced voltage V 1 (or V 2 ) that no power failure has occurred in the AC power source in step S1, and maintains the step body 8 in the off state in S2. . Motor state determining hands in step S3 the motor from the voltage V 3 determines the regenerative or operating conditions or driving, when it is judged the result as the current in the driving state, a discharge determining means in S5 the voltage V of power storage device 6 It is determined from C , voltage V 1 , and current I whether or not discharging from power storage device 6 is possible. When the discharge is impossible, the operation is performed as it is, but when the discharge is possible, the chopper control of the discharge is performed via the chopper control means. That is, by turning on / off the switching element SW2 of the chopper circuit 5, the electric charge of the power storage device 6 is discharged to the DC intermediate circuit through the reactor 9 and the diode of the switching element SW1.

一方、S3において電動機状態判断手段が電動機は駆動状態ではないと判断したとき、S7において回生状態か否かが判断され。回生状態でない場合はそのまま運転されるが、回生状態時にはS8で蓄電装置6は充電可能か否かが判断され、充電不可能の場合にはそのまま運転されるが充電可能の場合にはS9でチョッパ回路に対して充電動作開始を命じる。すなわち、制御部11はチョッパ回路のスイッチング素子SW1にゲートにオンオフ信号を出力し、回生エネルギーをスイッチング素子SW1,リアクトル9を介して蓄電装置6に吸収する。   On the other hand, when the motor state determining means determines in S3 that the motor is not in the driving state, it is determined in S7 whether or not it is in the regenerative state. If it is not in the regenerative state, it is operated as it is. In the regenerative state, it is determined in S8 whether or not the power storage device 6 can be charged. If it cannot be charged, it is operated as it is, but if it can be charged, the chopper in S9. Commands the circuit to start charging. That is, the control unit 11 outputs an on / off signal to the gate of the switching element SW1 of the chopper circuit, and absorbs the regenerative energy in the power storage device 6 via the switching element SW1 and the reactor 9.

ステップS1において停電と判断されたときには、S10でスイッチ体10がオン状態にされた後、S11において電動機状態判断手段による現在の電動機の状態が判断される。その結果、電動機は駆動状態であった場合、S12で放電判断手段による蓄電装置7は放電可能が否かの判断がなされ、不可能の場合にはそのままの運転となるが、可能の場合にはS13においてスイッチング素子SW2のオンオフによる放電動作を開始して停電時における電動機の運転を継続する。   When it is determined in step S1 that there is a power failure, after the switch body 10 is turned on in S10, the current state of the motor by the motor state determination means is determined in S11. As a result, when the electric motor is in a driving state, in S12, it is determined whether or not the power storage device 7 can be discharged by the discharge determination means. In S13, the discharging operation by turning on / off the switching element SW2 is started, and the operation of the electric motor at the time of power failure is continued.

また、S14において、電動機状態判断手段による判断が回生と判断された場合には、S15で充電判断手段による充電可能か否かが判断され、不可能の場合にはそのままの運転となるが可能の場合にはS16でチョッパ回路のスイッチング素子SW1のオンオフによる蓄電装置8への充電が開始される。
なお、上記動作によって蓄電装置6,7が回生エネルギーを吸収しきれずに直流中間回路の電圧が上昇した場合には、スイッチング素子SW3をオンすることにより抵抗Rによって熱消費し、直流中間回路の電圧一定値以下に保持する。
In S14, if the determination by the motor state determination means is determined to be regenerative, it is determined in S15 whether or not charging is possible by the charge determination means. If it is not possible, the operation can be continued as it is. In this case, charging to the power storage device 8 is started by turning on / off the switching element SW1 of the chopper circuit in S16.
When the voltage of the DC intermediate circuit rises without the regenerative energy being absorbed by the power storage devices 6 and 7 by the above operation, heat is consumed by the resistor R by turning on the switching element SW3, and the voltage of the DC intermediate circuit is increased. Hold below a certain value.

上記実施例によれば、停電発生時においても逆変換部3の直流電圧は一定時間維持されるので、エレベータにおける停電による閉じ込み状態は防止されて最寄りの着床位置にまで運転することが可能であり、しかも、停電時に以外の常時の蓄電装置6として電気二重層コンデンサのような高入出力密度の蓄電装置が使用されたことにより、チョッパ回路を介して高電流の充放電を繰り返しても長寿命のものが得られる。また、高容量の蓄電装置7は停電時にのみ放電動作が行われないので、充放電回数寿命の短い安価なものでもよい。   According to the above embodiment, since the DC voltage of the reverse conversion unit 3 is maintained for a certain time even when a power failure occurs, it is possible to prevent a closed state due to a power failure in the elevator and to drive to the nearest landing position. In addition, since a power storage device with a high input / output density such as an electric double layer capacitor is used as the power storage device 6 at all times other than at the time of a power failure, charging and discharging at a high current through the chopper circuit is repeated. Long-life products can be obtained. Moreover, since the high capacity | capacitance electrical storage apparatus 7 is not discharged only at the time of a power failure, it may be cheap with a short life of charge / discharge.

なお、上記実施例によれば、蓄電装置7は停電時にのみスイッチがオンされて放電動作のみを行っているが、この蓄電装置7に充電状態を監視する監視部を設け、充電が必要と判断されたときにはスイッチ体8をオンすると共にチョッパ回路を制御し、直流中間回路からチョッパ回路5,リアクトル9,スイッチ体8を介して充電を行い、充電終了時点でスイッチ体8をオフ状態としてもよい。この場合には蓄電装置7には常時高電圧で充電されているので、格別の充電装置を設けることなくチョッパ回路のみで実施できるため部品点数を減らすことが可能となる。   Note that, according to the above embodiment, the power storage device 7 is switched on only during a power failure and performs only a discharge operation. However, the power storage device 7 is provided with a monitoring unit that monitors the charge state, and it is determined that charging is necessary. When it is done, the switch body 8 is turned on and the chopper circuit is controlled to charge from the DC intermediate circuit via the chopper circuit 5, the reactor 9, and the switch body 8, and the switch body 8 may be turned off at the end of charging. . In this case, since the power storage device 7 is always charged with a high voltage, it can be implemented only by the chopper circuit without providing a special charging device, so that the number of components can be reduced.

他の実施例として、回生状態が連続して発生する場合、高入出力密度蓄電装置6では回生エネルギーが吸収しきれない場合が想定される。その場合には、スイッチ体8をオンして蓄電装置7で回生エネルギーを吸収し、電動機の駆動運転時に放出するよう制御してもよい。この実施例によれば、回生エネルギーの利用が有効に行われるので電力使用量は大幅に減少する。   As another example, when the regenerative state occurs continuously, it is assumed that the regenerative energy cannot be absorbed by the high input / output density power storage device 6. In that case, the switch body 8 may be turned on to control the power storage device 7 to absorb the regenerative energy and release it during the driving operation of the electric motor. According to this embodiment, since the regenerative energy is effectively used, the amount of power used is greatly reduced.

また、図2の動作フローでは、スイッチ体8は停電発生と同時にオン状態としているが、他の実施例として制御部11に導入している高入出力密度蓄電装置6の電圧が高容量蓄電装置7の電圧と同等となった時点にてスイッチ体8を投入してもよい。この例によると、電圧のアンバランスによって生じる突入電流を防止することが可能となり、大電流の充放電を要因とする蓄電装置の寿命低下を防止することが可能となる。   In the operation flow of FIG. 2, the switch body 8 is turned on simultaneously with the occurrence of a power failure. However, as another embodiment, the voltage of the high input / output density power storage device 6 introduced into the control unit 11 is the high capacity power storage device. The switch body 8 may be turned on when the voltage becomes equal to the voltage 7. According to this example, it is possible to prevent an inrush current caused by voltage imbalance, and it is possible to prevent a reduction in the life of the power storage device due to a large current charge / discharge.

更には、エレベータの待機中にチョッパ回路5を介して高入出力密度蓄電装置6を充電し、電動機4の力行時に放電するよう制御部を構成してもよい。この例によると駆動運転中の電源容量を低減できるため、電気設備容量を低減することが可能となる。
また、高容量蓄電装置7の両端に充電専用の充電器を設けてもよく、この場合には蓄電池の種類に応じた最適な充電が可能となる。
Furthermore, the controller may be configured to charge the high input / output density power storage device 6 via the chopper circuit 5 during standby of the elevator and to discharge the electric motor 4 during powering. According to this example, since the power supply capacity during driving operation can be reduced, the electric equipment capacity can be reduced.
Moreover, you may provide the charger only for charge at the both ends of the high capacity | capacitance electrical storage apparatus 7, and the optimal charge according to the kind of storage battery is attained in this case.

本発明の実施形態を示す構成図。The block diagram which shows embodiment of this invention. 本発明の制御フロー図。The control flow figure of this invention.

符号の説明Explanation of symbols

1…順変換部
2…平滑コンデンサ
3…逆変換部
4…電動機
5…チョッパ回路
6…高入出力密度蓄電装置
7…高容量蓄電装置
8…スイッチ体
9…リアクトル
10…ダイナミックブレーキ回路
11…制御部
1 ... Forward conversion part
2. Smoothing capacitor
3 ... Inverse conversion unit
4 ... Electric motor
5 ... Chopper circuit
6. High input / output density power storage device
7. High-capacity power storage device
8 ... Switch body
9 ... Reactor
10 ... Dynamic brake circuit 11 ... Control unit

Claims (8)

エレベータ制御に電圧型インバータを使用し、その直流中間回路に蓄電装置を接続し、制御部の制御指令にて回生エネルギーを蓄電装置に吸収するものにおいて、
前記電圧型インバータの直流中間回路に双方向に電流を流すチョッパ回路を接続し、このチョッパ回路と直流中間回路の負極間にリアクトルと高入出力密度蓄電装置との直流回路を接続し、且つ、この直流回路の橋絡点と直流中間回路の負極間にスイッチ体と高容量蓄電装置との直流回路を接続して構成したことを特徴としたエレベータ用電動機の制御装置。
Using a voltage type inverter for elevator control, connecting a power storage device to the DC intermediate circuit, and absorbing the regenerative energy in the power storage device by the control command of the control unit,
Connecting a chopper circuit that allows current to flow bidirectionally to the DC intermediate circuit of the voltage-type inverter, connecting a DC circuit of a reactor and a high input / output density power storage device between the negative electrode of the chopper circuit and the DC intermediate circuit, and An elevator motor control device comprising a DC circuit of a switch body and a high-capacity power storage device connected between a bridging point of the DC circuit and a negative electrode of a DC intermediate circuit.
前記スイッチ体は、停電でない通常運転時には開路状態に維持され
て回生エネルギーの充放電を高入出力密度蓄電装置にて実行し、停電発生時には前記スイッチ体は閉路され、前記高容量蓄電装置よりリアクトル及びチョッパ回路を通して充電電荷を放電するよう構成したことを特徴とした請求項1記載のエレベータ用電動機の制御装置。
The switch body is maintained in an open circuit state during a normal operation that is not a power failure, and charging / discharging of regenerative energy is performed by the high input / output density power storage device, and when the power failure occurs, the switch body is closed, and the reactor is closed from the high capacity power storage device. 2. The control device for an elevator motor according to claim 1, wherein the charge is discharged through the chopper circuit.
前記高入出力密度蓄電装置と高容量蓄電装置の電圧を比較し、両電圧が略同等となった時点にて前記スイッチ体を閉路するよう構成したことを特徴とした請求項1記載のエレベータ用電動機の制御装置。 2. The elevator according to claim 1, wherein the switch body is closed when the voltages of the high input / output density power storage device and the high capacity power storage device are compared and when both voltages become substantially equal. Electric motor control device. 前記高入出力密度蓄電装置の充電電圧を監視し、所定値以上となったときに前記スイッチ体を閉路して高容量蓄電装置で回生エネルギーを吸収し、電動機力行時にこの高容量蓄電装置より放電するよう構成したことを特徴とした請求項1乃至3記載のエレベータ用電動機の制御装置。 The charging voltage of the high input / output density power storage device is monitored. When the charge voltage exceeds a predetermined value, the switch body is closed and regenerative energy is absorbed by the high capacity power storage device. 4. The elevator motor control apparatus according to claim 1, wherein the control apparatus is an elevator motor. 前記高容量蓄電装置の充電状態を監視する監視手段を設け、充電を必要とする任意時点にて前記スイッチ体を閉路し、チョッパ回路を介して充電を行うよう構成したことを特徴とした請求項1乃至4記載のエレベータ用電動機の制御装置。 The monitoring means for monitoring the state of charge of the high-capacity power storage device is provided, and the switch body is closed at an arbitrary time point that requires charging, and charging is performed via a chopper circuit. The control apparatus of the electric motor for elevators of 1 thru | or 4. エレベータの運転待機中にチョッパ回路を介して高入出力密度蓄電装置に充電し、電動機力行時に高入出力密度蓄電装置より放電するよう構成したことを特徴とした請求項1乃至5記載のエレベータ用電動機の制御装置。 6. The elevator use according to claim 1, wherein the high input / output density power storage device is charged through a chopper circuit during standby of the elevator and is discharged from the high input / output density power storage device when the motor is powered. Electric motor control device. 前記高容量蓄電装置に専用の充電器を設けたことを特徴とした請求項1乃至6記載のエレベータ用電動機の制御装置。 The elevator motor control device according to claim 1, wherein a dedicated charger is provided in the high-capacity power storage device. 前記制御部は、直流中間回路電圧若しくは停電検出信号をもとにスイッチ体をオンオフ制御するスイッチ制御手段と、電動機が駆動状態か回生状態かを判別する電動機状態判断手段と、この電動機状態に伴って充放電を判別してチョッパ回路を制御するチョッパ回路制御手段を有することを特徴とした請求項1乃至7記載のエレベータ用電動機の制御装置。
The control unit includes a switch control unit that controls on / off of the switch body based on a DC intermediate circuit voltage or a power failure detection signal, a motor state determination unit that determines whether the motor is in a driving state or a regenerative state, and the motor state 8. The control apparatus for an elevator motor according to claim 1, further comprising chopper circuit control means for controlling charging and discharging to control the chopper circuit.
JP2003351602A 2003-10-10 2003-10-10 Electric motor control device Expired - Fee Related JP4613485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003351602A JP4613485B2 (en) 2003-10-10 2003-10-10 Electric motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003351602A JP4613485B2 (en) 2003-10-10 2003-10-10 Electric motor control device

Publications (2)

Publication Number Publication Date
JP2005112599A true JP2005112599A (en) 2005-04-28
JP4613485B2 JP4613485B2 (en) 2011-01-19

Family

ID=34542791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003351602A Expired - Fee Related JP4613485B2 (en) 2003-10-10 2003-10-10 Electric motor control device

Country Status (1)

Country Link
JP (1) JP4613485B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009023763A (en) * 2007-07-18 2009-02-05 Hitachi Ltd Elevator driving device
JP2011230864A (en) * 2010-04-23 2011-11-17 Hokusho Co Ltd Electricity storage control device for vertical conveying machine
WO2012172590A1 (en) * 2011-06-13 2012-12-20 三菱電機株式会社 Elevator control device
DE102012016700A1 (en) * 2012-08-24 2014-05-15 Michael Koch Gmbh Method and device for buffering electrical energy
US20140372050A1 (en) * 2012-03-27 2014-12-18 Mitsubishi Electric Corporation Life diagnosis method for power storage device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61267675A (en) * 1985-05-20 1986-11-27 株式会社東芝 Controller for elevator
JP2001114482A (en) * 1999-10-18 2001-04-24 Toshiba Fa Syst Eng Corp Saving operation device at stop of elevator
JP2001240325A (en) * 2000-02-28 2001-09-04 Mitsubishi Electric Corp Control device of elevator
JP2001261246A (en) * 2000-01-13 2001-09-26 Fujitec Co Ltd Power supply device of ac elevator
JP2002325378A (en) * 2001-04-26 2002-11-08 Kobelco Contstruction Machinery Ltd Power controller of hybrid construction machine
JP2003529511A (en) * 2000-03-31 2003-10-07 インベンテイオ・アクテイエンゲゼルシヤフト Apparatus and method for reducing the power connection rating of an elevator installation
JP2005089096A (en) * 2003-09-17 2005-04-07 Toshiba Elevator Co Ltd Elevator control device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61267675A (en) * 1985-05-20 1986-11-27 株式会社東芝 Controller for elevator
JP2001114482A (en) * 1999-10-18 2001-04-24 Toshiba Fa Syst Eng Corp Saving operation device at stop of elevator
JP2001261246A (en) * 2000-01-13 2001-09-26 Fujitec Co Ltd Power supply device of ac elevator
JP2001240325A (en) * 2000-02-28 2001-09-04 Mitsubishi Electric Corp Control device of elevator
JP2003529511A (en) * 2000-03-31 2003-10-07 インベンテイオ・アクテイエンゲゼルシヤフト Apparatus and method for reducing the power connection rating of an elevator installation
JP2002325378A (en) * 2001-04-26 2002-11-08 Kobelco Contstruction Machinery Ltd Power controller of hybrid construction machine
JP2005089096A (en) * 2003-09-17 2005-04-07 Toshiba Elevator Co Ltd Elevator control device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009023763A (en) * 2007-07-18 2009-02-05 Hitachi Ltd Elevator driving device
JP2011230864A (en) * 2010-04-23 2011-11-17 Hokusho Co Ltd Electricity storage control device for vertical conveying machine
WO2012172590A1 (en) * 2011-06-13 2012-12-20 三菱電機株式会社 Elevator control device
JP5569650B2 (en) * 2011-06-13 2014-08-13 三菱電機株式会社 Elevator control device
KR101518162B1 (en) 2011-06-13 2015-05-06 미쓰비시덴키 가부시키가이샤 Elevator control device
US20140372050A1 (en) * 2012-03-27 2014-12-18 Mitsubishi Electric Corporation Life diagnosis method for power storage device
JPWO2013145140A1 (en) * 2012-03-27 2015-08-03 三菱電機株式会社 Lifetime diagnosis method for electricity storage devices
DE102012016700A1 (en) * 2012-08-24 2014-05-15 Michael Koch Gmbh Method and device for buffering electrical energy

Also Published As

Publication number Publication date
JP4613485B2 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
US9118270B2 (en) Motor control device including electric storage device and resistance discharge device
JP5464451B2 (en) Converter control device
JP2005263409A (en) Elevator control device
WO2013129231A1 (en) Power supply apparatus
JP2005278269A (en) Drive controller for vehicle
WO2012131995A1 (en) Alternating current motor drive device
JP2012075274A (en) Uninterruptible power supply
KR20080034721A (en) Re generation energy control device and method for motor driving system
JP4812262B2 (en) Elevator control device
JP4613485B2 (en) Electric motor control device
JP4686394B2 (en) Electric vehicle control device
JP5602473B2 (en) Elevator control device
JP6915566B2 (en) Power converter and power conversion system
JP2007031060A (en) Control device of elevator
JP5772118B2 (en) Lifting device drive system and non-powered lifting device including the same
CN112438008A (en) Uninterruptible power supply device
JP6773450B2 (en) Power supply for inductive load
JP2010180003A (en) Elevator power supply apparatus
JP2009183098A (en) Motor drive device
WO2012131880A1 (en) Alternating current motor drive device
JP3983775B2 (en) Power converter using electric double layer capacitor
JP2001247273A (en) Elevator operating device at service interruption
JP2001253653A (en) Elevator system
JP3252709B2 (en) Electric curtain drive
JP4429686B2 (en) Elevator equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101004

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees