JP2005111467A - 散気処理装置 - Google Patents

散気処理装置 Download PDF

Info

Publication number
JP2005111467A
JP2005111467A JP2003385909A JP2003385909A JP2005111467A JP 2005111467 A JP2005111467 A JP 2005111467A JP 2003385909 A JP2003385909 A JP 2003385909A JP 2003385909 A JP2003385909 A JP 2003385909A JP 2005111467 A JP2005111467 A JP 2005111467A
Authority
JP
Japan
Prior art keywords
gas
liquid
passage pipe
passage
passage tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003385909A
Other languages
English (en)
Inventor
Hisao Kojima
久夫 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ANEMOSU KK
Original Assignee
ANEMOSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ANEMOSU KK filed Critical ANEMOSU KK
Priority to JP2003385909A priority Critical patent/JP2005111467A/ja
Publication of JP2005111467A publication Critical patent/JP2005111467A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Physical Water Treatments (AREA)

Abstract

【課題】 気液の混合攪拌効率の向上による高性能化、省エネルギー化、省スペース化、メンテナンスフリーを達成し、大型化の容易な高効率の散気処理装置を提供する。
【解決手段】 散気処理装置15は、長手方向を実質的に垂直にして配置された静止型混合器9を内設した筒状の通路管8と通路管8の下端側に気体を通路管8内に気送ライン11を介して噴出供給する気体噴出部12を配置し、気体噴出部12に静止型混合器13を内設し、気体噴出部12から気体を供給し、通路管8の下方側から液体を通路管8内に導入し、気体および液体は通路管8内を並流で上昇し、両者は通路管8の内部で気液接触し、通路管8の上端側から液体中に排出される。
【選択図】 図2

Description

本発明は、産業排水、上下水および湖沼、河川、地下水等の水処理と浄化および気体中の異種物質の除去、回収や生物反応装置(バイオリアクター)などに利用される散気処理装置に関する。詳しくは、気体と液体とを混合、攪拌させて気液接触させる操作であり、空気を水中で曝気させて空気中の酸素を水中に溶解させたり、水中に溶存しているアンモニア、トリクロロエタン、塩化メチレン、塩素、トリハロメタン等の揮発性物質の放散および気体中の塩化水素、二酸化硫黄、粉麈などの異種物質を反応吸収、捕集による除去、回収、更に酵素反応および微生物反応などに利用される散気処理装置に関する。
従来の散気処理装置は、大別すると、散気式(気泡式)、機械攪拌式(表面攪拌)である。特に、散気式による曝気処理装置91は、図13に示すように、曝気槽92の底部に散気板93、散気筒等を多数配置して、これらに送風機94および気送ライン95を介して加圧空気を供給して曝気処理を行っている。又、液体中に溶存しているアンモニア等の窒素化合物を放散して浄化・回収する場合は、図14に示すように、充填塔や棚段塔等が多く利用されている。充填塔方式による放散処理装置96の場合、充填塔97上部から液体が供給され、塔下部より気体が供給される。塔内に配置されている充填物98を向流で気液接触しながら、液体中のアンモニア(NH )、有機溶媒等の揮発性物質は気体側に放散されて、液体の浄化・回収処理が行われている。
又、粉塵と亜硫酸ガスを含む排ガスの処理装置の気液接触反応装置として、多数のガス噴出孔を有する筒状の排ガス分散管が使用されている。この排ガス分散管を利用した排ガス処理方法が特開平7−308536号、特開平9−865号に開示されているが、液体と多数のガス噴出孔から吹出す気泡との気液接触効率は低い。又、反応生成物である石膏の付着成長による閉塞の問題がある。
更に、従来の静止型混合器を利用した散気処理装置は、構造上の問題から酸素吸収効率は低く、又、大口径(直径で500mm以上)の散気処理装置の製作は難しく、製作可能でも気液接触効率は低い。更に製作加工費も高価となる。
更に又、従来の静止型混合器の下方に配置されている空気供給用気送管の空気吹出孔の口径は10〜40mmの範囲である。この気送管の上面に1つ又は複数個の吹出孔を有している。
この吹出し孔から供給される気泡の気泡径は大きい為に、気液接触効率は低くなり、接触時間は長くなる。
この結果、静止型混合器の全長は高くなり、設備費は高価となる。
特開平2−198694号公報 特開昭44−8290号公報 特開昭53−36182号公報 特開平5−168882号公報 特開平7−284642号公報 特開平7−308536号公報 特開平9−865号公報 S.J.チェン,他「スタティック・ミキシング・ハンドブック」総合化学研究所、1973年6月発行 松村 輝一郎,森島 泰,他 「静止型混合器−基礎と応用−」日刊工業新聞社、1981年9月30日発行
従来の散気処理装置は、酸素の溶存および吸収効率が低いので広大な面積を必要としている。又、曝気槽内の混合攪拌の為に、必要酸素量以上の空気を散気板等に加圧供給している。その為に、多大の電力を消費している。又、従来の充填塔、棚段塔等の放散処理装置は、充填物や棚段に液体中のカルシウム化合物や微生物等が付着成長して目詰まりを起こし、定期的な保守管理を必要としている。更に、従来の静止型混合器を利用した散気処理装置は酸素吸収効率が低く、大型化が困難であった。そこで、本発明の課題は、気液接触効率の向上と曝気、放散および反応処理を極めて効果的に省エネルギー、省スペース、低コスト、メンテナンスフリーで排水等を浄化し、又気体中の異種物質を除去・回収する散気処理装置を提供することである。更に高効率の酵素反応および微生物反応に利用できる生物反応装置(バイオリアクター)を提供することである。
課題を解決するための部
上記の課題を解決するための本発明の第1の散気処理装置は、長手方向に実質的に垂直に配置された静止型混合器を内設した筒状の通路管と前記通路管の下端側から気体を前記通路管内に気送ラインを介して噴出供給する気体噴出部を配置し、前記気体噴出部にスプレーノズルを内設し、前記気送管の気体噴出部から気体を供給し、前記通路管の下方側から液体を前記通路管内に導入し、前記気体および液体は前記通路管内を並流で上昇し、両者は前期通路管の内部で気液接触し、前記通路管の上端側から液体中に排出される散気処理装置。これらの散気処理装置は、混合攪拌動力を必要としない流体の流動エネルギーを利用して流体の混合攪拌を行なう静止型混合器を配置し、その下方に気体噴出部を配置し、その噴出エネルギーにより液体をその噴出部の下方から導入される。液体と気体とは通路管の下端側から上端側に並流で通流して気液接触混合し、曝気,放散および反応処理が行なわれる。
又、前記の課題を解決するための本発明の第2の散気処理装置は、長手方向を実質的に垂直にして配置された静止型混合器を内設した筒状の通路管と前記通路管の下端側に気体を前記通路管内に供給する気体噴出部を配置し、前記気体噴出部に静止型混合器を内設し、前記気体噴出部から気体を供給し、前記通路管の下方側から液体を前記通路管内に導入し、前記気体および液体は前記通路管内を並流で上昇し、両者は前記通路管の内部で気液接触混合し、前記通路管の上端側から液体中に排出される散気処理装置。
更に、前記通路管内および前記気体噴出部に配置される前記静止型混合器は、右捻り又は左捻りの螺旋状の複数個の羽根体を内設して、複数個の流体通路を形成し、流体通路同士は羽根体の長手方向の開口部を介して連通し、前記羽根体は多孔板で形成されている。
発明の効果
本発明の散気処理装置によれば、気液接触効率の高効率化により、消費電力が大幅に削減できる。又、気液接触効率の向上により、曝気,放散および反応処理時間は短縮される。更に又、散気処理装置は単位面積あたりの気体供給能力の向上により、水平方向の設置面積が小さくなって、省スペースとなり、建築土木費、設備費も安価になる。又、空気供給用配管等の工事費も低減される。更に又、目詰まりによる運転停止の発生もないので、保守管理費や生産管理費も安価になる。又、流体の淀み部(死空間)がないので大型化が容易になる。
以下、本発明の実施例について、添付の図面を参照して具体的に説明する。図1は本発明に係る第1実施例を示す模式図である。図2は同様に第2実施例の模式図、図3は同様に第3実施例を示す模式図、図4(a)、(b)は本発明で使用する静止型混合器の一実施例を示す羽根体を有する通路管の斜視図、図5は本発明で使用する静止型混合器の一実施例を示す基本構造図。図6は本発明の第1の実施例に係る散気処理装置の概略図、図7は同様に第2の実施例に係る散気処理装置の概略図。図8は本発明の第2の実施例に係る気体噴出部の部分概略斜視図。図9は本発明に係る散気処理装置を活性汚泥法の曝気処理に適用した場合の実施例を示すブロック図である。図10は同様に排水の放散処理に適用した場合の実施例を示すブロック図である。図11は同様に排ガス処理装置に適用した場合の実施例を示すブロック図、図12は同様に酵素又は微生物を利用した生物反応に適用した場合の実施例を示すブロック図、図13は従来の散気板方式による曝気処理装置を示す模式図、図14は従来の充填物方式による放散処理装置を示す模式図である。
図1は本発明に係る第1実施例を示す模式図である。長手方向を実質的に垂直にして配置された筒状の通路管1内において、1組の静止型混合器2が配置され、その下方の空間部3内に気送ライン4を介して気体を供給するスプレーノズルを内接した気体噴出部5が配置されて、更にその下方に液体(FL)を導入する液体導入部6が配置されている。このように構成された散気処理装置7においては、気体(FG)は通路管1内の静止型混合器2の下端部に空間部3を介して気体噴出部5から上方向に噴出、供給されて、その気体(FG)の浮力により発生するエアリフト効果により通路管1の下端の液体導入部6から液体(FL)は通路管1内の空間部3内に導入される。その微細化された気体(FG)と同伴する液体(FL)とは、並流で上昇しながら静止型混合器2内を通流して、気液接触して液体中に排出される。これにより、液体と気体とが十分に接触し、曝気,放散又は化学反応が進行する。
なお、気体噴射部5の位置は静止型混合器2の下端から静止型混合器2の直径の0.2倍から3倍の範囲の距離に配置することが好ましい。又、液体導入部6は通路管1の下部の管壁に開口部を設けて使用してもよい。これにより、液体の循環流が向上する。
本実施例においては、静止型混合器2の下方から気送ライン4を介して、気体噴出部5のスプレーノズルから気体(FG)を上方向に噴出、供給することで、上昇する気体(FG)の浮力により発生するエアリフト効果により通路管1の下方から導入された液体(FL)を巻き込みながら上昇する気体(FG)と液体(FL)とを並流で静止型混合器2内を通流させることで、混合,攪拌機能により気液接触して液体中に排出されて曝気,放散又は化学反応処置が行なわれる。この気液混合、攪拌操作は無動力で高効率で行なわれる。それ故に省エネルギーとなる。
図2は、前記同様に、本発明の第2実施例を示す模式図である。長手方向を実質的に垂直にして配置された筒状の通路管8内において、1組の静止型混合器9が配置され、その下方の空間部10内に気送ライン11を介して気体(FG)を供給する気体噴出部12が配置されている。なお、気体噴出部12には静止型混合器13が内設されている。更に、その下方に液体(FL)を導入する液体導入部14が配置されている。このように構成された散気処理装置15においては、気体(FG)は通路管1内の静止型混合器9の下端部に空間部10を介して気体噴出部12内に内設されている静止型混合器13から噴出、供給される。その噴出した気体(FG)の浮力により発生するエアリフト効果により液体(FL)は通路管8の下端の液体導入部14から空間部10内に導入される。微細化された気体(FG)と同伴する液体(FL)とは並流で上昇しながら静止型混合器9内を通流して気液接触して液体中に排出される。これにより、液体と気体とが十分に気液接触して曝気,放散および化学反応が進行する。
図3は、前記同様に、本発明に係る第3実施例を示す模式図である。筒状の通路管16内に1組の静止型混合器17が配置され、又その下方の空間部18内には気送ライン19を介して気体(FG)を供給する気体噴出部20が複数個配置されている。気送ライン19は静止型混合器17の長手方向の開口部を介して配管されている。
このように構成された散気処理装置21においては、静止型混合器17の下方から気送ライン19を介して気体噴出部20から気体(FG)を上方向に噴出、供給することで、前記同様に、通路管16の下端の液体導入部より導入された液体(FL)は上昇する気体と共に静止型混合器17内を通流して気液接触が進行する。
なお、気体噴出部20に、本発明の第2実施例同様に、静止型混合器を配置して利用することで気液接触効率はより向上する。気体噴出部20の個数は目的に応じて適宜加減できる。
又、大口径(直径500mm以上)の通路管16の利用が可能となり、面積あたりの気体供給能力が大幅に向上して、処理時間が短縮される。更に、気送ラインの配管数量も低減して配管工事費および保守管理費も安価となる。更に又、設備の大型化が容易となる。
図4は、本発明で使用される静止型混合器の一実施例を示すもので、(a)図は右捻り螺旋状の羽根体を有する通路管の概略斜視図、(b)図は、同様に、左捻り羽根体を有する通路管の概略斜視図である。(a)図においては、筒状の通路管22内に配置されている静止型混合器23内には3枚の右捻り羽根体24が内設されている。その羽根体23は多数の孔25を有する多孔板で形成されている。又、3つの流体通路26を有し、その流体通路26同士は開口部27を介して羽根体3の長手方向の全長に亘り連通している。(b)図においては、同様に、筒状の通路管28内に配置されている静止型混合器29内には3枚の左捻り羽根体30が内設されている。その羽根体30は多数の孔31を有する多孔板で形成されている。又3つの流体通路32を有し、その流体通路32同士は開口部33を介して羽根体30の長手方向の全長に亘り連通している。静止型混合器23,29を配置した(a)図又は(b)図のように構成された通路管22,28においては、通路管22,28の下方から並流で上昇する気体(FG)と液体(FL)とは右捻り又は左捻りの螺旋状の羽根体を通流する間に右又左方向の回転および分割、合流、反転並びに剪断応力作用を連続的に繰り返しながら、両者は気液接触されて、液中に排出される。
なお、羽根体24、30に穿孔された孔(25,31)径は5〜30mmの範囲が好ましく、又、孔(25,31)の開口率は10〜50%の範囲が好ましい。更に,通路管(22,28)内の気体の上昇速度は0.2〜10m/sの範囲が好ましく、より好ましくは0.8〜5m/sの範囲である。更に又、羽根体24,30の捻り角度(螺旋角度)は90°,180°,270°が好ましいが、15°,30°,45°,60°などでも使用できる。大口径(直径500mm以上)の通路管を製作する場合は、15°,30°などの小さな捻り角度の羽根体(24,30)を製作して、例えば3枚の羽根体を接続して30°+30°+30°=90°のように配置して使用してもよい。こうすることで、製作加工も容易になり、製作加工費も安価となる。
図5は、本発明で使用される静止型混合器の一実施例を示す基本構造図である。
図5においては、筒状の通路管34内には複数個の流体通路を有する螺旋状の右捻りおよび左捻りの羽根体35,36が筒状の空間部37を介して配置されている。又、左捻り羽根体36の下方には筒状の空間部38が形成されている。なお、右捻りおよび左捻り羽根体35、36の通路管34内での配置は、この基本構造図に限定されることなく羽根体35,36の配置の組合せは用途に応じて、例えば、右+左+右、右+左+右+左など種々利用可能である。このように構成された筒状の通路管34内においては、通路管34の下方から空間部38を介して並流で上昇する気体(FG)と液体(FL)とは、左捻り羽根体36,空間部37、右捻り羽根体35を通流する間に、両者は左方向、右方向の回転および分割、合流、反転、並びに剪断応力作用を連続的に繰り返しながら気液接触されて、液中に排出される。
図6は、本発明の第1の実施例に係る散気処理装置の概略図である。散気処理装置39は静止型混合器40を配置し、その下方に空間部41を有する筒状の通路管42と気体噴出部43を有して気体を供給する気送管44とを接続させる2枚の支持板45で構成されている。気送管44は気体を垂直方向に噴出させるスプレーノズルを配置した気体噴出部43を有し、又、気体の入口側の反対側は閉止されている。このように構成された散気処理装置39は、液中に配置され、気体(FG)はブロワー又はコンプレッサーなどにより気送管44を介して気体噴出部43から加圧気体(FG)が通路管42の空間部41内に供給される。供給された気体(FG)の浮力によるエアリフト効果により通路管42の下端部の液体導入部46から液体(FG)を巻き込み、同伴させながら並流で静止型混合器40内を通流させて気液接触を行ない、液体中に排出させて曝気、放散および反応処理が進行する。気体噴出部43にスプレーノズルを使用することで、気体(FG)は効率よく液体(FG)中に分散されて、気液接触効率は向上する。このスプレーノズルは円錐状および多重膜状で噴出状態の可能な構造を有する形状の使用が好ましい。
図7は、本発明の第2の実施例に係る散気処理装置の概略図である。
散気処理装置47は、図6同様に、その下方に空間部50および液体導入部51とを有する筒状の通路管48と、静止型混合器49および、気体噴出部52を有する気送管53と、この通路管48と気送管53とを支持する2枚の支持板54から構成されている。気体噴出部52には複数の右捻りの螺旋状の羽根体で形成された静止型混合器55が内設されている。気体(FG)と液体(FL)との気液接触作用は、前記図6同様であるので省略するが、気送管53の気体噴出部52に静止型混合器55を配置したことで、気体(FG)は乱流の発生により微細化されて通路管48の空間部50内を液体(FL)と並流で上昇する。微細化された気体(FG)と液体(FL)とは静止型混合器49内を通流して、高効率で気液接触が行なわれて、液中に排出され、曝気、放散および反応処理が進行する。
図8は、本発明の第2の実施例に係る気体噴出部の部分概略斜視図である。
気送管56は逆T字型に構成されており、気体噴出部57には3枚の右捻りの螺旋状の羽根体58が内設されて3個の流体通路59を形成し、この流体通路59は開口部60を介して羽根体58の長手方向の全長に亘って連通している。羽根体58は多数の孔61を有する多孔板で形成されている。このような気送管56においては、気体(FG)の流れは、開口部60を直進する直進流と3枚の螺旋状の羽根体58に沿って流れる螺旋流と羽根体58の孔を通過してくる分割流とによる乱流が発生して、気体(FG)は微細化される。この微細化された気体(FG)を利用することで、気液接触効率はより向上する。なお、羽根体58の捻り方向、捻り角度、組合せおよび孔径、孔の開口率などは用途に応じて種々利用可能である。又、気体噴出部57の設置場所は、通路管内に設置された静止型混合器の下端側から、通路管の直径の0.2倍から3倍の範囲の下方位置が好ましい。
図9は、本発明に係る散気処理装置を活性汚泥法の曝気処理に適用した場合の実施例を示すブロック図である。
散気処理装置62は原水を貯留している曝気槽63の底部に配置され、この散気処理装置62の下部に空気を供給するブロワー64と気送ライン65、原水を供給する原水供給ライン66および処理水を排出する処理水排出ライン67が設けられている。又、散気処理装置62の液体導入部は曝気槽63の底面から50〜200mm離間した位置に設置するのが好ましい。このように構成された散気処理装置62においては、原水はブロワー64および気送ライン65を介して散気処理装置62の下方から供給される空気の浮力により散気処理装置62内を原水と空気とは並流で通流しながら混合、攪拌されて、空気中の酸素は原水中に溶解し、好気性微生物により原水は回分又は連続的に浄化処理されて、処理水排出ライン67より排出される。
なお、散気処理装置62内を下方から上方に通流する空気量の供給速度は、曝気槽63内の水深3〜5メートルの場合で、1800〜21000m/m・時間の範囲が好ましいが、より好ましくは3600〜12000m/m・時間の範囲である。又、直径150ミリメートルの散気処理装置62を使用した場合の1組あたりの曝気、攪拌受持面積は3〜8mである。更に、ブロワーの吐出圧力は水深に気送ライン65の圧力損失を足した数値でよい。
図10は、本発明に係る散気処理装置を排水の放散処理に適用した場合の実施例を示すブロック図である。
本発明に係る散気処理装置68は、前記図9の実施例と同様であるが、放散槽69内の底部に散気処理装置68を配置され、この散気処理装置68の下部に空気を供給するブロワー70と気送ライン71、排水を供給する排水供給ライン72、および浄化された処理水を排出する処理水排出ライン73が設けられている。又、排気ライン74には揮発性物質を回収する冷却装置又は吸着装置が設けられている。このように構成された散気処理装置68においては、排水中のトリクロロメタン、トリハロメタン、アンモニア、塩素、クリプトンなどの揮発性物質は供給した空気側に物質移動して放散処理されて、排気ライン74を介して冷却装置又は吸着装置で回収、浄化される。浄化された空気は大気中に放出される。
なお、供給される気体の種類は空気に限定されることなく、窒素、ヘリウム、アルゴン、一酸化炭素ガスなどの不活性ガスも適宜利用可能である。例えば窒素ガスを利用することで液体中の溶存酸素を除去処理することも可能である。散気処理装置68内に供給する気体の供給速度は、放散槽69内の水深1〜3メートルの場合で、3,600〜18,000の範囲が好ましいが、より好ましいのは7,200〜15,000の範囲である。
図11は、本発明に係る散気処理を排ガス処理に適用した場合の実施例を示すブロック図である。
散気処理装置75は筒状の反応槽76内の所定位置に複数個配置され、散気処理装置75の下方にブロワー77を介して排ガスを供給する気送ライン78および水又は吸収液を供給する供給ライン79、吸収液80を反応槽76外に排出する排出ライン81、清浄化された排ガスを排気する排気ライン82が設けられている。このように構成された散気処理装置75においては、HCl,SO,NO,NH,HSおよび粉塵などを含んだ排ガスはブロワー77および気送ライン78を介して、散気処理装置75の下方から供給されて、NaOH,CCO,Ca(OH),Mg(OH)などのアルカリ性水溶液あるいはHSO,HClなどの酸性水溶液からなる吸収液と気液接触されて化学反応処理が進行し、吸収液中に溶解又は捕集され、清浄化された排ガスは排気ライン82を介して大気中に放出される。
このような散気処理装置75を排ガス中の異種物質の除去、捕集処理に適用した場合、従来の散気板,分散管などによる気液接触方式と比較して、排ガスと液体とが高効率で混合・攪拌されて短時間処理が可能となる。又、処理速度の向上により省スペースとなり、設備費も安価となる。更に、大口径(直径500mm以上)の散気処理装置75を配置することで、処理能力の向上とともに、より省スペースとなる。更に又、散気処理装置75内での流体の淀み領域が発生しないので、カルシウムなどの付着、成長を防止して保守管理費を低減できる。
図12は本発明に係る散気処理装置を酵素又は微生物による反応に適用した場合の実施例を示すブロック図である。
散気処理装置83は、筒状のバイオリアクター84内の所定位置に配置され、散気処理装置83の下方に気体を供給する気体供給ライン85、原液を供給する原液供給ライン86,反応生成物を排出する反応生成物排出ライン87、バイオリアクター84の頂部から気体を排出する排気ライン88、生物反応槽84の液面から下部に原液を循環させる循環液ライン89が設けられている。又、バイオリアクター84内には、酵素又は微生物を担持した触媒担持体90又は生体触媒が液体中に存在している。このように構成された散気処理装置83においては、気体はブロワー、コンプレッサー、ガスボンベなどの気体供給部により気体供給ライン85を介して散気処理装置83の下方から供給され、原液はポンプ又は加圧なとの供給部により原液供給ライン86を介して供給される。
反応生成物および気体は、反応生成物排出ライン87および排気ライン88より外部に排出される。又、原液は、循環液ライン89によりバイオリアクター84の液面から下部に循環流を形成する。気体と原液とは散気処理装置83内を通流して、原液中の酵素又は微生物の生体触媒機能により生物反応は進行する。本発明の散気処理装置83をバイオリアクターとして利用した場合には、従来の気泡塔方式と比較して反応塔内のガス流速を0.5〜5m/sの高いガス流速域で操作でき、高い酸素移動速度を達成できる。又、塔内の流速分布を均一化する機能を有していることで死空間(デッドスペース)の発生がなく、大型化が容易になり、生産量はより向上する。更に、気体のチャンネリングの発生を防止し、高粘度液での気体分散も向上する。更に又、反応速度の向上により、省スペース、省エネルギーが達成されて生産費が低減される。なお、生体触媒を使用しない気液反応装置としても利用可能である。
図13は、従来の散気板方式による曝気処理装置を示す模式図である。
従来の曝気処理装置91は、曝気槽92内の底面に多数の散気板93を配設し、空気はブロワー94、気送ライン95を介して多数の散気板93に供給される。散気板93は微細な多孔質体で形成され、微細な気泡を発生させている。一般的な散気板93の吹出し空気量は50〜100L/minである。
図14は、従来の充填物方式による放散処理装置を示す模式図である。従来の放散処理装置96は、筒状の放散塔97内に規則又は不規則充填物が充填されている。気体と原水は向流で充填物98内を通流し、気液接触して放散処理がされている。
本発明に係る第1実施例を示す模式図である。 本発明に係る第2実施例を示す模式図である。 本発明に係る第3実施例を示す模式図である。 本発明で使用する静止型混合器の一実施例を示すもので(a)図は右捻り螺旋状羽根体を有する通路管の概略斜視図。(b)図は、同様に、左捻り螺旋状羽根体を有する通路管の概略斜視図である。 本発明で使用する静止型混合器の一実施例を示す基本構造図である。 本発明の第1の実施例に係る散気処理装置の概略図である。 本発明の第2の実施例に係る散気処理装置の概略図である。 本発明の第2の実施例に係る気体噴出部の部分概略斜視図である。 本発明に係る散気処理装置を活性汚泥法の曝気処理に適用した場合の実施例を示すブロック図である。 同様に、排水の放散処理に適用した場合の実施例を示すブロック図である。 同様に、排ガス処理装置に適用した場合の実施例を示すブロック図である。 同様に、酵素又は微生物を利用した生物反応に適用した場合の実施例を示すブロック図である。 従来の散気板方式による曝気処理装置を示す模式図である。 従来の充填物方式による放散処理装置を示す模式図である。
符号の説明
1,8,16,22,28,34,42,48: 通路管
2,9,17,23,29,49,55: 静止型混合器
3,10,18,38,41,50: 空間部
5,12,20,43,52,57: 気体噴出部
6,14,46,51: 液体導入部
7,15,21,39,47,62,68,75,83:散気処理装置
4,11,19,65,71,78,85: 気送ライン
44,53,56: 気送管

Claims (3)

  1. 長手方向を実質的に垂直にして配置された静止型混合器を内設した筒状の通路管と前記通路管の下端側から気体を前記通路管内に気送ラインを介して噴出供給する気体噴出部を配置し、前記気体噴出部にスプレーノズルを内設し、前記気体噴出部から気体を供給し、前記通路管の下方側から液体を前記通路管内に導入し、前記気体および液体は前記通路管内を並流で上昇し、両者は前記通路管の内部で気液接触混合し、前記通路管の上端側から液体中に排出されることを特徴とする散気処置装置。
  2. 長手方向を実質的に垂直にして配置された静止型混合器を内設した筒状の通路管と前記通路管の下端側に気体を前記通路管内に気送ラインを介して噴出供給する気体噴出部を配置し、前記気体噴出部に静止型混合器を内設し、前記気体噴出部から気体を供給し、前記通路管の下方側から液体を前記通路管内に導入し、前記気体および液体は前記通路管内を並流で上昇し、両者は前記通路管の内部で気液接触混合し、前記通路管の上端側から液体中に排出されることを特徴とする散気処理装置。
  3. 前記静止型混合器は、流体が通流する筒状の通路管の内側に右捻り(時計方向)又は左捻り(反時計方向)の螺旋状の複数個の羽根体を有し、前記通路管の内部に複数個の流体通路を形成し、前記流体通路同士は羽根体の長手方向の開口部を介して連通し、前記羽根体は多孔板からなることを特徴とする請求項1乃至2のいずれか1項に記載の散気処理装置。
JP2003385909A 2003-10-10 2003-10-10 散気処理装置 Pending JP2005111467A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003385909A JP2005111467A (ja) 2003-10-10 2003-10-10 散気処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003385909A JP2005111467A (ja) 2003-10-10 2003-10-10 散気処理装置

Publications (1)

Publication Number Publication Date
JP2005111467A true JP2005111467A (ja) 2005-04-28

Family

ID=34544806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003385909A Pending JP2005111467A (ja) 2003-10-10 2003-10-10 散気処理装置

Country Status (1)

Country Link
JP (1) JP2005111467A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005219036A (ja) * 2004-02-03 2005-08-18 Anemosu:Kk 散気処理装置
JP2006281180A (ja) * 2005-03-31 2006-10-19 Anemosu:Kk 散気処理装置
JP2012045537A (ja) * 2010-08-28 2012-03-08 Anemosu:Kk 噴射ノズル
CN111471499A (zh) * 2020-04-14 2020-07-31 北京石油化工学院 一种管状并流式气液接触吸收器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005219036A (ja) * 2004-02-03 2005-08-18 Anemosu:Kk 散気処理装置
JP4520757B2 (ja) * 2004-02-03 2010-08-11 株式会社アネモス 散気処理装置
JP2006281180A (ja) * 2005-03-31 2006-10-19 Anemosu:Kk 散気処理装置
JP4544017B2 (ja) * 2005-03-31 2010-09-15 株式会社アネモス 散気処理装置
JP2012045537A (ja) * 2010-08-28 2012-03-08 Anemosu:Kk 噴射ノズル
CN111471499A (zh) * 2020-04-14 2020-07-31 北京石油化工学院 一种管状并流式气液接触吸收器

Similar Documents

Publication Publication Date Title
JP4463204B2 (ja) 散気処理装置
EP2540677B1 (en) Contact reaction tower with internal circulation ozone used in industrial wastewater advanced treatment
JP2005144425A (ja) 散気処理装置
TWI503289B (zh) 用於改良氣-液質傳的氣體分散設備
KR20080071061A (ko) 유체혼합기
JP4544017B2 (ja) 散気処理装置
JP5186396B2 (ja) 海水脱硫装置
JP2004267940A (ja) 気液混合反応方法及び気液混合反応装置
JP6872287B2 (ja) アンモニア脱硫用の溶液を酸化する方法及び装置
JP2005125302A (ja) 散気処理装置
KR100915987B1 (ko) 폐수 처리를 위한 마이크로 버블 디퓨져
JP4520757B2 (ja) 散気処理装置
JP2005111467A (ja) 散気処理装置
CN111422971A (zh) 一种喷淋式催化臭氧氧化反应***
JP2008194620A (ja) 廃水処理方法及び装置
CN103203195A (zh) 气体扩散处理装置
KR100639296B1 (ko) 생물학적 수처리 장치
CN217148695U (zh) 一种微界面强化超高效废水臭氧处理装置
JP2005211894A (ja) 散気処理装置
CN212127673U (zh) 一种喷淋式催化臭氧氧化反应***
KR20060113903A (ko) 산기 처리 장치
CN210133954U (zh) 一种处理湿法脱硫废水的连续式反应器
KR20040092843A (ko) 기체의 용해 및 혼합을 이용한 오폐수 처리장치
KR101215378B1 (ko) 상하향 다단선회류 유기성폐수 정화시스템
KR100660097B1 (ko) 하수처리장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090512