JP2005109284A - Semiconductor light-emitting element - Google Patents

Semiconductor light-emitting element Download PDF

Info

Publication number
JP2005109284A
JP2005109284A JP2003342709A JP2003342709A JP2005109284A JP 2005109284 A JP2005109284 A JP 2005109284A JP 2003342709 A JP2003342709 A JP 2003342709A JP 2003342709 A JP2003342709 A JP 2003342709A JP 2005109284 A JP2005109284 A JP 2005109284A
Authority
JP
Japan
Prior art keywords
gan
layer
sapphire substrate
light emitting
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003342709A
Other languages
Japanese (ja)
Inventor
Masanobu Ando
雅信 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2003342709A priority Critical patent/JP2005109284A/en
Publication of JP2005109284A publication Critical patent/JP2005109284A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83385Shape, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a semiconductor light-emitting element, in which light extraction efficiency can be easily improved, without exerting adverse effect to the quality of crystals. <P>SOLUTION: Ionized Ga and N, which are substances constituting an n-type layer or a p-type layer, are implanted into an ion implantation area 10A under the surface of a sapphire substrate 10. Since GaN particulates are formed and a sapphire-GaN transition region 10B in which sapphire and GaN are included together, by treating the sapphire substrate 10 with heat, a refractive index of a boundary between the sapphire substrate and the semiconductor layer 10C is approximated to that of the sapphire-GaN transition region 10B. Consequently penetrability at the incidence of emitted light on the sapphire substrate 10 can be obtained, and light extraction efficiency can be improved. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体発光素子に関し、特に光取り出し効率を容易に向上させた半導体発光素子に関する。   The present invention relates to a semiconductor light emitting device, and more particularly, to a semiconductor light emitting device that easily improves light extraction efficiency.

従来、半導体発光素子として図8に示すようなものが知られている(例えば、特許文献1参照。)。この半導体発光素子は、上面を凹凸に形成したSiC基板49と、SiC基板49の凹凸の上に形成した第1のGaN系結晶50と、第1のGaN系結晶50の上に形成した第1のGaN系結晶50と異なる屈折率を有する第2のGaN系結晶51と、第2のGaN系結晶51の上に形成されたn型コンタクト層52と、n型コンタクト層52の一部の上に形成された発光層54と、発光層54の上に形成されたp型コンタクト層55と、p型コンタクト層55の上に形成されたp型電極56と、n型コンタクト層52の一部の上に形成されたn型電極53とを備える。SiC基板49と、SiC基板49の上に形成した第1のGaN系結晶50と、第1のGaN系結晶50の上に形成した第2のGaN系結晶51とで凹凸状の屈折率界面50aを形成する。   Conventionally, a semiconductor light emitting device as shown in FIG. 8 is known (see, for example, Patent Document 1). This semiconductor light emitting device includes a SiC substrate 49 having an uneven upper surface, a first GaN-based crystal 50 formed on the uneven surface of the SiC substrate 49, and a first GaN-based crystal 50 formed on the first GaN-based crystal 50. A second GaN crystal 51 having a different refractive index from the GaN crystal 50, an n-type contact layer 52 formed on the second GaN crystal 51, and a portion of the n-type contact layer 52. A light emitting layer 54 formed on the light emitting layer 54, a p-type contact layer 55 formed on the light emitting layer 54, a p-type electrode 56 formed on the p-type contact layer 55, and a part of the n-type contact layer 52. And an n-type electrode 53 formed thereon. An uneven refractive index interface 50a between the SiC substrate 49, the first GaN-based crystal 50 formed on the SiC substrate 49, and the second GaN-based crystal 51 formed on the first GaN-based crystal 50. Form.

特許文献1に記載された半導体発光素子によれば、発光層54で発光した光のうち主として横方向に伝搬する光は、凹凸状の屈折率界面50aにより他の方向に進むように変化させられるため、結果として外部に取り出す光の量を増加することができる。
特開2002−280611号公報(図1)
According to the semiconductor light emitting device described in Patent Document 1, the light propagating mainly in the lateral direction out of the light emitted from the light emitting layer 54 is changed to travel in the other direction by the uneven refractive index interface 50a. As a result, the amount of light extracted outside can be increased.
Japanese Patent Laid-Open No. 2002-280611 (FIG. 1)

しかし、従来の半導体発光素子によると、SiC基板49に凹凸部を形成しなければならず、さらに凹凸部に結晶を成長させる等、高度な加工が必要であり、また、その後の結晶品位に対し悪影響を与えることもあるため、光取り出し効率を向上させ得ても。LED本来の内部量子効率が低下する問題がある。   However, according to the conventional semiconductor light emitting device, it is necessary to form a concavo-convex portion on the SiC substrate 49, and further advanced processing such as growing a crystal on the concavo-convex portion is required. Even if it can have an adverse effect, it can improve the light extraction efficiency. There is a problem that the intrinsic quantum efficiency of the LED is lowered.

従って、本発明の目的は、結晶品位に悪影響を与えることなく光取り出し効率を容易に向上させた半導体発光素子を得ることにある。   Accordingly, an object of the present invention is to obtain a semiconductor light emitting device in which the light extraction efficiency is easily improved without adversely affecting the crystal quality.

本発明は、上記目的を達成するため、透光性基板上にn型層およびp型層を積層した半導体発光素子において、前記透光性基板は、その表面下に前記n型層の屈折率と同一あるいは近似する屈折率から前記透光性基板の屈折率まで屈折率が遷移する屈折率遷移領域を有することを特徴とする半導体発光素子を提供する。   In order to achieve the above object, the present invention provides a semiconductor light emitting device in which an n-type layer and a p-type layer are stacked on a translucent substrate, and the translucent substrate has a refractive index of the n-type layer below the surface thereof. And a refractive index transition region in which the refractive index transitions from the same or similar refractive index to the refractive index of the translucent substrate.

本発明は、上記目的を達成するため、サファイア基板上にn型層およびp型層を積層した半導体発光素子において、前記サファイア基板は、その表面下に前記n型層を構成する層構成材を含み、前記サファイア基板の表面からの深さに応じて前記層構成材の濃度が遷移する層構成材濃度遷移層を有することを特徴とする半導体発光素子を提供する。   In order to achieve the above object, the present invention provides a semiconductor light emitting device in which an n-type layer and a p-type layer are stacked on a sapphire substrate, wherein the sapphire substrate includes a layer constituting material constituting the n-type layer below the surface. A semiconductor light emitting device comprising: a layer constituent material concentration transition layer in which the concentration of the layer constituent material transitions according to the depth from the surface of the sapphire substrate.

本発明は、上記目的を達成するため、GaN系半導体の微粒子を含んだサファイア−GaN系半導体遷移領域を表面層として有するサファイア基板と、前記サファイア基板上に形成された基板上にn型GaN系半導体層と、前記n型GaN系半導体層上に形成されたGaN系半導体発光層と、前記GaN系半導体発光層上に形成されたp型GaN系半導体層を含むことを特徴とする半導体発光素子を提供する。   To achieve the above object, the present invention provides a sapphire substrate having a sapphire-GaN based semiconductor transition region containing fine particles of a GaN based semiconductor as a surface layer, and an n-type GaN based on the substrate formed on the sapphire substrate. A semiconductor light-emitting device comprising: a semiconductor layer; a GaN-based semiconductor light-emitting layer formed on the n-type GaN-based semiconductor layer; and a p-type GaN-based semiconductor layer formed on the GaN-based semiconductor light-emitting layer I will provide a.

本発明によれば、基板の表面下にn型層の屈折率と同一あるいは近似する屈折率から基板の屈折率まで屈折率が遷移する屈折率遷移領域を設けたため、基板とn層との界面において両者の屈折率を同一または近似させることができ、光の反射成分を減少させることができるので、結晶品位に悪影響を与えることなく光取り出し効率を容易に向上させることができる。   According to the present invention, since the refractive index transition region in which the refractive index transitions from the refractive index that is the same as or close to the refractive index of the n-type layer to the refractive index of the substrate is provided below the surface of the substrate, the interface between the substrate and the n layer. Therefore, the refractive index of both can be made the same or approximate, and the light reflection component can be reduced, so that the light extraction efficiency can be easily improved without adversely affecting the crystal quality.

本発明によれば、基板をサファイアにより形成し、n型層またはp型層をGaN系化合物により形成したため、紫外から青色領域の光をサファイア基板側から効率よく取り出すことができる。   According to the present invention, since the substrate is formed of sapphire and the n-type layer or p-type layer is formed of a GaN-based compound, light in the ultraviolet to blue region can be efficiently extracted from the sapphire substrate side.

本発明によれば、イオン打ち込み法によって形成するため、屈折率遷移領域を高い生産性で形成することができる。   According to the present invention, since the ion implantation method is used, the refractive index transition region can be formed with high productivity.

本発明によれば、透光性基板とn型層の間にバッファ層を形成したため、n型層の結晶性を向上することができ、安定した発光光を得ることができる。   According to the present invention, since the buffer layer is formed between the translucent substrate and the n-type layer, the crystallinity of the n-type layer can be improved, and stable emission light can be obtained.

本発明によれば、サファイア基板の表面下にn型層を構成する層構成材を含み、サファイア基板の表面からの深さに応じて層構成材の濃度が遷移する層構成材濃度遷移層を形成したため、サファイア基板の表面下の層構成材の濃度とn型層の層構成材の濃度を近似させることができるので、n型層からサファイア基板に入射する光の透過性を向上させることができる。   According to the present invention, the layer constituent material concentration transition layer including the layer constituent material constituting the n-type layer below the surface of the sapphire substrate, and the concentration of the layer constituent material transitions according to the depth from the surface of the sapphire substrate. Since it is formed, the concentration of the layer constituent material below the surface of the sapphire substrate and the concentration of the layer constituent material of the n-type layer can be approximated, so that the transparency of light incident on the sapphire substrate from the n-type layer can be improved. it can.

本発明によれば、サファイア基板にGaN系半導体の微粒子を含んだサファイア−GaN系半導体遷移領域を形成したため、GaN系半導体からサファイア基板に入射する光の透過性を向上させることができる。また、GaN系半導体の微粒子により光が散乱するため、光取り出し効率を向上させることができる。   According to the present invention, since the sapphire-GaN-based semiconductor transition region containing GaN-based semiconductor fine particles is formed on the sapphire substrate, it is possible to improve the transmittance of light incident on the sapphire substrate from the GaN-based semiconductor. Moreover, since light is scattered by the fine particles of the GaN-based semiconductor, the light extraction efficiency can be improved.

本発明によれば、前記GaN系半導体の微粒子をGaNの微粒子としたため、紫外から青色の光を取り出すことができる。   According to the present invention, since the GaN-based semiconductor fine particles are GaN fine particles, it is possible to extract blue to blue light.

本発明によれば、サファイア基板にGaとNをイオン打ち込み法によって打ち込んだ後、熱処理を施してGaNの粒子を形成するため、容易にGaNを得ることができる。   According to the present invention, after Ga and N are implanted into the sapphire substrate by ion implantation, heat treatment is performed to form GaN particles, so that GaN can be easily obtained.

本発明によれば、n型GaN系半導体層の屈折率と同一あるいは近似する屈折率からサファイア基板の屈折率まで屈折率を変化させるサファイア−GaN系半導体遷移領域を形成するため、GaN系半導体からサファイア基板に入射する光の透過性を向上させることができる。また、副次的な効果として、GaN系半導体の微粒子により光散乱が発生し、これによっても光取り出し効率を向上させることができる。   According to the present invention, in order to form a sapphire-GaN-based semiconductor transition region that changes the refractive index from the refractive index that is the same as or close to the refractive index of the n-type GaN-based semiconductor layer to the refractive index of the sapphire substrate, The transmittance of light incident on the sapphire substrate can be improved. As a secondary effect, light scattering occurs due to the fine particles of the GaN-based semiconductor, which can also improve the light extraction efficiency.

本発明によれば、サファイア−GaN系半導体遷移領域の表面からの深さに応じてn型GaN系半導体層を構成する層構成材の濃度を変化させたため、サファイア基板の表面下の層構成材の濃度とn型層の層構成材の濃度を近似させることができるので、n型層からサファイア基板に入射する光の透過性を向上させることができる。   According to the present invention, since the concentration of the layer constituting material constituting the n-type GaN based semiconductor layer is changed according to the depth from the surface of the sapphire-GaN based semiconductor transition region, the layer constituting material below the surface of the sapphire substrate. Therefore, the transmittance of light incident on the sapphire substrate from the n-type layer can be improved.

図1は、本発明の第1の実施の形態に係る発光素子を使用した発光装置を示す。この発光装置は、電源電圧が印可される一対のリードフレーム1A,1Cと、一方のリードフレーム1Aの先端に設けられるメタルステム1aと、メタルステム1aに設けられて内面に光を反射させる反射面を有するカップ1Bと、カップ1B内に配置され、Auバンプ4A,4Bにより電極間に電圧を印可されて発光するLED素子2と、カップ1B内にAgペースト3により固定され、Auバンプ4A,4BによりLED素子2と電気的に接続するサブマウント素子5と、サブマウント素子5と他方のリードフレーム1Cとを電気的に接続する金線からなるボンディングワイヤ6と、蛍光体を混入されてカップ1Bに注入される透光性樹脂7と、LED素子2からの発光光を拡散あるいは集光する透明エポキシ樹脂部8とを備える。   FIG. 1 shows a light emitting device using a light emitting element according to a first embodiment of the present invention. The light emitting device includes a pair of lead frames 1A and 1C to which a power supply voltage is applied, a metal stem 1a provided at the tip of one lead frame 1A, and a reflective surface provided on the metal stem 1a to reflect light on the inner surface. A cup 1B having a light source, an LED element 2 that is disposed in the cup 1B and emits light by applying a voltage between the electrodes by the Au bumps 4A and 4B, and fixed in the cup 1B by the Ag paste 3, and the Au bumps 4A and 4B. , The submount element 5 electrically connected to the LED element 2, the bonding wire 6 made of a gold wire electrically connecting the submount element 5 and the other lead frame 1C, and the cup 1B mixed with phosphor. And a transparent epoxy resin portion 8 for diffusing or condensing the emitted light from the LED element 2.

透光性樹脂7は、エポキシ樹脂からなり、蛍光体としてCe:YAG(イットリウム・アルミニウム・ガーネット)を含有している。なお、透光性樹脂7として固化後に透明となるシリコン樹脂を用いてもよい。   The translucent resin 7 is made of an epoxy resin and contains Ce: YAG (yttrium, aluminum, garnet) as a phosphor. Note that a silicon resin that becomes transparent after solidification may be used as the translucent resin 7.

図2は、本発明の第1の実施の形態に係る発光素子を使用した発光装置の部分拡大断面を示す。このLED素子2は、GaN系発光素子であり、以下の構造を有する。このLED素子2は、GaNが表面に打ち込まれたサファイア−GaN遷移領域10Bを有するサファイア(Al23)基板10の上に形成されたSiドープのn型GaNクラッド層11と、Siドープのn型GaNクラッド層11の一部の上に形成された3層のIn0.25Ga0.85N井戸層13と2層のGaN障壁層14とを交互に配置したMQW15と、MQW15の上に形成されたMgドープのp型Al0.12Ga0.88Nクラッド層16と、Mgドープのp型Al0.12Ga0.88Nクラッド層16の上に形成されたMgドープのp型GaNコンタクト層17と、Mgドープのp型GaNコンタクト層17の上に形成された透明電極18と、透明電極18の上に形成されたp型電極19と、Siドープのn型GaNクラッド層11の他の一部の上に形成されたn型電極20と、このLED素子2の表面保護および光放射性を付与するための保護膜2Aとを備える。 FIG. 2 shows a partially enlarged cross section of a light emitting device using the light emitting element according to the first embodiment of the present invention. The LED element 2 is a GaN-based light emitting element and has the following structure. This LED element 2 includes a Si-doped n-type GaN cladding layer 11 formed on a sapphire (Al 2 O 3 ) substrate 10 having a sapphire-GaN transition region 10B implanted with GaN on the surface, and a Si-doped n-type GaN cladding layer 11. MQW15 in which three layers of In 0.25 Ga 0.85 N well layers 13 and two layers of GaN barrier layers 14 formed alternately on a part of n-type GaN cladding layer 11 and MQW15 are formed. Mg-doped p-type Al 0.12 Ga 0.88 N cladding layer 16, Mg-doped p-type GaN contact layer 17 formed on Mg-doped p-type Al 0.12 Ga 0.88 N-cladding layer 16, and Mg-doped p-type A transparent electrode 18 formed on the GaN contact layer 17, a p-type electrode 19 formed on the transparent electrode 18, and another part of the Si-doped n-type GaN cladding layer 11 An n-type electrode 20 formed on, and a protective film 2A for imparting surface protection and light emission of the LED element 2.

n型電極20は、例えば、Al,V,Sn,Ti,Cr,Nb,Ta,Mo,W,またはHf等の金属またはこれらの合金を用いて形成することができる。なお、異なる組成の層が積層された二層あるいは多層構造としてもよく、例えば、VとAlの二層構造としてもよい。   The n-type electrode 20 can be formed using a metal such as Al, V, Sn, Ti, Cr, Nb, Ta, Mo, W, or Hf, or an alloy thereof. Note that a two-layer structure or a multilayer structure in which layers having different compositions are stacked may be employed, for example, a two-layer structure of V and Al.

p型電極19は、例えば、Rh,Au,Pt,Ag,Cu,Al,Ni,Co,Mg,Pd,V,Mn,B■,Sn,またはRe等の金属またはこれらの合金を用いて形成
することができる。なお、異なる組成の層が積層された二層あるいは多層構造としてもよい。
The p-type electrode 19 is formed using, for example, a metal such as Rh, Au, Pt, Ag, Cu, Al, Ni, Co, Mg, Pd, V, Mn, B ■, Sn, or Re, or an alloy thereof. can do. Note that a two-layer or multilayer structure in which layers having different compositions are stacked may be employed.

保護膜2Aは、例えば、SiO2からなり、光透過性および絶縁性を有してLED素子2の表面を保護する。 The protective film 2A is made of, for example, SiO 2 and has a light transmitting property and an insulating property to protect the surface of the LED element 2.

サブマウント素子5は、n型のシリコン基板によって形成され、LED素子2を静電気から保護するためのツェナーダイオードとして動作する。また、Auバンプ4Aによってp型電極19と接続されるn側電極5Aと、p型半導体層5Bと、Auバンプ4Bによってn型電極20と接続されるp側電極5Cと、Agペースト3を介してカップ1Bに電気的に接続されるn電極5Dと、n型半導体層5Eとを有する。   The submount element 5 is formed of an n-type silicon substrate and operates as a Zener diode for protecting the LED element 2 from static electricity. Further, the n-side electrode 5A connected to the p-type electrode 19 by the Au bump 4A, the p-type semiconductor layer 5B, the p-side electrode 5C connected to the n-type electrode 20 by the Au bump 4B, and the Ag paste 3 are used. And an n electrode 5D electrically connected to the cup 1B and an n-type semiconductor layer 5E.

図3は、サファイア基板10にイオン化されたGaおよびNを打ち込むイオン打ち込み装置の概念構成図である。このイオン打ち込み装置30は、イオンビーム31aを発生させるためのイオンビーム発生部31と、打ち込み用の特定のイオン種を磁場によって選別するための質量分析部32と、磁場または電場によってイオンビーム31aを収束させるためのレンズ部33と、高周波高電圧を発生し、イオンビーム31aのエネルギを制御する加速器34と、制御されたイオンビーム31aを被照射物に照射する打ち込み室35とを備える。   FIG. 3 is a conceptual configuration diagram of an ion implantation apparatus for implanting ionized Ga and N into the sapphire substrate 10. The ion implantation apparatus 30 includes an ion beam generation unit 31 for generating an ion beam 31a, a mass analysis unit 32 for selecting a specific ion species for implantation by a magnetic field, and an ion beam 31a by a magnetic field or an electric field. A lens unit 33 for convergence, an accelerator 34 that generates high-frequency high voltage and controls the energy of the ion beam 31a, and an implantation chamber 35 that irradiates the irradiated object with the controlled ion beam 31a are provided.

このイオン打ち込み装置30の動作について説明する。図示しないスイッチをオンにすると、まず、イオンビーム発生部31によりイオン化されたGaおよびNを含むイオンビーム31aが発生する。次に、発生したイオンビーム31aが質量分析部32に入り、発生したイオンビーム31aからイオン化されたGa(Gaイオン)が選択される。選択されたGaイオンは、レンズ部33および加速器34を通過し、打ち込み室35内に配置されたサファイア基板10に170keVで打ち込まれる。次に、イオン化されたN(Nイオン)は、質量分析部32により選択され、30keVで打ち込まれる。なお、同時にGaイオンおよびNイオンを取り出して、同時にサファイア基板に打ち込んでもよい。   The operation of this ion implantation apparatus 30 will be described. When a switch (not shown) is turned on, first, an ion beam 31a containing Ga and N ionized by the ion beam generator 31 is generated. Next, the generated ion beam 31a enters the mass analyzer 32, and Ga (Ga ions) ionized from the generated ion beam 31a is selected. The selected Ga ions pass through the lens unit 33 and the accelerator 34 and are implanted into the sapphire substrate 10 disposed in the implantation chamber 35 at 170 keV. Next, ionized N (N ions) is selected by the mass analysis unit 32 and implanted at 30 keV. Note that Ga ions and N ions may be simultaneously extracted and simultaneously implanted into the sapphire substrate.

図4は、イオン打ち込み装置を用いて半導体発光素子を製造する工程を示す。
(a)サファイア基板準備工程
まず、サファイア基板10を準備し(図4(a))、このサファイア基板10を打ち込み室の所定位置にセットする。
(b)イオン打ち込み工程
サファイア基板10の表面側のイオン打ち込み領域10Aにイオン打ち込み装置30によりイオン化されたGaおよびNを、加速電圧170keVおよび30keVで打ち込む(図4(b))。
(c)加熱処理工程
イオンが注入されたサファイア基板10を、MOCVD(Metal Organic Chemical Vapor Deposition)装置の結晶成長炉に導入し、サファイア基板10の温度を1200℃程度に加熱して3時間保持し、イオン打ち込み領域にGaN微粒子を形成し、サファイア−GaN遷移領域10Bを形成する(図4(c))。
FIG. 4 shows a process of manufacturing a semiconductor light emitting element using an ion implantation apparatus.
(A) Sapphire substrate preparation process First, the sapphire substrate 10 is prepared (FIG. 4A), and this sapphire substrate 10 is set at a predetermined position in the implantation chamber.
(B) Ion implantation process Ga and N ionized by the ion implantation apparatus 30 are implanted into the ion implantation region 10A on the surface side of the sapphire substrate 10 at an acceleration voltage of 170 keV and 30 keV (FIG. 4B).
(C) Heat treatment step The ion-implanted sapphire substrate 10 is introduced into a crystal growth furnace of a MOCVD (Metal Organic Chemical Vapor Deposition) apparatus, and the temperature of the sapphire substrate 10 is heated to about 1200 ° C. and held for 3 hours. Then, GaN fine particles are formed in the ion implantation region to form a sapphire-GaN transition region 10B (FIG. 4C).

イオン打ち込みにおいて、サファイア基板10の内部に打ち込まれたイオン化したGaおよびNは、高温処理されることで、サファイア基板10の内部を拡散的に移動する。そして、サファイア基板10の内部に打ち込まれたイオン化したGaおよびNは、それぞれ単体で存在するよりも、GaNとして存在する方が安定であると考えられるので、適当な処理、例えば、高温処理により、Ga+N→GaNの反応が促進される。これにより、サファイア基板10内にGaNが形成される。このGaNは、均一膜ではなく、50nmから400nm程度の大きさの微粒子形状で存在する。なお、上記の加熱時に薄膜成長を行っても、後述する特性に違いが認められなかった。   In the ion implantation, ionized Ga and N implanted into the sapphire substrate 10 are diffusely moved in the sapphire substrate 10 by being subjected to a high temperature treatment. And, since ionized Ga and N implanted into the sapphire substrate 10 are considered to be more stable as GaN than to exist alone, by appropriate treatment, for example, high temperature treatment, The reaction of Ga + N → GaN is promoted. Thereby, GaN is formed in the sapphire substrate 10. This GaN is not a uniform film but exists in the form of fine particles having a size of about 50 nm to 400 nm. Even when the thin film was grown during the above heating, no difference was observed in the characteristics described later.

図5は、イオン化されたGaおよびNをサファイア基板10に打ち込み、熱処理したときの特性を示す。図5(a)は、サファイア基板10に打ち込まれるイオン化されたGaおよびNの量(注入量)とサファイア基板10の表面近傍における平均屈折率との関係を示す。これによれば、GaおよびNの注入量が1017cm-2のときは、サファイア基板10の屈折率n=1.77であるが、GaおよびNの注入量を増やしていくと、GaおよびNの注入量が1019cm-2のときは、GaNの屈折率n=2.4に近似していくことが分かる。 FIG. 5 shows characteristics when ionized Ga and N are implanted into the sapphire substrate 10 and heat-treated. FIG. 5A shows the relationship between the amount of ionized Ga and N (injection amount) implanted into the sapphire substrate 10 and the average refractive index in the vicinity of the surface of the sapphire substrate 10. According to this, when the implantation amounts of Ga and N are 10 17 cm −2 , the refractive index n of the sapphire substrate 10 is 1.77, but when the implantation amounts of Ga and N are increased, Ga and N It can be seen that when the implantation amount of N is 10 19 cm −2 , it approximates to the refractive index n = 2.4 of GaN.

図5(b)は、サファイア基板10に注入されたGaおよびNの濃度と基板10の表面からの深さの関係を示す。この場合、イオン化されたGaおよびNの注入量は1017cm-2〜1018cm-2である。これによれば、サファイア基板10の表面近傍がGaおよびNの濃度が高く、サファイア基板10の表面からの深さが深くなるにしたがってGaおよびNの濃度が低くなっており、表面から1μm程度の深さより深い領域では曲線が平坦となっており、GaおよびNがほとんど検出されていないことが分かる。このGaNの深さ方向の分布は、イオン打ち込みの際のイオン化したGaおよびNの加速速度で決定される。なお、イオン打ち込みにおいて、加速電圧の値に応じて注入イオンの深さ方向への分布が決定され、加速電圧が高いほど、サファイア基板10の表面から中深くイオンが浸入するようになる。また、イオンによっては同じ深さに注入しようとすると加速電圧を変える必要がある。イオン化されたGaおよびNにあっては、前記の加速電圧により注入すると、ほぼ同様の分布で注入される。イオン化されたGaおよびNは、サファイア基板10の表面から0.2μm程度の深さがピークであり、表面から1μm程度までの深さにイオンが注入される。 FIG. 5B shows the relationship between the concentration of Ga and N injected into the sapphire substrate 10 and the depth from the surface of the substrate 10. In this case, ion implantation amounts of ionized Ga and N are 10 17 cm −2 to 10 18 cm −2 . According to this, the concentration of Ga and N is high in the vicinity of the surface of the sapphire substrate 10, and the concentration of Ga and N decreases as the depth from the surface of the sapphire substrate 10 becomes deeper, and about 1 μm from the surface. It can be seen that in the region deeper than the depth, the curve is flat, and Ga and N are hardly detected. The distribution of GaN in the depth direction is determined by the acceleration rate of ionized Ga and N during ion implantation. In the ion implantation, the distribution of implanted ions in the depth direction is determined according to the value of the acceleration voltage, and the higher the acceleration voltage, the deeper the ions penetrate from the surface of the sapphire substrate 10. Also, depending on the ions, it is necessary to change the acceleration voltage when trying to implant at the same depth. When ionized Ga and N are implanted by the acceleration voltage, they are implanted with substantially the same distribution. The ionized Ga and N have a peak depth of about 0.2 μm from the surface of the sapphire substrate 10, and ions are implanted to a depth of about 1 μm from the surface.

図5(c)は、サファイア基板10の平均屈折率と基板10の表面からの深さとの関係を示す。これによれば、サファイア基板10の表面近傍の平均屈折率は、GaNの屈折率n=2.4に近似しており、基板10の表面から深くなるにしたがって平均屈折率が、小さくなり、基板10の表面から1μm程度の深さになるとサファイア基板10の屈折率n=1.77程度になる。これは、サファイア基板10に注入されたGaおよびNの濃度と基板10の表面からの深さの関係が、図5(b)に示すような関係にあることから、そのGaNの濃度に関係するものと考えられる。
(d)薄膜成長工程
サファイア−GaN遷移領域10Bの上にMOCVD装置を用い、LED発光素子形成のための薄膜、例えば、n型GaN層、InGaN井戸層、GaN障壁層、p型GaN層等の半導体層10Cを形成する(図4(d))。
FIG. 5C shows the relationship between the average refractive index of the sapphire substrate 10 and the depth from the surface of the substrate 10. According to this, the average refractive index in the vicinity of the surface of the sapphire substrate 10 approximates the refractive index n = 2.4 of GaN, and the average refractive index decreases as the depth from the surface of the substrate 10 decreases. When the depth is about 1 μm from the surface of 10, the refractive index n of the sapphire substrate 10 is about 1.77. This is related to the concentration of GaN because the relationship between the concentration of Ga and N injected into the sapphire substrate 10 and the depth from the surface of the substrate 10 is as shown in FIG. 5B. It is considered a thing.
(D) Thin film growth process Using a MOCVD apparatus on the sapphire-GaN transition region 10B, a thin film for forming an LED light emitting element, such as an n-type GaN layer, an InGaN well layer, a GaN barrier layer, a p-type GaN layer, etc. A semiconductor layer 10C is formed (FIG. 4D).

図6は、本発明の第1の実施の形態に係る半導体発光素子の動作の説明図であり、ファイア基板10中の光の進み方を示す。図示しないスイッチをオンにすると、ボンディングワイヤ6からp側電極5CおよびAuバンプ4Bを介してn型電極20に通電され、他方、n電極5Dとp型電極19とはサブマウント素子5,n型電極5A、Auバンプ4Aを介して通電される。そして、MQW15内で面上に発光し、波長450〜480nmの青色光を放射し、サファイア基板10側からだけでなく種々の方向から放射される。そのため、カップ1Bで反射された青色光の一部は、カップ1B内に配置される蛍光体を励起することにより黄色光に波長変換され、青色光と混合されることによって白色光を放射する。このとき、発光光がサファイア基板10に入射される場合、後述するようにサファイア−GaN遷移領域10BにGaN粒子を形成したため、発光効率が高められている。   FIG. 6 is an explanatory diagram of the operation of the semiconductor light emitting device according to the first embodiment of the present invention, and shows how light travels in the fire substrate 10. When a switch (not shown) is turned on, the n-type electrode 20 is energized from the bonding wire 6 through the p-side electrode 5C and the Au bump 4B, while the n-electrode 5D and the p-type electrode 19 are connected to the submount element 5 and the n-type electrode. Electricity is supplied through the electrode 5A and the Au bump 4A. Then, it emits light on the surface in the MQW 15, emits blue light having a wavelength of 450 to 480 nm, and is emitted not only from the sapphire substrate 10 side but also from various directions. Therefore, a part of the blue light reflected by the cup 1B is wavelength-converted to yellow light by exciting the phosphor arranged in the cup 1B, and emits white light by being mixed with the blue light. At this time, when the emitted light is incident on the sapphire substrate 10, since the GaN particles are formed in the sapphire-GaN transition region 10 </ b> B as described later, the light emission efficiency is enhanced.

MQW15で発光した発光光がn−GaN:Siクラッド層11からサファイア基板10に入ったときの光の進み方を説明する。MQW15で発光した発光光がn−GaN:Siクラッド層11に入り、n−GaN:Siクラッド層11から垂直にサファイア基板10に入る場合は、中央の矢印R1で示すように上方に進む。n−GaN:Siクラッド層11からサファイア基板10に対し左上がり方向に発光光が入射する場合は、サファイア基板10内への出射角が変化してサファイア基板10内に光が入っていく。サファイア基板10のn−GaN:Siクラッド層11側の表面近傍のサファイア−GaN遷移領域10Bの屈折率は、GaNの屈折率に近いため、サファイア基板10の表面近傍では出射角が余り変化せず、サファイア基板10の表面から深くなるにしたがってサファイア−GaN遷移領域10Bの屈折率にしたがって徐々に出射角が変化し、表面から約1μm入った部位からさらに深い部位にあっては、出射角が一定となり、光はほぼ直線に進む。他の光の進み方も同様である。すなわち、サファイア基板10とn−GaN:Siクラッド層11の界面において、両者の屈折率の差が小さいため、全反射成分が減少し、これによりサファイア基板10中への透過性が向上して光がすみやかに伝播する。   A description will be given of how light travels when emitted light emitted from the MQW 15 enters the sapphire substrate 10 from the n-GaN: Si clad layer 11. When emitted light emitted from the MQW 15 enters the n-GaN: Si clad layer 11 and enters the sapphire substrate 10 perpendicularly from the n-GaN: Si clad layer 11, it proceeds upward as indicated by the center arrow R <b> 1. When emitted light is incident from the n-GaN: Si clad layer 11 to the sapphire substrate 10 in a left upward direction, the emission angle into the sapphire substrate 10 is changed and the light enters the sapphire substrate 10. Since the refractive index of the sapphire-GaN transition region 10B in the vicinity of the n-GaN: Si clad layer 11 side surface of the sapphire substrate 10 is close to the refractive index of GaN, the emission angle does not change much in the vicinity of the surface of the sapphire substrate 10. The exit angle gradually changes in accordance with the refractive index of the sapphire-GaN transition region 10B as it becomes deeper from the surface of the sapphire substrate 10, and the exit angle is constant at a portion deeper than the portion about 1 μm from the surface. And the light travels in a straight line. The other light travels in the same way. That is, since the difference in refractive index between the sapphire substrate 10 and the n-GaN: Si clad layer 11 is small, the total reflection component is reduced, thereby improving the transmittance into the sapphire substrate 10 and light. Promptly propagates.

上記した第1の実施の形態によると、LED素子2の上方だけでなく側面方向にも発光光を拡散することができるため、イオン打ち込みを行わなかったLED素子と比較して30%程度の出力の向上が認められた。また、LED素子の特性にイオン打ち込みの影響はなかった。   According to the first embodiment described above, since the emitted light can be diffused not only above the LED element 2 but also in the side surface direction, the output is about 30% as compared with the LED element not subjected to ion implantation. Improvement was observed. Moreover, there was no influence of ion implantation on the characteristics of the LED element.

上記した第1の実施の形態によると、下記の効果を奏することができる。
(1)LED素子2の上方だけでなく側面方向にも発光光を非常に広く拡散して均一に青色光を照射することができるため、広範囲にわたって色むらのない白色光を得ることができる。また、サファイア基板10中に打ち込まれたGaNは、微粒子となり、この微粒子が光散乱体としての働きをするため、より広範囲に光を拡散することができる。
(2)また、側面方向に放射された青色光をカップ1Bで反射して上方に導くようにしているので、光路上に配置された蛍光体を励起することができ、波長変換効率が向上して白色光の輝度を向上させることができる。
(3)また、青色光が分散されることによって、蛍光体の濃度を部分的に変化させるといった樹脂組成の調整や、高度な樹脂成形性を必要としないで容易に製造することができ、蛍光体の濃度(使用量)を低減することができる。
(4)また、サファイア基板10の表面近傍で基板の組成や特性が変わるため、サファイア基板10中のGaNの濃度を変えることにより光取り出し効率を制御することができるので、用途に応じて発光強度や発光色を変えることができる発光素子が得られる。
According to the first embodiment described above, the following effects can be obtained.
(1) Since the emitted light can be diffused very widely and uniformly irradiated with blue light not only above the LED element 2 but also in the lateral direction, white light with no color unevenness can be obtained over a wide range. Further, GaN implanted into the sapphire substrate 10 becomes fine particles, and the fine particles function as a light scatterer, so that light can be diffused in a wider range.
(2) Further, since the blue light emitted in the side surface direction is reflected by the cup 1B and guided upward, the phosphor disposed on the optical path can be excited, and the wavelength conversion efficiency is improved. Thus, the brightness of white light can be improved.
(3) In addition, by dispersing blue light, it can be easily manufactured without requiring adjustment of the resin composition, such as partially changing the phosphor concentration, and high resin moldability. The body concentration (amount used) can be reduced.
(4) Since the composition and characteristics of the substrate change near the surface of the sapphire substrate 10, the light extraction efficiency can be controlled by changing the concentration of GaN in the sapphire substrate 10. And a light-emitting element capable of changing the emission color.

図7は、本発明の第2の実施の形態に係る発光素子を使用した発光装置を示す。この発光装置は、図1に示す第1の実施の形態に係る発光装置とは、サファイア基板10とn−GaN:Siクラッド層11との間にAlN層30を設けたものである。AlNの屈折率n=1.8〜2.0であり、サファイア基板10とn−GaN:Siクラッド層11の屈折率の間にあることから、サファイア基板10の表面にイオン化したGaおよびNを打ち込むことにより、サファイア基板10の屈折率n=1.77からn−GaN:Siクラッド層11の屈折率n=2.4まで連続的に変化させることができ、各層の屈折率の差が小さいため、全反射成分が減少し、より光取り出し効率を向上させることができる。   FIG. 7 shows a light emitting device using the light emitting element according to the second embodiment of the present invention. This light emitting device is different from the light emitting device according to the first embodiment shown in FIG. 1 in that an AlN layer 30 is provided between the sapphire substrate 10 and the n-GaN: Si clad layer 11. Since the refractive index n of AlN is 1.8 to 2.0 and is between the refractive indexes of the sapphire substrate 10 and the n-GaN: Si clad layer 11, ionized Ga and N are formed on the surface of the sapphire substrate 10. By driving, the refractive index n = 1.77 of the sapphire substrate 10 can be continuously changed from the refractive index n = 2.4 of the n-GaN: Si clad layer 11, and the difference in the refractive index of each layer is small. Therefore, the total reflection component is reduced, and the light extraction efficiency can be further improved.

なお、上記した第1の実施の形態では、青色光と黄色光との混合に基づいて白色光を得る構成について説明したが、白色光を得る構成として、例えば、青色光によって励起されて緑色光を放射する第1の蛍光体と、青色光によって励起されて赤色光を放射する第2の蛍光体とを透光性樹脂7に混合し、赤色光、緑色光、および青色光の混合によって白色光を得るようにしてもよい。   In the first embodiment described above, the configuration for obtaining white light based on the mixture of blue light and yellow light has been described. However, as a configuration for obtaining white light, for example, green light excited by blue light is used. A first phosphor that emits red light and a second phosphor that emits red light when excited by blue light are mixed in the translucent resin 7, and white is obtained by mixing red light, green light, and blue light. Light may be obtained.

第1の実施の形態では、サファイア基板10表面にイオン打ち込み法によりGaNを形成する構成を説明したが、GaNとの屈折率の差を小にできるものであれば、GaN以外の物質であってもよい。また、打ち込まれる物質は、例えば、AlN,InGaN,AlGaN,ZnS,CdS,NbO等の化合物あるいはSi,GE等の単元素であってもよい。ただし、発光波長領域で透明であることが望ましい。透明でなければ発光光が吸収されてしまい光取り出し効率が低下するからである。また、サファイア基板10中にZnを打ち込んでもよい。このとき、サファイア基板10中の酸素とZnが反応してZnOが形成され、このZnOの可視領域での屈折率が2.1であり、サファイア基板10の屈折率が近似することから、GaNクラッド層からサファイア基板10に発光光が入射してきた場合に発光光を透過させるため、光取り出し効率が結果的に向上する。   In the first embodiment, the configuration in which GaN is formed on the surface of the sapphire substrate 10 by ion implantation has been described. However, any material other than GaN can be used as long as the difference in refractive index from GaN can be reduced. Also good. The implanted material may be, for example, a compound such as AlN, InGaN, AlGaN, ZnS, CdS, or NbO, or a single element such as Si or GE. However, it is desirable to be transparent in the emission wavelength region. This is because if it is not transparent, the emitted light is absorbed and the light extraction efficiency decreases. Further, Zn may be implanted into the sapphire substrate 10. At this time, oxygen in the sapphire substrate 10 reacts with Zn to form ZnO, and the refractive index of this ZnO in the visible region is 2.1, and the refractive index of the sapphire substrate 10 is approximated. Since the emitted light is transmitted when the emitted light is incident on the sapphire substrate 10 from the layer, the light extraction efficiency is improved as a result.

また、GaNとサファイア基板10表面との界面における屈折率は同一であることが最も好ましいが、サファイア基板10が有する屈折率に対応して小であれば光取り出し性の向上に有効である。   The refractive index at the interface between GaN and the surface of the sapphire substrate 10 is most preferably the same. However, if the refractive index is small corresponding to the refractive index of the sapphire substrate 10, it is effective for improving the light extraction performance.

また、LED素子2についても青色光を放射するものに限定されず、例えば、近紫外光を放射するLED素子を用いるようにしてもよい。この場合には、近紫外光によって励起されて赤色光、緑色光、および青色光を放射する蛍光体を透光性樹脂6に混合して用いることにより、白色光を得ることができる。また、サファイア基板10に発光材料を打ち込むんでサファイア基板10に多色発光層を設けてもよい。   Further, the LED element 2 is not limited to one that emits blue light, and for example, an LED element that emits near-ultraviolet light may be used. In this case, white light can be obtained by using a phosphor that is excited by near-ultraviolet light and emits red light, green light, and blue light in a mixture with the translucent resin 6. Further, a multicolor light emitting layer may be provided on the sapphire substrate 10 by implanting a light emitting material into the sapphire substrate 10.

また、サファイアの他に、GaAs,GaP等により基板を製作してもよい。ただし基板を透過して発光光が出射されるため、透明または透光性を有する材料が好ましい。   In addition to sapphire, the substrate may be made of GaAs, GaP or the like. However, since emitted light is emitted through the substrate, a transparent or translucent material is preferable.

本発明の第1の実施の形態に係る発光素子を使用した発光装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the light-emitting device using the light emitting element which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る発光素子を使用した発光装置の部分拡大断面図である。It is a partial expanded sectional view of the light-emitting device using the light emitting element which concerns on the 1st Embodiment of this invention. イオン打ち込み装置の概念構成図である。It is a conceptual lineblock diagram of an ion implantation device. イオン打ち込み装置を用いて半導体発光素子を製造する工程を示す図である。It is a figure which shows the process of manufacturing a semiconductor light-emitting device using an ion implantation apparatus. イオン化されたGaおよびNをサファイア基板に打ち込んだときの特性を示す図で、(a)は、サファイア基板に打ち込まれるイオン化されたGaおよびNの量(注入量)とサファイア基板の表面近傍における平均屈折率との関係を示す図、(b)は、、サファイア基板に注入されたGaおよびNの濃度と基板の表面からの深さの関係を示す図、(c)は、サファイア基板の平均屈折率と基板の表面からの深さとの関係を示す図である。The figure which shows the characteristic when ionized Ga and N are struck to a sapphire substrate, (a) is the average of the amount (implantation amount) of ionized Ga and N which is struck into a sapphire substrate, and the surface vicinity of the sapphire substrate The figure which shows the relationship with a refractive index, (b) is a figure which shows the relationship between the density | concentration of Ga and N inject | poured into the sapphire substrate, and the depth from the surface of a board | substrate, (c) is the average refraction of a sapphire substrate. It is a figure which shows the relationship between a rate and the depth from the surface of a board | substrate. 本発明の第1の樹脂の形態に係る半導体発光素子の動作の説明図である。It is explanatory drawing of operation | movement of the semiconductor light-emitting device which concerns on the form of the 1st resin of this invention. 本発明の第2の実施の形態に係る発光素子を使用した発光装置を示す断面図である。It is sectional drawing which shows the light-emitting device using the light emitting element which concerns on the 2nd Embodiment of this invention. 従来の半導体発光素子を示す図である。It is a figure which shows the conventional semiconductor light-emitting device.

符号の説明Explanation of symbols

1A,1C リードフレーム
1B カップ
1a メタルステム
2 LED素子
2A 保護膜
3 Agペースト
4A,4B AUバンプ
5 サブマウント素子
5A n側電極
5B p型半導体層
5C p側電極
5D n電極
5E n型半導体層
6 ボンディングワイヤ
7 透光性樹脂
8 透明エポキシ樹脂部
10 サファイア基板
10A イオン打ち込み領域
10B サファイア−GaN遷移領域
10C 半導体層
11 n−GaN:Siクラッド層
13 In0.25Ga0.85N井戸層
14 GaN障壁層
15 MQW
16 p型Al0.12Ga0.88Nクラッド層
17 p型GaNコンタクト層
18 透明電極
19 p型電極
20 n型電極
30 イオン打ち込み装置
30A イオンビーム
31 イオンビーム発生部
32 質量分析部
33 レンズ部
34 加速器
35 打ち込み室
49 SiC基板
50 第1のGaN系結晶
50a 屈折率界面
51 第2のGaN系結晶
52 n型コンタクト層
53 n型電極
54 発光層
55 p型コンタクト層
56 p型電極
1A, 1C Lead frame 1B Cup 1a Metal stem 2 LED element 2A Protective film 3 Ag paste 4A, 4B AU bump 5 Submount element 5A n-side electrode 5B p-type semiconductor layer 5C p-side electrode 5D n-electrode 5E n-type semiconductor layer 6 Bonding wire 7 Translucent resin 8 Transparent epoxy resin portion 10 Sapphire substrate 10A Ion implantation region 10B Sapphire-GaN transition region 10C Semiconductor layer 11 n-GaN: Si cladding layer 13 In 0.25 Ga 0.85 N well layer 14 GaN barrier layer 15 MQW
16 p-type Al 0.12 Ga 0.88 N clad layer 17 p-type GaN contact layer 18 transparent electrode 19 p-type electrode 20 n-type electrode 30 ion implantation apparatus 30A ion beam 31 ion beam generation unit 32 mass analysis unit 33 lens unit 34 accelerator 35 implantation Chamber 49 SiC substrate 50 First GaN-based crystal 50a Refractive index interface 51 Second GaN-based crystal 52 n-type contact layer 53 n-type electrode 54 light-emitting layer 55 p-type contact layer 56 p-type electrode

Claims (10)

透光性基板上にn型層およびp型層を積層した半導体発光素子において、
前記透光性基板は、その表面下に前記n型層の屈折率と同一あるいは近似する屈折率から前記透光性基板の屈折率まで屈折率が遷移する屈折率遷移領域を有することを特徴とする半導体発光素子。
In a semiconductor light emitting device in which an n-type layer and a p-type layer are stacked on a translucent substrate,
The translucent substrate has a refractive index transition region in which a refractive index transitions from a refractive index that is the same as or close to a refractive index of the n-type layer to a refractive index of the translucent substrate below the surface thereof. A semiconductor light emitting device.
前記透光性基板は、サファイア基板によって形成され、
前記n型層または前記p型層は、GaN系化合物から形成されることを特徴とする請求項1記載の半導体発光素子。
The translucent substrate is formed of a sapphire substrate,
2. The semiconductor light emitting device according to claim 1, wherein the n-type layer or the p-type layer is formed of a GaN-based compound.
前記屈折率遷移領域は、イオン打ち込み法によって1種または2種以上のイオンを前記基板に打ち込んだ後、熱処理を施して形成されることを特徴とする請求項1記載の半導体発光素子。   The semiconductor light emitting device according to claim 1, wherein the refractive index transition region is formed by implanting one or more ions into the substrate by an ion implantation method and then performing a heat treatment. 前記透光性基板は、前記n型層との間にバッファ層を形成したことを特徴とする請求項1記載の半導体発光素子。   2. The semiconductor light emitting device according to claim 1, wherein a buffer layer is formed between the translucent substrate and the n-type layer. サファイア基板上にn型層およびp型層を積層した半導体発光素子において、
前記サファイア基板は、その表面下に前記n型層を構成する層構成材を含み、前記サファイア基板の表面からの深さに応じて前記層構成材の濃度が遷移する層構成材濃度遷移層を有することを特徴とする半導体発光素子。
In a semiconductor light emitting device in which an n-type layer and a p-type layer are stacked on a sapphire substrate,
The sapphire substrate includes a layer constituent material constituting the n-type layer below the surface, and a layer constituent material concentration transition layer in which the concentration of the layer constituent material transitions according to the depth from the surface of the sapphire substrate. A semiconductor light emitting element comprising:
GaN系半導体の微粒子を含んだサファイア−GaN系半導体遷移領域を表面層として有するサファイア基板と、
前記サファイア基板上に形成された基板上にn型GaN系半導体層と、
前記n型GaN系半導体層上に形成されたGaN系半導体発光層と、
前記GaN系半導体発光層上に形成されたp型GaN系半導体層を含むことを特徴とする半導体発光素子。
A sapphire substrate having a sapphire-GaN-based semiconductor transition region containing fine particles of a GaN-based semiconductor as a surface layer;
An n-type GaN-based semiconductor layer on a substrate formed on the sapphire substrate;
A GaN-based semiconductor light emitting layer formed on the n-type GaN-based semiconductor layer;
A semiconductor light emitting device comprising a p-type GaN semiconductor layer formed on the GaN semiconductor light emitting layer.
前記GaN系半導体の微粒子は、GaNの微粒子であることを特徴とする請求項6記載の半導体発光素子。   The semiconductor light emitting device according to claim 6, wherein the fine particles of the GaN-based semiconductor are fine particles of GaN. 前記GaNの微粒子は、サファイア基板にGaとNをイオン打ち込み法によって打ち込んだ後、熱処理を施して形成されることを特徴とする請求項7記載の半導体発光素子。   8. The semiconductor light emitting device according to claim 7, wherein the GaN fine particles are formed by performing heat treatment after implanting Ga and N into a sapphire substrate by an ion implantation method. 前記サファイア−GaN系半導体遷移領域は、前記n型GaN系半導体層の屈折率と同一あるいは近似する屈折率から前記サファイア基板の屈折率まで屈折率を変化させたことを特徴とする請求項6記載の半導体発光素子。   The refractive index of the sapphire-GaN based semiconductor transition region is changed from a refractive index that is the same as or close to a refractive index of the n-type GaN based semiconductor layer to a refractive index of the sapphire substrate. Semiconductor light emitting device. 前記サファイア−GaN系半導体遷移領域は、前記サファイア−GaN系半導体遷移領域の表面からの深さに応じて前記n型GaN系半導体層を構成する層構成材の濃度を変化させたことを特徴とする請求項6記載の半導体発光素子。   The sapphire-GaN based semiconductor transition region is characterized in that the concentration of the layer constituent material constituting the n-type GaN based semiconductor layer is changed according to the depth from the surface of the sapphire-GaN based semiconductor transition region. The semiconductor light emitting device according to claim 6.
JP2003342709A 2003-09-30 2003-09-30 Semiconductor light-emitting element Pending JP2005109284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003342709A JP2005109284A (en) 2003-09-30 2003-09-30 Semiconductor light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003342709A JP2005109284A (en) 2003-09-30 2003-09-30 Semiconductor light-emitting element

Publications (1)

Publication Number Publication Date
JP2005109284A true JP2005109284A (en) 2005-04-21

Family

ID=34536898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003342709A Pending JP2005109284A (en) 2003-09-30 2003-09-30 Semiconductor light-emitting element

Country Status (1)

Country Link
JP (1) JP2005109284A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008112979A (en) 2006-10-05 2008-05-15 Mitsubishi Cable Ind Ltd GaN-BASED LED CHIP AND LIGHTING DEVICE
JP2009059746A (en) * 2007-08-30 2009-03-19 Kyocera Corp Light-emitting device
DE112007001232T5 (en) 2006-05-23 2009-04-02 Alps Electric Co., Ltd. Semiconductor light-emitting element and method for its production
CN102790149A (en) * 2011-05-20 2012-11-21 台湾积体电路制造股份有限公司 Light emitting diode and method of fabrication thereof
US8981420B2 (en) 2005-05-19 2015-03-17 Nichia Corporation Nitride semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8981420B2 (en) 2005-05-19 2015-03-17 Nichia Corporation Nitride semiconductor device
DE112007001232T5 (en) 2006-05-23 2009-04-02 Alps Electric Co., Ltd. Semiconductor light-emitting element and method for its production
JP2008112979A (en) 2006-10-05 2008-05-15 Mitsubishi Cable Ind Ltd GaN-BASED LED CHIP AND LIGHTING DEVICE
JP2009059746A (en) * 2007-08-30 2009-03-19 Kyocera Corp Light-emitting device
CN102790149A (en) * 2011-05-20 2012-11-21 台湾积体电路制造股份有限公司 Light emitting diode and method of fabrication thereof
CN102790149B (en) * 2011-05-20 2016-04-27 晶元光电股份有限公司 Light-emitting diode and manufacture method thereof

Similar Documents

Publication Publication Date Title
TWI276234B (en) Luminescence element of nitride semiconductor
US6576933B2 (en) Semiconductor light emitting device and method for manufacturing same
JP3863177B2 (en) Gallium nitride light emitting device
JP5032171B2 (en) Semiconductor light emitting device, method for manufacturing the same, and light emitting device
CN101443923B (en) Optoelectronic semiconductor component
US20140353705A1 (en) Semiconductor light emitting element, method of manufacturing semiconductor light emitting element, semiconductor light emitting device and substrate
US20060043399A1 (en) Semiconductor light emitting device
US20130328066A1 (en) Optoelectronic semiconductor chip and method for the production thereof
JP2007059418A (en) Nitride gallium based compound semiconductor light-emitting element
JP2006100787A (en) Light emitting device and light emitting element
JP2004363532A (en) Manufacturing method for vertically structured gallium nitride light emitting diode
WO2005096399A1 (en) Nitride semiconductor light emitting element
JP2006041479A (en) Light emitting element and its manufacturing method
TW200834996A (en) Non-polar and semi-polar light emitting devices
JP2001352101A (en) Light emitting device
JP2004079867A (en) Manufacturing method of gallium nitride base compound semiconductor device, and light emitting device
JP2010192859A (en) Semiconductor light emitting device, semiconductor light emitting apparatus, and method of manufacturing semiconductor light emitting device
JP2007214225A (en) Light-emitting diode and manufacturing method therefor
TWI262607B (en) Semiconductor light emitting device
JP2004153271A (en) White light-emitting device and manufacturing method therefor
JP4008656B2 (en) Semiconductor light emitting device
JP2007173551A (en) Light-emitting diode and manufacturing method thereof
JP2005109284A (en) Semiconductor light-emitting element
JP2012532438A (en) P contact layer of III-P semiconductor light emitting device
KR20200043984A (en) Light-emitting device having anti-reflective silicon carbide or sapphire substrate and method for forming same