JP2005109245A - Separator for capacitor - Google Patents

Separator for capacitor Download PDF

Info

Publication number
JP2005109245A
JP2005109245A JP2003342459A JP2003342459A JP2005109245A JP 2005109245 A JP2005109245 A JP 2005109245A JP 2003342459 A JP2003342459 A JP 2003342459A JP 2003342459 A JP2003342459 A JP 2003342459A JP 2005109245 A JP2005109245 A JP 2005109245A
Authority
JP
Japan
Prior art keywords
separator
thermoplastic resin
capacitor
inorganic
secondary particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003342459A
Other languages
Japanese (ja)
Other versions
JP4425596B2 (en
Inventor
Hideo Endo
秀夫 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2003342459A priority Critical patent/JP4425596B2/en
Publication of JP2005109245A publication Critical patent/JP2005109245A/en
Application granted granted Critical
Publication of JP4425596B2 publication Critical patent/JP4425596B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a separator for a separator that is made of thermoplastic resin which is low cost and superior in flexibility, the separator for the capacitor being small in heat shrinkage, superior in thermal size stability, and electrolyte holding property, low in electric resistance, and easily manufactured at a low cost. <P>SOLUTION: The separator for the capacitor, which is formed of a finely porous film, consisting principally of thermoplastic resin and inorganic powder, is characterized in that the finely porous film holds inorganic secondary particles as the inorganic powder in a three-dimensional sieve network of the thermoplastic resin so that adjacent secondary particles among the inorganic secondary particles are in contact with each other, and is &le;100 &mu;m thick. <P>COPYRIGHT: (C)2005,JPO&amp;NCIPI

Description

本発明は、各種電気機器等に使用されるコンデンサ用のセパレータに関する。   The present invention relates to a separator for a capacitor used in various electric devices and the like.

従来、電子機器に使用されるコンデンサや蓄電池には、電解液を保持する微多孔質のセパレータが用いられている。近年、ポータブル電子機器が急速に普及して適用範囲が拡大し、需要が増大するとともに、前記ポータブル電子機器の小型化、高性能化が急速に進んでいる。これに伴い、ポータブル電子機器に使用されるコンデンサ、特に、電気二重層コンデンサも小型化、高性能化が求められている。このため、電気二重層コンデンサ等に使用されるコンデンサ用セパレータも、厚さが60μm以下と薄く、電解液保持性、耐熱性に優れ、低電気抵抗である高性能のものが求められている。   2. Description of the Related Art Conventionally, microporous separators that retain an electrolytic solution are used for capacitors and storage batteries used in electronic devices. In recent years, portable electronic devices have rapidly spread and the application range has been expanded to increase demand, and the portable electronic devices have been rapidly reduced in size and performance. Accordingly, capacitors used in portable electronic devices, especially electric double layer capacitors, are required to be smaller and have higher performance. For this reason, a capacitor separator used for an electric double layer capacitor or the like is also required to have a high performance having a thin thickness of 60 μm or less, excellent electrolytic solution retention and heat resistance, and low electric resistance.

ところで、電気二重層コンデンサは、水溶液系電解液を使用するタイプと有機系電解液を使用するタイプの2種類のタイプに大別される。どちらのタイプの電気二重層コンデンサも製造工程や使用時に高温に曝される場合があるため、コンデンサ用セパレータには、熱的寸法変化の小さい、耐熱性の高いものが要求されている。例えば、熱的寸法安定性の優れたコンデンサ用セパレータとして、耐熱性の高い四フッ化エチレン樹脂やその共重合体よりなる微多孔質膜からなるもの(例えば、特許文献1)、耐熱性の高い芳香族ポリアミド樹脂繊維の不織布からなるものが知られている(例えば、特許文献2)。
しかしながら、前記特許文献1や特許文献2のセパレータでは、セパレータを構成する樹脂が高価であることから、汎用的に使用されていないのが実状であり、これらのセパレータに代わる、より汎用性の高い、しかも熱的寸法安定性の優れた、60μm以下の薄膜化に対応可能なコンデンサ用セパレータの要求が高まっている。
このような要求を満たすセパレータとして、コンデンサ用セパレータではないものの、本出願人は、先に、特許文献3に開示されるような、汎用性の高いポリオレフィン系樹脂を用いた非水電解液電池用セパレータを提案した。このセパレータは、ポリオレフィン系樹脂と無機質粉体及び可塑剤を含む原料混合物を加熱溶融・混練しながら押出成形して得たシート状物に対して、延伸処理を含む薄肉化処理を施して厚さ10〜200μmの薄膜に形成し、前記可塑剤を抽出除去した後、前記ポリオレフィン系樹脂の融点以上の温度下で熱処理を施すようにすることで、熱的寸法安定性が向上したセパレータとすることができたものである。
特開2001−110678号公報 特開2003−197476号公報 特開2001−266831号公報
By the way, electric double layer capacitors are roughly classified into two types, a type using an aqueous electrolyte and a type using an organic electrolyte. Since both types of electric double layer capacitors may be exposed to high temperatures during the manufacturing process and use, capacitor separators are required to have a small thermal dimensional change and high heat resistance. For example, as a capacitor separator having excellent thermal dimensional stability, a separator made of a microporous film made of a highly heat-resistant tetrafluoroethylene resin or a copolymer thereof (for example, Patent Document 1), having a high heat resistance What consists of a nonwoven fabric of an aromatic polyamide resin fiber is known (for example, patent document 2).
However, in the separators of Patent Document 1 and Patent Document 2, since the resin constituting the separator is expensive, it is actually not used for general purposes, and it is more versatile to replace these separators. In addition, there is an increasing demand for a capacitor separator that has excellent thermal dimensional stability and can be used for thinning of 60 μm or less.
Although not a capacitor separator as a separator that satisfies such requirements, the present applicant previously used a non-aqueous electrolyte battery using a highly versatile polyolefin resin as disclosed in Patent Document 3. A separator was proposed. This separator has a thickness obtained by subjecting a sheet-like material obtained by extrusion molding while heating and melting and kneading a raw material mixture containing a polyolefin-based resin, an inorganic powder, and a plasticizer to a thinning process including a stretching process. Form a 10-200 μm thin film, extract and remove the plasticizer, and then heat-treat at a temperature equal to or higher than the melting point of the polyolefin resin to obtain a separator with improved thermal dimensional stability. Was made.
Japanese Patent Laid-Open No. 2001-110678 JP 2003-197476 A JP 2001-266831 A

前記特許文献3に開示されるようなセパレータをコンデンサ用セパレータに適用するようにすれば、確かに、前記要求を満たすコンデンサ用セパレータがある意味完成するが、前記特許文献3に開示されるセパレータにも、次のような問題点がある。
つまり、特許文献3に開示のセパレータでは、薄膜のセパレータを得るために、薄肉化処理として延伸処理を行うようにしているが、図2に示すように、前記延伸処理がなされると、ポリオレフィン系樹脂の三次元網目状ネットワーク構造も引き伸ばされ、該ネットワーク内に保持されていた無機質粉体すなわち無機質二次粒子同士も引き離されるようになるため、前記セパレータが高温に曝され前記ポリオレフィン系樹脂の流動開始温度に達した場合には、延伸処理により引き離され隣接する二次粒子同士の接触状態を失った前記無機質二次粒子は個々の二次粒子が比較的自由に移動し易い状態にあることから、流動温度に達した前記ポリオレフィン系樹脂の流動を食い止める力に乏しく、前記ポリオレフィン系樹脂は流動し易くなるため、結果として、熱的寸法安定性を十分に確保できないという問題がある。
また、特許文献3のセパレータでは、熱的寸法安定性の向上を図るため、ポリオレフィン系樹脂の融点以上での高温熱処理工程を別途必要とするので、工程が複雑化し、高温熱処理装置が新たに必要になる可能性があるとともに、エネルギ消費も増え、結果として、製造コストが高くなるという問題もある。
そこで、本発明は、安価で汎用性に優れる熱可塑性樹脂からなるセパレータであって、熱収縮率が小さく、熱的寸法安定性、電解液保持性に優れ、低電気抵抗で、容易かつ安価に製造が可能なコンデンサ用セパレータを提供することを目的とする。
If a separator as disclosed in Patent Document 3 is applied to a capacitor separator, there is certainly a meaning that there is a capacitor separator that satisfies the above requirements, but the separator disclosed in Patent Document 3 However, there are the following problems.
That is, in the separator disclosed in Patent Document 3, in order to obtain a thin film separator, a stretching process is performed as a thinning process. However, as shown in FIG. Since the three-dimensional network network structure of the resin is stretched and the inorganic powder held in the network, that is, the inorganic secondary particles are separated from each other, the separator is exposed to high temperature and the flow of the polyolefin resin When the starting temperature is reached, the inorganic secondary particles that are separated by the stretching process and lose the contact state between the adjacent secondary particles are in a state in which the individual secondary particles are relatively easy to move. Since the polyolefin resin that has reached the flow temperature has a poor ability to stop the flow, the polyolefin resin is easy to flow. As a result, it is impossible to secure a sufficient thermal dimensional stability.
In addition, in order to improve thermal dimensional stability, the separator of Patent Document 3 requires a separate high-temperature heat treatment step above the melting point of the polyolefin resin, which complicates the process and newly requires a high-temperature heat treatment apparatus. There is also a problem that the energy consumption is increased and the manufacturing cost is increased as a result.
Therefore, the present invention is a separator made of a thermoplastic resin that is inexpensive and excellent in versatility, and has a low thermal shrinkage, excellent thermal dimensional stability and electrolyte retention, low electrical resistance, and easy and inexpensive. An object of the present invention is to provide a capacitor separator that can be manufactured.

本発明のコンデンサ用セパレータは、前記目的を達成するべく、請求項1記載の通り、熱可塑性樹脂と無機質粉体を主体とした微多孔質膜からなるコンデンサ用セパレータにおいて、前記微多孔質膜が、前記熱可塑性樹脂の三次元網目状ネットワーク内に前記無機質粉体である無機質二次粒子を保持し、該無機質二次粒子の隣接する二次粒子同士が互いに接触状態にある形態をなしており、100μm未満の厚さを有するものであることを特徴とする。
また、請求項2記載のコンデンサ用セパレータは、請求項1記載のコンデンサ用セパレータにおいて、前記セパレータは、前記熱可塑性樹脂の融点よりも50℃高い温度における熱収縮率が5%以下であることを特徴とする。
また、請求項3記載のコンデンサ用セパレータは、請求項1または2記載のコンデンサ用セパレータにおいて、前記無機質粉体の含有量が50〜80質量%であることを特徴とする。
また、請求項4記載のコンデンサ用セパレータは、請求項1乃至3の何れかに記載のコンデンサ用セパレータにおいて、前記熱可塑性樹脂の溶融粘度指数が0.01g/10分以下であることを特徴とする。
また、請求項5記載のコンデンサ用セパレータは、請求項1乃至4の何れかに記載のコンデンサ用セパレータにおいて、前記微多孔質膜の厚さが60μm以下であることを特徴とする。
また、請求項6記載のコンデンサ用セパレータは、請求項1乃至5の何れかに記載のコンデンサ用セパレータにおいて、前記微多孔質膜は、前記熱可塑性樹脂と、前記無機質粉体と、可塑剤とを混合した原料混合物を加熱溶融・混練しながら押し出したシート状物に対して、延伸処理を行うことなしに、薄肉化処理を行った後、前記可塑剤を抽出除去して得られるものであることを特徴とする。
また、請求項7記載のコンデンサ用セパレータは、請求項1乃至6の何れかに記載のコンデンサ用セパレータにおいて、前記熱可塑性樹脂は重量平均分子量が50万以上のポリエチレンであり、前記無機質粉体は二酸化ケイ素であることを特徴とする。
In order to achieve the above object, the capacitor separator of the present invention is a capacitor separator comprising a microporous film mainly composed of a thermoplastic resin and an inorganic powder, as defined in claim 1, wherein the microporous film is The inorganic secondary particles that are the inorganic powder are held in the three-dimensional network network of the thermoplastic resin, and adjacent secondary particles of the inorganic secondary particles are in contact with each other. , Having a thickness of less than 100 μm.
The capacitor separator according to claim 2 is the capacitor separator according to claim 1, wherein the separator has a thermal shrinkage rate of 5% or less at a temperature 50 ° C. higher than the melting point of the thermoplastic resin. Features.
The capacitor separator according to claim 3 is the capacitor separator according to claim 1 or 2, wherein the content of the inorganic powder is 50 to 80% by mass.
The capacitor separator according to claim 4 is the capacitor separator according to any one of claims 1 to 3, wherein the thermoplastic resin has a melt viscosity index of 0.01 g / 10 min or less. To do.
The capacitor separator according to claim 5 is the capacitor separator according to any one of claims 1 to 4, wherein the thickness of the microporous film is 60 μm or less.
The capacitor separator according to claim 6 is the capacitor separator according to any one of claims 1 to 5, wherein the microporous film includes the thermoplastic resin, the inorganic powder, and a plasticizer. It is obtained by extracting and removing the plasticizer after performing a thinning treatment on a sheet-like material extruded while heating and melting and kneading the raw material mixture, without performing a stretching treatment. It is characterized by that.
The capacitor separator according to claim 7 is the capacitor separator according to any one of claims 1 to 6, wherein the thermoplastic resin is polyethylene having a weight average molecular weight of 500,000 or more, and the inorganic powder is It is characterized by being silicon dioxide.

本発明のコンデンサ用セパレータは、熱可塑性樹脂と無機質粉体を主体とした微多孔質膜からなるセパレータであって、前記熱可塑性樹脂が形成する三次元網目状ネットワーク内に前記無機質粉体すなわち無機質二次粒子を保持し、しかも、該無機質二次粒子の隣接する二次粒子同士が互いに接触状態にある形態をなし、100μm未満の厚さを有した微多孔質膜よりなるものであるため、前記無機質二次粒子は個々の二次粒子が容易に移動しづらい状態にあることから、前記セパレータが高温に曝され前記熱可塑性樹脂の流動開始温度に達した場合でも、前記無機質二次粒子が、流動温度に達した前記熱可塑性樹脂の流動を食い止める能力を発揮するようになるので、前記熱可塑性樹脂は容易には流動できなくなり、結果的として、優れた熱的寸法安定性をもたらすことができる。
また、前記熱可塑性樹脂として溶融粘度指数が0.01g/10分以下である熱可塑性樹脂を用いるようにすれば、前記セパレータが高温に曝され前記熱可塑性樹脂の流動開始温度に達した場合にも、上記の前記無機質粉体すなわち無機質二次粒子による前記熱可塑性樹脂の流動を食い止める効果に加え、該熱可塑性樹脂自体の流動性が改善される効果が付加されることになるので、該熱可塑性樹脂はさらに流動し難くなり、熱的寸法安定性がさらに増したコンデンサ用セパレータとすることができる。
また、本発明のコンデンサ用セパレータは、無機質一次粒子が凝集して塊状の集合体を形成し無機質二次粒子となったものである前記無機質粉体を多量に含有しているので、該無機質粉体が有する複雑な微細構造により、高い電解液親和性と電解液保持性をもたらし、また、電気抵抗を抑制できる。
また、上記のような微細構造を有し優れた熱的寸法安定性をもたらすことのできる本発明のコンデンサ用セパレータは、例えば、前記熱可塑性樹脂と前記無機質粉体と可塑剤とを混合し加熱溶融・混練しながら押し出したシート状物に対して、延伸処理を行うことなしに薄肉化処理を行った後、前記可塑剤を抽出除去する方法により製造が可能であるので、従来の熱可塑性樹脂の融点以上での高温熱処理工程を別途必要した方法のように、製造工程を複雑化させたり、高温熱処理装置のような製造装置を新たに必要としたり、また、エネルギ消費を増やしたりすることなしに、セパレータの熱的寸法安定性の向上を図ることができ、製造を容易とし製造コストを低く抑えることが可能となる。
このため、本発明によれば、安価で汎用性に優れる熱可塑性樹脂からなるセパレータであって、熱収縮率が小さく、熱的寸法安定性、電解液保持性に優れ、低電気抵抗で、容易かつ安価に製造が可能なコンデンサ用セパレータを提供することができる。
The separator for a capacitor of the present invention is a separator composed of a microporous film mainly composed of a thermoplastic resin and an inorganic powder, and the inorganic powder, that is, an inorganic substance is contained in a three-dimensional network network formed by the thermoplastic resin. Since the secondary particles are held, and the adjacent secondary particles of the inorganic secondary particles are in contact with each other, and are formed of a microporous film having a thickness of less than 100 μm, Since the inorganic secondary particles are in a state where individual secondary particles are not easily moved, even when the separator is exposed to a high temperature and reaches the flow start temperature of the thermoplastic resin, the inorganic secondary particles Since the thermoplastic resin that has reached the flow temperature has the ability to stop the flow of the thermoplastic resin, the thermoplastic resin cannot easily flow, and as a result, excellent It can bring dimensional stability.
Further, if a thermoplastic resin having a melt viscosity index of 0.01 g / 10 min or less is used as the thermoplastic resin, the separator is exposed to a high temperature and reaches the flow start temperature of the thermoplastic resin. In addition to the effect of stopping the flow of the thermoplastic resin by the inorganic powder, that is, the inorganic secondary particles, the effect of improving the fluidity of the thermoplastic resin itself is added. The plastic resin is more difficult to flow, and a capacitor separator with further increased thermal dimensional stability can be obtained.
Further, the capacitor separator of the present invention contains a large amount of the inorganic powder that is formed by agglomerating the inorganic primary particles to form a lump aggregate and forming the inorganic secondary particles. The complex fine structure of the body provides high electrolyte compatibility and electrolyte retention, and can suppress electrical resistance.
In addition, the capacitor separator of the present invention having the fine structure as described above and capable of providing excellent thermal dimensional stability is obtained by, for example, mixing and heating the thermoplastic resin, the inorganic powder, and the plasticizer. Since the sheet-like material extruded while being melted and kneaded can be manufactured by a method of extracting and removing the plasticizer after performing a thinning process without performing a stretching process, a conventional thermoplastic resin No complicated manufacturing process, new manufacturing equipment such as high-temperature heat treatment equipment, or increased energy consumption, as in the method that requires a separate high-temperature heat treatment process above the melting point In addition, the thermal dimensional stability of the separator can be improved, and the manufacturing can be facilitated and the manufacturing cost can be kept low.
Therefore, according to the present invention, it is a separator made of a thermoplastic resin that is inexpensive and excellent in versatility, has a low thermal shrinkage rate, excellent thermal dimensional stability and electrolyte retention, low electrical resistance, and easy In addition, a capacitor separator that can be manufactured at low cost can be provided.

本発明のコンデンサ用セパレータは、熱可塑性樹脂と無機質粉体を主体とした微多孔質膜からなるセパレータであって、前記熱可塑性樹脂の三次元網目状ネットワーク内に前記無機質粉体すなわち無機質二次粒子を保持し、しかも、該無機質二次粒子の隣接する二次粒子同士が互いに接触状態にある形態をなし、100μm未満の厚さを有した微多孔質膜よりなるものである。
これにより、前記セパレータの場合は、前記無機質粉体すなわち前記無機質二次粒子の隣接する二次粒子同士が互いに接触状態にあり、該無機質二次粒子は個々の二次粒子が容易に移動しづらい状態にあることから、前記セパレータが高温に曝され前記熱可塑性樹脂の流動開始温度に達した場合でも、前記無機質二次粒子が、流動温度に達した前記熱可塑性樹脂の流動を食い止める能力を発揮するようになるので、前記熱可塑性樹脂は容易には流動できなくなり、結果的として、優れた熱的寸法安定性をもたらすことができる。具体的には、前記熱可塑性樹脂の融点よりも50℃高い温度における熱収縮率が5%以下となる。
The separator for a capacitor of the present invention is a separator composed of a microporous film mainly composed of a thermoplastic resin and an inorganic powder, and the inorganic powder, that is, the inorganic secondary powder is contained in a three-dimensional network network of the thermoplastic resin. The particles are retained, and adjacent secondary particles of the inorganic secondary particles are in contact with each other, and are made of a microporous film having a thickness of less than 100 μm.
Thereby, in the case of the separator, the adjacent secondary particles of the inorganic powder, that is, the inorganic secondary particles are in contact with each other, and the individual secondary particles are not easily moved in the inorganic secondary particles. Therefore, even when the separator is exposed to a high temperature and reaches the flow start temperature of the thermoplastic resin, the inorganic secondary particles exhibit the ability to stop the flow of the thermoplastic resin that has reached the flow temperature. As a result, the thermoplastic resin cannot easily flow, and as a result, excellent thermal dimensional stability can be provided. Specifically, the thermal shrinkage rate at a temperature 50 ° C. higher than the melting point of the thermoplastic resin is 5% or less.

前記熱可塑性樹脂は、ポリエチレン、ポリプロピレン、ポリブテン等に代表される安価で汎用的なポリオレフィン系樹脂を用いることができる。
前記熱可塑性樹脂は、ASTM−D−1238による溶融粘度指数が0.01g/10分以下であるものが好ましい。溶融粘度指数が0.01g/10分以下であれば、前記汎用的な熱可塑性樹脂の1種を単独で用いることもでき、前記熱可塑性樹脂を2種以上混合使用することも可能である。溶融粘度指数が0.01g/10分以下であれば、前記セパレータが高温に曝され前記熱可塑性樹脂の流動開始温度に達した場合にも、上記の前記無機質粉体すなわち無機質二次粒子による流動食い止め効果に加え、該熱可塑性樹脂自体の流動性改善効果が加わることになるので、該熱可塑性樹脂はさらに流動し難くなり、セパレータの熱的寸法安定性がさらに増す。
機械的強度の優れたセパレータを得るためには、前記熱可塑性樹脂は、重量平均分子量が50万以上であることが好ましい。特に、重量平均分子量が100万以上の高密度超高分子量ポリエチレンは、耐薬品性、機械的強度が非常に優れ、信頼性が高いセパレータを得ることができるので好ましい。尚、前記熱可塑性樹脂は、重量平均分子量の異なる2種以上を混合して、重量平均分子量を100万以上とするようにしても良い。尚、前記熱可塑性樹脂の重量平均分子量が50万未満であると、セパレータの耐熱性や機械的強度が不足するため好ましくない。また、重量平均分子量が500万を超えると、セパレータ製造時の押出性、成形性が著しく低下するため好ましくない。
As the thermoplastic resin, an inexpensive and general-purpose polyolefin resin represented by polyethylene, polypropylene, polybutene and the like can be used.
The thermoplastic resin preferably has a melt viscosity index according to ASTM-D-1238 of 0.01 g / 10 min or less. If the melt viscosity index is 0.01 g / 10 min or less, one of the general-purpose thermoplastic resins can be used alone, or two or more of the thermoplastic resins can be mixed and used. If the melt viscosity index is 0.01 g / 10 min or less, even when the separator is exposed to a high temperature and reaches the flow start temperature of the thermoplastic resin, the flow caused by the inorganic powder, that is, the inorganic secondary particles described above. Since the effect of improving the fluidity of the thermoplastic resin itself is added in addition to the anti-restraint effect, the thermoplastic resin is more difficult to flow, and the thermal dimensional stability of the separator is further increased.
In order to obtain a separator having excellent mechanical strength, the thermoplastic resin preferably has a weight average molecular weight of 500,000 or more. In particular, a high-density ultrahigh molecular weight polyethylene having a weight average molecular weight of 1,000,000 or more is preferable because a chemical separator and mechanical strength are excellent and a highly reliable separator can be obtained. In addition, the said thermoplastic resin may mix 2 or more types from which a weight average molecular weight differs, and you may make it make a weight average molecular weight 1 million or more. If the weight average molecular weight of the thermoplastic resin is less than 500,000, it is not preferable because the heat resistance and mechanical strength of the separator are insufficient. On the other hand, if the weight average molecular weight exceeds 5,000,000, the extrudability and moldability at the time of producing the separator are remarkably lowered, which is not preferable.

前記無機質粉体としては、無機質一次粒子が凝集して塊状の集合体を形成し無機質二次粒子となったものを使用するが、このような無機質粉体としては、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化マグネシウム等を用いることが好ましく、これらの1種単独または2種以上の混合使用が可能である。前記無機質粉体の中では、二酸化ケイ素が、粒子径、比表面積等の各種粉体特性の選択範囲が広く、比較的安価であり好ましい。
尚、前記無機質粉体は、前記のように、無機質一次粒子が凝集して塊状の集合体を形成し無機質二次粒子となったものであるため、複雑な微細構造を有しており、セパレータに、高い電解液親和性と電解液保持性を与えることができ、また、電気抵抗の抑制にも寄与する。
As the inorganic powder, inorganic primary particles are aggregated to form a massive aggregate to form inorganic secondary particles. Examples of such inorganic powder include silicon dioxide, titanium dioxide, and oxidation. Aluminum, magnesium oxide, or the like is preferably used, and these can be used alone or in combination of two or more. Among the inorganic powders, silicon dioxide is preferable because it has a wide selection range of various powder characteristics such as particle diameter and specific surface area and is relatively inexpensive.
The inorganic powder, as described above, has a complicated fine structure because the inorganic primary particles are aggregated to form a massive aggregate to form inorganic secondary particles. In addition, high electrolyte solution affinity and electrolyte solution retention can be provided, and also contributes to suppression of electrical resistance.

前記セパレータ中の前記無機質粉体の含有量としては、50〜80質量%が好ましい。なぜならば、前記無機質粉体の含有量が50質量%未満であると、前記熱可塑性樹脂の三次元網目状ネットワーク内に保持される該無機質粉体すなわち無機質二次粒子の隣接する二次粒子同士が互いに接触状態を形成しづらくなり、セパレータの熱的寸法安定性が十分に確保されなくなるため好ましくなく、80質量%を超えると、相対的に前記熱可塑性樹脂の構成比率が20質量%未満となり、セパレータの機械的強度が著しく低下するため好ましくないからである。   As content of the said inorganic powder in the said separator, 50-80 mass% is preferable. This is because when the content of the inorganic powder is less than 50% by mass, adjacent secondary particles of the inorganic powder, that is, the inorganic secondary particles held in the three-dimensional network network of the thermoplastic resin. Are not preferable because it is difficult to form a contact state with each other and the thermal dimensional stability of the separator is not sufficiently ensured, and when it exceeds 80% by mass, the composition ratio of the thermoplastic resin is relatively less than 20% by mass. This is because the mechanical strength of the separator is remarkably lowered.

前記セパレータの厚さは、近年の電気二重層コンデンサの小型化、高性能化に対応するためには、前記したように、100μm未満であることが必要であるが、より好ましくは20〜60μmである。なぜならば、前記セパレータの厚さが20μm未満であると、セパレータの機械的強度が不足し、コンデンサの組立てが困難となるため好ましくなく、60μmを超えると、コンデンサの小型化に対応でき難くなるため好ましくないからである。   The thickness of the separator needs to be less than 100 μm as described above in order to cope with the recent miniaturization and high performance of electric double layer capacitors, but more preferably 20 to 60 μm. is there. This is because if the thickness of the separator is less than 20 μm, the mechanical strength of the separator is insufficient and it is difficult to assemble the capacitor, and if it exceeds 60 μm, it is difficult to cope with downsizing of the capacitor. It is because it is not preferable.

本発明のコンデンサ用セパレータは、前記した通り、前記熱可塑性樹脂と前記無機質粉体を主体とした微多孔質膜からなるものであるが、その製造方法としては、例えば、前記熱可塑性樹脂20〜50質量%と、前記無機質粉体80〜50質量%に、前記熱可塑性樹脂の可塑剤を適量加えて、レーディゲミキサ等で混合して原料混合物を得、該混合物を押出機にて加熱溶融・混練しながらシート状に押し出し、直ちに、該シート状物に対して、延伸処理を用いない薄肉化処理(例.圧延処理)を行った後、適当な抽出溶剤を用いて前記可塑剤を抽出除去し、乾燥するようにすればよい。
前記可塑剤としては、飽和炭化水素からなる工業用潤滑油に代表される鉱物オイル、あるいは、フタル酸−ジ−2−エチルヘキシルに代表される樹脂用可塑剤が使用できる。
また、前記抽出溶剤としては、ヘキサン、ヘプタン、オクタン、ノナン、デカン等の飽和炭化水素系の有機溶剤や、トリクロロエチレン、テトラクロロエチレン等のハロゲン化炭化水素系の有機溶剤が使用できる。
As described above, the capacitor separator of the present invention is composed of a microporous film mainly composed of the thermoplastic resin and the inorganic powder. Examples of the manufacturing method thereof include the thermoplastic resins 20 to 20 described above. An appropriate amount of the thermoplastic resin plasticizer is added to 50% by mass and the inorganic powder 80 to 50% by mass, and the mixture is mixed with a radige mixer or the like to obtain a raw material mixture. The mixture is heated and melted and kneaded with an extruder. While extruding into a sheet, immediately after subjecting the sheet to a thinning process (eg, rolling) without using a stretching process, the plasticizer is extracted and removed using a suitable extraction solvent. What is necessary is just to make it dry.
As the plasticizer, a mineral oil typified by an industrial lubricating oil composed of saturated hydrocarbons, or a plasticizer for resin typified by phthalic acid-di-2-ethylhexyl can be used.
As the extraction solvent, a saturated hydrocarbon organic solvent such as hexane, heptane, octane, nonane, decane, or a halogenated hydrocarbon organic solvent such as trichloroethylene or tetrachloroethylene can be used.

また、電解液との濡れ性や電解液の含浸性を向上させることを目的として、前記セパレータに、アニオン系あるいはカチオン系界面活性剤や非イオン系界面活性剤による表面処理、コロナ放電による表面処理、グラフト重合による表面処理等の表面改質処理を行うことも可能であり、特に、界面活性剤による表面処理が比較的容易に適用できるため好ましい。   In addition, for the purpose of improving the wettability with the electrolytic solution and the impregnation of the electrolytic solution, the separator is subjected to a surface treatment with an anionic or cationic surfactant or a nonionic surfactant, or a surface treatment with corona discharge. It is also possible to perform surface modification treatment such as surface treatment by graft polymerization, and in particular, surface treatment with a surfactant can be applied relatively easily.

次に、本発明の実施例について比較例と共に詳細に説明する。尚、以下において、配合量を表す部とは質量部を指すものとする。
(実施例1)
熱可塑性樹脂として重量平均分子量200万の高密度超高分子量ポリエチレン樹脂粉体(溶融粘度指数0.01g/10分未満=測定不能)47部と、無機質粉体として比表面積が200m2/gで平均二次粒子径が7μmの二酸化ケイ素微粉53部と、可塑剤として鉱物オイル113部とを混合し、二軸押出機で加熱溶融・混練しながらシート状に押し出し、直ちに、該シート状物を、近接して連続多段に配置された圧延ロール間を連続的に通して薄肉化処理を行い、厚さ50μmのシートを得た。次いで、炭化水素系溶剤の一種であるデカンを用いて前記鉱物オイルを抽出除去し、更に、100℃で乾燥して、前記ポリエチレン樹脂47質量%と、前記二酸化ケイ素微粉53質量%とで構成される厚さ50μmのコンデンサ用セパレータを得た。尚、前記圧延ロール及び圧延装置は高精度な厚さ精度が出せるように特別に設計された非常に精密なものを使用した。
Next, examples of the present invention will be described in detail together with comparative examples. In addition, in the following, the part showing a compounding quantity shall point out a mass part.
(Example 1)
47 parts of a high-density ultrahigh molecular weight polyethylene resin powder (melt viscosity index of less than 0.01 g / 10 minutes = not measurable) having a weight average molecular weight of 2 million as a thermoplastic resin and a specific surface area of 200 m 2 / g as an inorganic powder 53 parts of silicon dioxide fine powder having an average secondary particle size of 7 μm and 113 parts of mineral oil as a plasticizer are mixed and extruded into a sheet while heating and melting and kneading with a twin screw extruder. The thinning process was performed by continuously passing between the rolling rolls arranged adjacently in a multistage manner, and a sheet having a thickness of 50 μm was obtained. Next, the mineral oil is extracted and removed using decane which is a kind of hydrocarbon solvent, and further dried at 100 ° C., and is composed of 47% by mass of the polyethylene resin and 53% by mass of the silicon dioxide fine powder. Thus, a capacitor separator having a thickness of 50 μm was obtained. The rolling roll and rolling apparatus used were very precise ones specially designed so that high thickness accuracy can be obtained.

(実施例2)
熱可塑性樹脂として重量平均分子量200万の高密度超高分子量ポリエチレン樹脂粉体(溶融粘度指数0.01g/10分未満=測定不能)33部と、無機質粉体として比表面積が200m2/gで平均二次粒子径が7μmの二酸化ケイ素微粉67部と、可塑剤として鉱物オイル122部とを混合し、二軸押出機で加熱溶融・混練しながらシート状に押し出し、直ちに、該シート状物を、近接して連続多段に配置された圧延ロール間を連続的に通して薄肉化処理を行い、厚さ50μmのシートを得た。次いで、炭化水素系溶剤の一種であるデカンを用いて前記鉱物オイルを抽出除去し、更に、100℃で乾燥して、前記ポリエチレン樹脂33質量%と、前記二酸化ケイ素微粉67質量%とで構成される厚さ50μmのコンデンサ用セパレータを得た。尚、前記圧延ロール及び圧延装置は高精度な厚さ精度が出せるように特別に設計された非常に精密なものを使用した。
(Example 2)
33 parts of a high density ultra high molecular weight polyethylene resin powder (melt viscosity index of less than 0.01 g / 10 min = not measurable) having a weight average molecular weight of 2 million as a thermoplastic resin and a specific surface area of 200 m 2 / g as an inorganic powder 67 parts of silicon dioxide fine powder having an average secondary particle size of 7 μm and 122 parts of mineral oil as a plasticizer are mixed and extruded into a sheet while being heated and melted and kneaded by a twin screw extruder. The thinning process was performed by continuously passing between the rolling rolls arranged adjacently in a multistage manner, and a sheet having a thickness of 50 μm was obtained. Subsequently, the mineral oil is extracted and removed using decane which is a kind of hydrocarbon solvent, and further dried at 100 ° C., and is composed of 33% by mass of the polyethylene resin and 67% by mass of the silicon dioxide fine powder. Thus, a capacitor separator having a thickness of 50 μm was obtained. The rolling roll and rolling apparatus used were very precise ones specially designed so that high thickness accuracy can be obtained.

(比較例1)
熱可塑性樹脂として重量平均分子量200万の高密度超高分子量ポリエチレン樹脂粉体(溶融粘度指数0.01g/10分未満=測定不能)47部と、無機質粉体として比表面積が200m2/gで平均二次粒子径が7μmの二酸化ケイ素微粉53部と、可塑剤として鉱物オイル113部とを混合し、二軸押出機で加熱溶融・混練しながらシート状に押し出し、直ちに、該シート状物を、圧延ロール間を通して薄肉化処理を行い、厚さ110μmのシートを得た。次に、該シートを更に延伸機を用いて長さ方向に250%延伸して薄肉化処理を行い、厚さ50μmのシートを得た。次いで、炭化水素系溶剤の一種であるデカンを用いて前記鉱物オイルを抽出除去し、更に、100℃で乾燥して、前記ポリエチレン樹脂47質量%と、前記二酸化ケイ素微粉53質量%とで構成される厚さ50μmのコンデンサ用セパレータを得た。
(Comparative Example 1)
47 parts of a high-density ultrahigh molecular weight polyethylene resin powder (melt viscosity index of less than 0.01 g / 10 minutes = not measurable) having a weight average molecular weight of 2 million as a thermoplastic resin and a specific surface area of 200 m 2 / g as an inorganic powder 53 parts of silicon dioxide fine powder having an average secondary particle size of 7 μm and 113 parts of mineral oil as a plasticizer are mixed and extruded into a sheet while heating and melting and kneading with a twin screw extruder. The thinning process was performed between the rolling rolls to obtain a sheet having a thickness of 110 μm. Next, the sheet was further stretched by 250% in the length direction using a stretching machine and subjected to a thinning process to obtain a sheet having a thickness of 50 μm. Next, the mineral oil is extracted and removed using decane which is a kind of hydrocarbon solvent, and further dried at 100 ° C., and is composed of 47% by mass of the polyethylene resin and 53% by mass of the silicon dioxide fine powder. Thus, a capacitor separator having a thickness of 50 μm was obtained.

(比較例2)
熱可塑性樹脂として重量平均分子量10万の高密度ポリエチレン樹脂粉体(溶融粘度指数0.8g/10分)47部と、無機質粉体として比表面積が200m2/gで平均二次粒子径が7μmの二酸化ケイ素微粉53部と、可塑剤として鉱物オイル113部とを混合し、二軸押出機で加熱溶融・混練しながらシート状に押し出し、直ちに、該シート状物を、近接して連続多段に配置された圧延ロール間を連続的に通して薄肉化処理を行い、厚さ50μmのシートを得た。次いで、炭化水素系溶剤の一種であるデカンを用いて前記鉱物オイルを抽出除去し、更に、100℃で乾燥して、前記ポリエチレン樹脂47質量%と、前記二酸化ケイ素微粉53質量%とで構成される厚さ50μmのコンデンサ用セパレータを得た。尚、前記圧延ロール及び圧延装置は高精度な厚さ精度が出せるように特別に設計された非常に精密なものを使用した。
(Comparative Example 2)
47 parts of a high density polyethylene resin powder (melt viscosity index 0.8 g / 10 min) having a weight average molecular weight of 100,000 as a thermoplastic resin and a specific surface area of 200 m 2 / g as an inorganic powder and an average secondary particle diameter of 7 μm 53 parts of silicon dioxide fine powder and 113 parts of mineral oil as a plasticizer are mixed and extruded into a sheet while heating and melting and kneading with a twin screw extruder, and the sheet is immediately brought into a continuous multi-stage. A thinning process was performed by continuously passing between the arranged rolling rolls to obtain a sheet having a thickness of 50 μm. Next, the mineral oil is extracted and removed using decane which is a kind of hydrocarbon solvent, and further dried at 100 ° C., and is composed of 47% by mass of the polyethylene resin and 53% by mass of the silicon dioxide fine powder. Thus, a capacitor separator having a thickness of 50 μm was obtained. The rolling roll and rolling apparatus used were very precise ones specially designed so that high thickness accuracy can be obtained.

次に、上記実施例1〜2および比較例1〜2の各セパレータについて、以下の方法により、熱収縮率および電気抵抗をそれぞれ測定し、その結果を表1に示す。また、実施例1、比較例1の各セパレータの微細構造を電子顕微鏡を用いて観察し、その写真(倍率2万倍)を図1、図2にそれぞれ示す。
[熱収縮率]
所定寸法に裁断したセパレータ片の長側辺の寸法(L0)を測定した後、このセパレータ片を無緊張状態にて180℃の乾燥器内に60分間静置する。その後、セパレータ片を前記乾燥器より取り出し、15分間放置して室温まで冷却した後、セパレータ片の長側辺の寸法(LT)を測定し、(1)式により熱収縮率を算出する。尚、ポリエチレン樹脂の融点が128〜132℃(DSC法による)であることから、この融点より50℃高い180℃を評価条件に設定した。
(1)熱収縮率(%)=(L0 −LT )/(L0 )×100
[180℃加熱後の電気抵抗比]
加熱前のセパレータの電気抵抗測定値(R0)と、180℃で60分加熱後のセパレータの電気抵抗測定値(RT)とを測定し、(2)式に基づいて、加熱前のセパレータの電気抵抗を基準とした180℃加熱後のセパレータの電気抵抗比を算出した。尚、電気抵抗は、電池工業会規格SBA S 0402に基づき測定を行った。
(2)180℃加熱後の電気抵抗比(%)=(RT )/(R0 )×100
Next, about each separator of the said Examples 1-2 and Comparative Examples 1-2, a thermal contraction rate and an electrical resistance were measured with the following method, respectively, and the result is shown in Table 1. Moreover, the fine structure of each separator of Example 1 and Comparative Example 1 was observed using an electron microscope, and the photograph (magnification 20,000 times) is shown in FIG. 1 and FIG. 2, respectively.
[Heat shrinkage]
After measuring the dimension (L 0 ) of the long side of the separator piece cut to a predetermined dimension, the separator piece is left in a dryer at 180 ° C. for 60 minutes in a non-tensioned state. Thereafter, the separator piece is taken out from the dryer and allowed to stand for 15 minutes to cool to room temperature. Then, the dimension (L T ) of the long side of the separator piece is measured, and the thermal contraction rate is calculated by the equation (1). In addition, since melting | fusing point of polyethylene resin is 128-132 degreeC (by DSC method), 180 degreeC higher than this melting | fusing point was set to evaluation conditions.
(1) Thermal contraction rate (%) = (L 0 −L T ) / (L 0 ) × 100
[Electric resistance ratio after heating at 180 ° C]
Measure the measured electrical resistance (R 0 ) of the separator before heating and the measured electrical resistance (R T ) of the separator after heating at 180 ° C. for 60 minutes, and based on the formula (2), the separator before heating The electrical resistance ratio of the separator after heating at 180 ° C. based on the electrical resistance was calculated. The electrical resistance was measured based on the battery industry association standard SBA S 0402.
(2) Electrical resistance ratio after heating at 180 ° C. (%) = (R T ) / (R 0 ) × 100

Figure 2005109245
Figure 2005109245

表1より以下のようなことが分かった。
(1)本発明の実施例1〜2のコンデンサ用セパレータは、超高分子量ポリエチレンの溶融温度128〜132℃(DSC法)より50℃高い温度、すなわち、約180℃で、熱収縮率が2%であり、熱的寸法変化が小さく、耐熱性に優れていることが確認できた。また、180℃加熱後の電気抵抗比も比較例1〜2と比べて小さく、高性能化の要求を満たすことが可能であることが確認できた。
(2)この理由としては、図1に示すように、実施例1のコンデンサ用セパレータでは、超高分子量ポリエチレン樹脂が形成する三次元網目状ネットワーク内に、二酸化ケイ素二次粒子の隣接する二次粒子同士が接触状態をなして保持されているので、二酸化ケイ素二次粒子の個々の二次粒子は容易に移動できず、この二酸化ケイ素二次粒子が、180℃の高温下で溶融した前記超高分子量ポリエチレン樹脂の流動を抑制したことにより、熱収縮率が小さくなったものと推定される。尚、実施例2のセパレータについては、電子顕微鏡写真を掲載しなかったが、上記において解説したような、実施例1のセパレータに見られた状態(図1に見られる状態)と同じ状態が観察された。
(3)これに対し、比較例1〜2のコンデンサ用セパレータは、180℃における熱収縮率が7〜9%と大きく、熱的寸法変化が大きく、耐熱性が低くなっている。
(4)この理由としては、比較例1のコンデンサ用セパレータでは、二軸押出機でシート状に成形した後、一軸方向に延伸処理を行っているため、図2に示すように、超高分子量ポリエチレン樹脂が形成する三次元網目状ネットワーク自体が延伸方向に引き伸ばされ、これに伴って二酸化ケイ素二次粒子同士も引き離されて接触状態を失った状態になっており、二酸化ケイ素二次粒子の個々の二次粒子が容易に移動可能であるため、180℃の高温下で溶融した前記超高分子量ポリエチレン樹脂の流動を抑制しづらくなったことにより、熱収縮率が大きくなったものと推定される。
(5)また、比較例2のコンデンサ用セパレータでは、重量平均分子量が小さく溶融粘度指数が0.01g/10分を超えるポリエチレン樹脂を用いたため、180℃の温度下では該ポリエチレン樹脂自体の流動性が非常に高かったことから、実施例1〜2のセパレータの場合と同じく、隣接する二次粒子同士が接触状態を有した二酸化ケイ素二次粒子によるポリエチレン樹脂の流動阻止作用が働いていたにも拘わらず、ポリエチレン樹脂の流動を食い止めることができなかったことにより、熱収縮率が大きくなったものと推定される。
(6)また、比較例1〜2のコンデンサ用セパレータでは、180℃の温度下で収縮が大きく発生したことによる空隙率の低下と、180℃の温度下でポリエチレン樹脂が流動を起こしたことによる微細孔の閉塞が発生したことにより、180℃加熱後の電気抵抗比も大きくなり、高性能化の要求を満たすことができなかった。
Table 1 shows the following.
(1) The capacitor separators of Examples 1 and 2 of the present invention have a temperature higher by 50 ° C. than the melting temperature 128 to 132 ° C. (DSC method) of ultrahigh molecular weight polyethylene, that is, about 180 ° C., and the thermal shrinkage rate is 2. It was confirmed that the thermal dimensional change was small and the heat resistance was excellent. Moreover, the electrical resistance ratio after heating at 180 ° C. was also smaller than those of Comparative Examples 1 and 2, and it was confirmed that it was possible to satisfy the demand for higher performance.
(2) The reason for this is that, as shown in FIG. 1, in the capacitor separator of Example 1, the secondary adjacent to the silicon dioxide secondary particles in the three-dimensional network formed by the ultrahigh molecular weight polyethylene resin. Since the particles are held in contact with each other, the individual secondary particles of the silicon dioxide secondary particles cannot easily move, and the silicon dioxide secondary particles are melted at a high temperature of 180 ° C. It is presumed that the heat shrinkage rate was reduced by suppressing the flow of the high molecular weight polyethylene resin. In addition, although the electron micrograph was not published about the separator of Example 2, the same state as the state seen in the separator of Example 1 (state seen in FIG. 1) as described above was observed. It was done.
(3) On the other hand, the capacitor separators of Comparative Examples 1 and 2 have a large thermal shrinkage rate of 7 to 9% at 180 ° C., a large thermal dimensional change, and a low heat resistance.
(4) The reason for this is that the capacitor separator of Comparative Example 1 is formed into a sheet by a twin screw extruder and then stretched in a uniaxial direction. Therefore, as shown in FIG. The three-dimensional network network itself formed by the polyethylene resin is stretched in the stretching direction, and the silicon dioxide secondary particles are also separated from each other and lost contact with each other. It is estimated that the heat shrinkage rate was increased because it was difficult to suppress the flow of the ultrahigh molecular weight polyethylene resin melted at a high temperature of 180 ° C. .
(5) In the capacitor separator of Comparative Example 2, since a polyethylene resin having a small weight average molecular weight and a melt viscosity index exceeding 0.01 g / 10 minutes was used, the flowability of the polyethylene resin itself at a temperature of 180 ° C. Since the flow rate was very high, as in the case of the separators of Examples 1 and 2, the flow inhibition action of the polyethylene resin by the silicon dioxide secondary particles in which the adjacent secondary particles were in contact with each other was working. Nevertheless, it is presumed that the heat shrinkage rate has increased due to failure to stop the flow of the polyethylene resin.
(6) Further, in the capacitor separators of Comparative Examples 1 and 2, the porosity decreased due to the large shrinkage occurring at a temperature of 180 ° C., and the polyethylene resin flowed at a temperature of 180 ° C. Due to the occurrence of clogging of the fine holes, the electrical resistance ratio after heating at 180 ° C. also increased, and the demand for high performance could not be satisfied.

本発明のコンデンサ用セパレータの微細構造を示す倍率2万倍の電子顕微鏡写真(実施例1)Example 1 is an electron micrograph of a magnification of 20,000 times showing the fine structure of the capacitor separator of the present invention. 比較例のコンデンサ用セパレータの微細構造を示す倍率2万倍の電子顕微鏡写真(比較例1)Electron micrograph at a magnification of 20,000 times showing the microstructure of the capacitor separator of the comparative example (Comparative Example 1)

Claims (7)

熱可塑性樹脂と無機質粉体を主体とした微多孔質膜からなるコンデンサ用セパレータにおいて、前記微多孔質膜が、前記熱可塑性樹脂の三次元網目状ネットワーク内に前記無機質粉体である無機質二次粒子を保持し、該無機質二次粒子の隣接する二次粒子同士が互いに接触状態にある形態をなしており、100μm未満の厚さを有するものであることを特徴とするコンデンサ用セパレータ。   In a capacitor separator composed of a microporous film mainly composed of a thermoplastic resin and an inorganic powder, the microporous film is an inorganic secondary powder that is the inorganic powder in a three-dimensional network of the thermoplastic resin. A separator for a capacitor, characterized in that it has a shape that holds particles and the adjacent secondary particles of the inorganic secondary particles are in contact with each other, and has a thickness of less than 100 μm. 前記セパレータは、前記熱可塑性樹脂の融点よりも50℃高い温度における熱収縮率が5%以下であることを特徴とする請求項1記載のコンデンサ用セパレータ。   2. The capacitor separator according to claim 1, wherein the separator has a thermal shrinkage rate of 5% or less at a temperature 50 [deg.] C. higher than the melting point of the thermoplastic resin. 前記無機質粉体の含有量が50〜80質量%であることを特徴とする請求項1または2記載のコンデンサ用セパレータ。   The capacitor separator according to claim 1 or 2, wherein the content of the inorganic powder is 50 to 80% by mass. 前記熱可塑性樹脂の溶融粘度指数が0.01g/10分以下であることを特徴とする請求項1乃至3の何れかに記載のコンデンサ用セパレータ。   The capacitor separator according to any one of claims 1 to 3, wherein the thermoplastic resin has a melt viscosity index of 0.01 g / 10 min or less. 前記微多孔質膜の厚さが60μm以下であることを特徴とする請求項1乃至4の何れかに記載のコンデンサ用セパレータ。   5. The capacitor separator according to claim 1, wherein the microporous film has a thickness of 60 μm or less. 前記微多孔質膜は、前記熱可塑性樹脂と、前記無機質粉体と、可塑剤とを混合した原料混合物を加熱溶融・混練しながら押し出したシート状物に対して、延伸処理を行うことなしに、薄肉化処理を行った後、前記可塑剤を抽出除去して得られるものであることを特徴とする請求項1乃至5の何れかに記載のコンデンサ用セパレータ。   The microporous membrane is formed without subjecting a sheet-like product extruded while heating, melting and kneading a raw material mixture obtained by mixing the thermoplastic resin, the inorganic powder, and a plasticizer, without performing a stretching process. 6. The capacitor separator according to claim 1, wherein the capacitor separator is obtained by extracting and removing the plasticizer after thinning. 前記熱可塑性樹脂は重量平均分子量が50万以上のポリエチレンであり、前記無機質粉体は二酸化ケイ素であることを特徴とする請求項1乃至6の何れかに記載のコンデンサ用セパレータ。   The capacitor separator according to any one of claims 1 to 6, wherein the thermoplastic resin is polyethylene having a weight average molecular weight of 500,000 or more, and the inorganic powder is silicon dioxide.
JP2003342459A 2003-09-30 2003-09-30 Capacitor separator Expired - Fee Related JP4425596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003342459A JP4425596B2 (en) 2003-09-30 2003-09-30 Capacitor separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003342459A JP4425596B2 (en) 2003-09-30 2003-09-30 Capacitor separator

Publications (2)

Publication Number Publication Date
JP2005109245A true JP2005109245A (en) 2005-04-21
JP4425596B2 JP4425596B2 (en) 2010-03-03

Family

ID=34536718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003342459A Expired - Fee Related JP4425596B2 (en) 2003-09-30 2003-09-30 Capacitor separator

Country Status (1)

Country Link
JP (1) JP4425596B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037309A1 (en) * 2005-09-28 2007-04-05 Nippon Sheet Glass Company, Limited Separator for energy-storage device and energy-storage device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037309A1 (en) * 2005-09-28 2007-04-05 Nippon Sheet Glass Company, Limited Separator for energy-storage device and energy-storage device
JP2007095440A (en) * 2005-09-28 2007-04-12 Nippon Sheet Glass Co Ltd Separator for electric storage device, and electric storage device

Also Published As

Publication number Publication date
JP4425596B2 (en) 2010-03-03

Similar Documents

Publication Publication Date Title
KR101227325B1 (en) Multilayer porous membrane and method for producing the same
JP4931083B2 (en) Multilayer porous membrane and method for producing the same
JP5448345B2 (en) Multilayer porous membrane and method for producing the same
JP4195810B2 (en) Polyolefin microporous membrane and production method and use thereof
JP5841478B2 (en) Separator for liquid lead acid battery and liquid lead acid battery
JP2004196870A (en) Polyolefin fine porous membrane and method for producing the same and use
JP6030194B2 (en) Liquid lead-acid battery separator and liquid lead-acid battery
JP2008540794A6 (en) High density polyethylene microporous membrane excellent in extrusion kneadability and physical properties and method for producing the same
JP2002240215A (en) Composite film and its manufacturing method
JP3699562B2 (en) Polyolefin microporous membrane and method for producing the same
JP5171012B2 (en) Method for producing polyolefin microporous membrane
JP5645342B2 (en) Porous membrane having both high heat resistance and high permeability and its production method
JPWO2016024548A1 (en) Microporous membrane made of polyolefin and method for producing the same, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP3699561B2 (en) Polyolefin microporous membrane and method for producing the same
JP4979252B2 (en) Polyolefin microporous membrane
JP2012072263A (en) Polyolefin microporous film
JP2007095440A (en) Separator for electric storage device, and electric storage device
JP4425596B2 (en) Capacitor separator
JP4713441B2 (en) Method for producing polyolefin microporous membrane
JP6596270B2 (en) Method for producing polyolefin microporous membrane
JPH09259858A (en) Polyethylene micro-porous film for separator, and manufacture thereof
JP2005209452A (en) Method for producing microporous membrane and use of microporous membrane to be obtained by that producing method
JP4737936B2 (en) Capacitor separator
JP5355444B2 (en) Method for producing microporous film
JP4842445B2 (en) Electric double layer capacitor separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091209

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees