JP2005108901A - Photovoltaic element and its manufacturing method - Google Patents

Photovoltaic element and its manufacturing method Download PDF

Info

Publication number
JP2005108901A
JP2005108901A JP2003336457A JP2003336457A JP2005108901A JP 2005108901 A JP2005108901 A JP 2005108901A JP 2003336457 A JP2003336457 A JP 2003336457A JP 2003336457 A JP2003336457 A JP 2003336457A JP 2005108901 A JP2005108901 A JP 2005108901A
Authority
JP
Japan
Prior art keywords
film
photovoltaic element
reflective film
photovoltaic
amorphous silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003336457A
Other languages
Japanese (ja)
Inventor
Shin Matsumi
伸 松見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003336457A priority Critical patent/JP2005108901A/en
Publication of JP2005108901A publication Critical patent/JP2005108901A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photovoltaic element which is capable of improving its bonding properties with microcrystal silicon, and to provide its manufacturing method. <P>SOLUTION: A transparent electrode 2, a first photovoltaic element 3 where an amorphous silicon film is used as an optically active layer, a reflecting film 4, a second photovoltaic element 5 where a microcrystal silicon film is used as an optically active layer, and a back electrode 6, are successively formed on a support substrate 1. The first photovoltaic element 3 successively comprises a p-type amorphous silicon carbide film 31, an i-type amorphous silicon film 32, and an n-type amorphous silicon film 33, starting from the transparent electrode 2. The second photovoltaic element 5 successively comprises a p-type microcrystal silicon carbide film 51, an i-type microcrystal silicon film 52, and an n-type microcrystal silicon film 53, starting from the reflecting film 4. In the reflecting film 4 of ZnO, a peak strength on a (002) plane is twice or smaller as high or lower than that by the (004) plane. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体接合を用いた光起電力素子およびその製造方法に関する。   The present invention relates to a photovoltaic device using a semiconductor junction and a method for manufacturing the photovoltaic device.

近年、非晶質シリコン等の薄膜系半導体を光活性層に用いる光起電力素子が開発されている。非晶質シリコンは、原材料が無尽蔵に存在し、製造エネルギーおよび製造コストが低く、多種多様な支持基板を利用でき、高い電圧を取り出すことができ、大面積化が容易であるという特長を有している。その反面、非晶質シリコンを用いた光起電力素子は、結晶系光起電力素子に比較して、光劣化が大きく、光電変換効率が低いという課題がある。   In recent years, photovoltaic devices using thin film semiconductors such as amorphous silicon for photoactive layers have been developed. Amorphous silicon has the features that the raw materials are inexhaustible, the production energy and production cost are low, a wide variety of support substrates can be used, high voltage can be taken out, and the area can be easily increased. ing. On the other hand, the photovoltaic element using amorphous silicon has problems that the photodegradation is large and the photoelectric conversion efficiency is low as compared with the crystalline photovoltaic element.

一方、上述した非晶質シリコンの特長を生かしつつ光劣化を大きく低減できる新たな薄膜光起電力素子として、微結晶シリコンを光活性層に用いる光起電力素子が開発されている。微結晶シリコンは、非晶質シリコンと同様のプロセスで作製することができる。   On the other hand, a photovoltaic element using microcrystalline silicon as a photoactive layer has been developed as a new thin-film photovoltaic element that can greatly reduce photodegradation while taking advantage of the above-described characteristics of amorphous silicon. Microcrystalline silicon can be manufactured by a process similar to that of amorphous silicon.

これらの非晶質シリコンを用いる光起電力素子および微結晶シリコンを用いる光起電力素子を積層した光起電力素子は、幅広い領域の光スペクトルを受光することができる。それにより、光電変換効率が向上する。   A photovoltaic element in which these photovoltaic elements using amorphous silicon and photovoltaic elements using microcrystalline silicon are stacked can receive a light spectrum in a wide range. Thereby, the photoelectric conversion efficiency is improved.

非晶質シリコンを用いる光起電力素子および微結晶シリコンを用いる光起電力素子を積層した光起電力素子においては、非晶質シリコンで発電される光電流と微結晶シリコンで発電される光電流との間に差がある。そのため、非晶質シリコンを用いる光起電力素子と微結晶シリコンを用いる光起電力素子との間に反射膜を設けることにより、光電流のバランスを最適化することができる(例えば、特許文献1参照)。   In a photovoltaic device in which a photovoltaic device using amorphous silicon and a photovoltaic device using microcrystalline silicon are stacked, a photocurrent generated by amorphous silicon and a photocurrent generated by microcrystalline silicon There is a difference between Therefore, the balance of photocurrent can be optimized by providing a reflective film between a photovoltaic element using amorphous silicon and a photovoltaic element using microcrystalline silicon (for example, Patent Document 1). reference).

この場合、光劣化率が大きい非晶質シリコン膜の膜厚を低減させることができるため、光起電力素子全体の変換効率が向上する。
特開昭63−77167号公報
In this case, since the film thickness of the amorphous silicon film having a large photodegradation rate can be reduced, the conversion efficiency of the entire photovoltaic element is improved.
JP-A 63-77167

しかしながら、非晶質シリコンを用いる光起電力素子と微結晶シリコンを用いる光起電力素子との間に反射膜を挿入すると、微結晶シリコンを用いる光起電力素子と反射膜との接合特性に影響を及ぼし、光起電力素子の直列抵抗が増大する。   However, if a reflective film is inserted between a photovoltaic element using amorphous silicon and a photovoltaic element using microcrystalline silicon, it affects the bonding characteristics between the photovoltaic element using microcrystalline silicon and the reflective film. And the series resistance of the photovoltaic element is increased.

本発明の目的は、微結晶シリコンを用いる光起電力素子と反射膜との間の接合特性を改善することができる光起電力素子およびその製造方法を提供することである。   An object of the present invention is to provide a photovoltaic device that can improve the junction characteristics between a photovoltaic device using microcrystalline silicon and a reflective film, and a method for manufacturing the photovoltaic device.

本明細書中における非晶質系半導体は非晶質半導体を主体とする半導体をいい、微結晶系半導体は結晶粒径が1μm以下の微結晶を主体とした半導体をいう。   In this specification, an amorphous semiconductor means a semiconductor mainly composed of an amorphous semiconductor, and a microcrystalline semiconductor means a semiconductor mainly composed of microcrystals having a crystal grain size of 1 μm or less.

また、真性の非晶質系半導体膜および微結晶系半導体膜とは、不純物が意図的にドープされていない非晶質系半導体膜および微結晶系半導体膜であり、半導体原料に本来的に含まれる不純物または製造過程において自然に混入する不純物を含む非晶質系半導体膜および微結晶系半導体膜も含む。   Intrinsic amorphous semiconductor films and microcrystalline semiconductor films are amorphous semiconductor films and microcrystalline semiconductor films that are not intentionally doped with impurities, and are inherently included in semiconductor materials. In addition, amorphous semiconductor films and microcrystalline semiconductor films containing impurities that are mixed or impurities naturally mixed in the manufacturing process are also included.

本発明に係る光起電力素子は、一面および他面を有し入射光を反射する反射膜を備え、反射膜の一面側に、半導体膜を光活性層に用いる第1の光起電力素子を備え、反射膜の他面側に、微結晶半導体膜を光活性層に用いる第2の光起電力素子を備え、反射膜の一面を受光面側とするとともに、反射膜の(002)面におけるX線回折強度のピーク値が反射膜の(004)面におけるX線回折強度のピーク値の2倍以下であるものである。   A photovoltaic device according to the present invention includes a reflective film that has one surface and another surface and reflects incident light, and the first photovoltaic device that uses a semiconductor film as a photoactive layer is provided on one surface side of the reflective film. A second photovoltaic element using a microcrystalline semiconductor film as a photoactive layer is provided on the other surface side of the reflective film. One surface of the reflective film is a light-receiving surface side, and the (002) plane of the reflective film is The peak value of the X-ray diffraction intensity is not more than twice the peak value of the X-ray diffraction intensity on the (004) plane of the reflective film.

本発明に係る光起電力素子においては、反射膜の(002)面におけるX線回折強度のピーク値が反射膜の(004)面におけるX線回折強度のピーク値の2倍以下であることにより、反射膜と第2の光起電力素子との接合特性を改善することができる。   In the photovoltaic device according to the present invention, the peak value of the X-ray diffraction intensity on the (002) plane of the reflective film is not more than twice the peak value of the X-ray diffraction intensity on the (004) plane of the reflective film. The junction characteristics between the reflective film and the second photovoltaic element can be improved.

第1の光起電力素子は、非晶質系半導体膜を光活性層に用いてもよい。この場合、第1の光起電力素子と第2の光起電力素子とで幅広い波長領域で光電変換を行うことができる。それにより、光起電力素子の変換効率が向上する。   The first photovoltaic element may use an amorphous semiconductor film for the photoactive layer. In this case, photoelectric conversion can be performed in a wide wavelength region between the first photovoltaic element and the second photovoltaic element. Thereby, the conversion efficiency of the photovoltaic element is improved.

また、他面側から入射した光の一部が反射膜により反射する。それにより、第1の光起電力素子における光電流と第2の光起電力素子における光電流とのバランスを最適化することができる。   Moreover, a part of the light incident from the other surface side is reflected by the reflection film. Thereby, the balance between the photocurrent in the first photovoltaic element and the photocurrent in the second photovoltaic element can be optimized.

さらに、他面側から入射した光の一部が反射膜により反射することから、光劣化率が大きい第1の光起電力素子の膜厚を低減させることができる。それにより、光起電力素子全体の変換効率が向上する。   Furthermore, since a part of the light incident from the other surface side is reflected by the reflection film, the film thickness of the first photovoltaic element having a high light deterioration rate can be reduced. Thereby, the conversion efficiency of the entire photovoltaic device is improved.

反射膜は、酸化亜鉛からなってもよい。この場合、反射膜と第2の光起電力素子との接合特性を改善することができる。   The reflective film may be made of zinc oxide. In this case, the junction characteristics between the reflective film and the second photovoltaic element can be improved.

本発明に係る光起電力素子の製造方法は、一面および他面を有し、入射光を反射し、(002)面におけるX線回折強度のピーク値が(004)面におけるX線回折強度のピーク値の2倍以下である反射膜を形成する工程と、反射膜の受光面側となる一面側に、半導体膜を光活性層に用いる第1の光起電力素子を形成する工程と、反射膜の他面側に、微結晶半導体膜を光活性層に用いる第2の光起電力素子を形成する工程とを備えるものである。   The method for manufacturing a photovoltaic device according to the present invention has one surface and another surface, reflects incident light, and the peak value of the X-ray diffraction intensity on the (002) plane is the X-ray diffraction intensity on the (004) plane. A step of forming a reflective film having a peak value less than or equal to twice, a step of forming a first photovoltaic element using a semiconductor film as a photoactive layer on one side of the reflective film on the light receiving surface side, Forming a second photovoltaic element using a microcrystalline semiconductor film as a photoactive layer on the other surface side of the film.

本発明に係る光起電力素子の製造方法においては、(002)面におけるX線回折強度のピーク値が(004)面におけるX線回折強度のピーク値の2倍以下である反射膜の一面側に半導体を光活性層に用いる第1の光起電力素子が形成され、反射膜の他面側に微結晶半導体膜を光活性層に用いる第2の光起電力素子が形成される。   In the method for manufacturing a photovoltaic device according to the present invention, the one side of the reflective film in which the peak value of the X-ray diffraction intensity on the (002) plane is not more than twice the peak value of the X-ray diffraction intensity on the (004) plane A first photovoltaic element using a semiconductor for the photoactive layer is formed, and a second photovoltaic element using a microcrystalline semiconductor film for the photoactive layer is formed on the other surface side of the reflective film.

本発明に係る方法により製造された光起電力素子においては、反射膜の(002)面におけるX線回折強度のピーク値が反射膜の(004)面におけるX線回折強度のピーク値の2倍以下であることにより、反射膜と第2の光起電力素子との接合特性を改善することができる。   In the photovoltaic device manufactured by the method according to the present invention, the peak value of the X-ray diffraction intensity on the (002) plane of the reflective film is twice the peak value of the X-ray diffraction intensity on the (004) plane of the reflective film. By being below, the junction characteristic of a reflecting film and a 2nd photovoltaic element can be improved.

本発明に係る光起電力素子においては、反射膜と第2の光起電力素子との接合特性を改善することができる。   In the photovoltaic element according to the present invention, the junction characteristics between the reflective film and the second photovoltaic element can be improved.

以下、第1の実施の形態について説明する。   Hereinafter, the first embodiment will be described.

図1は、本実施の形態に係る光起電力素子100の構造を示す模式的断面図である。   FIG. 1 is a schematic cross-sectional view showing the structure of the photovoltaic device 100 according to the present embodiment.

図1に示すように、支持基板1上に、透明電極2、非晶質シリコン膜を光活性層に用いる第1の光起電力素子3、反射膜4、微結晶シリコン膜を光活性層に用いる第2の光起電力素子5および裏面電極6が順に形成されている。   As shown in FIG. 1, on a support substrate 1, a transparent electrode 2, a first photovoltaic element 3 using an amorphous silicon film as a photoactive layer, a reflective film 4, and a microcrystalline silicon film as a photoactive layer. The second photovoltaic element 5 and the back electrode 6 to be used are formed in order.

第1の光起電力素子3は、透明電極2側からp型非晶質シリコンカーバイド(炭化シリコン)膜31、i型非晶質シリコン膜32およびn型非晶質シリコン膜33を順に含む。第2の光起電力素子5は、反射膜4側からp型微結晶シリコン膜51、i型微結晶シリコン膜52およびn型微結晶シリコン膜53を順に含む。図1の光起電力素子100では、支持基板1が受光面になる。   The first photovoltaic element 3 includes a p-type amorphous silicon carbide (silicon carbide) film 31, an i-type amorphous silicon film 32, and an n-type amorphous silicon film 33 in this order from the transparent electrode 2 side. The second photovoltaic element 5 includes a p-type microcrystalline silicon film 51, an i-type microcrystalline silicon film 52, and an n-type microcrystalline silicon film 53 in this order from the reflective film 4 side. In the photovoltaic element 100 of FIG. 1, the support substrate 1 becomes a light receiving surface.

支持基板1は、ガラス、プラスチック等の透光性基板からなる。透明電極2は、ITO(酸化インジウム錫)、SnO2 (酸化錫)、ZnO(酸化亜鉛)等の金属酸化物からなる。 The support substrate 1 is made of a translucent substrate such as glass or plastic. The transparent electrode 2 is made of a metal oxide such as ITO (indium tin oxide), SnO 2 (tin oxide), or ZnO (zinc oxide).

本実施の形態では、反射膜4は、ZnOからなる。光起電力素子100の直列抵抗を増加させないために、反射膜4のZnOにおいては、XRD(X線回折:X-Ray diffraction)において次式で表される(002)面によるピーク強度と(004)面によるピーク強度との比(以下、ピーク強度比Zと呼ぶ)が2以下であることが好ましい。   In the present embodiment, the reflective film 4 is made of ZnO. In order not to increase the series resistance of the photovoltaic element 100, in the ZnO of the reflective film 4, the peak intensity due to the (002) plane represented by the following equation in XRD (X-Ray diffraction) and (004) ) The ratio with respect to the peak intensity by the plane (hereinafter referred to as peak intensity ratio Z) is preferably 2 or less.

ピーク強度比Z = ((002)面によるXRDピーク強度)/((004)面によるXRDピーク強度)・・・(1)
裏面電極6は、Au(金)、Ag(銀)、Al(アルミニウム)、Cu(銅)、Ti(チタン)、W(タングステン)、Ni(ニッケル)等からなり、常温での電気抵抗率が50.0μΩ・cm以下の材料が好ましい。
Peak intensity ratio Z = (XRD peak intensity due to (002) plane) / (XRD peak intensity due to (004) plane) (1)
The back electrode 6 is made of Au (gold), Ag (silver), Al (aluminum), Cu (copper), Ti (titanium), W (tungsten), Ni (nickel), etc., and has an electrical resistivity at room temperature. A material of 50.0 μΩ · cm or less is preferable.

透明電極2の膜厚は、例えば500〜1000nmであり、第1の光起電力素子3の膜厚は例えば0.3μmであり、p型非晶質シリコンカーバイド膜31の膜厚は例えば20nmであり、i型非晶質シリコン膜32の膜厚は例えば200〜250nmであり、n型非晶質シリコン膜33の膜厚は例えば30nmであるが、これらに限られない。   The film thickness of the transparent electrode 2 is, for example, 500 to 1000 nm, the film thickness of the first photovoltaic element 3 is, for example, 0.3 μm, and the film thickness of the p-type amorphous silicon carbide film 31 is, for example, 20 nm. The thickness of the i-type amorphous silicon film 32 is, for example, 200 to 250 nm, and the thickness of the n-type amorphous silicon film 33 is, for example, 30 nm, but is not limited thereto.

また、反射膜4の膜厚は例えば20nmであり、第2の光起電力素子5の膜厚は例えば1.5μmであり、p型微結晶シリコン膜51の膜厚は例えば20nmであり、i型微結晶シリコン膜52の膜厚は例えば1400〜1500nmであり、n型微結晶シリコン膜53の膜厚は例えば30nmであり、裏面電極6の膜厚は例えば300nmであるが、これらに限られない。   The thickness of the reflective film 4 is, for example, 20 nm, the thickness of the second photovoltaic element 5 is, for example, 1.5 μm, the thickness of the p-type microcrystalline silicon film 51 is, for example, 20 nm, and i The thickness of the type microcrystalline silicon film 52 is, for example, 1400 to 1500 nm, the thickness of the n-type microcrystalline silicon film 53 is, for example, 30 nm, and the thickness of the back electrode 6 is, for example, 300 nm. Absent.

次に、光起電力素子100の製造方法について説明する。まず、チャンバ内で支持基板1上に熱CVD(化学蒸着)法により透明電極2を形成する。   Next, a method for manufacturing the photovoltaic element 100 will be described. First, the transparent electrode 2 is formed on the support substrate 1 in the chamber by a thermal CVD (chemical vapor deposition) method.

次いで、真空チャンバ内にSiH4 (シラン)ガス、H2 (水素)ガス、B2 6 (ジボラン)ガスおよびCH4 (メタン)ガスを導入し、プラズマCVD法により透明電極2上にp型非晶質シリコンカーバイド膜31を形成する。続いて、真空チャンバ内にSiH4 ガスおよびH2 ガスを導入し、p型非晶質シリコンカーバイド膜31上にプラズマCVD法によりi型非晶質シリコン膜32を形成する。続いて、真空チャンバ内にSiH4 ガス、H2 ガスおよびPH3 ガスを導入し、i型非晶質シリコン膜32上にプラズマCVD法によりn型非晶質シリコン膜33を形成する。 Next, SiH 4 (silane) gas, H 2 (hydrogen) gas, B 2 H 6 (diborane) gas and CH 4 (methane) gas are introduced into the vacuum chamber, and p-type is formed on the transparent electrode 2 by plasma CVD. An amorphous silicon carbide film 31 is formed. Subsequently, SiH 4 gas and H 2 gas are introduced into the vacuum chamber, and an i-type amorphous silicon film 32 is formed on the p-type amorphous silicon carbide film 31 by plasma CVD. Subsequently, SiH 4 gas, H 2 gas and PH 3 gas are introduced into the vacuum chamber, and an n-type amorphous silicon film 33 is formed on the i-type amorphous silicon film 32 by plasma CVD.

次に、スパッタリング法により、反射膜4を形成する。スパッタガスにはAr(アルゴン)等の不活性ガスを用い、ターゲットにはZnOを用いる。ZnOの成膜温度(基板温度)は、100℃〜150℃程度が好ましい。   Next, the reflective film 4 is formed by sputtering. An inert gas such as Ar (argon) is used as the sputtering gas, and ZnO is used as the target. The deposition temperature (substrate temperature) of ZnO is preferably about 100 ° C to 150 ° C.

次いで、真空チャンバ内にSiH4 ガス、H2 ガスおよびB2 6 ガスを導入し、反射膜4上にプラズマCVD法によりp型微結晶シリコン膜51を形成する。続いて、真空チャンバ内にSiH4 ガスおよびH2 ガスを導入して、p型微結晶シリコン膜51上にプラズマCVD法によりi型微結晶シリコン膜52を形成する。続いて、真空チャンバ内にSiH4 ガス、H2 ガスおよびPH3 ガスを導入し、i型微結晶シリコン膜52上にプラズマCVD法によりn型微結晶シリコン膜53を形成する。次に、スパッタリング法により、裏面電極6を形成する。 Next, SiH 4 gas, H 2 gas, and B 2 H 6 gas are introduced into the vacuum chamber, and a p-type microcrystalline silicon film 51 is formed on the reflective film 4 by plasma CVD. Subsequently, SiH 4 gas and H 2 gas are introduced into the vacuum chamber, and an i-type microcrystalline silicon film 52 is formed on the p-type microcrystalline silicon film 51 by plasma CVD. Subsequently, SiH 4 gas, H 2 gas and PH 3 gas are introduced into the vacuum chamber, and an n-type microcrystalline silicon film 53 is formed on the i-type microcrystalline silicon film 52 by plasma CVD. Next, the back electrode 6 is formed by sputtering.

図2(a)および図2(b)は、ZnOの(002)面および(004)面のXRDピーク強度の一例を示す図である。図2(b)は、図2(a)の縦軸のスケールを拡大させたものである。   FIGS. 2A and 2B are diagrams showing examples of XRD peak intensities of the (002) plane and the (004) plane of ZnO. FIG. 2B is an enlarged scale of the vertical axis of FIG.

図2(a)および図2(b)の縦軸はXRDピーク強度を示し、図2(a)および図2(b)の横軸はX線の入射角度を示す。   2A and 2B, the vertical axis indicates the XRD peak intensity, and the horizontal axis in FIGS. 2A and 2B indicates the X-ray incident angle.

図2(a)および図2(b)に示すように、ZnOは、X線の入射角度2θ=34.34度で(002)面によるピークが存在し、X線の入射角度2θ=72.47度で(004)面によるピークが存在する。   As shown in FIGS. 2A and 2B, ZnO has a peak due to the (002) plane at an X-ray incident angle 2θ = 34.34 degrees, and an X-ray incident angle 2θ = 72. There is a peak due to the (004) plane at 47 degrees.

本実施の形態に係る光起電力素子100においては、上記のように、反射膜4として上式(1)で示されるピーク強度比Zが2以下であるZnOを用いる。   In the photovoltaic device 100 according to the present embodiment, as described above, ZnO having a peak intensity ratio Z represented by the above formula (1) of 2 or less is used as the reflective film 4.

本実施の形態に係る光起電力素子100においては、第1の光起電力素子3と第2の光起電力素子5との間に反射膜4が設けられているため、入射光の一部が反射膜4により反射して第1の光起電力素子3に入射するフォトン数が増加する。それにより、第1の光起電力素子3で発生する光電流が増加する。   In the photovoltaic element 100 according to the present embodiment, since the reflective film 4 is provided between the first photovoltaic element 3 and the second photovoltaic element 5, a part of the incident light The number of photons reflected by the reflective film 4 and incident on the first photovoltaic element 3 increases. Thereby, the photocurrent generated in the first photovoltaic element 3 increases.

したがって、第1の光起電力素子3の膜厚を低減させることができる。その結果、第1の光起電力素子3における光劣化率を低減させることができるため、光起電力素子100全体の光劣化率が低減し、変換効率が向上する。   Therefore, the film thickness of the first photovoltaic element 3 can be reduced. As a result, since the light deterioration rate in the first photovoltaic element 3 can be reduced, the light deterioration rate of the entire photovoltaic element 100 is reduced, and the conversion efficiency is improved.

また、反射膜4に用いるZnOのピーク強度比Zが2以下であることから、反射膜4とp型微結晶シリコン膜51との間の接合特性に影響を及ぼさない。それにより、光起電力素子100の直列抵抗は増加しない。   Further, since the peak intensity ratio Z of ZnO used for the reflective film 4 is 2 or less, the junction characteristics between the reflective film 4 and the p-type microcrystalline silicon film 51 are not affected. Thereby, the series resistance of the photovoltaic element 100 does not increase.

以上のことから、本実施の形態に係る光起電力素子100においては、変換効率が最大限に向上される。   From the above, in the photovoltaic device 100 according to the present embodiment, the conversion efficiency is improved to the maximum.

なお、本実施の形態のn型非晶質シリコン膜33およびn型微結晶シリコン膜53には不純物としてP(リン)をドープしたが、それに限られない。例えば、不純物としてAs(ヒ素)等のV族元素を不純物としてドープしてもよい。   Although the n-type amorphous silicon film 33 and the n-type microcrystalline silicon film 53 of this embodiment are doped with P (phosphorus) as an impurity, the present invention is not limited to this. For example, a V group element such as As (arsenic) may be doped as an impurity.

また、p型非晶質シリコンカーバイド膜31およびp型微結晶シリコン膜51には不純物としてB(ボロン)をドープしたが、それに限られない。例えば、Al(アルミニウム)、Ga(ガリウム)等のIII 族元素を不純物としてドープしてもよい。   The p-type amorphous silicon carbide film 31 and the p-type microcrystalline silicon film 51 are doped with B (boron) as an impurity, but are not limited thereto. For example, a group III element such as Al (aluminum) or Ga (gallium) may be doped as an impurity.

また、n型非晶質シリコン膜31、i型非晶質シリコン膜32およびn型非晶質シリコン膜33は微結晶シリコンを含んでもよい。   The n-type amorphous silicon film 31, the i-type amorphous silicon film 32, and the n-type amorphous silicon film 33 may contain microcrystalline silicon.

また、本実施の形態のp型非晶質シリコンカーバイド膜31、i型非晶質シリコン膜32、n型非晶質シリコン膜33、p型微結晶シリコン膜51、i型微結晶シリコン膜52およびn型微結晶シリコン膜53の代わりに、例えば、SiC(炭化シリコン)、SiGe(シリコンゲルマニウム)、Ge(ゲルマニウム)等のような他のIV族元素を用いてもよい。   In addition, the p-type amorphous silicon carbide film 31, the i-type amorphous silicon film 32, the n-type amorphous silicon film 33, the p-type microcrystalline silicon film 51, and the i-type microcrystalline silicon film 52 of the present embodiment. Instead of the n-type microcrystalline silicon film 53, other group IV elements such as SiC (silicon carbide), SiGe (silicon germanium), Ge (germanium), etc. may be used.

また、反射膜4に用いるZnOとしては、不純物としてB(ボロン),Al(アルミニウム),Ga(ガリウム)がドープされたものを用いてもよい。   Moreover, as ZnO used for the reflective film 4, you may use what doped B (boron), Al (aluminum), and Ga (gallium) as an impurity.

また、i型微結晶シリコン膜52を形成せずに、p型微結晶シリコン膜上にn型微結晶シリコン膜が形成されてもよい。   Alternatively, an n-type microcrystalline silicon film may be formed on the p-type microcrystalline silicon film without forming the i-type microcrystalline silicon film 52.

(第2の実施の形態)
図3は、第2の実施の形態に係る光起電力素子100aの構造を示す模式的断面図である。
(Second Embodiment)
FIG. 3 is a schematic cross-sectional view showing the structure of the photovoltaic element 100a according to the second embodiment.

図3に示すように、支持基板1上に、裏面電極6、微結晶シリコン膜を光活性層に用いる第2の光起電力素子5、反射膜4、非晶質シリコンを光活性層に用いる第1の光起電力素子3および透明電極2が順に形成されている。   As shown in FIG. 3, on the support substrate 1, a back electrode 6, a second photovoltaic element 5 using a microcrystalline silicon film as a photoactive layer, a reflective film 4, and amorphous silicon are used as a photoactive layer. The 1st photovoltaic element 3 and the transparent electrode 2 are formed in order.

第1の光起電力素子3は、反射膜4側からn型非晶質シリコン膜33、i型非晶質シリコン膜32およびp型非晶質シリコンカーバイド膜31を順に含む。第2の光起電力素子5は、裏面電極6側からn型微結晶シリコン膜53、i型微結晶シリコン膜52およびp型微結晶シリコン膜51を順に含む。図3の光起電力素子100aにおいては、透明電極2が受光面である。   The first photovoltaic element 3 includes an n-type amorphous silicon film 33, an i-type amorphous silicon film 32, and a p-type amorphous silicon carbide film 31 in this order from the reflective film 4 side. The second photovoltaic element 5 includes an n-type microcrystalline silicon film 53, an i-type microcrystalline silicon film 52, and a p-type microcrystalline silicon film 51 in this order from the back electrode 6 side. In the photovoltaic element 100a of FIG. 3, the transparent electrode 2 is a light receiving surface.

本実施の形態に係る光起電力素子100aにおいても、上記のように、反射膜4として上式(1)で示されるピーク強度比Zが2以下であるZnOを用いる。   Also in the photovoltaic device 100a according to the present embodiment, ZnO having a peak intensity ratio Z represented by the above formula (1) of 2 or less is used as the reflective film 4 as described above.

本実施の形態に係る光起電力素子100aにおいては、第1の光起電力素子3と第2の光起電力素子5との間に反射膜4が設けられているため、入射光の一部が反射膜4により反射して第1の光起電力素子3に入射するフォトン数が増加する。それにより、第1の光起電力素子3で発生する光電流が増加する。   In the photovoltaic element 100a according to the present embodiment, since the reflective film 4 is provided between the first photovoltaic element 3 and the second photovoltaic element 5, a part of the incident light The number of photons reflected by the reflective film 4 and incident on the first photovoltaic element 3 increases. Thereby, the photocurrent generated in the first photovoltaic element 3 increases.

したがって、第1の光起電力素子3の膜厚を低減させることができる。その結果、第1の光起電力素子3における光劣化率を低減させることができるため、光起電力素子100全体の光劣化率が低減し、変換効率が向上する。   Therefore, the film thickness of the first photovoltaic element 3 can be reduced. As a result, since the light deterioration rate in the first photovoltaic element 3 can be reduced, the light deterioration rate of the entire photovoltaic element 100 is reduced, and the conversion efficiency is improved.

また、反射膜4に用いるZnOのピーク強度比Zが2以下であることから、反射膜4とp型微結晶シリコン膜51との間の接合特性に影響を及ぼさない。それにより、光起電力素子100aの直列抵抗は増加しない。   Further, since the peak intensity ratio Z of ZnO used for the reflective film 4 is 2 or less, the junction characteristics between the reflective film 4 and the p-type microcrystalline silicon film 51 are not affected. Thereby, the series resistance of the photovoltaic element 100a does not increase.

以上のことから、本実施の形態に係る光起電力素子100aにおいては、変換効率が最大限に向上される。   From the above, in the photovoltaic device 100a according to the present embodiment, the conversion efficiency is improved to the maximum.

以下の実施例1〜3および比較例1,2では図1の光起電力素子を作製し、反射膜4のXRD強度比Zおよび光起電力素子全体の直列抵抗を測定した。   In the following Examples 1 to 3 and Comparative Examples 1 and 2, the photovoltaic elements shown in FIG. 1 were produced, and the XRD intensity ratio Z of the reflective film 4 and the series resistance of the entire photovoltaic elements were measured.

(実施例1〜3)
実施例1〜3では、図1の反射膜4の成膜温度を変えて光起電力素子を作製し、反射膜4の成膜温度およびピーク強度比Zが光起電力素子の直列抵抗に及ぼす影響を調べた。実施例1〜3の反射膜4の成膜温度は、それぞれ100℃、120℃および150℃とした。また、ターゲットにはAlが5wt%ドープされたZnOを用いた。さらに、圧力は0.7Paであり、スパッタ時の放電電力は6kWとした。実施例1〜3の光起電力素子のその他の作製条件を表1に示す。
(Examples 1-3)
In Examples 1 to 3, photovoltaic elements are manufactured by changing the film formation temperature of the reflective film 4 in FIG. 1, and the film formation temperature and the peak intensity ratio Z of the reflective film 4 affect the series resistance of the photovoltaic elements. The effect was investigated. The film formation temperatures of the reflective films 4 of Examples 1 to 3 were 100 ° C., 120 ° C., and 150 ° C., respectively. Further, ZnO doped with 5 wt% Al was used as a target. Furthermore, the pressure was 0.7 Pa, and the discharge power during sputtering was 6 kW. Table 1 shows other production conditions for the photovoltaic elements of Examples 1 to 3.

Figure 2005108901
Figure 2005108901

(比較例1,2)
比較例1,2では、図1の反射膜4の成膜温度を変えて光起電力素子を作製した。比較例1,2の反射膜4の成膜温度は、それぞれ180℃、240℃とした。比較例1,2のその他の作製条件は実施例1〜3と同様である。
(Comparative Examples 1 and 2)
In Comparative Examples 1 and 2, photovoltaic elements were fabricated by changing the deposition temperature of the reflective film 4 in FIG. The deposition temperatures of the reflective films 4 of Comparative Examples 1 and 2 were 180 ° C. and 240 ° C., respectively. Other manufacturing conditions of Comparative Examples 1 and 2 are the same as those of Examples 1 to 3.

(評価1)
実施例1〜3および比較例1,2で形成された反射膜4のZnOのピーク強度比Zを測定した。図4に実施例1〜3および比較例1,2のピーク強度比Zを示す。図4の横軸はZnOの成膜温度を示し、図4の縦軸はピーク強度比Zを示す。
(Evaluation 1)
The peak intensity ratio Z of ZnO of the reflective film 4 formed in Examples 1 to 3 and Comparative Examples 1 and 2 was measured. FIG. 4 shows the peak intensity ratio Z of Examples 1 to 3 and Comparative Examples 1 and 2. The horizontal axis in FIG. 4 indicates the ZnO film forming temperature, and the vertical axis in FIG. 4 indicates the peak intensity ratio Z.

図4に示すように、ZnOの成膜温度の増加とともにZnOのピーク強度比Zも比例的に増加した。また、実施例1〜3で形成されたZnOのピーク強度比Zは2以下となり、比較例1,2で形成されたZnOのピーク強度比Zは2を超える値となった。   As shown in FIG. 4, the ZnO peak intensity ratio Z also increased proportionally with increasing ZnO deposition temperature. Moreover, the peak intensity ratio Z of ZnO formed in Examples 1 to 3 was 2 or less, and the peak intensity ratio Z of ZnO formed in Comparative Examples 1 and 2 was a value exceeding 2.

(比較例3)
比較例3では、図1の光起電力素子を作製する際に反射膜4を形成せずに非晶質シリコン膜を光活性層に用いる第1の光起電力素子3上に微結晶シリコン膜を光活性層に用いる第2の光起電力素子5を形成した。その他の作製条件は、実施例1〜3と同様である。
(Comparative Example 3)
In Comparative Example 3, a microcrystalline silicon film is formed on the first photovoltaic element 3 that uses an amorphous silicon film as a photoactive layer without forming the reflective film 4 when producing the photovoltaic element of FIG. A second photovoltaic element 5 using the above in the photoactive layer was formed. Other manufacturing conditions are the same as in Examples 1 to 3.

(評価2)
実施例1〜3および比較例1〜3の光起電力素子の直列抵抗を測定した。図5に実施例1〜3および比較例1〜3の光起電力素子の直列抵抗を示す。図5の横軸は、ピーク強度比Zを示す。図5の縦軸は、比較例3の光起電力素子の直列抵抗を1として規格化した場合の実施例1〜3および比較例1,2の光起電力素子の直列抵抗の値を示す。
(Evaluation 2)
The series resistance of the photovoltaic elements of Examples 1 to 3 and Comparative Examples 1 to 3 was measured. FIG. 5 shows the series resistance of the photovoltaic elements of Examples 1 to 3 and Comparative Examples 1 to 3. The horizontal axis of FIG. 5 shows the peak intensity ratio Z. The vertical axis in FIG. 5 indicates the value of the series resistance of the photovoltaic elements of Examples 1 to 3 and Comparative Examples 1 and 2 when the series resistance of the photovoltaic element of Comparative Example 3 is normalized as 1.

図5に示すように、ピーク強度比Zが2以下であれば、直列抵抗は比較例3と変わらなかったが、ピーク強度比が2を超える比較例1,2の光起電力素子は直列抵抗が大きく増加した。   As shown in FIG. 5, when the peak intensity ratio Z is 2 or less, the series resistance is the same as that of Comparative Example 3, but the photovoltaic elements of Comparative Examples 1 and 2 having a peak intensity ratio of more than 2 are series resistance. Increased significantly.

以上のことから、ZnOの成膜温度を変化させることによりZnOのピーク強度比が変化し、ピーク強度比Zが2以下であれば光起電力素子の直列抵抗が増大しないことがわかった。   From the above, it was found that the peak intensity ratio of ZnO was changed by changing the deposition temperature of ZnO, and that the series resistance of the photovoltaic device would not increase if the peak intensity ratio Z was 2 or less.

これは、ピーク強度比が2を超えると、ZnOの結晶性が高まり熱膨張係数が低くなるため、反射膜4とp型微結晶シリコン膜51との接合界面において内部応力によるひずみが大きくなるためであると考えられる。   This is because when the peak intensity ratio exceeds 2, the crystallinity of ZnO increases and the thermal expansion coefficient decreases, so that strain due to internal stress increases at the junction interface between the reflective film 4 and the p-type microcrystalline silicon film 51. It is thought that.

以上のように、本発明に係る光起電力素子においては、反射膜4とp型微結晶シリコン膜51との接合特性を改善することができる。したがって、本発明に係る光起電力素子は、半導体接合を用いた光起電力素子およびその製造する用途に適している。   As described above, in the photovoltaic device according to the present invention, the junction characteristics between the reflective film 4 and the p-type microcrystalline silicon film 51 can be improved. Therefore, the photovoltaic device according to the present invention is suitable for a photovoltaic device using a semiconductor junction and an application for manufacturing the photovoltaic device.

第1の実施の形態に係る光起電力素子の構造を示す模式的断面図である。It is typical sectional drawing which shows the structure of the photovoltaic element which concerns on 1st Embodiment. ZnOの(002)面および(004)面のXRDピーク強度の一例を示す図である。It is a figure which shows an example of the XRD peak intensity of the (002) plane and (004) plane of ZnO. 第2の実施の形態に係る光起電力素子の構造を示す模式的断面図である。It is typical sectional drawing which shows the structure of the photovoltaic element which concerns on 2nd Embodiment. 実施例1〜3および比較例1,2のピーク強度比Zを示す図である。It is a figure which shows the peak intensity ratio Z of Examples 1-3 and Comparative Examples 1 and 2. FIG. 実施例1〜3および比較例1〜3の光起電力素子の直列抵抗を示す図である。It is a figure which shows the series resistance of the photovoltaic element of Examples 1-3 and Comparative Examples 1-3.

符号の説明Explanation of symbols

1 支持基板
2 透明電極
3 第1の光起電力素子
4 反射膜
5 第2の光起電力素子
6 裏面電極
31 p型非晶質シリコンカーバイド膜
32 i型非晶質シリコン膜
33 n型非晶質シリコン膜
51 p型微結晶シリコン膜
52 i型微結晶シリコン膜
53 n型微結晶シリコン膜
100 光起電力素子
DESCRIPTION OF SYMBOLS 1 Support substrate 2 Transparent electrode 3 1st photovoltaic element 4 Reflective film 5 2nd photovoltaic element 6 Back surface electrode 31 p-type amorphous silicon carbide film 32 i-type amorphous silicon film 33 n-type amorphous Silicon film 51 p-type microcrystalline silicon film 52 i-type microcrystalline silicon film 53 n-type microcrystalline silicon film 100 photovoltaic device

Claims (4)

一面および他面を有し入射光を反射する反射膜を備え、
前記反射膜の前記一面側に、半導体膜を光活性層に用いる第1の光起電力素子を備え、
前記反射膜の前記他面側に、微結晶半導体膜を光活性層に用いる第2の光起電力素子を備え、
前記反射膜の前記一面を受光面側とするとともに、
前記反射膜の(002)面におけるX線回折強度のピーク値が前記反射膜の(004)面におけるX線回折強度のピーク値の2倍以下であることを特徴とする光起電力素子。
A reflective film having one side and the other side to reflect incident light;
A first photovoltaic element using a semiconductor film as a photoactive layer on the one surface side of the reflective film;
A second photovoltaic element using a microcrystalline semiconductor film as a photoactive layer on the other surface side of the reflective film;
While the one surface of the reflective film is the light receiving surface side,
The photovoltaic element, wherein the peak value of the X-ray diffraction intensity on the (002) plane of the reflective film is not more than twice the peak value of the X-ray diffraction intensity on the (004) plane of the reflective film.
前記第1の光起電力素子は、非晶質系半導体膜を光活性層に用いることを特徴とする請求項1記載の光起電力素子。 2. The photovoltaic element according to claim 1, wherein the first photovoltaic element uses an amorphous semiconductor film as a photoactive layer. 前記反射膜は、酸化亜鉛からなることを特徴とする請求項1または2記載の光起電力素子。 The photovoltaic element according to claim 1, wherein the reflective film is made of zinc oxide. 一面および他面を有し、入射光を反射し、(002)面におけるX線回折強度のピーク値が(004)面におけるX線回折強度のピーク値の2倍以下である反射膜を形成する工程と、
前記反射膜の受光面側となる前記一面側に、半導体膜を光活性層に用いる第1の光起電力素子を形成する工程と、
前記反射膜の前記他面側に、微結晶半導体膜を光活性層に用いる第2の光起電力素子を形成する工程とを備えたことを特徴とする光起電力素子の製造方法。


A reflective film having one surface and the other surface that reflects incident light and has a peak value of X-ray diffraction intensity on the (002) plane that is less than or equal to twice the peak value of X-ray diffraction intensity on the (004) plane is formed. Process,
Forming a first photovoltaic element using a semiconductor film as a photoactive layer on the one surface side which is a light receiving surface side of the reflective film;
Forming a second photovoltaic element using a microcrystalline semiconductor film as a photoactive layer on the other surface side of the reflective film. A method for producing a photovoltaic element, comprising:


JP2003336457A 2003-09-26 2003-09-26 Photovoltaic element and its manufacturing method Pending JP2005108901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003336457A JP2005108901A (en) 2003-09-26 2003-09-26 Photovoltaic element and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003336457A JP2005108901A (en) 2003-09-26 2003-09-26 Photovoltaic element and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005108901A true JP2005108901A (en) 2005-04-21

Family

ID=34532582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003336457A Pending JP2005108901A (en) 2003-09-26 2003-09-26 Photovoltaic element and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005108901A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310503A (en) * 2005-04-28 2006-11-09 Sanyo Electric Co Ltd Laminate type photovoltaic device
JP2007012833A (en) * 2005-06-30 2007-01-18 Sanyo Electric Co Ltd Stacked photovoltaic device
CN102157575A (en) * 2011-03-28 2011-08-17 天津师范大学 Novel transparent conducting oxide thin film with multi-layer film structure and manufacturing method thereof
CN102301491A (en) * 2009-06-10 2011-12-28 薄膜硅公司 Photovoltaic modules and methods of manufacturing photovoltaic modules having multiple semiconductor layer stacks
JP2012509602A (en) * 2008-11-19 2012-04-19 ユニバシテ デ ヌシャテル Multi-junction photoelectric device and manufacturing process thereof
TWI453929B (en) * 2009-06-30 2014-09-21 Solarbase Group Inc Photovoltaic modules and methods of manufacturing photovoltaic modules having multiple semiconductor layer stacks

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310503A (en) * 2005-04-28 2006-11-09 Sanyo Electric Co Ltd Laminate type photovoltaic device
EP1717868A3 (en) * 2005-04-28 2015-03-04 Sanyo Electric Co., Ltd. Stacked photovoltaic device
JP2007012833A (en) * 2005-06-30 2007-01-18 Sanyo Electric Co Ltd Stacked photovoltaic device
JP4688589B2 (en) * 2005-06-30 2011-05-25 三洋電機株式会社 Stacked photovoltaic device
JP2012509602A (en) * 2008-11-19 2012-04-19 ユニバシテ デ ヌシャテル Multi-junction photoelectric device and manufacturing process thereof
CN102301491A (en) * 2009-06-10 2011-12-28 薄膜硅公司 Photovoltaic modules and methods of manufacturing photovoltaic modules having multiple semiconductor layer stacks
CN102301490A (en) * 2009-06-10 2011-12-28 薄膜硅公司 Photovoltaic modules and methods for manufacturing photovoltaic modules having tandem semiconductor layer stacks
TWI453929B (en) * 2009-06-30 2014-09-21 Solarbase Group Inc Photovoltaic modules and methods of manufacturing photovoltaic modules having multiple semiconductor layer stacks
CN102157575A (en) * 2011-03-28 2011-08-17 天津师范大学 Novel transparent conducting oxide thin film with multi-layer film structure and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US6187150B1 (en) Method for manufacturing thin film photovoltaic device
JP3998619B2 (en) Photovoltaic element and manufacturing method thereof
US20170263792A1 (en) Solar cells provided with color modulation and method for fabricating the same
US7863075B2 (en) Method for manufacturing solar cell
TW201013950A (en) Solar cell module and method for fabricating the same
JP2009503848A (en) Composition gradient photovoltaic device, manufacturing method and related products
JP2006319068A (en) Multi-junction silicone thin film photoelectric converter and its manufacturing method
EP2416370A1 (en) Thin film solar fabrication process, deposition method for TCO layer, and solar cell precursor layer stack
JP2010087205A (en) Multi-junction thin-film photoelectric converter
CN101567404A (en) Multisection silicon-based film solar cell structure and process thereof
US20100229934A1 (en) Solar cell and method for the same
JP5291633B2 (en) Silicon-based thin film photoelectric conversion device and manufacturing method thereof
US8822259B2 (en) Methods for enhancing light absorption during PV applications
US7352044B2 (en) Photoelectric transducer, photoelectric transducer apparatus, and iron silicide film
JP4889623B2 (en) Transparent conductive film and solar cell using transparent conductive film
JP2005108901A (en) Photovoltaic element and its manufacturing method
JP2000058892A (en) Silicon based thin film photoelectric converter
JP6047494B2 (en) Thin film photoelectric conversion device and manufacturing method thereof
TW201001731A (en) Photovoltaic device and method of manufacturing a photovoltaic device
JP2006216624A (en) Solar cell and its production process
JP5468217B2 (en) Thin film solar cell
JP2010080672A (en) Photoelectric conversion device and method for manufacturing photoelectric conversion device
JP2010103347A (en) Thin film photoelectric converter
JP2011216586A (en) Laminated photoelectric conversion device and method of manufacturing the same
JP4124309B2 (en) Photovoltaic device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050506

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081007