JP2005108433A - Signal detection method, signal detection circuit, and optical information recording/reproducing device - Google Patents

Signal detection method, signal detection circuit, and optical information recording/reproducing device Download PDF

Info

Publication number
JP2005108433A
JP2005108433A JP2005009064A JP2005009064A JP2005108433A JP 2005108433 A JP2005108433 A JP 2005108433A JP 2005009064 A JP2005009064 A JP 2005009064A JP 2005009064 A JP2005009064 A JP 2005009064A JP 2005108433 A JP2005108433 A JP 2005108433A
Authority
JP
Japan
Prior art keywords
circuit
signal
recording layer
recording
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005009064A
Other languages
Japanese (ja)
Inventor
Hiroshi Maekawa
博史 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2005009064A priority Critical patent/JP2005108433A/en
Publication of JP2005108433A publication Critical patent/JP2005108433A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Recording Or Reproduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manage, define and inspect medium parameters with characteristic values of high reliability, interchangeability, and reproducibility by suppressing the measurement variations and errors of various signal characteristics due to the leak light from adjacent recording layers. <P>SOLUTION: A recording state discriminating circuit 32 discriminates whether the adjacent recording layer of a desired access recording layer is an unrecorded region or already-recorded region. While the recording state of the adjacent recording layer is checked in the recording state discriminating circuit 32, the level of a sum signal is held in a sample circuit 33 under the two conditions that the adjacent recording layer is unrecorded and already recorded. The result is stored in a memory circuit 34. The memory circuit 34 outputs the sum signal level when the adjacent recording layer is unrecorded and the sum signal level when the adjacent recording layer is already recorded. The difference therebetween is calculated in a comparator circuit 35. Whether the output signal of the comparator circuit 35 is used as a control line of a signal correction circuit 29 or not is determined through an adder 37 by turning a switching means 36 on/off according to the output of the recording state discriminating circuit 32. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、CD−R/RWの2層版、DVD±R/RWの2層版、さらには将来の多層記録媒体のような2層以上の多層構造を有する記録可能な光情報記録媒体の媒体特性規定方法に関する。   The present invention relates to a recordable optical information recording medium having a multilayer structure of two or more layers such as a CD-R / RW two-layer version, a DVD ± R / RW two-layer version, and a future multilayer recording medium. The present invention relates to a method for defining media characteristics.

CD−R/RWやDVD±R/RWはPCの外部記憶装置として定着した。今後さらなる大容量化が望まれ、2層化、将来的にはより一層の多層化も検討されてきている。   CD-R / RW and DVD ± R / RW were fixed as external storage devices for PCs. In the future, a further increase in capacity is desired, and two layers, and in the future, further multilayers have been studied.

このような多層媒体では、基本的にアクセス中以外の記録層から反射された光はアクセス中の記録層からの反射光には漏れ込まないように層間距離を設定すればよい。焦点位置から大きく外れれば媒体からの反射光はレンズによる集光は行なわれず発散するため、信号強度としては無視できるレベルになるためである。しかし、光学的な制限として、良好な各種特性を得られる焦点許容範囲(焦点深度)以内に多層全てを設定しなければならず、層間距離は理想通りに広げることはできない。このため少なからず他層からの反射光の漏れ込みが発生する。   In such a multilayer medium, the interlayer distance may be set so that light reflected from the recording layer other than being accessed basically does not leak into reflected light from the recording layer being accessed. This is because the reflected light from the medium diverges without being collected by the lens if it deviates greatly from the focal position, so that the signal intensity is negligible. However, as an optical limitation, all the multilayers must be set within a focus tolerance range (depth of focus) where various favorable characteristics can be obtained, and the interlayer distance cannot be increased as ideal. For this reason, leakage of reflected light from other layers occurs.

実用化されている多層の例としてはDVD−ROMの2層版がある。これは2層とも工場でスタンプされた再生専用であるので各種変動に対するマージンも大きく、トラッキングにはDPD(Differential Phase Detection)と呼ばれる再生信号のエッジから得られる位相差を用いた方式を取り入れており、他層からの反射光漏れ込みによる光量(信号強度)変化には強い耐性を確保していた。もちろん再生専用なので、トラック(溝)やトラックの蛇行によるウォブルを検出する必要が無く、他層からの反射光の漏れ込みによる不具合は少なかった。   An example of a multilayer that is in practical use is a two-layer version of a DVD-ROM. Since both layers are exclusively for playback stamped at the factory, the margin for various fluctuations is large, and a method using phase difference obtained from the edge of the playback signal called DPD (Differential Phase Detection) is adopted for tracking. In addition, strong resistance was secured against changes in the amount of light (signal intensity) due to leakage of reflected light from other layers. Of course, since it is exclusively for reproduction, there was no need to detect wobbles due to tracks (grooves) or track meandering, and there were few problems due to leakage of reflected light from other layers.

記録可能な層を複数持つメディアは、例えば特許文献1,2等に開示されている。これらの発明は多層記録が可能なメディアの記録膜特性、特に記録膜の厚み、材料などを既定して、多層記録の実現性を高めている。また特許文献3では多層記録メディアの各層に、ウォブルを配置し、そのウォブルにアドレス情報を挿入することが示されている。   Media having a plurality of recordable layers are disclosed in Patent Documents 1 and 2, for example. These inventions improve the feasibility of multilayer recording by setting the recording film characteristics of media capable of multilayer recording, particularly the thickness and material of the recording film. Patent Document 3 discloses that wobbles are arranged in each layer of a multilayer recording medium, and address information is inserted into the wobbles.

さらに、基礎研究として多層記録の実現性が高まってきており、それに伴ない必須な技術も指摘、発明されている。当然であるが、多層メディアにおいても各種サーボ信号やウォブル信号は必須であり、互換性を高めたり、安定した品質を保つためにも、これらの信号特性を管理する、若しくは標準として定めることは重要である。
特開2000−235733公報 特開2003−091874公報 特開2001−052342公報
Furthermore, the feasibility of multi-layer recording has increased as basic research, and in line with this, essential techniques have been pointed out and invented. Of course, various servo signals and wobble signals are indispensable even in multi-layer media, and it is important to manage these signal characteristics or define them as standards in order to improve compatibility and maintain stable quality. It is.
JP 2000-235733 A JP 2003-091874 A JP 2001-053422 A

しかし、多層の記録媒体の場合には、他層からの反射光の漏れ込みは大きな問題となる。例えば、隣接する記録層が未記録領域の場合、反射率が高いので反射光は大きい。この反射光の焦点はずれているため受光素子上に完全に集光することはないが、アクセス中の記録層からの本来の反射光に漏れ込むので、反射光は正確な値を示さない。逆に、隣接する記録層が既記録領域の場合には反射率が低いので、漏れ込みの量は小さい。多層の場合にはどの層からも漏れ込みは発生するが、特に隣接する記録層からの漏れ込みが最も悪影響を及ぼす。   However, in the case of a multilayer recording medium, leakage of reflected light from other layers is a serious problem. For example, when the adjacent recording layer is an unrecorded area, the reflected light is large because the reflectance is high. Since the reflected light is out of focus, it is not completely condensed on the light receiving element, but leaks into the original reflected light from the recording layer being accessed, so the reflected light does not show an accurate value. Conversely, when the adjacent recording layer is an already recorded area, the reflectance is low, so the amount of leakage is small. In the case of multiple layers, leakage occurs from any layer, but leakage from adjacent recording layers has the most adverse effect.

記録媒体の各種信号特性は記録膜組成、記録膜厚、溝深さ、溝幅など多くのパラメータによりチューニングされる。記録特性は特許文献1,2に示されているように、記録膜材料のチューニングが主である。2つの特許文献1,2共に各種信号仕様には触れられていない。本発明の「各種信号」とは媒体上にグルーブと呼ばれる溝で刻まれたトラックを光ビームが横切る際に得られるトラッククロス信号やトラッキングエラー信号などのサーボ信号、その他トラックの蛇行によって刻まれた媒体の回転速度やアドレス情報を含んだウォブル信号などである。もちろんこれだけでなく、再生(RF)信号の振幅も同様と言える。これらの信号特性は基本的に振幅の規定で定められており、光ビーム強度や回路増幅率など測定条件の違いを吸収する目的から、和信号で正規化して扱う。しかし、隣接する記録層からの反射光が漏れ込んで和信号に誤差が生じると、これら誤差の規定が正確でなくなる不具合が生じる。   Various signal characteristics of the recording medium are tuned by many parameters such as recording film composition, recording film thickness, groove depth, and groove width. As shown in Patent Documents 1 and 2, the recording characteristics are mainly tuning of the recording film material. Neither of the two patent documents 1 and 2 mentions various signal specifications. The “various signals” of the present invention are engraved by a servo signal such as a track cross signal and a tracking error signal obtained when a light beam crosses a track engraved with a groove called a groove on the medium, and other track meandering. For example, the wobble signal includes the rotation speed of the medium and address information. Of course, not only this, but also the amplitude of the reproduction (RF) signal is the same. These signal characteristics are basically defined by the definition of the amplitude, and are treated by normalizing with a sum signal for the purpose of absorbing differences in measurement conditions such as light beam intensity and circuit amplification factor. However, if the reflected light from the adjacent recording layer leaks and an error occurs in the sum signal, there is a problem that the definition of these errors is not accurate.

また、これらの隣接する記録層からの反射光の漏れ込みは光学系によって大きく変わるため、信頼性が乏しく互換性が悪くなる。   In addition, since leakage of reflected light from these adjacent recording layers varies greatly depending on the optical system, reliability is poor and compatibility is poor.

隣接する記録層が既記録領域の場合には、反射率が低いので反射光は小さく、アクセス中の記録層への漏れ込みによる不具合は小さくできる。   When the adjacent recording layer is an already-recorded area, the reflectance is low, so that the reflected light is small, and problems due to leakage into the recording layer being accessed can be reduced.

一方、隣接する記録層が未記録領域の場合には、弱いながらもその反射光の記録データ成分がアクセス中の記録層の反射光に漏れ込むことになる。サーボ信号に対しては信号帯域が異なるため問題にはならないが、ウォブル信号は記録データ帯域に近いため、注意する必要がある。よってウォブル信号の品質規定では、隣接する記録層が既記録の場合でのC/N(キャリア対ノイズ)比を規定することが望まれる。   On the other hand, when the adjacent recording layer is an unrecorded area, the recorded data component of the reflected light leaks into the reflected light of the recording layer being accessed although it is weak. This is not a problem because the signal band is different for the servo signal, but care must be taken because the wobble signal is close to the recording data band. Therefore, it is desirable to define the C / N (carrier-to-noise) ratio when the adjacent recording layer has already been recorded in the wobble signal quality regulation.

このように隣接する記録層の記録状態(未記録か、既記録か)によって各種信号仕様が異なるため、記録層が1層(単層)のみで考えられている従来の規定方法では安定した特性管理や標準的数値の決定を行うことができない。   As described above, various signal specifications differ depending on the recording state (unrecorded or already recorded) of the adjacent recording layer, so that stable characteristics can be obtained with the conventional specification method in which only one recording layer (single layer) is considered. Inability to manage or determine standard figures.

本発明の目的は、隣接する記録層からの漏れ込み光による各種信号特性の測定バラツキ、誤差を抑制して、信頼性や互換性、再現性の高い特性値でのメディアパラメータの管理、規定、検査が行なえるようにすることである。   The purpose of the present invention is to control and regulate media parameters with highly reliable, interchangeable and highly reproducible characteristic values by suppressing measurement variations and errors of various signal characteristics due to leaked light from adjacent recording layers. It is to be able to perform inspection.

請求項1記載の発明の信号検出方法は、光情報記録媒体が有する記録可能な複数の記録層のうち、記録層Aの或る領域Xに照射された光ビームの光線軸上でかつ当該記録層Aに入射側で隣接する記録層Bの領域Yが未記録領域の条件における記録層Aの領域Xにおける反射信号レベルと、記録層Bの領域Yが既記録領域の条件における記録層Aの領域Xにおける反射信号レベルとを比較し、その比較結果に基づき記録層Bの領域Yの記録状態に応じて記録層Aの領域Xにおける各種信号の増幅率若しくはオフセットの変更を行うようにした。   The signal detection method according to the first aspect of the present invention is the recording method on the optical axis of the light beam irradiated to a certain area X of the recording layer A among the plurality of recordable recording layers of the optical information recording medium. The reflection signal level in the region X of the recording layer A under the condition that the region Y of the recording layer B adjacent to the layer A on the incident side is an unrecorded region, and the recording layer A under the condition of the recording layer B being the recorded region. The reflection signal level in the region X is compared, and the amplification factor or offset of various signals in the region X of the recording layer A is changed according to the recording state of the region Y of the recording layer B based on the comparison result.

請求項2記載の発明の信号検出回路は、光情報記録媒体が有する記録可能な複数の記録層のうち、記録層Aの或る領域Xの反射信号レベルを保持するサンプル回路と、当該記録層Aの領域Xに照射された光ビームの光線軸上でかつ記録層Aに入射側で隣接する記録層Bの領域Yが未記録領域か既記録領域かを判別する記録状態判別回路と、記録層Bの領域Yが未記録領域及び既記録領域各々の場合で前記サンプル回路に保持されたサンプル回路の出力を記憶する記憶回路と、この記憶回路から出力される記録層Bの領域Yが未記録領域時と既記録領域時との信号の差を求める比較回路と、この比較回路の出力及び記録層Aの領域Xの反射信号レベルを制御信号として各種信号の増幅率又はオフセットを変更する信号補正回路と、前記記録状態判別回路の出力によって前記信号補正回路の制御信号として前記比較回路の出力を用いるか否かを選択する選択手段とを備える。   A signal detection circuit according to a second aspect of the invention is a sample circuit that holds a reflected signal level of a certain region X of the recording layer A among a plurality of recordable recording layers of the optical information recording medium, and the recording layer A recording state discriminating circuit for discriminating whether the area Y of the recording layer B adjacent to the recording layer A on the incident axis on the optical axis of the light beam irradiated to the area X of A is an unrecorded area or an already recorded area; When the area Y of the layer B is an unrecorded area and an already recorded area, a storage circuit that stores the output of the sample circuit held in the sample circuit, and an area Y of the recording layer B that is output from the storage circuit A comparison circuit for obtaining a signal difference between the recording area and the recorded area, and a signal for changing the amplification factor or offset of various signals using the output of the comparison circuit and the reflection signal level of the area X of the recording layer A as control signals. Correction circuit and recording state The output of another circuit and selecting means for selecting whether to use the output of the comparator circuit as a control signal of the signal correction circuit.

請求項3記載の発明の光情報記録再生装置は、光情報記録媒体を回転駆動させる回転機構と、光源、対物レンズを有して、前記光情報記録媒体に対して光ビームを照射するとともに前記光情報記録媒体からの反射光を受光するピックアップと、請求項2記載の信号検出回路とを備え、前記光情報記録媒体を対象として情報の記録又は再生を行う。   An optical information recording / reproducing apparatus according to a third aspect of the present invention includes a rotation mechanism that rotates and drives an optical information recording medium, a light source, and an objective lens, and irradiates the optical information recording medium with a light beam and A pickup that receives reflected light from the optical information recording medium and a signal detection circuit according to claim 2 are provided, and information is recorded or reproduced on the optical information recording medium.

本発明によれば、隣接する記録層の記録状態に関わらず、振幅変動、オフセット変動の少ない良好な品質の各種信号を検出することができる。   According to the present invention, it is possible to detect various signals of good quality with little amplitude fluctuation and offset fluctuation regardless of the recording state of adjacent recording layers.

また、隣接する記録層の記録状態に関わらず、安定して信頼性の高いサーボ性能、高速なアクセス性能を持つ情報記録再生装置が実現できる。   In addition, an information recording / reproducing apparatus having stable and reliable servo performance and high-speed access performance can be realized regardless of the recording state of adjacent recording layers.

本発明を実施するための最良の形態について図面を参照して説明する。   The best mode for carrying out the present invention will be described with reference to the drawings.

図1は一般的かつ本発明にも適応される光情報記録媒体(メディア)1の構成例を示している。メディア1には同心円状若しくはスパイラル状にグルーブ(溝)2とランド3とからなるトラック4が形成されている。このトラック4はメディア形成装置により、予め形成されるものであって、情報記録再生装置はこのトラック4に沿って、情報の記録、再生を行う。また、メディア1には回転情報として、線速度一定若しくは角速度一定で回転した場合に、一定周波数(周期)の信号が検出可能なように、トラック4が蛇行している(図1(b)参照)。CD−RWやDVD+R/RWではこのトラック4の蛇行を概略一定周波数としながら、周波数や位相を若干変える部分を設けることで、アドレス情報を記録している。その他、トラックの片側のみ蛇行しているものや、間欠的に蛇行が途切れている場合もある。   FIG. 1 shows a configuration example of an optical information recording medium (media) 1 that is general and applicable to the present invention. The medium 1 is formed with a track 4 composed of grooves (grooves) 2 and lands 3 concentrically or spirally. The track 4 is formed in advance by a media forming apparatus, and the information recording / reproducing apparatus records and reproduces information along the track 4. Further, the track 4 meanders so that a signal having a constant frequency (period) can be detected when the medium 1 rotates as constant rotation speed or constant angular velocity as rotation information (see FIG. 1B). ). In CD-RW and DVD + R / RW, address information is recorded by providing a portion where the frequency and phase are slightly changed while the meandering of the track 4 is set to a substantially constant frequency. In addition, there is a case where only one side of the track meanders or intermittent meandering is interrupted.

図2にメディア1に照射された光ビームの反射光を受光し、各種信号を抽出する信号処理ブロックの一例を示す。メディア1からの反射光を4分割PD(受光素子)11で受光する。この4分割受光素子11は光学的にメディア面のトラック接線方向とそれに垂直方向に対応する分割線で4つの受光領域に仕切られている。各受光領域を、便宜的に左前より時計回りにA〜Dとする。受光素子出力は電流信号なので、I/V回路12によって電圧信号に変換する。電圧変換された信号はサーボ及びウォブル検出回路13の加算アンプ、減算アンプ、LPF又はHPFにて、各種信号が抽出される。トラッククロス信号は(A+B+C+D)の演算結果の低周波信号である。トラックエラー信号は(A+D)−(B+C)の低周波信号である。ウォブル信号はトラックエラー信号と同じ演算であるが、高周波信号である。フォーカスエラー信号は(A+C)−(B+D)の低周波信号である。また、再生(RF)信号としては高帯域の別回路で演算することが望ましいため、ここには記載していないが、演算は(A+B+C+D)である。   FIG. 2 shows an example of a signal processing block that receives reflected light of a light beam irradiated on the medium 1 and extracts various signals. Reflected light from the medium 1 is received by a four-divided PD (light receiving element) 11. The four-divided light receiving element 11 is optically divided into four light receiving areas by dividing lines corresponding to the track tangential direction of the media surface and the direction perpendicular thereto. For the sake of convenience, each light receiving area is denoted by A to D clockwise from the left front. Since the light receiving element output is a current signal, it is converted into a voltage signal by the I / V circuit 12. Various signals are extracted from the voltage-converted signal by the addition amplifier, subtraction amplifier, LPF or HPF of the servo and wobble detection circuit 13. The track cross signal is a low frequency signal resulting from the calculation of (A + B + C + D). The track error signal is a low frequency signal of (A + D)-(B + C). The wobble signal is the same calculation as the track error signal, but is a high frequency signal. The focus error signal is a low frequency signal of (A + C)-(B + D). Further, since it is desirable that the reproduction (RF) signal is calculated by a separate circuit in a high band, the calculation is (A + B + C + D) although not described here.

ここで図示したのは各種信号の最も簡単な演算方法であるが、もちろん受光素子(PD)の分割形状はこの限りでなく、さらに細かく分割されていても構わないし、逆に2,3分割と少なくてもよい。各々の受光形態に応じて信号演算を最適化すればよい。トラックエラー信号はDPD(ディファレンシャル フェーズ ディテクション)法でも構わない。   Although the simplest calculation method for various signals is shown here, of course, the division shape of the light receiving element (PD) is not limited to this, and it may be further finely divided. It may be less. What is necessary is just to optimize a signal calculation according to each light reception form. The track error signal may be a DPD (Differential Phase Detection) method.

また、メインとサブからなる複数の光ビームから各種信号を検出する場合でも構わない。例えば、トラックエラー信号は3つの光ビームを受光して演算する3ビーム法やDPP(ディファレンシャル プッシュ プル)法などの場合である。トラッククロス信号も3ビームで演算することもできる。また、フォーカス系は別の受光素子となっていてもよい。   Further, various signals may be detected from a plurality of main and sub light beams. For example, the track error signal is a case of a three-beam method in which three light beams are received and calculated, a DPP (differential push-pull) method, or the like. The track cross signal can also be calculated with three beams. The focus system may be another light receiving element.

また、ウォブル信号はトラックエラー信号と別の回路で演算しても良いし、減算アンプの前に各種補正回路を挿入しても良い。   The wobble signal may be calculated by a circuit different from the track error signal, or various correction circuits may be inserted before the subtraction amplifier.

即ち、検出法によって演算法を適正化すればよく、そのメディア1から信号を引出す方法、手段には依らない。   That is, the calculation method may be optimized by the detection method, and does not depend on the method or means for extracting a signal from the medium 1.

図3に、多層構造として2層記録メディア1の模式図を示す。記録層は第1層(記録層Bに相当)と第2層(記録層Aに相当)の2つあり、光ビームは第1層から入射される。第1層では吸収率“A1”で光ビームのエネルギーを吸収し記録が行なわれる。また、反射率“R1”がマークとスペースとで異なるため、第1層の反射光から記録されたデータを読み取ることができる。同時に、第1層記録膜の透過率“T1”で透過された光ビームは、第2層に届く。第2層では吸収率“A2”で吸収されたエネルギーで記録が行われる。そして、第1層と同様に第2層の反射率“R2”がマークとスペースとで異なるため、第2層の反射光から記録されたデータを読み取ることができる。詳細には、第2層目からの反射光は再び第1層を透過する際、吸収及び反射が行なわれるが、第2層目における反射時点で光ビーム強度が十分弱くなっているため、2度目に第1層に届いた時点では記録は行なわれない。多層の場合も同様な現象が発生すると考えれば良い。また、記録膜のタイプが追記型(R)か書換え型(RW)かに関わらず、同様の現象と考えれば良い。   FIG. 3 shows a schematic diagram of a two-layer recording medium 1 having a multilayer structure. There are two recording layers, a first layer (corresponding to recording layer B) and a second layer (corresponding to recording layer A), and the light beam is incident from the first layer. In the first layer, recording is performed by absorbing the energy of the light beam with an absorptance “A1”. Further, since the reflectance “R1” differs between the mark and the space, the recorded data can be read from the reflected light of the first layer. At the same time, the light beam transmitted with the transmittance “T1” of the first layer recording film reaches the second layer. In the second layer, recording is performed with the energy absorbed at the absorption rate “A2”. Since the reflectance “R2” of the second layer differs between the mark and the space as in the first layer, the recorded data can be read from the reflected light of the second layer. Specifically, the reflected light from the second layer is absorbed and reflected when it passes through the first layer again. However, since the light beam intensity is sufficiently weak at the time of reflection at the second layer, 2 The recording is not performed when the first layer is reached the second time. It can be considered that the same phenomenon occurs in the case of multiple layers. The same phenomenon may be considered regardless of whether the recording film type is the write once (R) type or the rewritable type (RW).

図4には2層記録メディア1を例にとり、光ビームの流れを説明してある。図4(a)は第1層記録膜へ光ビームの焦点を合わせてある場合である。光源からメディア1への光(往路)は実線で、メディア1からの反射光(復路)は点線で示してある。図では、簡略化のため、対物レンズ片側端から入射した光の経路のみを示している。光ビームは対物レンズによりメディアアクセス位置(焦点)に向け集光される。この光ビームの光線軸を一点鎖線で示している。第1層で反射された大部分の光ビームは、再び対物レンズに戻り、ここでは図示していないが周囲の光学系を経て受光素子(PD)上に集光される。一方、第2層で反射された光ビームのうち対物レンズ中央部を通過するものは再び対物レンズに戻って受光素子上に集光されるものの、対物レンズの端を通過したものは、反射光が対物レンズ外側に戻る、若しくは、対物レンズに戻っても受光素子までの光学系にて発散し、受光素子に導かれることは少ない。即ち、第2層からの反射光は第1層からの反射光に漏れ込むことは比較的小さい。   FIG. 4 illustrates the flow of the light beam by taking the double-layer recording medium 1 as an example. FIG. 4A shows a case where the light beam is focused on the first recording film. The light (outward path) from the light source to the medium 1 is indicated by a solid line, and the reflected light (return path) from the medium 1 is indicated by a dotted line. In the figure, for the sake of simplicity, only the path of light incident from one end of the objective lens is shown. The light beam is condensed toward the medium access position (focal point) by the objective lens. The ray axis of this light beam is indicated by a one-dot chain line. Most of the light beam reflected by the first layer returns to the objective lens again, and is condensed on the light receiving element (PD) through a peripheral optical system (not shown). On the other hand, the light beam reflected by the second layer passes through the central part of the objective lens and returns to the objective lens and is condensed on the light receiving element, but the light beam that passes through the end of the objective lens is reflected light. Is returned to the outside of the objective lens, or even if it returns to the objective lens, it is rarely diffused by the optical system up to the light receiving element and guided to the light receiving element. That is, the reflected light from the second layer hardly leaks into the reflected light from the first layer.

一方、図4(b)は第2層に焦点を合わせてある場合である。第1層のときと同様に焦点が合っている第2層からの反射光は対物レンズに戻り、受光素子に集光される。第1層から反射された光束のうち対物レンズ中央の光も、対物レンズに戻るので受光素子上に集光する。しかし、図4(a)では受光素子に戻らなかった対物レンズの端を通過した光に関して大部分が対物レンズに戻るので、受光素子までの光学系で発散するとはいえ、受光素子まで導かれる光は図4(a)の場合より多くなる。なお、焦点付近の部分拡大図では、第1層記録膜を記録層B、第2層記録膜を記録層Aとして示している。また、光線軸上の記録層A,Bの点をX点、Y点とした。点の大きさとしては、各層における光ビーム径とする。   On the other hand, FIG. 4B shows a case where the second layer is focused. As in the case of the first layer, the reflected light from the second layer that is in focus returns to the objective lens and is condensed on the light receiving element. Of the light beam reflected from the first layer, the light at the center of the objective lens also returns to the objective lens and is condensed on the light receiving element. However, in FIG. 4A, most of the light that has passed through the end of the objective lens that has not returned to the light receiving element returns to the objective lens, and thus the light that is guided to the light receiving element even though it diverges in the optical system up to the light receiving element. Is larger than in the case of FIG. In the partially enlarged view near the focal point, the first recording film is shown as a recording layer B, and the second recording film is shown as a recording layer A. Further, the points of the recording layers A and B on the light axis were taken as the X point and the Y point. The size of the point is the light beam diameter in each layer.

このように、第1層に光ビームの焦点を合わせた場合と、第2層に焦点を合わせた場合とで、他層からの漏れ込み具合は変化する。具体的には、入射面から奥の層(第2層)にアクセスする場合に、手前の層(第1層)の反射光が漏れ込み悪影響を及ぼすことが多い。手前の層が既記録状態で反射光量が少ない場合は悪影響が少なくなるといえる。   As described above, the leakage from the other layer changes depending on whether the light beam is focused on the first layer or the second layer. Specifically, when accessing the back layer (second layer) from the incident surface, the reflected light of the near layer (first layer) often leaks and has an adverse effect. If the front layer is already recorded and the amount of reflected light is small, it can be said that adverse effects are reduced.

これを信号レベルで説明したものが図5である。上側は第1層、下側は第2層の記録膜反射光から得られた信号レベルを各々示している。図5(a)が第1層が未記録であった場合、図5(b)が第1層が既記録であった場合の信号レベルを示している。また、太線は基準(GND)レベル、SIN波はトラッククロス信号を例にした信号レベルである。   FIG. 5 illustrates this at the signal level. The upper side shows the signal level obtained from the recording film reflected light of the first layer, and the lower side shows the signal level obtained from the recording film reflected by the second layer. FIG. 5A shows the signal level when the first layer is not recorded, and FIG. 5B shows the signal level when the first layer is recorded. Also, the bold line is the reference (GND) level, and the SIN wave is the signal level taking the track cross signal as an example.

図5(a)に示した第1層が未記録の場合、反射光が大きいので第2層にアクセスして反射光を受光した場合に、第1層からの反射光が大きく漏れ込み、信号レベルが大きくなってしまう。小さい点線は漏れ込みによる信号レベルのオフセットを表している。一般的に、漏れ込み光は受光素子全体に入るため、和光量が大きくなる。トラッククロス信号は和信号なので、信号レベルが大きくなる現象が起きる。   When the first layer shown in FIG. 5A is unrecorded, the reflected light is large. Therefore, when the second layer is accessed and the reflected light is received, the reflected light from the first layer leaks greatly, and the signal The level will increase. A small dotted line represents a signal level offset due to leakage. In general, since the leaked light enters the entire light receiving element, the total amount of light increases. Since the track cross signal is a sum signal, a phenomenon occurs in which the signal level increases.

逆に、図5(b)のように第1層が既記録であった場合には反射光が小さいので、第2層の信号を検出する際に大きな漏れ込みにはならず影響が小さい。これから判るように、第2層の信号レベルは、第1層の記録状態(未記録か既記録か)に大きく左右される。なお、図5に示したが、第1層の信号レベルと、第1層が既記録の状態における第2層の信号レベルはほぼ等しい。   On the other hand, when the first layer has already been recorded as shown in FIG. 5B, the reflected light is small, so that it does not leak significantly when detecting the signal of the second layer, and the influence is small. As can be seen, the signal level of the second layer depends greatly on the recording state (unrecorded or already recorded) of the first layer. As shown in FIG. 5, the signal level of the first layer is substantially equal to the signal level of the second layer when the first layer is already recorded.

前述の説明では、トラッククロス信号を例にとって簡単に説明した。しかし、実用的には光ビームの光量変化や、検出回路のゲイン(増幅率)などが測定系によって異なるため、各種信号の規定には通常、和信号(4分割受光素子の場合は4つの加算)で正規化することが用いられる。その回路ブロックは図6に示す通りである。和信号はLPF(低域通過フィルタ)21で平均化し、増幅アンプ22を通過する。その出力の振幅又は信号レベルを振幅検出回路23で測定し、目標の電圧にするようにゲイン回路24で増幅率を決定する。この増幅率で増幅アンプ22は信号を増幅する。この一連の動作により、正規化和信号は目標の電圧に保たれる。それと同じ増幅率(ゲイン回路の出力)で他の信号(フォーカスエラー信号、トラッククロス信号、トラックエラー信号、ウォブル信号など)も増幅アンプ25〜28で増幅し、各種正規化信号が生成される。このような振幅調整回路をAGC(オートゲインコントロール)回路29と呼ぶ。もちろん、これらの処理はA/Dコンバータによってデジタル化した後に、データ処理的に行なっても同様の効果が得られる。   In the above description, the track cross signal is simply described as an example. However, in practice, since the change in the light amount of the light beam and the gain (amplification factor) of the detection circuit vary depending on the measurement system, a sum signal (four additions in the case of a four-divided light receiving element) is usually used for the definition of various signals. ) Is used for normalization. The circuit block is as shown in FIG. The sum signal is averaged by an LPF (low-pass filter) 21 and passes through an amplification amplifier 22. The amplitude or signal level of the output is measured by the amplitude detection circuit 23, and the gain is determined by the gain circuit 24 so that the target voltage is obtained. The amplification amplifier 22 amplifies the signal with this amplification factor. Through this series of operations, the normalized sum signal is maintained at the target voltage. Other signals (focus error signal, track cross signal, track error signal, wobble signal, etc.) are also amplified by the amplification amplifiers 25 to 28 at the same amplification factor (output of the gain circuit), and various normalized signals are generated. Such an amplitude adjustment circuit is called an AGC (auto gain control) circuit 29. Of course, the same effect can be obtained even if these processes are performed in a data process after being digitized by an A / D converter.

AGC回路29によって正規化された各種信号は、他層からの反射光の漏れ込みにより和信号に誤差が生じた場合、増幅率が正確でなくなり、信号規定に誤差を生じる。よって、他層からの反射信号の漏れ込みの無い状態での信号特性の規定が望まれる。   When various signals normalized by the AGC circuit 29 cause an error in the sum signal due to leakage of reflected light from other layers, the amplification factor becomes inaccurate and an error occurs in the signal definition. Therefore, it is desired to define the signal characteristics in a state where there is no leakage of reflected signals from other layers.

そこで、本実施の形態では、第2層の信号規定(振幅など)は第1層が既記録の場合において、もっと一般的には隣接層が既記録の場合において、各種信号特性の仕様を定めるようにしている。第2層の信号検査(振幅など)は第1層が既記録の場合においても、もっと一般的には隣接層が既記録の場合において、各種信号特性の検査を行なうようにしている。   Therefore, in the present embodiment, the signal definition (amplitude, etc.) of the second layer defines various signal characteristic specifications when the first layer is already recorded, and more generally when the adjacent layer is already recorded. I am doing so. In the signal inspection (amplitude etc.) of the second layer, various signal characteristics are inspected even when the first layer is already recorded, and more generally when the adjacent layer is already recorded.

また、実際に記録再生動作を行う場合も、他層からの反射光漏れ込みは悪影響を及ぼすので、隣接層が既記録である状態での再生及び記録を行なえる方が望ましい。前述の説明では手前の層が既記録の状態で奥の層にアクセスするような順序でメディアに記録を行うことが望ましい。   Also, when recording / reproducing operation is actually performed, leakage of reflected light from other layers has an adverse effect. Therefore, it is desirable that reproduction and recording can be performed in a state where the adjacent layer is already recorded. In the above description, it is desirable to perform recording on the media in the order in which the front layer accesses the back layer in the already recorded state.

図7にはトラッククロス信号とトラックエラー信号の波形を、メディア1のトラック4との関係で示した。トラッククロス信号は情報(マークとスペースとからなる)が記録されるグルーブ中心で信号レベルが低くなる波形である。トラックエラー信号はグルーブ中心でゼロクロスする信号波形である。具体的には特性値としては記録密度との関係で異なるため定めることは難しいが、“正規化トラッククロス信号>0.1”や“0.22<正規化トラックエラー信号<0.8”程度がよい。特に、青色レーザを光源とする記録密度にとりわけ適するのは、グルーブ幅を広くし、狭トラック化を進める点で“正規化トラッククロス信号>0”や“0.2<正規化トラックエラー信号<0.5”程度と思われる。   FIG. 7 shows the waveform of the track cross signal and the track error signal in relation to the track 4 of the medium 1. The track cross signal is a waveform in which the signal level decreases at the center of the groove where information (consisting of marks and spaces) is recorded. The track error signal is a signal waveform that crosses zero at the groove center. Specifically, it is difficult to determine the characteristic value because it differs depending on the relationship with the recording density, but “normalized track cross signal> 0.1” or “0.22 <normalized track error signal <0.8”. Is good. Particularly suitable for the recording density using a blue laser as a light source is that “normalized track cross signal> 0” and “0.2 <normalized track error signal < It seems to be about 0.5 ".

図8にはウォブル信号の波形例を幾つか示した。図8(a)は変調のないモノトーンである。図8(b)FM変調が重畳されたウォブル波形である。変調はアドレスなどの情報を含むために挿入される。図8(c)はPM変調、図8(d)はノコギリ変調、図8(e)はMSK変調、図8(f)はON−OFF変調である。もちろんこれらの例に限らないが、ウォブル信号の特性も通常振幅で定められる。直接、和信号からの規定でなく、トラックエラー信号(プッシュプル信号ともいう)からの規定がなされる場合が多いが、トラックエラー信号自体が和信号で規定されているため、和信号が隣接層からの反射光により誤差をもつと、ウォブル信号の既定も信頼できなくなる。このため、サーボ信号と同じように、多層からの反射光の漏れ込みによって誤差を発生しない特性値の規定が必要となる。具体的には特性値としては、“0.05<正規化ウォブル信号<0.3”程度がよい。   FIG. 8 shows some waveform examples of the wobble signal. FIG. 8A shows a monotone without modulation. FIG. 8B is a wobble waveform on which FM modulation is superimposed. Modulation is inserted to contain information such as addresses. 8C shows PM modulation, FIG. 8D shows sawtooth modulation, FIG. 8E shows MSK modulation, and FIG. 8F shows ON-OFF modulation. Of course, although not limited to these examples, the characteristics of the wobble signal are also determined by the normal amplitude. In many cases, the specification is not directly from the sum signal but from the track error signal (also referred to as push-pull signal). However, since the track error signal itself is defined by the sum signal, the sum signal is adjacent to the adjacent layer. If there is an error due to the reflected light from, the default of the wobble signal becomes unreliable. Therefore, like the servo signal, it is necessary to define a characteristic value that does not cause an error due to leakage of reflected light from multiple layers. Specifically, the characteristic value is preferably about “0.05 <normalized wobble signal <0.3”.

図9には既記録領域から検出されたウォブル信号の様子を示した。A+D,B+Cは図2のブロック図におけるサーボ及びウォブル検出回路13中の加算器出力であり、(A+D)−(B+C)はウォブル信号である。A+D及びB+Cの信号はウォブル信号と比較すると信号強度の強いデータ信号にウォブル成分は埋もれる状態になっている。しかし、両者の差分を演算することで、両信号に同相成分として重畳されていたデータ信号は除かれ、ウォブル信号が検出できる。しかしながら、光学的ずれやメディア傾き、記録マークの形状などの影響で、A+DとB+Cの両信号に重畳されているデータ信号の強度に差が発生すると、ウォブル信号からデータ信号を完全に取り除くことができずノイズとして残留することになる。一般的にウォブル品質はC/N(キャリア対ノイズ)比で規定される。従来の1層記録の場合、具体的にはウォブル周波数によって異なるが“ウォブルC/N値>31dB”程度がよいとされていた。これに既記録の隣接記録層から反射光が漏れ込んだ場合、反射光にデータ信号成分が重畳されているため、ウォブル信号にとってはノイズとなり、品質を低下させる。隣接記録層への光ビームは、完全には集光しきれないため、データ信号などの高周波成分の強度はそれほど強くないが、ウォブル信号はデータ信号に比べ非常に小さい振幅しか得られないため、無視できない。そこで、ウォブル信号品質の規定も、振幅規定と同様に、隣接記録層が既記録である状態で行なわれることが望ましい。   FIG. 9 shows the state of the wobble signal detected from the recorded area. A + D and B + C are adder outputs in the servo and wobble detection circuit 13 in the block diagram of FIG. 2, and (A + D) − (B + C) is a wobble signal. The A + D and B + C signals are in a state where the wobble component is buried in the data signal having a stronger signal strength than the wobble signal. However, by calculating the difference between the two, the data signal superimposed as an in-phase component on both signals is removed, and a wobble signal can be detected. However, if there is a difference in the strength of the data signal superimposed on both the A + D and B + C signals due to the effects of optical shift, media tilt, recording mark shape, etc., the data signal can be completely removed from the wobble signal. It cannot be left as noise. Generally, the wobble quality is defined by a C / N (carrier to noise) ratio. In the case of conventional single-layer recording, specifically, “wobble C / N value> 31 dB” is considered to be good, although it varies depending on the wobble frequency. If the reflected light leaks from the already recorded adjacent recording layer, the data signal component is superimposed on the reflected light, so that it becomes noise for the wobble signal and the quality is lowered. Since the light beam to the adjacent recording layer cannot be completely collected, the intensity of the high frequency component such as the data signal is not so strong, but the wobble signal can obtain only a very small amplitude compared to the data signal. It cannot be ignored. Therefore, it is desirable that the wobble signal quality is defined in a state where the adjacent recording layer is already recorded, as in the case of the amplitude definition.

ところで、隣接する記録層が全て既記録の場合しか記録再生しなければ、その規定に応じて回路特性を設計すれば良い。しかし、できれば未記録の場合でも記録再生したい。そこで、隣接する記録層が未記録の場合と、既記録の場合とで予め漏れ込む反射光の量を測定しておき、その差を隣接する記録層の記録状態に応じて補正することが考えられる。   By the way, if recording / reproduction is performed only when all the adjacent recording layers have already been recorded, circuit characteristics may be designed in accordance with the regulations. However, if possible, I would like to record / reproduce even if it is not recorded. Therefore, it is conceivable to measure the amount of reflected light that leaks in advance when the adjacent recording layer is unrecorded and when the adjacent recording layer is recorded, and to correct the difference according to the recording state of the adjacent recording layer. It is done.

図10及び図11には他層からの反射光漏れ込みレベルを予め取得し、これを補正して各種信号を正確に検出するための信号検出回路31,41の回路構成を示してある。図10はAGC回路を含んだ回路、図11はシンプルな回路の例である。また、両図共、点線で示した各種信号用の部分は図2と同様に同じ構成で複数つなげることができ、各種信号(フォーカスエラー信号、トラッククロス信号など)に対応させることができる。説明上同じ回路なので、省いてある。   10 and 11 show the circuit configurations of the signal detection circuits 31 and 41 for obtaining the reflected light leakage level from the other layers in advance and correcting this to detect various signals accurately. FIG. 10 shows an example of a circuit including an AGC circuit, and FIG. 11 shows an example of a simple circuit. Further, in both figures, a plurality of signal portions indicated by dotted lines can be connected in the same configuration as in FIG. 2, and can correspond to various signals (focus error signal, track cross signal, etc.). Since it is the same circuit for explanation, it is omitted.

まず、記録状態判別回路32は目的のアクセス記録層の隣接記録層が未記録領域か既記録領域かを判別する。これは、予めメディア管理領域を再生し、その外部情報と現在のアクセス位置との比較において推測することができる。もちろん別の手段で検出した結果を外部情報としても良い。この記録状態判別回路32において隣接記録層の記録状態を確認しながら、隣接する記録層が未記録と既記録との2条件で和信号のレベル(最大振幅でも、平均値でも良い)をサンプル回路33で保持し、結果を記憶回路34で記憶する。このとき、アクセス中の記録層は2条件ともに未記録若しくは既記録の同じ条件にする必要がある。記憶回路34は隣接する記録層が未記録の場合の和信号レベルと、既記録の場合の和信号レベルを出力し、比較回路35にてその差を演算する。この比較回路35の出力信号を記録状態判別回路32の出力に応じて、スイッチング手段(選択手段)36をON/OFFすることで、加算器37を介して信号補正回路(AGC回路)29の制御線として使用するかどうかを決定する。   First, the recording state determination circuit 32 determines whether the recording layer adjacent to the target access recording layer is an unrecorded area or an already recorded area. This can be estimated by reproducing the media management area in advance and comparing the external information with the current access position. Of course, the result detected by another means may be used as external information. While confirming the recording state of the adjacent recording layer in the recording state discriminating circuit 32, the sample signal indicates the level of the sum signal (which may be the maximum amplitude or the average value) under the two conditions that the adjacent recording layer is unrecorded and already recorded. 33, and the result is stored in the storage circuit 34. At this time, it is necessary for the recording layer being accessed to have the same unrecorded or recorded condition for both of the two conditions. The storage circuit 34 outputs the sum signal level when the adjacent recording layer is not recorded and the sum signal level when the recording layer is already recorded, and the comparison circuit 35 calculates the difference. The output signal of the comparison circuit 35 is controlled by the signal correction circuit (AGC circuit) 29 via the adder 37 by turning on / off the switching means (selection means) 36 in accordance with the output of the recording state determination circuit 32. Determine whether to use as a line.

具体的な例としては隣接する記録層が未記録の場合は、反射光の漏れ込みが大きいため制御線をONして、信号補正回路29の制御線として使用する一方、既記録の場合には制御線をOFFして使わない。図10における信号補正回路(一点鎖線)29は、図6で示した和信号で正規化するAGC回路と同様の回路構成している。和信号の電圧を目標値にする動作が行なわれるが、その和信号に比較回路35の出力を加算器37で加算(若しくは減算)することで、隣接する記録層からの漏れ込みにより和信号レベルがオフセットした分を除去できる。また、オフセットではなくゲインでも同様の動作をさせることができる。即ち、比較回路35の出力に応じてゲイン回路24の目標電圧を変更することで、和信号がオフセットした分をキャンセルする目標電圧に設定すればよい。図6の説明と同様に、各種信号の増幅率を和信号の増幅率と同じにするべく増幅アンプ25〜28で構成されれば、和信号で正規化が行なわれる。   As a specific example, when the adjacent recording layer is not recorded, the leakage of reflected light is large, so that the control line is turned on and used as the control line of the signal correction circuit 29, while in the case of already recorded Do not use with the control line turned off. The signal correction circuit (one-dot chain line) 29 in FIG. 10 has the same circuit configuration as the AGC circuit normalized by the sum signal shown in FIG. The operation of setting the voltage of the sum signal to the target value is performed. By adding (or subtracting) the output of the comparison circuit 35 to the sum signal by the adder 37, the sum signal level is leaked from the adjacent recording layer. Can be removed. Further, the same operation can be performed with a gain instead of an offset. That is, by changing the target voltage of the gain circuit 24 according to the output of the comparison circuit 35, the target voltage may be set to cancel the amount of offset of the sum signal. Similar to the description of FIG. 6, if the amplification amplifiers 25 to 28 are configured to make the amplification factors of various signals the same as the amplification factors of the sum signal, normalization is performed with the sum signal.

図11に示す信号検出回路41も同様であるが、図11中における信号補正回路42は和信号で正規化するAGCではなく、独立に各種信号のオフセット若しくはゲインを補正するものである。前述の説明と同じく、比較回路35の出力が記録状態判別回路32によってスイッチング手段36を介してON/OFFされる。この比較回路35の出力によって加算器43を介して直接各種信号のオフセットやゲインを補正する。   The signal detection circuit 41 shown in FIG. 11 is the same, but the signal correction circuit 42 in FIG. 11 is not an AGC that is normalized by a sum signal, but independently corrects offsets or gains of various signals. As described above, the output of the comparison circuit 35 is turned ON / OFF by the recording state determination circuit 32 via the switching means 36. The offset and gain of various signals are directly corrected via the adder 43 by the output of the comparison circuit 35.

図12には光ディスク装置(光情報記録再生装置)51の構成例を示す。光ディスク装置51は光学系を搭載したピックアップ52と、ピックアップ52の移動や光情報記録媒体(メディア)1を回転させるモータ駆動回路53と、各種電気回路とに分けることができる。   FIG. 12 shows a configuration example of an optical disc apparatus (optical information recording / reproducing apparatus) 51. The optical disk device 51 can be divided into a pickup 52 equipped with an optical system, a motor drive circuit 53 for rotating the pickup 52 and rotating an optical information recording medium (media) 1, and various electric circuits.

ピックアップ52には光ビームの光源である半導体レーザ54と、光ビームを各素子に導く光学部品と、メディア1上に光ビームのスポットを集光させる対物レンズ55と、スポットを所望の位置に追従させるべくレンズ位置を制御するアクチュエータ56と、メディア1からの反射光を受光する受光素子(PD)11が搭載されている。   The pickup 52 has a semiconductor laser 54 as a light beam light source, optical components for guiding the light beam to each element, an objective lens 55 for condensing the light beam spot on the medium 1, and the spot following a desired position. An actuator 56 that controls the lens position and a light receiving element (PD) 11 that receives reflected light from the medium 1 are mounted.

電気回路には半導体レーザ54を発光させる電流を決定するレーザ駆動部57と記録及び再生発光波形を決定するストラテジ発生部58からなるレーザ駆動回路59がある。半導体レーザ54の電流対光出力特性は温度により大きく変化するため、一般的にレーザ駆動部57では出力された光強度を検出し、出力を安定化する出力制御機能が搭載されている。光強度の検出は、半導体レーザ54に内蔵されている受光素子を使用してもよいし、図示していないが専用の光学系を構築してもよい。記録データとして外部から伝送されたユーザデータはCPU(図示せず)により制御されたエンコーダ回路(図示せず)において記録情報に変換された後、レーザ駆動回路59に転送されメディア1に記録される。その他の回路として受光素子11で受けたメディア1からの反射信号はI/V回路12で電流/電圧変換され、RF検出回路60やサーボ及びウォブル検出回路13に転送される。このI/V回路12は初段回路の位置付けであり、再生時と記録時で各々適する変換効率(ゲイン)を設定してあるとよい。RF検出回路60ではメディア1に記録された情報成分を抽出し、デコーダ回路(図示せず)に転送されユーザデータに変換される。前述したような信号検出回路31,41等を含むサーボ及びウォブル検出回路13のサーボ系ではスポットの位置情報を抽出し、所望の位置にスポットを追従させるべくモータ駆動回路53に指示を出し、ピックアップ52やアクチュエータ56を移動させる。多層間のフォーカス(焦点)移動もアクチュエータ56の移動により行なわれる。また、ウォブル系ではメディア1上のトラック接線方向の分割線で2分割された受光素子11出力の差分であるプッシュプル信号を基に、トラック4に刻まれたウォブル信号成分を抽出してアドレス検出回路(図示せず)やクロック生成回路(図示せず)に転送し、メディア1上の絶対位置の管理やメディア回転に同期したクロック生成、メディア回転制御に使用される。   The electric circuit includes a laser driving circuit 59 including a laser driving unit 57 that determines a current for causing the semiconductor laser 54 to emit light and a strategy generation unit 58 that determines recording and reproduction light emission waveforms. Since the current-to-light output characteristics of the semiconductor laser 54 vary greatly with temperature, the laser driver 57 generally has an output control function that detects the output light intensity and stabilizes the output. For the detection of the light intensity, a light receiving element built in the semiconductor laser 54 may be used, or although not shown, a dedicated optical system may be constructed. User data transmitted from the outside as recording data is converted into recording information in an encoder circuit (not shown) controlled by a CPU (not shown), then transferred to the laser driving circuit 59 and recorded on the medium 1. . The reflected signal from the medium 1 received by the light receiving element 11 as another circuit is current / voltage converted by the I / V circuit 12 and transferred to the RF detection circuit 60 and the servo and wobble detection circuit 13. The I / V circuit 12 is positioned as a first-stage circuit, and it is preferable that appropriate conversion efficiencies (gains) are set for reproduction and recording. The RF detection circuit 60 extracts the information component recorded on the medium 1 and transfers it to a decoder circuit (not shown) for conversion to user data. The servo system including the signal detection circuits 31 and 41 as described above and the servo system of the wobble detection circuit 13 extracts the position information of the spot, issues an instruction to the motor drive circuit 53 to make the spot follow the desired position, and picks up the spot. 52 and the actuator 56 are moved. The focus (focal point) movement between the multilayers is also performed by the movement of the actuator 56. In the wobble system, address detection is performed by extracting the wobble signal component carved on the track 4 based on the push-pull signal that is the difference between the outputs of the light receiving element 11 divided into two by the dividing line in the track tangent direction on the medium 1. The data is transferred to a circuit (not shown) or a clock generation circuit (not shown), and used for management of the absolute position on the medium 1, clock generation synchronized with the medium rotation, and media rotation control.

一般的かつ本発明にも適用される光情報記録媒体を示し、(a)は概略平面図、(b)はその一部を抽出して示す概略斜視図1 shows a general optical information recording medium that is also applicable to the present invention, (a) is a schematic plan view, and (b) is a schematic perspective view showing a part of the optical information recording medium. 各種信号を抽出する信号処理ブロックの基本構成例を示すブロック図Block diagram showing a basic configuration example of a signal processing block for extracting various signals 2層記録メディアの記録・再生原理を説明するための模式図Schematic diagram for explaining the recording / playback principle of double-layer recording media 2層記録メディアの場合の各層からの反射光の影響を説明するための模式図Schematic diagram for explaining the influence of reflected light from each layer in the case of a two-layer recording medium 2層記録メディアの場合の各層からの反射光の影響を信号レベルで説明するための模式図Schematic diagram for explaining the influence of reflected light from each layer in the case of a two-layer recording medium at the signal level 各種信号の正規化処理用の構成例を示すブロック図Block diagram showing a configuration example for normalization processing of various signals トラッククロス信号及びトラックエラー信号の波形例を示す説明図Explanatory drawing showing waveform examples of track cross signal and track error signal ウォブル信号の波形例を示す説明図Explanatory drawing showing a waveform example of a wobble signal 既記録領域から検出されるウォブル信号の波形例を示す説明図Explanatory drawing showing a waveform example of a wobble signal detected from a recorded area 信号検出回路の一例を示すブロック図Block diagram showing an example of a signal detection circuit 信号検出回路の他例を示すブロック図Block diagram showing another example of signal detection circuit 光ディスク装置の構成例を示すブロック構成図Block configuration diagram showing a configuration example of an optical disk device

符号の説明Explanation of symbols

1 光情報記録媒体
29 信号補正回路
31 信号検出回路
32 記録状態判別回路
33 サンプル回路
34 記憶回路
35 比較回路
36 選択手段
37 選択手段
41 信号検出回路
42 信号補正回路
54 光源
55 対物レンズ

DESCRIPTION OF SYMBOLS 1 Optical information recording medium 29 Signal correction circuit 31 Signal detection circuit 32 Recording state discrimination circuit 33 Sample circuit 34 Storage circuit 35 Comparison circuit 36 Selection means 37 Selection means 41 Signal detection circuit 42 Signal correction circuit 54 Light source 55 Objective lens

Claims (3)

光情報記録媒体が有する記録可能な複数の記録層のうち、記録層Aの或る領域Xに照射された光ビームの光線軸上でかつ当該記録層Aに入射側で隣接する記録層Bの領域Yが未記録領域の条件における記録層Aの領域Xにおける反射信号レベルと、記録層Bの領域Yが既記録領域の条件における記録層Aの領域Xにおける反射信号レベルとを比較し、
前記比較結果に基づき記録層Bの領域Yの記録状態に応じて記録層Aの領域Xにおける各種信号の増幅率若しくはオフセットの変更を行うようにしたことを特徴とする信号検出方法。
Of the plurality of recordable recording layers of the optical information recording medium, the recording layer B adjacent to the recording layer A on the light axis of the light beam irradiated to a certain region X of the recording layer A on the incident side. The reflection signal level in the region X of the recording layer A under the condition where the region Y is an unrecorded region is compared with the reflection signal level in the region X of the recording layer A where the region Y of the recording layer B is a recorded region.
A signal detection method characterized in that the amplification factor or offset of various signals in the region X of the recording layer A is changed according to the recording state of the region Y of the recording layer B based on the comparison result.
光情報記録媒体が有する記録可能な複数の記録層のうち、記録層Aの或る領域Xの反射信号レベルを保持するサンプル回路と、
当該記録層Aの領域Xに照射された光ビームの光線軸上でかつ記録層Aに入射側で隣接する記録層Bの領域Yが未記録領域か既記録領域かを判別する記録状態判別回路と、
記録層Bの領域Yが未記録領域及び既記録領域各々の場合で前記サンプル回路に保持されたサンプル回路の出力を記憶する記憶回路と、
前記記憶回路から出力される記録層Bの領域Yが未記録領域時と既記録領域時との信号の差を求める比較回路と、
前記比較回路の出力及び記録層Aの領域Xの反射信号レベルを制御信号として各種信号の増幅率又はオフセットを変更する信号補正回路と、
前記記録状態判別回路の出力によって前記信号補正回路の制御信号として前記比較回路の出力を用いるか否かを選択する選択手段とを備えたことを特徴とする信号検出回路。
A sample circuit that holds a reflected signal level of a certain region X of the recording layer A among a plurality of recordable recording layers of the optical information recording medium;
Recording state discriminating circuit for discriminating whether the region Y of the recording layer B adjacent to the recording layer A on the incident side on the optical axis of the light beam irradiated to the region X of the recording layer A is an unrecorded region or an already recorded region When,
A storage circuit for storing the output of the sample circuit held in the sample circuit when the area Y of the recording layer B is an unrecorded area and an already recorded area;
A comparison circuit for obtaining a difference between signals when the area Y of the recording layer B output from the storage circuit is an unrecorded area and an already recorded area;
A signal correction circuit for changing the amplification factor or offset of various signals using the output of the comparison circuit and the reflection signal level of the region X of the recording layer A as a control signal;
A signal detection circuit comprising: selection means for selecting whether or not to use the output of the comparison circuit as a control signal of the signal correction circuit based on the output of the recording state determination circuit.
光情報記録媒体を回転駆動させる回転機構と、
光源、対物レンズを有して、前記光情報記録媒体に対して光ビームを照射するとともに前記光情報記録媒体からの反射光を受光するピックアップと、
請求項2記載の信号検出回路とを備え、
前記光情報記録媒体を対象として情報の記録又は再生を行うことを特徴とする光情報記録再生装置。

A rotation mechanism for rotating the optical information recording medium;
A pickup having a light source, an objective lens, and irradiating the optical information recording medium with a light beam and receiving reflected light from the optical information recording medium;
A signal detection circuit according to claim 2,
An optical information recording / reproducing apparatus for recording or reproducing information on the optical information recording medium.

JP2005009064A 2003-08-22 2005-01-17 Signal detection method, signal detection circuit, and optical information recording/reproducing device Pending JP2005108433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005009064A JP2005108433A (en) 2003-08-22 2005-01-17 Signal detection method, signal detection circuit, and optical information recording/reproducing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003298630 2003-08-22
JP2005009064A JP2005108433A (en) 2003-08-22 2005-01-17 Signal detection method, signal detection circuit, and optical information recording/reproducing device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004157352A Division JP3793770B2 (en) 2003-08-22 2004-05-27 Media characteristic definition method

Publications (1)

Publication Number Publication Date
JP2005108433A true JP2005108433A (en) 2005-04-21

Family

ID=34554138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005009064A Pending JP2005108433A (en) 2003-08-22 2005-01-17 Signal detection method, signal detection circuit, and optical information recording/reproducing device

Country Status (1)

Country Link
JP (1) JP2005108433A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7652967B2 (en) 2005-08-18 2010-01-26 Kabushiki Kaisha Toshiba Single-sided triple layer optical disc

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7652967B2 (en) 2005-08-18 2010-01-26 Kabushiki Kaisha Toshiba Single-sided triple layer optical disc

Similar Documents

Publication Publication Date Title
US7046593B2 (en) Optical disk apparatus and method for adjusting tilt based on optical disk type
JP2006286132A (en) Disk drive unit and spherical aberration compensation method
JP2009539201A (en) Optimizing focus crosstalk canceling
US7426173B2 (en) Method and apparatus for definition of signal for record medium
JP4329364B2 (en) Optical head, recording and / or reproducing device
JP4576316B2 (en) Servo control signal generation apparatus, optical disc apparatus, and servo control signal generation method
JP3736398B2 (en) Optical disk device
KR100685342B1 (en) Information recording/reproducing method and information recording/reproducing apparatus
JP2005108433A (en) Signal detection method, signal detection circuit, and optical information recording/reproducing device
US20040105357A1 (en) Recording and reproduction apparatus
JP4254704B2 (en) Optical disk device
JP2005135533A (en) Recording power determination method and recording power control method of optical disk system
WO2005101388A1 (en) Optical disc recording/reproduction device
JPH0684194A (en) Optical disk apparatus
JP2007328833A (en) Optical disk drive, position control method of optical disk medium and its program
JP3844296B2 (en) Inclination amount detection device for optical recording medium and optical pickup device including the same
CN100358014C (en) Optical information recording medium, medium characteristic definition method, medium characteristic inspection method, signal detection method, signal detection circuit, and optical information recor
JP4028436B2 (en) Optical disc apparatus and tilt angle adjusting method
JP5076846B2 (en) Optical disk device
JP4223932B2 (en) Optical disc, optical disc evaluation method, and optical disc evaluation apparatus
JP4396707B2 (en) Optical disk device
JP4699423B2 (en) Optical disk device
JP2005092992A (en) Optical disk drive
WO2005101389A1 (en) Optical disc recording/reproduction device
JP2006155716A (en) Optical disk device and tilt correction method for optical disk

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050117

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20080129

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080317

A131 Notification of reasons for refusal

Effective date: 20090303

Free format text: JAPANESE INTERMEDIATE CODE: A132

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090630