JP2005105975A - Valve structure of compressor - Google Patents

Valve structure of compressor Download PDF

Info

Publication number
JP2005105975A
JP2005105975A JP2003341867A JP2003341867A JP2005105975A JP 2005105975 A JP2005105975 A JP 2005105975A JP 2003341867 A JP2003341867 A JP 2003341867A JP 2003341867 A JP2003341867 A JP 2003341867A JP 2005105975 A JP2005105975 A JP 2005105975A
Authority
JP
Japan
Prior art keywords
valve
suction
cylinder bore
hole
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003341867A
Other languages
Japanese (ja)
Inventor
Katsumi Uehara
克巳 上原
Shinichiro Higashihara
真一郎 東原
Toshiyuki Ogura
俊之 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2003341867A priority Critical patent/JP2005105975A/en
Publication of JP2005105975A publication Critical patent/JP2005105975A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Compressor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a valve structure of a compressor capable of reducing suction pulsation since an intake valve is moved to an open position even if a pressure difference between a cylinder bore and an intake chamber is small without increasing the diameter of an intake hole. <P>SOLUTION: This valve structure of a compressor comprises a valve plate 12 in which the intake hole 20 allowing the cylinder bore 2 to communicate with the intake chamber 7 is formed and a flexible plate-like intake valve 13 installed on the cylinder bore 2 side of the valve plate 12 and capable of opening the intake hole 20. The intake valve 13 is opened and closed by the pressure difference between the cylinder bore 2 and the suction chamber 7 by the reciprocating motion of a piston. The intake valve 13 further comprises an intake valve body part, an intake hole and an opposite valve part 26 disposed at a position opposed to a valve seat 23 at the opening edge of the intake hole 20, and an arm valve part 27 connecting the intake valve body part 25 to the opposite valve part 26. A pressure receiving groove 28 formed in the cylinder bore 2 side along the arm valve part 27 and communicating with the intake hole 20 is formed in the valve plate. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、車両用空調装置等の冷凍サイクルにおいて冷媒ガスの圧縮に用いられる圧縮機の弁構造に関する。   The present invention relates to a valve structure of a compressor used for compressing refrigerant gas in a refrigeration cycle such as a vehicle air conditioner.

車両用空調装置の冷凍サイクルにおいて冷媒ガスの圧縮に用いられる圧縮機として特許文献1に示されるものが提案されている。この圧縮機は、複数個のシリンダボアが形成されたシリンダブロックの前端側にクランク室が設けられ、後端側に吸入室及び吐出室が設けられ、シリンダボアと吸入室及び吐出室との間に弁体が設けられている。また、弁体は、各シリンダボアと吸入室とを連通する吸入孔と各シリンダボアと吐出室とを連通する吐出孔とが形成されたバルブプレートと、このバルブプレートのシリンダボア側に設けられ、撓み変形によって吸入孔を開閉するいわゆるリード弁タイプの吸入弁と、バルブプレートの吐出室側に設けられ、撓み変形によって吐出孔を開閉するいわゆるリード弁タイプの吐出弁を備えている。   As a compressor used for compressing refrigerant gas in a refrigeration cycle of a vehicle air conditioner, a compressor disclosed in Patent Document 1 has been proposed. In this compressor, a crank chamber is provided on the front end side of a cylinder block formed with a plurality of cylinder bores, a suction chamber and a discharge chamber are provided on the rear end side, and a valve is provided between the cylinder bore and the suction chamber and the discharge chamber. The body is provided. In addition, the valve body is provided on the cylinder bore side of the valve plate in which a suction hole that communicates each cylinder bore and the suction chamber and a discharge hole that communicates each cylinder bore and the discharge chamber is formed. A so-called reed valve type suction valve that opens and closes the suction hole and a so-called reed valve type discharge valve that is provided on the discharge chamber side of the valve plate and opens and closes the discharge hole by bending deformation.

そして、クランク室内に軸支された駆動軸の回転を利用して各シリンダボア内に収容されているピストンが往復動し、このピストンの往復動でシリンダボアの圧力が吸入室より小さくなると吸入弁が開状態となって冷媒ガスが吸入室から吸入孔を通って各シリンダボアに吸引され、ピストンの往復動でシリンダボアの圧力が吸入室より大きくなると吸入弁が閉状態となると共に吐出弁が開状態となって冷媒ガスが圧縮されつつ各シリンダボアから吐出孔を通って吐出室に排出される。圧縮機は、この動作を繰り返すことによって圧縮した冷媒ガスを送り出すようになっている。
特開平9−280168号公報
Then, the piston accommodated in each cylinder bore reciprocates using the rotation of the drive shaft supported in the crank chamber, and the suction valve opens when the pressure of the cylinder bore becomes smaller than the suction chamber due to the reciprocation of the piston. When the refrigerant gas is sucked into the cylinder bores from the suction chamber through the suction holes and the pressure of the cylinder bore becomes larger than the suction chamber due to the reciprocating movement of the piston, the suction valve is closed and the discharge valve is opened. Then, the refrigerant gas is compressed and discharged from each cylinder bore through the discharge hole to the discharge chamber. The compressor sends out the compressed refrigerant gas by repeating this operation.
JP-A-9-280168

ところで、前記吸入弁は、吸入脈動を低減させるために、シリンダボアと吸入室との小さな差圧によって閉位置から開位置に変移することが望ましい。ここで、バルブプレートの吸入孔の径自体を大きくすることが考えられるが、弁体の全体のレイアウト上等より単純に変更できない。 By the way, it is desirable that the suction valve is changed from the closed position to the open position by a small differential pressure between the cylinder bore and the suction chamber in order to reduce suction pulsation. Here, it is conceivable to increase the diameter of the suction hole of the valve plate, but it cannot be changed simply because of the overall layout of the valve body.

そこで、本発明は、吸入孔の径を大きくすることなく、吸入弁がシリンダボアと吸入室との小さな差圧でも開位置に変移して吸入脈動を低減できる圧縮機の弁構造の提供を目的とする。   Accordingly, an object of the present invention is to provide a valve structure of a compressor that can reduce suction pulsation by shifting the suction valve to an open position even when the differential pressure between the cylinder bore and the suction chamber is small without increasing the diameter of the suction hole. To do.

請求項1の発明は、ピストンが収容されたシリンダボアと吸入室及び吐出室との間に弁体が設けられ、該弁体が前記シリンダボアと前記吸入室とを連通する吸入孔と前記シリンダボアと前記吐出室とを連通する吐出孔とが形成されたバルブプレートと、このバルブプレートの前記シリンダボア側に設けられて前記吸入孔を開閉する可撓板状の吸入弁とを備え、前記ピストンの往復動による前記シリンダボアと前記吸入室との差圧によって前記吸入弁が開閉する圧縮機の弁構造であって、前記吸入弁は、前記バルブプレートに密着された吸入弁本体部と、前記吸入孔及び吸入孔の開口縁の弁座に対向する位置に配置された対向弁部と、前記吸入弁本体部と前記対向弁部を連結し、前記シリンダボアと前記吸入室の差圧によって撓み変形及び撓み復帰変形して前記対向弁部を変位させるアーム弁部とを有し、前記バルブプレートには、前記対向弁部及び前記アーム弁部に対して前記吸入室の冷媒ガスの受圧面積を増加させる受圧面積増加部を設けたことを特徴とする。   According to a first aspect of the present invention, a valve body is provided between a cylinder bore in which a piston is accommodated, a suction chamber, and a discharge chamber, and the valve body communicates the cylinder bore and the suction chamber with the cylinder bore and the cylinder bore. A reciprocating motion of the piston, comprising: a valve plate formed with a discharge hole communicating with the discharge chamber; and a flexible plate-like suction valve provided on the cylinder bore side of the valve plate for opening and closing the suction hole. The compressor has a valve structure in which the suction valve opens and closes due to a differential pressure between the cylinder bore and the suction chamber. The suction valve includes a suction valve main body portion that is in close contact with the valve plate, the suction hole, and the suction hole. A counter valve portion disposed at a position facing the valve seat at the opening edge of the hole, the suction valve main body portion, and the counter valve portion are connected, and are deformed and bent by a differential pressure between the cylinder bore and the suction chamber. And an arm valve part that deforms the counter valve part to deform the counter valve part, and the valve plate receives a pressure that increases a pressure receiving area of the refrigerant gas in the suction chamber with respect to the counter valve part and the arm valve part. An area increasing portion is provided.

請求項2の発明は、請求項1記載の圧縮機の弁構造であって、前記受圧面積増加部は、前記アーム弁部に沿って前記シリンダボア側に設けられ、前記吸入孔に連通する受圧用溝であることを特徴とする。   The invention of claim 2 is the valve structure of the compressor according to claim 1, wherein the pressure receiving area increasing portion is provided on the cylinder bore side along the arm valve portion, and is for pressure reception communicating with the suction hole. It is a groove.

請求項3の発明は、請求項1記載の圧縮機の弁構造であって、前記受圧面積増加部は、前記アーム弁部の対向位置に設けられ、前記吸入室側の面と前記シリンダボア側の面との間を貫通する受圧用孔であることを特徴とする。   The invention according to claim 3 is the valve structure of the compressor according to claim 1, wherein the pressure receiving area increasing portion is provided at a position facing the arm valve portion, and the surface on the suction chamber side and the cylinder bore side are provided. It is a pressure receiving hole penetrating between the surfaces.

請求項1の発明によれば、吸入弁には吸入室側からの冷媒ガスの圧力が吸入孔と受圧面積増加部によって作用するため、シリンダボアと吸入室との小さな差圧によっても大きな押圧力が吸入弁に作用する。従って、吸入孔の径を大きくすることなく、吸入弁がシリンダボアと吸入室との小さな差圧でも開位置に変移して吸入脈動を低減できる。   According to the first aspect of the present invention, since the refrigerant gas pressure from the suction chamber side acts on the suction valve by the suction hole and the pressure receiving area increasing portion, a large pressing force is generated even by a small differential pressure between the cylinder bore and the suction chamber. Acts on the intake valve. Therefore, without increasing the diameter of the suction hole, the suction pulsation can be reduced by shifting the suction valve to the open position even with a small differential pressure between the cylinder bore and the suction chamber.

請求項2の発明によれば、請求項1の発明と同様の作用・効果が得られる。   According to the invention of claim 2, the same operation and effect as the invention of claim 1 can be obtained.

請求項3の発明によれば、請求項1の発明と同様の作用・効果が得られる。   According to the invention of claim 3, the same operation and effect as the invention of claim 1 can be obtained.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1〜図4は本発明の一実施形態を示し、図1(a)は吸入弁13及びバルブプレート12の要部平面図、図1(b)は図1のA−A線(図3のA−A線)断面図、図2は本発明の弁構造が適用された圧縮機1の断面図、図3(a)はバルブプレート12の平面図、図3(b)は図3(a)のB−B線断面図、図4は、吸入弁13の平面図である。   1 to 4 show an embodiment of the present invention, FIG. 1 (a) is a plan view of the main parts of an intake valve 13 and a valve plate 12, and FIG. 1 (b) is an AA line in FIG. 2 is a cross-sectional view of the compressor 1 to which the valve structure of the present invention is applied, FIG. 3A is a plan view of the valve plate 12, and FIG. 3B is FIG. FIG. 4 is a sectional view taken along line B-B in FIG.

図2に示すように、本発明が適用された圧縮機1は、いわゆる斜板式可変容量圧縮機で、複数のシリンダボア2を有する略円柱状のシリンダブロック3と、シリンダブロック3の前端面に接合されシリンダブロック3との間にクランク室4を形成するフロントハウジング5と、シリンダブロック3の後端側に弁体6を介して接合され吸入室7及び吐出室8を形成するリアハウジング9とを備えている。これらのシリンダブロック3、フロントハウジング5、リアハウジング9はシリンダブロック3に設けられた複数のスルーボルト貫通孔10を通じて複数のスルーボルト11によって締結固定されている。   As shown in FIG. 2, a compressor 1 to which the present invention is applied is a so-called swash plate type variable displacement compressor, and is joined to a substantially cylindrical cylinder block 3 having a plurality of cylinder bores 2 and a front end face of the cylinder block 3. A front housing 5 that forms a crank chamber 4 with the cylinder block 3, and a rear housing 9 that is joined to the rear end side of the cylinder block 3 via a valve body 6 to form a suction chamber 7 and a discharge chamber 8. I have. The cylinder block 3, the front housing 5, and the rear housing 9 are fastened and fixed by a plurality of through bolts 11 through a plurality of through bolt through holes 10 provided in the cylinder block 3.

弁体6は、バルブプレート12と、このバルブプレート12のシリンダボア2側に設けられた吸入弁13と、リアハウジング9側に設けられた吐出弁板14と、吐出弁板14の開限を規制するリテーナ15とで構成されている。これらの吸入弁13、吐出弁板14、リテーナ15、バルブプレート12はリベット16によって一体に締結固定された状態でシリンダブロック3とリアハウジング9との間に挟持されている。また、バルブプレート12とリアハウジング9との間には、ガスケット17が介在されており、吸入室7と吐出室8との間、吸入室7と外方との間が密封されている。さらに、バルブプレート12の周縁面にはOリング18が介在されており、圧縮機1の外方への冷媒の漏れを防止している。   The valve body 6 regulates the valve plate 12, the suction valve 13 provided on the cylinder bore 2 side of the valve plate 12, the discharge valve plate 14 provided on the rear housing 9 side, and the opening limit of the discharge valve plate 14. The retainer 15 is configured. The suction valve 13, the discharge valve plate 14, the retainer 15, and the valve plate 12 are sandwiched between the cylinder block 3 and the rear housing 9 while being fastened and fixed together by a rivet 16. Further, a gasket 17 is interposed between the valve plate 12 and the rear housing 9, and the space between the suction chamber 7 and the discharge chamber 8 and the space between the suction chamber 7 and the outside are sealed. Further, an O-ring 18 is interposed on the peripheral surface of the valve plate 12 to prevent the refrigerant from leaking out of the compressor 1.

バルブプレート12は、図3(a)、(b)に詳しく示すように、可撓性材より円板状を有し、バルブプレート本体部19の外周側に、シリンダボア2に対応し周方向に沿って均等な角度で6箇所に設けられシリンダボア2と吸入室7とを連通する吸入孔20と、これらの吸入孔20の内側、すなわち中心よりに周方向に沿って6箇所に設けられた吐出孔21とが形成されている。吸入孔20の周囲には、吸入孔20を囲むように円弧状の溝22が形成されている。この溝22と吸入孔20との間が、吸入弁13が着座する弁座23となっている。   As shown in detail in FIGS. 3A and 3B, the valve plate 12 has a disk shape from a flexible material, and corresponds to the cylinder bore 2 on the outer peripheral side of the valve plate main body portion 19 in the circumferential direction. The suction holes 20 provided at six positions at equal angles along the cylinder bore 2 and the suction chamber 7 and the discharges provided at the six positions along the circumferential direction from the inside, that is, the center of the suction holes 20. A hole 21 is formed. An arcuate groove 22 is formed around the suction hole 20 so as to surround the suction hole 20. A valve seat 23 on which the suction valve 13 is seated is formed between the groove 22 and the suction hole 20.

又、図1(a)、(b)に詳しく示すように、バルブプレート12のシリンダボア2側の面で、且つ、各吸入孔20の近傍には受圧面積増加部である受圧用溝28がそれぞれ形成されている。各受圧用溝28は、一端側が吸入孔20に連通し、他端側がアーム弁部27に沿って配置されている。従って、各受圧用溝28は吸入弁13の閉状態にあってはアーム弁部27及び対向弁部26に閉塞されるようになっていると共に、吸入室7の冷媒ガスが受圧用溝28に入り込むようになっている。なお、中心部の孔24はリベット16の貫通用である。   Further, as shown in detail in FIGS. 1A and 1B, a pressure receiving groove 28, which is a pressure receiving area increasing portion, is formed on the surface of the valve plate 12 on the cylinder bore 2 side and in the vicinity of each suction hole 20. Is formed. Each pressure receiving groove 28 has one end communicating with the suction hole 20 and the other end disposed along the arm valve portion 27. Accordingly, each pressure receiving groove 28 is closed by the arm valve portion 27 and the counter valve portion 26 when the suction valve 13 is closed, and the refrigerant gas in the suction chamber 7 is transferred to the pressure receiving groove 28. It has come in. The central hole 24 is for the rivet 16 to pass therethrough.

吸入弁13は、図4に示すように、薄い円板状で可撓性を有しており、バルブプレート12に密着された吸入弁本体部25と、この吸入弁本体部25に一体に形成され、吸入孔20及び吸入孔20の開口縁の弁座23に対向する位置に配置された複数の対向弁部26と、各対向弁部26と吸入弁本体部25とを連結するアーム弁部27とから構成されている。吸入弁13は、シリンダボア2と吸入室7との差圧によって各アーム弁部27が撓み変形及び撓み復帰変形して各対向弁部26が変位する。   As shown in FIG. 4, the intake valve 13 is thin and flexible, and is formed integrally with the intake valve main body 25 that is in close contact with the valve plate 12. And a plurality of counter valve portions 26 arranged at positions facing the suction holes 20 and the valve seats 23 at the opening edges of the suction holes 20, and arm valve portions that connect the counter valve portions 26 and the suction valve main body portion 25. 27. In the suction valve 13, each arm valve portion 27 is bent and deformed by the pressure difference between the cylinder bore 2 and the suction chamber 7, and each counter valve portion 26 is displaced.

シリンダブロック3およびフロントハウジング5の中心部には、駆動軸30が配置されている。この駆動軸30の一端側は、フロントハウジング5のシャフト支持孔31にベアリング32を介して支持され、他端側はシリンダブロック3のシャフト支持孔33にベアリング34を介して支持されている。   A drive shaft 30 is disposed at the center of the cylinder block 3 and the front housing 5. One end side of the drive shaft 30 is supported by a shaft support hole 31 of the front housing 5 via a bearing 32, and the other end side is supported by a shaft support hole 33 of the cylinder block 3 via a bearing 34.

また、フロントハウジング5のクランク室4内には、駆動軸30に固設されたドライブプレート40aと、駆動軸30に摺動自在に嵌装したスリーブ35にピン36により揺動自在に連結されたジャーナル37と、このジャーナル37のボス部38に固定した斜板39とが設けられている。   Further, in the crank chamber 4 of the front housing 5, a drive plate 40 a fixed to the drive shaft 30 and a sleeve 35 slidably fitted to the drive shaft 30 are swingably connected by pins 36. A journal 37 and a swash plate 39 fixed to a boss portion 38 of the journal 37 are provided.

ドライブプレート40aとジャーナル37とは、そのヒンジアーム40を弧状の長孔49とピン50とを介して連結されており、斜板39の揺動を規制している。各シリンダボア2内に収容されたピストン41は、斜板39を挟んだ一対のシュー42を介して斜板39に連結されていて、駆動軸30の回転運動を原動力として往復動する。圧縮機1の基本性能は、このピストン41の往復動により、吸入室7→バルブプレート12の吸入孔20→シリンダボア2内への吸入した冷媒を圧縮し、シリンダボア2→バルブプレート12の吐出孔21→吐出室8と吐出される。   The drive plate 40 a and the journal 37 are connected to the hinge arm 40 via an arc-shaped long hole 49 and a pin 50, and regulate the swing of the swash plate 39. The piston 41 accommodated in each cylinder bore 2 is connected to the swash plate 39 via a pair of shoes 42 sandwiching the swash plate 39, and reciprocates using the rotational motion of the drive shaft 30 as a driving force. The basic performance of the compressor 1 is that the reciprocating motion of the piston 41 compresses the refrigerant sucked into the suction chamber 7 → the valve plate 12 → the suction hole 20 of the valve plate 12 → the cylinder bore 2, and the discharge hole 21 of the cylinder bore 2 → the valve plate 12. → The discharge chamber 8 is discharged.

また、冷媒の吐出容量を可変とするためにクランク室4と吸入室7とを常時連通する抽気通路(不図示)、クランク室4と吐出室8とを連通する給気通路(不図示)、給気通路を開閉する圧力制御手段43とからなる圧力制御機構が設けられている。   Further, in order to make the discharge capacity of the refrigerant variable, an extraction passage (not shown) that always communicates the crank chamber 4 and the suction chamber 7, an air supply passage (not shown) that communicates the crank chamber 4 and the discharge chamber 8, A pressure control mechanism including pressure control means 43 that opens and closes the air supply passage is provided.

上記構成において、圧縮機1が起動されて駆動軸30が回転すると、この回転力により斜板39が回転し複数のピストン41がシリンダボア2内で往復動する。そして、ピストン41がシリンダボア2内でフロントハウジング5側に移動する過程で、シリンダボア2より吸入室7の圧力が大きくなりその差圧によって吸入弁13が閉位置から開位置に変移して吸入孔20から冷媒ガスがシリンダボア2内に吸い込まれる。ピストン41がシリンダボア2内でリアハウジング9側に移動する過程で、吸入室7及び吐出室8よりシリンダボア2の圧力が大きくなりその差圧によって吸入弁13が開位置から閉位置に変移すると共に吐出弁板14が閉位置から開位置に変移し冷媒ガスが圧縮されつつ吐出孔21から吐出室8内へ吐出される。   In the above configuration, when the compressor 1 is started and the drive shaft 30 rotates, the rotational force causes the swash plate 39 to rotate and the plurality of pistons 41 reciprocate within the cylinder bore 2. Then, in the process in which the piston 41 moves toward the front housing 5 in the cylinder bore 2, the pressure in the suction chamber 7 becomes larger than that in the cylinder bore 2, and the pressure difference causes the suction valve 13 to change from the closed position to the open position. The refrigerant gas is sucked into the cylinder bore 2. In the process in which the piston 41 moves toward the rear housing 9 in the cylinder bore 2, the pressure in the cylinder bore 2 becomes larger than the suction chamber 7 and the discharge chamber 8, and the differential pressure causes the suction valve 13 to change from the open position to the closed position and discharge. The valve plate 14 changes from the closed position to the open position, and the refrigerant gas is discharged into the discharge chamber 8 from the discharge hole 21 while being compressed.

上記動作中にあって、ピストン41がシリンダボア2内でフロントハウジング5側に移動する過程では、吸入弁13には吸入室7側からの冷媒ガスの圧力が吸入孔20と受圧用溝28を介して作用し、シリンダボア2と吸入室7との小さな差圧によっても大きな押圧力F(=F1+F2)が吸入弁13の対向弁部26及びアーム弁部27に作用する。つまり、吸入弁13には吸入孔20からの押圧力F1と受圧用溝28からの押圧力F2とを加算した押圧力Fが作用する。以上より、吸入弁13がシリンダボア2と吸入室7との小さな差圧でも開位置に変移するため、吸入孔の径を大きくすることなく、吸入弁13の吸入脈動が低減される。   During the above operation, in the process in which the piston 41 moves to the front housing 5 side in the cylinder bore 2, the refrigerant gas pressure from the suction chamber 7 side is supplied to the suction valve 13 through the suction hole 20 and the pressure receiving groove 28. Even with a small differential pressure between the cylinder bore 2 and the suction chamber 7, a large pressing force F (= F1 + F2) acts on the counter valve portion 26 and the arm valve portion 27 of the suction valve 13. That is, a pressing force F obtained by adding the pressing force F 1 from the suction hole 20 and the pressing force F 2 from the pressure receiving groove 28 acts on the suction valve 13. As described above, since the suction valve 13 is shifted to the open position even with a small differential pressure between the cylinder bore 2 and the suction chamber 7, the suction pulsation of the suction valve 13 is reduced without increasing the diameter of the suction hole.

図5(a)、(b)は受圧面積増加部の変形例を示し、図5(a)は吸入弁13及びバルブプレート12の要部平面図、図5(b)は図5のC−C線断面図である。   5 (a) and 5 (b) show modified examples of the pressure receiving area increasing portion, FIG. 5 (a) is a plan view of the main parts of the suction valve 13 and the valve plate 12, and FIG. FIG.

図5(a)、(b)に示すように、この変形例の受圧面積増加部は、アーム弁部27の対向位置に設けられ、吸入室7側の面とシリンダボア2側の面との間を貫通する受圧用孔29にて構成されている。   As shown in FIGS. 5A and 5B, the pressure receiving area increasing portion of this modification is provided at a position opposite to the arm valve portion 27, and is between the surface on the suction chamber 7 side and the surface on the cylinder bore 2 side. It is comprised by the pressure receiving hole 29 which penetrates.

この変形例にあっても、吸入弁13には吸入室7側からの冷媒ガスの圧力が吸入孔20と受圧用孔29を介して作用し、シリンダボア2と吸入室7との小さな差圧によっても大きな押圧力F(=F1+F2)が吸入弁13の対向弁部26及びアーム弁部27に作用する。つまり、吸入弁13には吸入孔20からの押圧力F1と受圧用孔29からの押圧力F2とを加算した押圧力Fが作用する。以上より、吸入弁13がシリンダボア2と吸入室7との小さな差圧でも開位置に変移するため、吸入孔の径を大きくすることなく、吸入弁13の吸入脈動が低減される。   Even in this modification, the pressure of the refrigerant gas from the suction chamber 7 side acts on the suction valve 13 through the suction hole 20 and the pressure receiving hole 29, and the small pressure difference between the cylinder bore 2 and the suction chamber 7 is caused. A large pressing force F (= F1 + F2) acts on the counter valve portion 26 and the arm valve portion 27 of the suction valve 13. In other words, the pressing force F obtained by adding the pressing force F1 from the suction hole 20 and the pressing force F2 from the pressure receiving hole 29 acts on the suction valve 13. As described above, since the suction valve 13 is shifted to the open position even with a small differential pressure between the cylinder bore 2 and the suction chamber 7, the suction pulsation of the suction valve 13 is reduced without increasing the diameter of the suction hole.

尚、変形例では、受圧面積増加部は、1つの受圧用孔29にて構成されているが、複数個の受圧用孔29にて構成しても良い。又、受圧面積増加部は、前記実施形態の受圧用溝28と変形例の受圧用孔29とを併用した構成としても良い。   In the modification, the pressure receiving area increasing portion is configured by one pressure receiving hole 29, but may be configured by a plurality of pressure receiving holes 29. Further, the pressure receiving area increasing portion may be configured by using both the pressure receiving groove 28 of the above embodiment and the pressure receiving hole 29 of the modification.

本発明の一実施形態の弁構造を示し、(a)は吸入弁及びバルブプレートの要部平面図、(b)は図1のA−A線(図3のA−A線)断面図である。The valve structure of one Embodiment of this invention is shown, (a) is a principal part top view of an inlet valve and a valve plate, (b) is the AA line (AA line of FIG. 3) sectional drawing of FIG. is there. 本発明が用いられた圧縮機を示す断面図である。It is sectional drawing which shows the compressor with which this invention was used. (a)はバルブプレートの平面図、(b)は図3(a)のB−B線断面である。(A) is a top view of a valve plate, (b) is the BB sectional view of Fig.3 (a). 吸入弁の平面図である。It is a top view of an intake valve. 受圧面積増加部の変形例を示し、(a)は吸入弁及びバルブプレートの要部平面図、(b)は図5のC−C線断面図である。The modification of a pressure receiving area increase part is shown, (a) is a principal part top view of a suction valve and a valve plate, (b) is CC sectional view taken on the line of FIG.

符号の説明Explanation of symbols

1 圧縮機
2 シリンダボア
7 吸入室
8 吐出室
12 バルブプレート
13 吸入弁
20 吸入孔
21 吐出孔
23 弁座
25 吸入弁本体部
26 対向弁部
27 アーム弁部
28 受圧用溝(受圧面積増加部)
29 受圧用孔(受圧面積増加部)
DESCRIPTION OF SYMBOLS 1 Compressor 2 Cylinder bore 7 Suction chamber 8 Discharge chamber 12 Valve plate 13 Suction valve 20 Suction hole 21 Discharge hole 23 Valve seat 25 Suction valve body part 26 Opposite valve part 27 Arm valve part 28 Pressure receiving groove (pressure receiving area increasing part)
29 Pressure receiving hole (Pressure receiving area increasing part)

Claims (3)

ピストン(41)が収容されたシリンダボア(2)と吸入室(7)及び吐出室(8)との間に弁体(6)が設けられ、該弁体(6)が前記シリンダボア(2)と前記吸入室(7)とを連通する吸入孔(20)と前記シリンダボア(2)と前記吐出室(8)とを連通する吐出孔(21)とが形成されたバルブプレート(12)と、このバルブプレート(12)の前記シリンダボア(2)側に設けられて前記吸入孔(20)を開閉する可撓板状の吸入弁(13)とを備え、前記ピストン(41)の往復動による前記シリンダボア(2)と前記吸入室(7)との差圧によって前記吸入弁(13)が開閉する圧縮機(1)の弁構造であって、
前記吸入弁(13)は、前記バルブプレート(12)に密着された吸入弁本体部(25)と、前記吸入孔(20)及び吸入孔(20)の開口縁の弁座(23)に対向する位置に配置された対向弁部(26)と、前記吸入弁本体部(25)と前記対向弁部(26)を連結し、前記シリンダボア(2)と前記吸入室(7)との差圧によって撓み変形及び撓み復帰変形して前記対向弁部(26)を変位させるアーム弁部(27)とを有し、
前記バルブプレート(12)には、前記対向弁部(26)及び前記アーム弁部(27)に対して前記吸入室(7)の冷媒ガスの受圧面積を増加させる受圧面積増加部(28),(29)を設けたことを特徴とする圧縮機(1)の弁構造。
A valve body (6) is provided between the cylinder bore (2) in which the piston (41) is accommodated and the suction chamber (7) and the discharge chamber (8), and the valve body (6) is connected to the cylinder bore (2). A valve plate (12) having a suction hole (20) communicating with the suction chamber (7), a discharge hole (21) communicating with the cylinder bore (2) and the discharge chamber (8); A flexible plate-like intake valve (13) provided on the cylinder bore (2) side of the valve plate (12) for opening and closing the intake hole (20), and the cylinder bore by reciprocating movement of the piston (41) A valve structure of the compressor (1) in which the suction valve (13) is opened and closed by a differential pressure between the suction chamber (2) and the suction chamber (7);
The suction valve (13) is opposed to the suction valve main body (25) that is in close contact with the valve plate (12), and the valve seat (23) at the opening edge of the suction hole (20) and the suction hole (20). The counter valve portion (26) arranged at a position where the suction valve main body portion (25) and the counter valve portion (26) are connected, and the differential pressure between the cylinder bore (2) and the suction chamber (7) And an arm valve part (27) for displacing the counter valve part (26) by bending deformation and bending return deformation by
The valve plate (12) includes a pressure receiving area increasing portion (28) that increases a pressure receiving area of the refrigerant gas in the suction chamber (7) with respect to the counter valve portion (26) and the arm valve portion (27). (29) The valve structure of the compressor (1) characterized by the above-mentioned.
請求項1記載の圧縮機(1)の弁構造であって、
前記受圧面積増加部(28),(29)は、前記アーム弁部(27)に沿って前記シリンダボア(2)側に設けられ、前記吸入孔(20)に連通する受圧用溝(28)であることを特徴とする圧縮機(1)の弁構造。
A valve structure for a compressor (1) according to claim 1,
The pressure receiving area increasing portions (28), (29) are provided on the cylinder bore (2) side along the arm valve portion (27), and are pressure receiving grooves (28) communicating with the suction hole (20). The valve structure of the compressor (1) characterized by being.
請求項1記載の圧縮機(1)の弁構造であって、
前記受圧面積増加部(28),(29)は、前記アーム弁部(27)の対向位置に設けられ、前記吸入室(7)側の面と前記シリンダボア(2)側の面との間を貫通する受圧用孔(29)であることを特徴とする圧縮機(1)の弁構造。
A valve structure for a compressor (1) according to claim 1,
The pressure receiving area increasing portions (28) and (29) are provided at positions facing the arm valve portion (27), and between the surface on the suction chamber (7) side and the surface on the cylinder bore (2) side. The valve structure of the compressor (1), which is a pressure receiving hole (29) that passes therethrough.
JP2003341867A 2003-09-30 2003-09-30 Valve structure of compressor Pending JP2005105975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003341867A JP2005105975A (en) 2003-09-30 2003-09-30 Valve structure of compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003341867A JP2005105975A (en) 2003-09-30 2003-09-30 Valve structure of compressor

Publications (1)

Publication Number Publication Date
JP2005105975A true JP2005105975A (en) 2005-04-21

Family

ID=34536319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003341867A Pending JP2005105975A (en) 2003-09-30 2003-09-30 Valve structure of compressor

Country Status (1)

Country Link
JP (1) JP2005105975A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119316A1 (en) * 2008-03-28 2009-10-01 サンデン株式会社 Reciprocating compressor
WO2011093320A1 (en) * 2010-01-28 2011-08-04 株式会社 豊田自動織機 Compressor
WO2011125501A1 (en) * 2010-03-31 2011-10-13 株式会社豊田自動織機 Compressor
DE112009004280B4 (en) * 2008-11-18 2016-03-17 Sanden Corp. Valve plate device for a compressor
US9644625B2 (en) 2010-12-08 2017-05-09 Kabushiki Kaisha Toyota Jidoshokki Compressor
WO2020122489A1 (en) * 2018-12-12 2020-06-18 한온시스템 주식회사 Swash plate compressor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8684703B2 (en) 2008-03-28 2014-04-01 Sanden Corporation Reciprocating compressor
JP2009243276A (en) * 2008-03-28 2009-10-22 Sanden Corp Reciprocating compressor
WO2009119316A1 (en) * 2008-03-28 2009-10-01 サンデン株式会社 Reciprocating compressor
CN101970878B (en) * 2008-03-28 2013-08-07 三电有限公司 Reciprocating compressor
DE112009004280B4 (en) * 2008-11-18 2016-03-17 Sanden Corp. Valve plate device for a compressor
WO2011093320A1 (en) * 2010-01-28 2011-08-04 株式会社 豊田自動織機 Compressor
CN102713289A (en) * 2010-01-28 2012-10-03 株式会社丰田自动织机 Compressor
US8869837B2 (en) 2010-03-31 2014-10-28 Kabushiki Kaisha Toyota Jidoshokki Compressor
CN102822525A (en) * 2010-03-31 2012-12-12 株式会社丰田自动织机 Compressor
WO2011125501A1 (en) * 2010-03-31 2011-10-13 株式会社豊田自動織機 Compressor
DE112011101172B4 (en) * 2010-03-31 2018-05-09 Kabushiki Kaisha Toyota Jidoshokki COMPRESSOR
US9644625B2 (en) 2010-12-08 2017-05-09 Kabushiki Kaisha Toyota Jidoshokki Compressor
DE112011104324B4 (en) * 2010-12-08 2019-01-17 Kabushiki Kaisha Toyota Jidoshokki compressor
WO2020122489A1 (en) * 2018-12-12 2020-06-18 한온시스템 주식회사 Swash plate compressor
CN113167261A (en) * 2018-12-12 2021-07-23 翰昂汽车零部件有限公司 Swash plate type compressor
CN113167261B (en) * 2018-12-12 2023-11-03 翰昂汽车零部件有限公司 Swash plate type compressor

Similar Documents

Publication Publication Date Title
JP6663227B2 (en) Displacement control valve for variable displacement compressor
JP5633520B2 (en) Compressor
KR101739212B1 (en) Variable displacement swash-plate compressor
US6336795B1 (en) Fluid displacement apparatus with suction reed valve stopper
WO2012077519A1 (en) Compressor
JP2005105975A (en) Valve structure of compressor
JP3982697B2 (en) Compressor
US8303263B2 (en) Swash plate type compressor
JP4663462B2 (en) Reciprocating compressor
JP2005042695A (en) Valve structure of compressor
WO2024018829A1 (en) Compressor
JP2001295756A (en) Compressor
JP2002031058A (en) Reciprocating refrigerant compressor
JP2001003858A (en) Swash plate type compressor
JP2002005026A (en) Piston compressor
JPH11304027A (en) Sealing structure of pressure control valve
JP2014125994A (en) Piston type compressor
JP2010007588A (en) Refrigerant compressor
KR101177294B1 (en) Variable capacity type swash plate type compressor
JP2005083348A (en) Compressor
JP4128656B2 (en) Swash plate compressor
JP2019183837A (en) Piston compressor
JP2005240746A (en) Compressor
JPWO2004059167A1 (en) Compressor reed valve structure
JPH08121330A (en) Reciprocating type compressor