JP2005105644A - Building structure temperature rise restraining method and building structure - Google Patents

Building structure temperature rise restraining method and building structure Download PDF

Info

Publication number
JP2005105644A
JP2005105644A JP2003339628A JP2003339628A JP2005105644A JP 2005105644 A JP2005105644 A JP 2005105644A JP 2003339628 A JP2003339628 A JP 2003339628A JP 2003339628 A JP2003339628 A JP 2003339628A JP 2005105644 A JP2005105644 A JP 2005105644A
Authority
JP
Japan
Prior art keywords
building structure
wood
infrared
temperature rise
reflective coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003339628A
Other languages
Japanese (ja)
Inventor
Kenzo Iwao
憲三 岩尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP2003339628A priority Critical patent/JP2005105644A/en
Publication of JP2005105644A publication Critical patent/JP2005105644A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/60Planning or developing urban green infrastructure

Landscapes

  • Building Environments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a building structure temperature rise restraining method having a novel constitution using infrared reflection, in its turn, to provide a method for restraining a heat island phenomenon becoming the serious problem in a city part. <P>SOLUTION: This method restrains temperature rise in a building structure. A chip such as thinning timber is wholly or partially laid all over and stuck to a surface of an infrared ray absorbing covering material such as a concrete surface in the building structure, and is covered with ligneous infrared ray reflecting covering materials 16 and 16A, by further applying ligneous paint. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は建築構造物(建造物)昇温抑制方法に関し、特に、都市のヒートアイランド現象を抑制し、さらには地球温暖化防止にも好適な建造物昇温抑制方法に関する。   The present invention relates to a building structure (building) temperature rise suppression method, and more particularly to a building temperature rise suppression method that suppresses urban heat island phenomenon and is also suitable for preventing global warming.

ここでは、課題(目的)としてヒートアイランド抑制を、例に採り説明するが、本発明の範囲はそれらに限定されない。   Here, heat island suppression will be described as an example as a problem (purpose), but the scope of the present invention is not limited thereto.

近年、都市部では道路の舗装やビルの外装にコンクリートやアスファルトを使用するため、ヒートアイランド現象が問題となってきている。ヒートアイランドと呼ばれるのは、都市部の地表面の熱収支が変化し、気温が郊外に比べて高くなり、等温線図で見ると高温地域の分布がちょうど島のように出現するためである。   In recent years, in urban areas, the use of concrete and asphalt for road pavements and building exteriors has caused a problem of heat island. It is called a heat island because the heat balance on the ground surface in urban areas changes, the temperature becomes higher than in the suburbs, and the distribution of high-temperature areas appears just like islands in the isotherm.

ヒートアイランド現象は、様々な要因によって複合的に引き起こされると考えられる。   The heat island phenomenon is considered to be caused by various factors.

東京都環境科学研究所が行ったシミュレーションのデータ分析結果によると、一般的には、「緑の喪失による大気の冷却作用の喪失」の寄与率が78%、「人工排熱による大気の加熱作用」の寄与率が22%と推定される(東京都環境科学研究所「地球環境」2000年11月号)。   According to the results of the simulation data analysis conducted by the Tokyo Metropolitan Institute for Environmental Science, the contribution rate of “loss of cooling of the atmosphere due to loss of green” is generally 78%, and “heating action of the atmosphere by artificial exhaust heat” "Is estimated to be 22% (Tokyo Environmental Science Institute" Global Environment "November 2000 issue).

一方、従来から外装材として使用されるタイル、アスファルト、トタン、瓦等は赤外線を積極的に吸収し、過熱しやすい材料である。こうした外装材が建築構造物の屋上や外壁面に多く使用される結果、建築構造物(建造物)が蓄熱し昇温する。そして、該建築構造物の昇温にともない、特に夏季においてはエアコンデショナーからの排熱量が増え、前記建築構造物の蓄熱と相まって都市全体の蓄熱量が増大し、ヒートアイランド現象をさらに促進させている。   On the other hand, tiles, asphalt, tin, roof tiles, and the like that have been conventionally used as exterior materials are materials that actively absorb infrared rays and easily overheat. As a result of the large use of such exterior materials on the rooftop and outer wall surface of a building structure, the building structure (building) accumulates heat and rises in temperature. And as the temperature of the building structure rises, especially in the summer, the amount of heat exhausted from the air conditioner increases, coupled with the heat storage of the building structure, the amount of heat stored in the whole city increases, further promoting the heat island phenomenon. .

そこで、建築構造物自体の昇温を抑制する方法として、屋根や外壁に照射される太陽光線(主として赤外線:750nm〜2400nm)を反射させることが考えられる。   Therefore, as a method for suppressing the temperature rise of the building structure itself, it is conceivable to reflect sunlight (irradiated mainly from 750 nm to 2400 nm) irradiated on the roof and the outer wall.

太陽光線の反射率を増大させた外装材としては、下記のような特許文献がある。   The following patent literatures are available as exterior materials that increase the reflectance of sunlight.

1)金属板(アルミニウム、ステンレス等)の表面に近赤外領域(800〜2100nm)で太陽熱反射率30%以上の顔料を2〜70%含有する塗膜を備えた断熱建材(特許文献1)。ここで顔料としては、金属の酸化物、硫化物、クロム酸塩などの金属化合物や、不溶性色素(色素顔料)が好ましい(同明細書第0036段落)。     1) Thermal insulation building material provided with a coating containing 2 to 70% of a pigment having a solar heat reflectance of 30% or more in the near infrared region (800 to 2100 nm) on the surface of a metal plate (aluminum, stainless steel, etc.) (Patent Document 1) . Here, as the pigment, metal compounds such as metal oxides, sulfides and chromates, and insoluble dyes (pigment pigments) are preferable (paragraph 0036 in the same specification).

2)2.5μm以下の波長の輻射に対する反射率が0.7以上、2.5μm以上の波長の放射率が0.7以上である分光特性を有する無機セラミック粒子と、残部が実質的に有機樹脂からなる反射性被覆材を備えた表面処理板(特許文献2)。ここで無機セラミック粒子としては、コージェライト、ジルコニア、マグネシア、アルミナ、窒化硼素が好適である(同明細書第0021段落)。     2) Inorganic ceramic particles having spectral characteristics with a reflectivity of 0.7 or more for radiation with a wavelength of 2.5 μm or less and an emissivity with a wavelength of 2.5 μm or more of 0.7 or more, and the balance being substantially organic A surface-treated plate provided with a reflective coating material made of resin (Patent Document 2). Here, cordierite, zirconia, magnesia, alumina, and boron nitride are suitable as the inorganic ceramic particles (paragraph 0021 of the same specification).

3)金属板表面に、遮熱性顔料として、V、Sr、Yのうちの一種以上とMnを含む複合金属酸化物の粉末を含有した塗膜を形成した塗装金属板(特許文献3)。     3) A coated metal plate having a coating film containing a composite metal oxide powder containing one or more of V, Sr, and Y and Mn as a heat shielding pigment on the surface of the metal plate (Patent Document 3).

また、太陽光線の反射率を増大させた塗料としては、下記のような特許文献がある。   Moreover, there are the following patent documents as paints that increase the reflectance of sunlight.

1)オルガノシラン又はその加水分解縮合物からなる結合剤とアルミナ又はシリカからなる白色顔料を含有した白色塗料であって、光の反射率が80%以上で且つ熱の放射率が80%以上の塗膜を生成する白色塗料(特許文献4)。     1) A white paint containing a binder made of organosilane or its hydrolysis condensate and a white pigment made of alumina or silica, having a light reflectance of 80% or more and a heat emissivity of 80% or more. A white paint that produces a coating film (Patent Document 4).

2)フタルイミドやフタルイミド誘導体からなる赤外線反射材を、一成分として配合した白色の塗料組成物(特許文献5)。     2) A white coating composition containing an infrared reflecting material composed of phthalimide or a phthalimide derivative as one component (Patent Document 5).

3)白色顔料としてZnAl24粉末を含有させた光反射性塗料組成物(特許文献6)。 3) A light-reflective coating composition containing ZnAl 2 O 4 powder as a white pigment (Patent Document 6).

4)塗膜形成後に、セラミック等のバブルを稠密積層させる構造保持剤を含有させた遮熱性塗料(特許文献7)。     4) A heat-shielding coating material containing a structure-retaining agent for densely laminating bubbles such as ceramics after the coating film is formed (Patent Document 7).

なお、本発明の実施形態の一つで使用する木質塗料に関連する技術としては、例えば、木粉を約0.5〜10重量(質量)%配合させたものが存在する(特許文献8)。しかし、当該特許文献における技術は塗膜面に凹凸を付与することを目的としており、その配合比率も10質量%と小さく、本発明のような赤外線反射性の付与を目的としない。
特開2001−32399号公報 特開平11−240099号公報 特開平2002−331611号公報 特許第3311664号公報 特開平2001−152096号公報 特開平11−100530号公報 特開平11−323197号公報 特開平2003−128999号公報
In addition, as a technique relevant to the wood-based paint used in one of the embodiments of the present invention, for example, there is one in which wood powder is blended by about 0.5 to 10% by weight (mass) (Patent Document 8). . However, the technique in the patent document aims to impart unevenness to the coating surface, and the blending ratio is as small as 10% by mass, and does not aim to impart infrared reflectivity as in the present invention.
JP 2001-32399 A Japanese Patent Laid-Open No. 11-240099 JP-A-2002-331611 Japanese Patent No. 3311664 Japanese Patent Laid-Open No. 2001-152096 Japanese Patent Laid-Open No. 11-100530 JP 11-323197 A Japanese Patent Laid-Open No. 2003-128999

本発明は、上記にかんがみて、赤外線反射を利用した新規な構成の建築構造物昇温抑制方法を提供することを目的(課題)とする。   In view of the above, the present invention has an object (problem) to provide a building structure temperature rise suppression method having a novel configuration using infrared reflection.

本発明者は、前記ヒートアイランド誘発原因の中で特に「緑の喪失による大気の冷却作用の喪失」に着目し、なぜ植物体は夏の炎天下でも過熱せず、植物体自身の温度上昇を抑えることができるのか研究を重ねた結果、植物体は葉部からの蒸散により自身を冷却する作用の他、強い赤外線反射能を示すことを知見した。さらには、赤外線反射能は、植物遺体である木材の方が、植物生体に比して高いことを知見して、下記構成の建築構造物昇温抑制方法に想到した。   The inventor of the present invention pays particular attention to “the loss of the cooling action of the atmosphere due to the loss of green” among the causes of the heat island induction, and why the plant body does not overheat even under the hot summer heat and suppresses the temperature rise of the plant body itself As a result of research on whether or not it can be done, it has been found that the plant body exhibits a strong infrared reflectivity in addition to the action of cooling itself by transpiration from the leaves. Furthermore, the infra-red reflectivity of wood, which is a plant remains, was found to be higher than that of plant organisms, and the present inventors came up with a method for suppressing the temperature rise of a building structure having the following configuration.

本発明の建築構造物昇温抑制方法は、赤外線吸収性外装材の表面を、全面的又は部分的に木質の赤外線反射性被覆材で覆うことを特徴とする。   The method for suppressing the temperature increase of a building structure according to the present invention is characterized in that the surface of the infrared absorbing exterior material is entirely or partially covered with a wooden infrared reflective coating material.

赤外線反射性被覆材が木質であるため、相対的に高価で特殊な無機顔料や有機顔料を含んだ塗料を使用する必要がない。   Since the infrared reflective coating material is woody, it is not necessary to use a paint that contains a relatively expensive and special inorganic pigment or organic pigment.

該赤外線反射性被覆材の赤外線反射率(波長750〜2400nmにおける)は、通常、45%以上を示すものとする。木材自体、後述の実験例で示す如く、平均80%以上の反射率を示すため、塗料としたり、部分被覆したりすることによっても、建築構造物昇温の抑制効果を奏する。   The infrared reflectance of the infrared reflective coating material (at a wavelength of 750 to 2400 nm) is usually 45% or more. Since wood itself exhibits a reflectance of 80% or more on average as shown in an experimental example described later, the effect of suppressing the temperature rise of the building structure is exhibited by using a paint or partially covering the wood.

また、前記赤外線吸収性外装材が屋根材及び/又は壁材であれば、前記抑制効果を奏することがさらに期待できる。   Moreover, if the said infrared absorptive exterior material is a roof material and / or a wall material, it can further be anticipated that the said inhibitory effect is show | played.

そして、前記赤外線反射性被覆材を、間伐材又は製材端材の裁断物若しくは粉砕物(チップ)、又は粒状の木質材を適宜接着剤を使用して成形した成形品(ペレット)、又はチップや粒状の木質材を接着剤を使用して成形処理した木質のタイル、木質の板材、木質を含む塗料としてもよい。間伐材や製材端材等の木質廃材を利用することにより、木質廃材の有効利用が可能となる。   And the infrared reflective coating material is a thinned material or a cut or crushed product (chip) of a sawn timber, or a molded product (pellet) formed by appropriately using a granular wood material using an adhesive, or a chip, It is good also as the coating material containing the wood tile which carried out the shaping | molding process of the granular wood material using the adhesive agent, a wood board material, and wood. By using wood waste such as thinned lumber and sawn timber, it is possible to effectively use wood waste.

木材粉砕物を含有する木質塗料を、建築構造物における赤外線吸収性外装材の表面に、全面的又は部分的に塗布して赤外線反射性被覆材を形成することもできる。   A wood paint containing a pulverized wood can be applied to the surface of an infrared absorbing exterior material in a building structure entirely or partially to form an infrared reflective coating material.

前記木質を含む塗料が、最大径1mm以下ないし最大厚み0.3mm以下の木材粉砕物(プレイナ屑を含む。)を30質量%以上含有するものとすることもできる。前記同様、木質廃材の有効利用が可能となる。   The wood-containing paint may contain 30% by mass or more of pulverized wood (including planar scraps) having a maximum diameter of 1 mm or less to a maximum thickness of 0.3 mm or less. Similar to the above, the wood waste material can be effectively used.

そして、本発明を物の発明として表現すると、上記各建築構造物昇温抑制方法が適用された建築構造物となる。   And when this invention is expressed as an invention of a thing, it will become a building structure to which each said building structure temperature rising suppression method was applied.

本発明の実施により、建築構造物の外装材表面の赤外線反射性が高まり、建築構造物の昇温抑制が可能となり、すなわち、建築構造物の屋根部や外壁部の蓄熱量を減少できると共に、エアコンデョナーからの排熱量も低減できる。このため、結果的にヒートアイランド化を抑制し、さらには地球温暖化防止にも寄与し、特に夏の電力消費量を削減することができる。   By implementing the present invention, the infrared reflectivity of the exterior material surface of the building structure is increased, and the temperature rise of the building structure can be suppressed, that is, the amount of heat stored in the roof portion and the outer wall portion of the building structure can be reduced, The amount of exhaust heat from the air conditioner can also be reduced. For this reason, as a result, the formation of heat islands can be suppressed, further contributing to the prevention of global warming, and in particular, the power consumption in summer can be reduced.

また、本発明を実施することで膨大な量の、間伐材・製材端材等の木質廃材の利用を促進できる。さらに、スギ、ヒノキ等、花粉症の原因となる花粉を放散する樹木の間伐材を利用すれば、該花粉の飛散量減少に寄与する。   Further, by implementing the present invention, it is possible to promote the use of a huge amount of wood waste such as thinned lumber and sawn timber. Furthermore, if a tree thinning material that emits pollen causing hay fever, such as cedar and cypress, is used, it contributes to a reduction in the amount of pollen scattered.

本発明を、実施形態に基づいて説明する。以下の説明で「%」、「部」は、特に断らない限り、質量(重量)単位とする。   The present invention will be described based on an embodiment. In the following description, “%” and “part” are in units of mass (weight) unless otherwise specified.

図1に示すものは、建築構造物(ビル)において、本発明の建築構造物昇温抑制方法を適用してある。   What is shown in FIG. 1 has applied the building structure temperature rising suppression method of this invention in the building structure (building).

ビルの屋根(屋上)のコンクリート面(赤外線吸収性外装材面)12に、木質のチップやペレット14を敷き詰めて赤外線反射性被覆材16を形成してある。この木質のチップやペレットは、間伐材や製材の端材を、粉砕機で粉砕したものを使用できる。そして、木質のチップやペレットの大きさは、通常、1〜10mmとし、一層ないし複層に敷き詰め、全体高さ(層厚)5〜50mmの赤外線反射性被覆材16を形成する。複層とした場合は、赤外線反射性の増大と共に、空気層が形成され断熱性も増大して、さらなる、建築構造物の昇温抑制作用が増大する。木質のチップやペレットはコンクリート面に接着させて赤外線反射性被覆材16を固定構造としてもよい。   An infrared reflective coating material 16 is formed by laying wooden chips and pellets 14 on a concrete surface (infrared absorbing exterior material surface) 12 of a roof (a rooftop) of a building. The wood chips and pellets can be obtained by pulverizing thinned lumber or sawn timber with a pulverizer. The size of the wood chips and pellets is usually 1 to 10 mm, spread in one or more layers, and the infrared reflective coating material 16 having a total height (layer thickness) of 5 to 50 mm is formed. In the case of a multi-layer structure, an air layer is formed and the heat insulation is increased with an increase in infrared reflectivity, thereby further increasing the temperature rise suppression effect of the building structure. Wood chips and pellets may be bonded to the concrete surface, and the infrared reflective coating material 16 may be a fixed structure.

また、屋上コンクリート面には、図示しないが、間伐材や製材端材から形成した木質板材を、適宜組み合わせて、モザイクタイル状に敷き詰めて赤外線反射性被覆材を形成してもよい。ここで使用する木質板材の板厚は、0.5〜5mmとする。また、板素材の表面には、後述の木質塗料を使用したり、別のクリア塗料を塗布したりしてもよい。   Moreover, although not shown in figure, you may form the infrared reflective coating | covering material in a mosaic tile form by combining suitably the wooden board | plate material formed from the thinned lumber and the lumber end material on the roof concrete surface. The board thickness of the wood board used here shall be 0.5-5 mm. Further, a wooden paint described later may be used on the surface of the plate material, or another clear paint may be applied.

上記木質のチップやペレット及び木質板材には、適宜、公知の不燃処理を施すことが望ましい。   It is desirable to appropriately perform a known incombustible treatment on the wood chips, pellets and wood board.

また、ビルの外壁面(コンクリート面)(赤外線吸収性外装材)12Aには、木質板材若しくは木質タイル18を、接着材を介して張り詰めて赤外線反射性被覆材16Aを形成してある。このとき、木質タイル18は、別の大きな基板(例えば、1m×2mのプラスチック板等、金属網)を介してユニットとして、前記外壁面に貼り付けてもよい。そして、ユニットとしたものに、それぞれ、図例のような模様(壁画)(図例では樹木模様)22を後述の木質塗料で形成してもよい。当然、先に木質板材若しくは木質タイルを塗装しておいて、組み合わせにより模様(壁画)を形成してもよい。   Further, on the outer wall surface (concrete surface) (infrared absorptive exterior material) 12A of the building, a wooden board material or a wooden tile 18 is stretched through an adhesive to form an infrared reflective coating material 16A. At this time, the wood tile 18 may be attached to the outer wall surface as a unit via another large substrate (for example, a metal net such as a 1 m × 2 m plastic plate). In addition, a pattern (mural) (a tree pattern in the illustrated example) 22 as illustrated in the figure may be formed with a wooden paint described later on each unit. Naturally, a wood board or wood tile may be painted first, and a pattern (mural) may be formed by combination.

ここで、使用する木質板材若しくは木質タイルを吸湿性としたときは、水の蒸発潜熱も利用でき、更なる、建築構造物の昇温抑制が可能となる。   Here, when the wooden board | plate material or wooden tile to be used is made into a hygroscopic property, the latent heat of vaporization of water can also be utilized and the temperature rise of a building structure can be further suppressed.

上記で使用する木質塗料としては、塗膜成分(固形分)中に木質成分30%以上、望ましくは50〜70%含有するものを使用する。木質成分は、通常、間伐材又は製材端材の径1mm以下の粉砕物(チップ)、オガクズ(大鋸屑)やプレイナ屑等の木質廃材粉砕物・細断物を使用する。塗料タイプは、溶剤タイプ、エマルションタイプ、サスペンションタイプ、粉末タイプ等、任意である。   As the wood paint used above, a paint containing 30% or more, preferably 50 to 70% of the wood component in the coating film component (solid content) is used. As the wood component, a crushed material (chip) having a diameter of 1 mm or less of a thinned lumber or a sawn timber, a wood waste material crushed material or shredded material such as sawdust (large sawdust) or planer waste is usually used. The paint type is arbitrary such as a solvent type, an emulsion type, a suspension type, and a powder type.

木質成分が30%未満では、赤外線反射性被覆材に所要の赤外線反射率(例えば、トマトの葉における赤外線反射率40%以上)を超える赤外線反射率(45%)を付与し難く、逆に70%以上とすると、外装材に対する十分な接着性(付着性)を確保し難くなる。ここで、塗料の赤外線反射率は、合成樹脂の赤外線反射率との相加平均となると推定される。例えば、木質成分の赤外線反射率80%、その配合率30%とし、合成樹脂の赤外線反射率30%としたとき、塗料反射率45%(80×0.3+30×0.7)となる。   If the woody component is less than 30%, it is difficult to impart an infrared reflectance (45%) exceeding the required infrared reflectance (for example, an infrared reflectance of 40% or more in tomato leaves) to the infrared reflective coating material. If it is at least%, it will be difficult to ensure sufficient adhesion (adhesion) to the exterior material. Here, the infrared reflectance of the paint is estimated to be an arithmetic average with the infrared reflectance of the synthetic resin. For example, when the infrared reflectance of the wood component is 80%, the blending ratio is 30%, and the infrared reflectance of the synthetic resin is 30%, the paint reflectance is 45% (80 × 0.3 + 30 × 0.7).

そして、使用する合成樹脂(塗膜形成要素)としては、汎用の外装用樹脂、例えば、アクリル系樹脂、ウレタン系樹脂、アミノアルキッド系、不飽和ポリエステル系樹脂等を使用可能である。これらのうち、特に、アクリル酸エステル、メタクリル酸エステルの単独重合体又はそれらの共重合体さらにはそれらと非アクリル系ビニルモノマーとの共重合体であるアクリル系樹脂を好適に使用可能である。   And as a synthetic resin (coating-film formation element) to be used, general-purpose exterior resins, for example, acrylic resins, urethane resins, aminoalkyd resins, unsaturated polyester resins and the like can be used. Among these, in particular, acrylic resins that are homopolymers of acrylic acid esters and methacrylic acid esters or copolymers thereof, and copolymers of them with non-acrylic vinyl monomers can be suitably used.

当然、本木質塗料には、上記木質成分、顔料の他に、塗膜形成主要素となる可塑剤、変性剤、増粘剤、レベリング剤等、及び、塗膜形成副要素となる分散剤、防カビ・防腐剤等を、適宜、配合して調製する。   Naturally, in the present wood paint, in addition to the above wood component and pigment, a plasticizer, a modifier, a thickener, a leveling agent and the like as a coating film forming main element, and a dispersant as a coating film forming sub-element, An antifungal agent, an antiseptic and the like are appropriately blended and prepared.

上記実施形態においては、赤外線吸収性外装材として、コンクリートを例に採ったが、当然、アスファルト、とたん、タイルである場合も同様である。例えば、タイルの場合は、陶磁器薄片(タイル要素)の表面に上記木質塗料を塗布して、上記木質板材と同様にして施工すればよい。   In the said embodiment, although concrete was taken as an example as an infrared absorptive exterior material, naturally it is the same also when it is asphalt, a tongue, and a tile. For example, in the case of tiles, the above-mentioned wood paint may be applied to the surface of a ceramic flake (tile element) and applied in the same manner as the above-mentioned wood board.

以下の実験は、本発明者が植物体の持つ赤外線反射性に注目する理由を明らかにするため行ったものであり、図2〜4にその結果を示した。   The following experiment was conducted in order to clarify the reason why the present inventors pay attention to the infrared reflectivity of the plant body, and the results are shown in FIGS.

図2は身近に使用されている外装材(トタン)と植物体(トマトの葉)の表面温度の日変化を示したものである。日光を受けない夜間ではトマトの葉、トタンとも気温と全く同じ温度を示すが、日光を受ける時間帯ではトタンで外気温よりもかなり高い温度上昇が認められる。例えば正午12時の温度を比較すると気温36℃に対しトマトの葉の表面温度は約39℃、トタンの表面温度は60℃以上にもなる。この原因としてトタンの赤外線吸収特性による温度上昇とトマトの葉表面で行われる蒸散冷却作用が容易に推測されるが、植物体にはさらに重要な温度上昇抑制機能があることを本発明者は見出した。   FIG. 2 shows diurnal changes in the surface temperature of the exterior materials (tin) and plant bodies (tomato leaves) used in the immediate vicinity. Tomato leaves and tin show the same temperature at night when they are not exposed to sunlight, but in the time zone where they receive sunlight, the temperature rise is significantly higher than the outside temperature. For example, comparing the temperature at 12:00 noon, the surface temperature of the tomato leaves is about 39 ° C. and the surface temperature of the tin is 60 ° C. or more with respect to the temperature of 36 ° C. As a cause of this, the temperature rise due to the infrared absorption characteristics of tin and the transpiration cooling action performed on the tomato leaf surface are easily estimated, but the present inventor has found that the plant body has a further important temperature rise suppression function. It was.

図3は身近に使用されている外装材(コンクリート、アスファルト)と植物体(トマトの葉、各種木材)の光反射率を測定した結果である。グラフの縦軸にはその波長の光の反射率を示し、同時に(100−反射率)%がその波長の光の吸収率を表している。可視光域の波長においては外装材、植物体の間に光反射率の差はあまり認められないが、波長が780nmを越える赤外域においては植物体の赤外線反射率の高さは外装材に比べ非常に高いという特性が現れている。植物体のなかでも葉(植物生体)よりも木材(植物遺体)の赤外線反射率が高いことが認められた。   FIG. 3 shows the results of measuring the light reflectance of exterior materials (concrete and asphalt) and plants (tomato leaves and various kinds of wood) used in the immediate vicinity. The vertical axis of the graph represents the reflectance of light of that wavelength, and (100−reflectance)% represents the absorbance of light of that wavelength. In the visible light wavelength range, there is not much difference in light reflectance between the exterior material and the plant body, but in the infrared region where the wavelength exceeds 780 nm, the height of the infrared reflectance of the plant body is higher than that of the exterior material. The characteristic of being very high appears. Among plants, it was confirmed that the infrared reflectance of wood (plant remains) was higher than that of leaves (plant body).

波長が750nmを越える赤外域において例えばスギ、ヒノキ材が示す平均赤外線反射率は約80%である。これは、従来より倉庫や保冷室などのような、太陽光による内部温度上昇を抑制する必要がある建物の外壁に使用される白色塗料の顔料として利用される、TiO2、ZnOが示す赤外線反射率(約80%)に略等しい。本発明者は図3に示す種類の木材の他、マツ材、ラワン材、についても赤外線反射率を測定したが、いずれの木材も平均赤外線反射率は70%以上を示した。   In the infrared region where the wavelength exceeds 750 nm, for example, cedar and cypress materials show an average infrared reflectance of about 80%. This is the infrared reflectance exhibited by TiO2 and ZnO, which is used as a pigment for white paints used on the outer walls of buildings that need to suppress internal temperature rise due to sunlight, such as warehouses and cold storage rooms. (Approximately 80%). The present inventor measured the infrared reflectance of pine wood and lauan wood in addition to the type of wood shown in FIG. 3, and all the wood showed an average infrared reflectance of 70% or more.

これらの実験結果より、植物体の表面温度上昇を抑制する機能は葉(気孔)で行われる蒸散冷却作用のみならず、高い赤外線反射特性によるものであることが知見された。   From these experimental results, it has been found that the function of suppressing the increase in the surface temperature of the plant is not only due to the evaporative cooling effect performed on the leaves (stomata) but also due to high infrared reflection characteristics.

一方外装材(コンクリート、アスファルト)では、植物体に比べ赤外線反射率が非常に低く、すなわち前述のように赤外線吸収率が高いことが分かる。   On the other hand, it can be seen that the exterior materials (concrete and asphalt) have a very low infrared reflectance compared to the plant body, that is, the infrared absorption rate is high as described above.

例えば図3に示すアスファルトでは、平均赤外線反射率が10%以下でありこれは赤外線吸収率が90%以上であることを示している。このことから、現在都市部のほとんどで使用されている外装材の多くが高い赤外線吸収特性を持ち、建築構造物昇温、すなわち、ヒートアイランド現象を促進させる要因の一部となっていることが推測される。   For example, in the asphalt shown in FIG. 3, the average infrared reflectance is 10% or less, which indicates that the infrared absorption rate is 90% or more. From this, it is speculated that many of the exterior materials currently used in most urban areas have high infrared absorption characteristics and are part of the factors that promote the temperature rise of building structures, that is, the heat island phenomenon Is done.

図4は、湿った木材の表面温度の日変化を示すグラフである。吸収された水分の蒸散効果により木材の表面温度は外気温とほぼ同じに保たれる。さらに実験の結果、該効果は約2.5日維持されることがわかっている。   FIG. 4 is a graph showing daily changes in the surface temperature of wet wood. Due to the transpiration effect of absorbed water, the surface temperature of the wood is kept almost the same as the outside temperature. Further experiments have shown that the effect is maintained for about 2.5 days.

木材の持つ高い赤外線反射特性を利用すれば、ヒートアイランド抑制だけでなく、赤外線による昇温を抑制する効果が期待できる。本発明に係る木質の赤外線反射性被覆材は大量にしかも安価に供給可能なため、広く普及が必要な昇温抑制対策には利用価値が高い。   By utilizing the high infrared reflection characteristics of wood, not only heat island suppression but also the effect of suppressing temperature rise by infrared rays can be expected. Since the wooden infrared reflective coating material according to the present invention can be supplied in a large amount and at a low cost, it has a high utility value as a temperature rise suppression measure that needs to be widely spread.

本発明の一実施形態を示す建築構造物のイメージ図。The image figure of the building structure which shows one Embodiment of this invention. 外装材(トタン)と植物体(トマト)の表面温度の日変化を示すグラフ。The graph which shows the daily change of the surface temperature of an exterior material (tongue) and a plant body (tomato). 外装材(コンクリート、アスファルト)と植物体(トマトの葉、木材)の光反射率の測定結果を示すグラフ。The graph which shows the measurement result of the light reflectivity of exterior materials (concrete, asphalt) and a plant body (tomato leaf, wood). 湿った木材の表面温度の日変化をしめすグラフ。A graph showing the daily change in the surface temperature of wet wood.

符号の説明Explanation of symbols

12、12A コンクリート面(赤外線吸収性外装材の表面)
14 木質のチップやペレット
16、16A 赤外線反射性被覆材
18 木質タイル
20 木質塗料で形成した模様
12, 12A Concrete surface (surface of infrared absorbing exterior material)
14 Wood chips and pellets 16 and 16A Infrared reflective coating 18 Wood tile 20 Pattern made of wood paint

Claims (6)

建築構造物における赤外線吸収性外装材の表面を、全面的又は部分的に木質の赤外線反射性被覆材で覆うことを特徴とする建築構造物昇温抑制方法。   A method for suppressing temperature increase of a building structure, wherein the surface of the infrared absorbing exterior material in the building structure is entirely or partially covered with a wooden infrared reflective coating material. 前記赤外線反射性被覆材が、平均赤外線反射率(750〜2400nmの波長域における)45%以上を示すものとすることを特徴とする請求項1記載の建築構造物昇温抑制方法。   The method for suppressing temperature increase of a building structure according to claim 1, wherein the infrared reflective coating material exhibits an average infrared reflectance (in a wavelength range of 750 to 2400 nm) of 45% or more. 前記赤外線吸収性外装材が、屋根材及び/又は壁材であることを特徴とする請求項1記載の建築構造物昇温抑制方法。   The building structure temperature rise suppression method according to claim 1, wherein the infrared absorbing exterior material is a roof material and / or a wall material. 前記赤外線反射性被覆材が、それぞれ木質のチップ、ペレット、タイル、板材及び木質を含む塗料の群から選択できる1種又は2種以上であることを特徴とする請求項1〜3記載の建築構造物昇温抑制方法。   The said infrared reflective coating | covering material is 1 type, or 2 or more types which can be selected from the group of the coating material containing a wood chip | tip, a pellet, a tile, a board | plate material, and wood, respectively, The building structure of Claims 1-3 characterized by the above-mentioned. Material temperature rise suppression method. 前記木質を含む塗料が、最大径1mm以下ないし最大厚み0.3mm以下の木材粉砕物(プレイナ屑を含む。)を30質量%以上含有することを特徴とする請求項4記載の建築構造物昇温抑制方法。   5. The building structure ascent according to claim 4, wherein the paint containing wood contains 30% by mass or more of pulverized wood (including planer scraps) having a maximum diameter of 1 mm or less to a maximum thickness of 0.3 mm or less. Temperature control method. 請求項1〜5のいずれか記載の建築構造物昇温抑制方法が適用されてなることを特徴とする建築構造物。
A building structure to which the building structure temperature rise suppressing method according to any one of claims 1 to 5 is applied.
JP2003339628A 2003-09-30 2003-09-30 Building structure temperature rise restraining method and building structure Pending JP2005105644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003339628A JP2005105644A (en) 2003-09-30 2003-09-30 Building structure temperature rise restraining method and building structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003339628A JP2005105644A (en) 2003-09-30 2003-09-30 Building structure temperature rise restraining method and building structure

Publications (1)

Publication Number Publication Date
JP2005105644A true JP2005105644A (en) 2005-04-21

Family

ID=34534766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003339628A Pending JP2005105644A (en) 2003-09-30 2003-09-30 Building structure temperature rise restraining method and building structure

Country Status (1)

Country Link
JP (1) JP2005105644A (en)

Similar Documents

Publication Publication Date Title
AU2020256416B2 (en) Radiative cooling functional coating material and application thereof
Lyons Materials for architects and builders
Santamouris et al. Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions
JP6061783B2 (en) Multi-layer coating film and method for forming multi-layer coating film
CN1131141C (en) Thermochromic laminates and methods for controlling temperature of structure
RU2696715C1 (en) Floor panel with drain ledges
KR101625115B1 (en) Method for infrared heat reflective and waterproof of exposed type roof and coating composition used therein
WO2007056096A3 (en) Low emissive powder coating
KR101296580B1 (en) Water Paint Composition for Thermo-shielding
JP6944757B2 (en) Combination of radiant heat insulation refractory paint and additives and painting method using it
US20100247753A1 (en) Solar heat cutoff pavement
KR102570896B1 (en) Waterproofing coating method with energy-saving using eco-friendly acrylic emulsion
CA2698507A1 (en) Reflective asphalt composition
CN106458757B (en) Cement base photocatalytic composition and its for obtain especially for outdoor utility water-based paint purposes
KR101970633B1 (en) High durable thermally shielding paint composition with high infrared reflection
US20190194461A1 (en) Titanium dioxide asphalt compositions
KR101623567B1 (en) Thermal barrier waterproofing method using a coating material microspheres are contained
KR101278545B1 (en) Repairing method for crack of concrete structure
JP2005105644A (en) Building structure temperature rise restraining method and building structure
JP2005061042A (en) Solar heat intercepting pavement body
KR20220079233A (en) Manufacturing method of inorganic elastic penetration waterproofing agent for rooftop
JPH054072A (en) Heat insulating paint
Pisello et al. Nanotech-based cool materials for building energy efficiency
KR102551193B1 (en) Composition for functional heat-shielding paint that adjusts the absorption rate of visible light by converting colors according to temperature and a heat-shielding film comprising the same
JP7307841B2 (en) Coating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080610