JP2005102487A - Linear motor - Google Patents

Linear motor Download PDF

Info

Publication number
JP2005102487A
JP2005102487A JP2004243421A JP2004243421A JP2005102487A JP 2005102487 A JP2005102487 A JP 2005102487A JP 2004243421 A JP2004243421 A JP 2004243421A JP 2004243421 A JP2004243421 A JP 2004243421A JP 2005102487 A JP2005102487 A JP 2005102487A
Authority
JP
Japan
Prior art keywords
pole
magnetic pole
row
magnetic
linear motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004243421A
Other languages
Japanese (ja)
Other versions
JP4522192B2 (en
Inventor
Satoshi Sugita
聡 杉田
Yasushi Misawa
康司 三澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004243421A priority Critical patent/JP4522192B2/en
Publication of JP2005102487A publication Critical patent/JP2005102487A/en
Application granted granted Critical
Publication of JP4522192B2 publication Critical patent/JP4522192B2/en
Anticipated expiration legal-status Critical
Active legal-status Critical Current

Links

Images

Landscapes

  • Linear Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a linear motor, in which the shape of the magnetic pole face of a pole tooth located at both ends of a plurality of the pole teeth can be easily made into a shape suitable for reducing cogging force. <P>SOLUTION: The magnetic pole face 19a of the pole tooth 15A located on both ends of a plurality of the pole teeth 15 is composed of an arcuate curved face which is curved so that a gap dimension in-between a magnetic pole row 7 becomes larger, as each is separated from the other pole teeth 15B which are respectively adjacent to each other. Through-holes 23A, 23B, which are extended in the lamination direction of a steel plate 10 in the vicinity of the magnetic pole face 19a, are made in the pole tooth 15A. A magnetic body, which is smaller than the thickness dimension in the lamination direction of the steel plate 10, is arranged in the through-holes 23A, 23B so as to leave clearances at both ends of the through-holes 23A, 23B. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、リニアモータに関するものである。   The present invention relates to a linear motor.

固定子に対して可動子が往復直線運動をするリニアモータとして、複数の永久磁石が列を成すように配置されて構成された1以上の磁極列と電機子とを備えたものがある。この電機子は、複数枚の鋼板が積層されたコアと複数の励磁巻線とを有している。コアは、鋼板の積層方向と直交する方向に直線状に延びるヨークと該ヨークから磁極列側に突出し磁極列と対向する磁極面を端部に有する複数の極歯とを備えている。複数の励磁巻線は、複数の極歯を励磁している。しかしながら、この種のリニアモータでは、コギング力が大きくなるという問題がある。そこで、米国特許第4,638,192号の図7に示すように、コアを覆うように金属加工板を取り付けたリニアモータが提案された。この金属加工板は、可動子の往復動方向にコアの両端部から突出する部分を有している。この突出する部分は、それぞれ隣接する極歯から離れるに従って磁極列との間の間隙寸法が大きくなるように円弧状に湾曲する湾曲面を有している。
米国特許第4,638,192号(図7)
Some linear motors in which the mover performs a reciprocating linear motion with respect to the stator include one or more magnetic pole rows and armatures configured such that a plurality of permanent magnets are arranged in rows. This armature has a core in which a plurality of steel plates are laminated and a plurality of exciting windings. The core includes a yoke extending linearly in a direction orthogonal to the stacking direction of the steel plates and a plurality of pole teeth having a magnetic pole surface protruding from the yoke toward the magnetic pole row and facing the magnetic pole row at the end. The plurality of exciting windings excites a plurality of pole teeth. However, this type of linear motor has a problem that the cogging force increases. Therefore, as shown in FIG. 7 of US Pat. No. 4,638,192, a linear motor in which a metal processed plate is attached so as to cover the core has been proposed. This metal processed plate has portions that protrude from both ends of the core in the reciprocating direction of the mover. Each of the protruding portions has a curved surface that is curved in an arc shape so that a gap between the magnetic pole row and the magnetic pole row increases as the distance from the adjacent pole teeth increases.
US Pat. No. 4,638,192 (FIG. 7)

しかしながら、このリニアモータでは、金属板を加工して円弧状の湾曲面を作るので、コギング力を低下させるのに最適な円弧形状を形成しにくいという問題があった。また、金属加工板を用いるため、渦電流損が大きくなるという問題があった。また、外部からの力により湾曲面が変形しやすいという問題があった。そのため、品質にばらつきが生じやすいという問題があった。   However, this linear motor has a problem in that it is difficult to form an optimal arc shape for reducing the cogging force because the metal plate is processed to form an arcuate curved surface. Further, since a metal processed plate is used, there is a problem that eddy current loss increases. In addition, there is a problem that the curved surface is easily deformed by an external force. For this reason, there is a problem that the quality tends to vary.

本発明の目的は、複数の極歯からなる極歯列の両端に位置する2つの極歯の磁極面の形状を、コギング力を低下させるのに適した形状にすることが容易なリニアモータを提供することにある。   An object of the present invention is to provide a linear motor that can easily make the shape of the magnetic pole face of two pole teeth located at both ends of a pole tooth row composed of a plurality of pole teeth suitable for reducing the cogging force. It is to provide.

本発明の他の目的は、複数の極歯からなる極歯列の両端に位置する極歯の磁極面の湾曲面が、同じ幅寸法を有しているにもかかわらず、磁気的にコギング力を低下させるのに好ましい磁気抵抗パターンを有するリニアモータを提供することにある。   Another object of the present invention is to provide magnetic cogging force even though the curved surfaces of the pole face of the pole teeth located at both ends of the pole tooth row composed of a plurality of pole teeth have the same width dimension. Another object of the present invention is to provide a linear motor having a magnetoresistive pattern that is preferable for reducing the resistance.

本発明の他の目的は、渦電流損を小さくできるリニアモータを提供することにある。   Another object of the present invention is to provide a linear motor capable of reducing eddy current loss.

本発明の他の目的は、品質のばらつきを少なくできるリニアモータを提供することにある。   Another object of the present invention is to provide a linear motor that can reduce variations in quality.

本発明が改良の対象とするリニアモータは、固定子に対して可動子が往復直線運動をするように構成されている。本発明のリニアモータは磁極列と電機子とを具備している。磁極列は、固定子及び可動子の一方に設けられ、複数の永久磁石が列を成すように配置されて構成されている。電機子は、固定子及び可動子の他方に設けられて、コアと複数相の励磁巻線とを有している。コアは、複数枚の鋼板が積層されて構成され、鋼板の積層方向と直交する方向に直線状に延びるヨークと、該ヨークから磁極列側に突出し磁極列と対向する磁極面を端部に有する複数の極歯とを備えている。複数相の励磁巻線は、複数の極歯を励磁する。複数の極歯からなる極歯列の両端にそれぞれ位置する極歯の磁極面が、隣接する他の極歯から離れるに従って磁極列との間の間隙寸法が大きくなるように湾曲する湾曲面から構成されている。このように、本発明では、複数の極歯からなる極歯列の両端に位置する極歯の湾曲面となる磁極面を、積層鋼板の積層面によって形成する。そのため、複数枚の鋼鈑の形状を適宜に設定することにより、複数の極歯の両端に位置する極歯の磁極面をコギング力を低下させるのに最適な形状に容易に形成することができる。また本発明によれば、積層鋼鈑を用いて湾曲面を形成するので、渦電流損を小さくできる。また、従来のような1枚の金属加工板と異なり、積層鋼鈑は外部から力が加わっても湾曲面が変形しにくいため、品質のばらつきを少なくできる。   The linear motor to be improved by the present invention is configured such that the movable element reciprocates linearly with respect to the stator. The linear motor of the present invention includes a magnetic pole array and an armature. The magnetic pole array is provided on one of the stator and the mover, and is configured by arranging a plurality of permanent magnets so as to form an array. The armature is provided on the other of the stator and the mover, and has a core and a plurality of phases of excitation windings. The core is formed by laminating a plurality of steel plates, and has a yoke extending linearly in a direction orthogonal to the laminating direction of the steel plates, and a magnetic pole surface protruding from the yoke toward the magnetic pole row and facing the magnetic pole row at the end. A plurality of pole teeth. The multi-phase excitation winding excites a plurality of pole teeth. Consists of curved surfaces in which the pole face of each pole tooth located at both ends of the pole tooth row composed of a plurality of pole teeth is curved so that the gap dimension between the pole row increases as it moves away from other adjacent pole teeth. Has been. Thus, in this invention, the magnetic pole surface used as the curved surface of the pole tooth located in the both ends of the pole tooth row | line | column which consists of a some pole tooth is formed with the lamination | stacking surface of a laminated steel plate. Therefore, by appropriately setting the shape of the plurality of steel plates, the pole surfaces of the pole teeth positioned at both ends of the plurality of pole teeth can be easily formed into an optimum shape for reducing the cogging force. . Further, according to the present invention, the curved surface is formed using the laminated steel sheet, so that the eddy current loss can be reduced. In addition, unlike a conventional metal-worked plate, the laminated steel sheet can hardly vary in quality because the curved surface is not easily deformed even when a force is applied from the outside.

湾曲面を積層方向の一方側から見たときの輪郭形状が円弧になる形状を湾曲面が有している場合には、湾曲面を次のようにする。円弧の半径をRとし、磁極列に含まれる隣接する二つの永久磁石の中心間のピッチをτpとしたときに、1≦R/τp≦3.5の関係になるように、円弧の半径Rを定めるのが好ましい。このように円弧の半径Rを定めると簡単な設計でコギング力を低減できる湾曲面を得ることができる。なお、R/τpが1を下回るとコギング力を小さくできない上、コギング力のばらつきが大きくなる。R/τpが3.5を上回ると電機子の全長が長くなる上、電機子の質量が増える等の問題がある。   When the curved surface has a shape in which the contour shape when the curved surface is viewed from one side in the stacking direction is an arc, the curved surface is set as follows. When the radius of the arc is R and the pitch between the centers of two adjacent permanent magnets included in the magnetic pole array is τp, the radius R of the arc is set so that 1 ≦ R / τp ≦ 3.5. Is preferably determined. Thus, when the radius R of the arc is determined, a curved surface capable of reducing the cogging force can be obtained with a simple design. When R / τp is less than 1, the cogging force cannot be reduced and the variation in cogging force increases. If R / τp exceeds 3.5, the total length of the armature becomes longer, and the mass of the armature increases.

湾曲面の下側端部を通り磁極列と平行に延びる仮想線と湾曲面の上側端部を通って仮想線と直交する仮想垂線との交点と、前述の下側端部との間の長さ寸法(下側端部を通る垂線と上側端部とを通る垂線との間の最短距離)Ltと円弧の半径Rとが、0.38≦Lt/R≦0.65の関係になるように湾曲面を形成するのが好ましい。このように湾曲面を形成すると、電機子の取付精度を高くしなくても、コギング力を小さくして、しかもバラツキを少なくすることができる利点がある。なおLt/Rが0.38を下回るとコギング力を小さくできない。またLt/Rが0.65を上回ると電機子の全長が長くなる上、電機子の質量が増える等の問題がある。   The length between the intersection of an imaginary line that passes through the lower end of the curved surface and extends parallel to the magnetic pole row, and an imaginary perpendicular that passes through the upper end of the curved surface and is perpendicular to the imaginary line, and the lower end of the aforementioned The dimension (the shortest distance between the perpendicular passing through the lower end and the perpendicular passing through the upper end) Lt and the radius R of the arc are such that 0.38 ≦ Lt / R ≦ 0.65. It is preferable to form a curved surface. Forming the curved surface in this way has an advantage that the cogging force can be reduced and the variation can be reduced without increasing the mounting accuracy of the armature. If Lt / R is less than 0.38, the cogging force cannot be reduced. Further, when Lt / R exceeds 0.65, there are problems such as an increase in the total length of the armature and an increase in the mass of the armature.

磁極列と平行に延びる仮想線と湾曲面の下側端部を通る接線との間の角度α°は0°≦α°≦10°とするのが好ましい。このように角度α°を設定すると永久磁石配列の位置精度を高くしなくても、コギング力を小さくすることができ、しかもコギング力のばらつきを小さくすることができる。なおα°が10°を上回るとコギング力を小さくできない上、コギング力のばらつきが大きくなる。   The angle α ° between an imaginary line extending in parallel with the magnetic pole row and a tangent line passing through the lower end of the curved surface is preferably 0 ° ≦ α ° ≦ 10 °. When the angle α ° is set in this way, the cogging force can be reduced without increasing the positional accuracy of the permanent magnet arrangement, and the variation of the cogging force can be reduced. If α ° exceeds 10 °, the cogging force cannot be reduced and the variation in cogging force increases.

極歯列の両端にそれぞれ位置する2つの極歯には、磁極面の近傍において鋼板の積層方向に延びる1以上の孔または空洞を形成することができる。なおこの孔または空洞は貫通孔であっても、また有底の孔または空洞であってもよい。孔または空洞を設ける位置及びその数を適宜に定めることにより、湾曲面と磁極列との間に形成される間隔寸法は同じであっても、極歯内の磁気抵抗を変更して、その極歯側の磁気特性をコギング力を小さくするように変更することができる。   Two pole teeth positioned at both ends of the pole tooth row can be formed with one or more holes or cavities extending in the stacking direction of the steel plates in the vicinity of the magnetic pole surface. The hole or cavity may be a through hole or a bottomed hole or cavity. By appropriately determining the positions and the number of holes or cavities, even if the distance formed between the curved surface and the magnetic pole row is the same, the magnetic resistance in the pole teeth is changed to change the poles. The tooth side magnetic properties can be changed to reduce the cogging force.

また1以上の孔または空洞内に、鋼板の積層方向の厚み寸法よりも短い磁性体を配置することができる。このようにすると極歯の内部では、孔または空洞が残っている部分の磁気抵抗よりも、磁性体が存在している部分の磁気抵抗が小さくなる。その結果、磁性体の挿入位置を適宜に変えることによりその極歯内の磁路の磁気特性を変更できる。磁性体を挿入することにより、極歯の実際の外形を変えることなく、例えば、磁気的には先端に向かうに従って(ヨークが延びる方向でヨークから離れる方向に向かうに従って)幅が狭くなるような極歯の形状で得られる磁気特性と似た磁気特性を得ることができる。このような磁気特性は、1以上の孔または空洞の両端に空隙を残すように1以上の孔または空洞の内部に配置することにより得ることができる。このような磁気特性にすれば両端部の極歯に発生するコギング力を更に小さくできる利点がある。なおこの磁気特性は、孔または空洞の数と挿入する磁性体の長さ及び配置位置により任意に変えることができる。   Moreover, a magnetic body shorter than the thickness dimension of the lamination direction of a steel plate can be arrange | positioned in one or more holes or cavities. If it does in this way, in the inside of a pole tooth, the magnetic resistance of the part in which a magnetic body exists will become smaller than the magnetic resistance of the part in which a hole or a cavity remains. As a result, the magnetic characteristics of the magnetic path in the pole teeth can be changed by appropriately changing the insertion position of the magnetic material. By inserting a magnetic material, without changing the actual external shape of the pole teeth, for example, magnetically, the pole becomes narrower as it goes to the tip (as the yoke extends away from the yoke) Magnetic properties similar to those obtained with the tooth shape can be obtained. Such magnetic properties can be obtained by placing the interior of the one or more holes or cavities so as to leave a void at both ends of the one or more holes or cavities. Such magnetic characteristics have the advantage that the cogging force generated at the pole teeth at both ends can be further reduced. This magnetic characteristic can be arbitrarily changed depending on the number of holes or cavities, the length of the magnetic substance to be inserted, and the position of the magnetic substance.

複数の孔または空洞を、磁極面に沿って並ぶように形成し、磁極面の上側端部に近づくに従って、または磁極列から離れるに従って孔または空洞内に挿入される磁性体の長さを短くするのが好ましい。このようにすれば、磁気的には先端に向かうに従って(ヨークが延びる方向でヨークから離れる方向に向かうに従って)幅が段階的に狭くなるような極歯形状で得られる磁気特性と似た磁気特性を得ることができ、コギング力を更に小さくできる利点がある。   A plurality of holes or cavities are formed so as to be aligned along the magnetic pole surface, and the length of the magnetic material inserted into the holes or cavities is shortened as approaching the upper end of the magnetic pole surface or away from the magnetic pole row Is preferred. In this way, magnetic characteristics similar to those obtained with a pole tooth shape that becomes narrower stepwise as it goes to the tip (in the direction in which the yoke extends and away from the yoke). There is an advantage that the cogging force can be further reduced.

本発明によれば、コギング力を低下させるのに最適な形状の湾曲面を容易に形成できる。また、複数の極歯の両端にそれぞれ位置する2つの極歯における渦電流損を小さくできる。更に、両端の極歯の湾曲面の変形を防止して、品質のばらつきを少なくできる。さらに両端の極歯に孔または空洞を形成したり、これらの孔または空洞に磁性体を挿入することにより、磁極面の形状を変えることなく、両端部の極歯の磁気特性を変えることができる。したがって本発明によれば、コギング力を低下させるのに適した磁気特性を持った極歯を容易に形成できる。   According to the present invention, it is possible to easily form a curved surface having an optimum shape for reducing the cogging force. Moreover, the eddy current loss in the two pole teeth respectively located at both ends of the plurality of pole teeth can be reduced. Furthermore, deformation of the curved surfaces of the pole teeth at both ends can be prevented, and variation in quality can be reduced. Furthermore, by forming holes or cavities in the pole teeth at both ends, or inserting a magnetic material into these holes or cavities, the magnetic properties of the pole teeth at both ends can be changed without changing the shape of the pole face. . Therefore, according to the present invention, it is possible to easily form pole teeth having magnetic characteristics suitable for reducing the cogging force.

以下、図面を参照して本発明を実施するための最良の形態を説明する。図1は、本発明の一実施の形態のリニアモータの構造を説明するために用いる模式図である。図1には、固定子1の一部と可動子3の一部が示されている。図1に示すように、本形態のリニアモータは、固定子1と可動子3とを具備している。固定子1は、ベース5上に磁極列7を備えた構造を有している。磁極列7は、複数のN極の永久磁石7Aと複数のS極の永久磁石7Bとが交互に並ぶように配置されて構成されている。   The best mode for carrying out the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram used for explaining the structure of a linear motor according to an embodiment of the present invention. FIG. 1 shows a part of the stator 1 and a part of the mover 3. As shown in FIG. 1, the linear motor of this embodiment includes a stator 1 and a mover 3. The stator 1 has a structure including a magnetic pole array 7 on a base 5. The magnetic pole array 7 is configured such that a plurality of N-pole permanent magnets 7A and a plurality of S-pole permanent magnets 7B are alternately arranged.

可動子3は、図示しない支持手段により固定子1に対して可動自在に支持されている。可動子3は、図2の斜視図に示すように、コア9と複数相の励磁巻線11…とからなる電機子を備えている。コア9は、複数枚の鋼板10…が積層されて構成されている。コア9は、鋼板10…の積層方向と直交する方向に直線状に延びるヨーク13と、ヨーク13から磁極列7側に突出する複数の極歯15…とを有している。励磁巻線11…は、複数の極歯15…の隣接する極歯15,15の間に形成されたスロット17内にそれぞれの一部が配置されている。このような構成により、複数の極歯15…は、励磁巻線11…により励磁される。そして、可動子3は、永久磁石7Aと永久磁石7Bとが並ぶ方向(図1に示す矢印Aの方向)に往復動する。   The mover 3 is movably supported with respect to the stator 1 by support means (not shown). As shown in the perspective view of FIG. 2, the mover 3 includes an armature including a core 9 and a plurality of phases of excitation windings 11. The core 9 is configured by laminating a plurality of steel plates 10. The core 9 has a yoke 13 extending linearly in a direction perpendicular to the stacking direction of the steel plates 10 and a plurality of pole teeth 15 projecting from the yoke 13 toward the magnetic pole row 7. A part of each of the exciting windings 11 is disposed in a slot 17 formed between the adjacent pole teeth 15 of the plurality of pole teeth 15. With such a configuration, the plurality of pole teeth 15 are excited by the excitation windings 11. And the needle | mover 3 reciprocates in the direction (direction of arrow A shown in FIG. 1) where the permanent magnet 7A and the permanent magnet 7B are arranged.

複数の極歯15…からなる極歯列16の両端にそれぞれ位置する極歯15Aは、固定子1と対向する磁極面構成部19と、磁極面構成部19とヨーク13とを連結する連結部21とを有している。なお、図1及び図2では、極歯列16の両端に位置する極歯の一方の極歯15Aのみを示している。可動子3の往復動方向(矢印A)における磁極面構成部19の厚み寸法は、連結部21の厚み寸法より大きく形成されている。そのため、磁極面構成部19の一部は、連結部21からコア9の外側方向に突出している。磁極面構成部19は、磁極列7と対向する磁極面19aを端部に有している。磁極面19aは、隣接する他の極歯15Bから離れるに従って磁極列7との間の間隙寸法が大きくなるように湾曲する湾曲面19bから構成されている。湾曲面19bは、湾曲面19bを鋼板10…の積層方向の一方側から見たときの輪郭形状が円弧になる形状を有している。図1に示すように、円弧の半径Rは、磁極列7に含まれる隣接する二つの永久磁石7A,7Bの中心間のピッチをτpとしたときに、1≦R/τp≦3.5の関係になるように定められている。また、湾曲面19bは、湾曲面19bの下側端部19cを通り磁極列7と平行に延びる仮想線L1と湾曲面19bの上側端部19dを通って仮想直線L1と直交する仮想垂線L2との交点Cと、下側端部19cとの間の長さ寸法(下側端部を通る垂線と上側端部とを通る垂線との間の最短距離)Ltと前述の円弧の半径Rとが、0.38≦Lt/R≦0.65の関係になるように形成されている。更に、磁極列7と平行に延びる仮想線L1と湾曲面19bの下側端部19cを通る接線L3との間の角度α°が0°≦α°≦10°となるように湾曲面19bは形成されている。   The pole teeth 15 </ b> A positioned at both ends of the pole tooth row 16 composed of a plurality of pole teeth 15... 21. 1 and 2, only one pole tooth 15A of the pole teeth located at both ends of the pole tooth row 16 is shown. The thickness dimension of the magnetic pole surface constituting part 19 in the reciprocating direction (arrow A) of the mover 3 is formed larger than the thickness dimension of the connecting part 21. Therefore, a part of the magnetic pole surface constituting part 19 protrudes from the connecting part 21 toward the outer side of the core 9. The magnetic pole surface constituting portion 19 has a magnetic pole surface 19 a facing the magnetic pole row 7 at the end. The magnetic pole surface 19a is composed of a curved surface 19b that is curved so that a gap dimension between the magnetic pole row 7 and the magnetic pole row 7 increases as the distance from the other adjacent pole teeth 15B increases. The curved surface 19b has a shape in which the contour shape when the curved surface 19b is viewed from one side in the stacking direction of the steel plates 10 is an arc. As shown in FIG. 1, the radius R of the arc is such that 1 ≦ R / τp ≦ 3.5 when the pitch between the centers of two adjacent permanent magnets 7A and 7B included in the magnetic pole row 7 is τp. It is determined to be a relationship. The curved surface 19b includes a virtual line L1 extending through the lower end 19c of the curved surface 19b and parallel to the magnetic pole row 7, and a virtual perpendicular L2 orthogonal to the virtual straight line L1 through the upper end 19d of the curved surface 19b. Lt and the radius R of the above-mentioned arc are the length dimension (the shortest distance between the perpendicular passing through the lower end and the perpendicular passing through the upper end) Lt , 0.38 ≦ Lt / R ≦ 0.65. Further, the curved surface 19b is set so that an angle α ° between an imaginary line L1 extending in parallel with the magnetic pole row 7 and a tangent line L3 passing through the lower end portion 19c of the curved surface 19b satisfies 0 ° ≦ α ° ≦ 10 °. Is formed.

磁極面構成部19には、磁極面19aの近傍において鋼板10…の積層方向に延びる2つの貫通孔23A,23Bからなる孔または空洞が形成されている。貫通孔23A,23Bは、横断面形状が円形を有しており、磁極面19aに沿って並ぶように形成されている。2つの貫通孔23A,23Bの内部には、貫通孔23A,23Bに挿入可能な円柱形状の磁性体25A,25Bがそれぞれ配置されている。磁性体25A,25Bは、いずれもコア9の磁気抵抗に比べやや磁気抵抗の大きい炭素鋼等により形成されている。磁性体25A,25Bは、鋼板10…の積層方向の厚み寸法よりも短い寸法を有しており、貫通孔23A,23Bの両端に空隙を残すように貫通孔23A,23Bの中央部に配置されている。本例では、磁極面19aの上側端部に近づくに従って(磁極列7から離れるに従って)貫通孔23A,23Bに挿入される磁性体25A,25Bの長さは短くなっている。即ち、磁極面19aの上側端部に近い貫通孔23Bに挿入される磁性体25Bは、磁極面19aの上側端部から離れた貫通孔23Aに挿入される磁性体25Aより長さが短くなっている。   The magnetic pole surface constituting part 19 is formed with a hole or cavity composed of two through holes 23A and 23B extending in the laminating direction of the steel plates 10 in the vicinity of the magnetic pole surface 19a. The through holes 23A and 23B have a circular cross-sectional shape, and are formed so as to be aligned along the magnetic pole surface 19a. Cylindrical magnetic bodies 25A and 25B that can be inserted into the through holes 23A and 23B are disposed inside the two through holes 23A and 23B, respectively. The magnetic bodies 25 </ b> A and 25 </ b> B are both made of carbon steel or the like having a slightly higher magnetic resistance than the magnetic resistance of the core 9. The magnetic bodies 25A and 25B have dimensions shorter than the thickness dimension of the steel plates 10 in the stacking direction, and are disposed at the center of the through holes 23A and 23B so as to leave gaps at both ends of the through holes 23A and 23B. ing. In this example, the lengths of the magnetic bodies 25A and 25B inserted into the through holes 23A and 23B are shortened as they approach the upper end of the magnetic pole surface 19a (as they move away from the magnetic pole row 7). That is, the magnetic body 25B inserted into the through hole 23B near the upper end of the magnetic pole surface 19a is shorter than the magnetic body 25A inserted into the through hole 23A away from the upper end of the magnetic pole surface 19a. Yes.

次に、本例のリニアモータにおいて、(湾曲面19bの円弧の半径:R)/(永久磁石7A,7Bの中心間のピッチ:τp)の数値を変えて、その他は同じ構造とした種々のリニアモータを作った。そして、R/τpが0.5のときのコギング力及び電機子の全長をそれぞれ100とした場合のR/τpとコギング力比及び電機子の全長比との関係を調べた。表1はその結果を示している。

Figure 2005102487
Next, in the linear motor of the present example, the numerical values of (radius of the arc of the curved surface 19b: R) / (pitch between the centers of the permanent magnets 7A and 7B: τp) are changed, and the others have the same structure. Made a linear motor. Then, the relationship between R / τp, cogging force ratio, and armature full length ratio when cogging force and armature full length when R / τp is 0.5 was set to 100 was examined. Table 1 shows the results.
Figure 2005102487

表1より、R/τpが1を下回るとコギング力を小さくできない上、コギング力のばらつきが大きくなるのが分かる。また、R/τpが3.5を上回ると電機子の全長が長くなるのが分かる。   From Table 1, it can be seen that when R / τp is less than 1, the cogging force cannot be reduced and the variation of the cogging force increases. It can also be seen that when R / τp exceeds 3.5, the length of the armature becomes longer.

次に、本例のリニアモータにおいて(ヨークが延びる方向における湾曲面19bの下側端部と上側端部との間の長さ寸法:Lt)/(円弧の半径:R)の数値を変えて、その他は同じ構造とした種々のリニアモータを作った。そして、Lt/Rが0.30のときのコギング力及び電機子の全長をそれぞれ100とした場合のLt/Rとコギング力比及び電機子の全長比との関係を調べた。表2はその結果を示している。

Figure 2005102487
Next, in the linear motor of this example, the numerical value of (length dimension between the lower end portion and the upper end portion of the curved surface 19b in the extending direction of the yoke: Lt) / (radius of the arc: R) is changed. Others made various linear motors with the same structure. Then, the relationship between Lt / R, the cogging force ratio, and the full length ratio of the armature when the cogging force and the full length of the armature were set to 100 when Lt / R was 0.30 was examined. Table 2 shows the results.
Figure 2005102487

表2より、Lt/Rが0.38を下回るとコギング力を小さくできないのが分かる。また、Lt/Rが0.65を上回るとコギング力が大きくなることや、電機子の全長が長くなることが分かる。   From Table 2, it can be seen that the cogging force cannot be reduced when Lt / R is less than 0.38. It can also be seen that when Lt / R exceeds 0.65, the cogging force increases and the total length of the armature increases.

次に、本例のリニアモータにおいて、磁極列7と平行に延びる仮想線L1と湾曲面19bの下側端部19cを通る接線L3との間の角度α°の数値が異なり他は同じ構造を有する種々のリニアモータを作った。そして、α°が0のときのコギング力を100とした場合のα°とコギング力比との関係を調べた。表3はその結果を示している。

Figure 2005102487
Next, in the linear motor of this example, the numerical value of the angle α ° between the imaginary line L1 extending in parallel with the magnetic pole row 7 and the tangent line L3 passing through the lower end 19c of the curved surface 19b is different, and the other structure is the same. Made various linear motors with. Then, the relationship between α ° and the cogging force ratio when the cogging force when α ° is 0 was set to 100 was examined. Table 3 shows the results.
Figure 2005102487

表3より、α°が10°を上回るとコギング力を小さくできない上、コギング力のばらつきが大きくなるのが分かる。   From Table 3, it can be seen that when α ° exceeds 10 °, the cogging force cannot be reduced and the variation in cogging force increases.

なお、本例では、磁極面構成部19に2つの貫通孔23A,23Bを形成し、2つの貫通孔23A,23Bの内部に2つの磁性体25A,25Bをそれぞれ配置したが、貫通孔の数及び内部に配置する磁性体の数は任意である。例えば、図3に示すように、磁極面構成部119に1つの貫通孔123のみを形成してもよい。この貫通孔123内には、図4に示すように、1つの磁性体125が配置されている。   In this example, the two through holes 23A and 23B are formed in the magnetic pole surface constituting portion 19 and the two magnetic bodies 25A and 25B are disposed inside the two through holes 23A and 23B, respectively. The number of magnetic bodies arranged inside is arbitrary. For example, as shown in FIG. 3, only one through hole 123 may be formed in the magnetic pole surface constituting portion 119. As shown in FIG. 4, one magnetic body 125 is disposed in the through hole 123.

また、貫通孔の内部には必ずしも磁性体を配置しなくても構わない。即ち、磁極面構成部に貫通孔のみを形成する構造であっても構わない。   Further, it is not always necessary to arrange a magnetic body inside the through hole. That is, a structure in which only a through hole is formed in the magnetic pole surface constituent part may be used.

また、上記例では、孔または空洞として横断面が円形の貫通孔を形成したが、磁極面構成部に形成する孔または空洞の形状は任意である。   In the above example, the through hole having a circular cross section is formed as the hole or cavity, but the shape of the hole or cavity formed in the magnetic pole surface constituting portion is arbitrary.

また、上記例では、固定子が磁極列を備え、可動子が電機子を備えたリニアモータの例を示したが、固定子が電機子を備え、可動子が磁極列を備えたリニアモータにも本発明を適用できるのは勿論である。   In the above example, an example of a linear motor in which the stator has a magnetic pole array and the mover has an armature has been shown, but the stator has an armature, and the mover has a magnetic pole array. Of course, the present invention can also be applied.

本発明を実施するための最良の形態の一例のリニアモータの構造を説明するために用いる模式図である。It is a schematic diagram used in order to demonstrate the structure of the linear motor of an example of the best form for implementing this invention. 図1に示すリニアモータに用いる可動子の一部の斜視図である。It is a one part perspective view of the needle | mover used for the linear motor shown in FIG. 本発明の第2の形態のリニアモータの構造を説明するために用いる模式図である。It is a schematic diagram used in order to demonstrate the structure of the linear motor of the 2nd form of this invention. 図3に示すリニアモータに用いる可動子の一部の斜視図である。It is a one part perspective view of the needle | mover used for the linear motor shown in FIG.

符号の説明Explanation of symbols

1 固定子
3 可動子
7 磁極列
9 コア
10 鋼板
11 励磁巻線
13 ヨーク
15 極歯
19a 磁極面
19b 湾曲面
23A,23B 貫通孔(孔または空洞)
25A,25B 磁性体
DESCRIPTION OF SYMBOLS 1 Stator 3 Movable element 7 Magnetic pole row 9 Core 10 Steel plate 11 Excitation winding 13 Yoke 15 Pole tooth 19a Magnetic pole surface 19b Curved surface 23A, 23B Through-hole (hole or cavity)
25A, 25B Magnetic material

Claims (8)

固定子に対して可動子が往復直線運動をするように構成されたリニアモータであって、
前記固定子及び可動子の一方に設けられ、複数の永久磁石が列を成すように配置されて構成された1以上の磁極列と、
前記固定子及び可動子の他方に設けられ、複数枚の鋼板が積層されて構成され前記鋼板の積層方向と直交する方向に直線状に延びるヨークと前記ヨークから前記磁極列側に突出し前記磁極列と対向する磁極面を端部に有する複数の極歯とを備えたコアと、前記複数の極歯を励磁する複数相の励磁巻線とを有する電機子とを具備し、
前記複数の極歯からなる極歯列の両端にそれぞれ位置する前記極歯の前記磁極面は、隣接する他の前記極歯から離れるに従って前記磁極列との間の間隙寸法が大きくなるように湾曲する湾曲面からなることを特徴とするリニアモータ。
A linear motor configured such that the mover performs a reciprocating linear motion with respect to the stator,
One or more magnetic pole rows provided on one of the stator and the mover and arranged such that a plurality of permanent magnets form a row; and
Provided on the other side of the stator and the mover, a plurality of steel plates are laminated and extend linearly in a direction perpendicular to the laminating direction of the steel plates, and project from the yoke to the magnetic pole row side and the magnetic pole row An armature having a core having a plurality of pole teeth having pole faces facing each other and a plurality of excitation windings for exciting the plurality of pole teeth,
The magnetic pole surfaces of the pole teeth respectively located at both ends of the pole teeth row made up of the plurality of pole teeth are curved so that the gap between the pole teeth becomes larger as the distance from the other adjacent pole teeth increases. A linear motor comprising a curved surface.
前記湾曲面は、前記湾曲面を前記積層方向の一方側から見たときの輪郭形状が円弧になる形状を有しており、
前記円弧の半径をRとし、前記磁極列に含まれる隣接する二つの永久磁石の中心間のピッチをτpとしたときに、1≦R/τp≦3.5の関係になるように、前記円弧の半径Rを定めたことを特徴とする請求項1に記載のリニアモータ。
The curved surface has a shape in which the contour shape when the curved surface is viewed from one side in the stacking direction is an arc,
When the radius of the circular arc is R and the pitch between the centers of two adjacent permanent magnets included in the magnetic pole row is τp, the circular arc has a relation of 1 ≦ R / τp ≦ 3.5. The linear motor according to claim 1, wherein a radius R is determined.
前記湾曲面の下側端部を通り前記磁極列と平行に延びる仮想線と前記湾曲面の上側端部を通って前記仮想線と直交する仮想垂線との交点と、前記下側端部との間の長さ寸法Ltと前記円弧の半径Rとが、0.38≦Lt/R≦0.65の関係になるように前記湾曲面が形成されていることを特徴とする請求項2に記載のリニアモータ。   An intersection of an imaginary line extending through the lower end of the curved surface and parallel to the magnetic pole row, and an imaginary perpendicular perpendicular to the imaginary line through the upper end of the curved surface, and the lower end The curved surface is formed so that a length dimension Lt between them and a radius R of the arc have a relationship of 0.38 ≦ Lt / R ≦ 0.65. Linear motor. 前記磁極列と平行に延びる仮想線と前記湾曲面の前記下側端部を通る接線との間の角度α°が0°≦α°≦10°となる請求項1〜3のいずれか一つに記載のリニアモータ。   The angle α ° between an imaginary line extending in parallel with the magnetic pole row and a tangent line passing through the lower end portion of the curved surface satisfies 0 ° ≦ α ° ≦ 10 °. The linear motor described in 1. 前記極歯列の両端にそれぞれ位置する前記極歯には、前記磁極面の近傍において前記鋼板の積層方向に延びる1以上の孔または空洞が形成されている請求項1〜4のいずれか一つに記載のリニアモータ。   The pole teeth respectively located at both ends of the pole tooth row are formed with one or more holes or cavities extending in the laminating direction of the steel plates in the vicinity of the magnetic pole surface. The linear motor described in 1. 前記1以上の孔または空洞内には、前記鋼板の積層方向の厚み寸法よりも短い磁性体が、前記1以上の孔または空洞の両端に空隙を残すように前記1以上の孔または空洞の内部に配置されている請求項5に記載のリニアモータ。   Inside the one or more holes or cavities, the magnetic material shorter than the thickness dimension in the stacking direction of the steel plates leaves the voids at both ends of the one or more holes or cavities. The linear motor of Claim 5 arrange | positioned. 複数の前記孔または空洞が、前記磁極面に沿って並ぶように形成されており、前記磁極列から離れるに従って前記孔または空洞内に挿入される前記磁性体の長さが短くなる請求項6に記載のリニアモータ。   The plurality of holes or cavities are formed so as to be aligned along the magnetic pole surface, and the length of the magnetic body inserted into the holes or cavities decreases as the distance from the magnetic pole row increases. The linear motor described. 固定子に対して可動子が往復直線運動をするように構成されたリニアモータであって、
前記固定子及び可動子の一方に設けられ、ベース上に複数のN極の永久磁石と複数のS極の永久磁石とが交互に並ぶように配置されて構成された磁極列と、
前記固定子及び可動子の他方に設けられ、複数枚の鋼板が積層されて構成され、前記鋼板の積層方向と直交する方向に直線状に延びるヨークと前記ヨークから前記磁極列側に突出し前記磁極列に対向する磁極面を端部に有する複数の極歯とを備えたコアと、前記複数の極歯の隣接する極歯の間に形成されたスロット内に一部が配置されて前記複数の極歯を励磁する複数相の励磁巻線とを有する電機子とを具備し、
前記複数の極歯からなる極歯列の両端にそれぞれ位置する前記極歯の前記磁極面は、それぞれ隣接する他の前記極歯から離れるに従って前記磁極列との間の間隙寸法が大きくなるように湾曲する湾曲面からなり、
前記湾曲面は、前記湾曲面を前記積層方向の一方側から見たときの輪郭形状が円弧になる形状を有しているリニアモータ。
A linear motor configured such that the mover performs a reciprocating linear motion with respect to the stator,
A magnetic pole array that is provided on one of the stator and the mover and is configured such that a plurality of N-pole permanent magnets and a plurality of S-pole permanent magnets are alternately arranged on the base;
Provided on the other of the stator and the mover, a plurality of steel plates are laminated, a yoke extending linearly in a direction orthogonal to the laminating direction of the steel plates, and protruding from the yoke toward the magnetic pole row side, the magnetic pole A core having a plurality of pole teeth having pole faces facing the rows at the ends, and a plurality of the plurality of pole teeth arranged in slots formed between the pole teeth adjacent to each other; An armature having a plurality of excitation windings for exciting the pole teeth,
The magnetic pole surfaces of the pole teeth respectively located at both ends of the pole tooth row made up of the plurality of pole teeth are such that the gap size between the magnetic pole row and the magnetic pole row increases as the distance from the other adjacent pole teeth increases. It consists of a curved surface that curves,
The linear motor has a shape in which a contour shape when the curved surface is viewed from one side in the stacking direction is an arc.
JP2004243421A 2003-08-29 2004-08-24 Linear motor Active JP4522192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004243421A JP4522192B2 (en) 2003-08-29 2004-08-24 Linear motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003307788 2003-08-29
JP2004243421A JP4522192B2 (en) 2003-08-29 2004-08-24 Linear motor

Publications (2)

Publication Number Publication Date
JP2005102487A true JP2005102487A (en) 2005-04-14
JP4522192B2 JP4522192B2 (en) 2010-08-11

Family

ID=34467425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004243421A Active JP4522192B2 (en) 2003-08-29 2004-08-24 Linear motor

Country Status (1)

Country Link
JP (1) JP4522192B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009195103A (en) * 2008-02-18 2009-08-27 Siemens Ag Primary part of linear electric machine with force ripple compensation function and linear electric machine
JP2009545939A (en) * 2006-07-31 2009-12-24 シーメンス アクチエンゲゼルシヤフト Linear motor with force pulsation compensation
JP2009545940A (en) * 2006-07-31 2009-12-24 シーメンス アクチエンゲゼルシヤフト Force ripple compensation linear motor
JP2011188709A (en) * 2010-03-11 2011-09-22 Yaskawa Electric Corp Linear motor
JP2012178955A (en) * 2011-02-28 2012-09-13 Mitsubishi Electric Corp Linear motor
DE102015013638A1 (en) 2014-10-29 2016-05-04 Fanuc Corporation Linear motor with reduced latching force
CN113300567A (en) * 2021-06-15 2021-08-24 东南大学 Motor based on improve Halbach magnetization

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5568870A (en) * 1978-11-15 1980-05-23 Matsushita Electric Ind Co Ltd Rectilinear-moving electric machine
JPS60174050A (en) * 1984-02-17 1985-09-07 Shibaura Eng Works Co Ltd Field magnetic flux regulating method of dc motor
JPS60223461A (en) * 1984-04-17 1985-11-07 Matsushita Electric Ind Co Ltd Linear stepping motor
US4638192A (en) * 1981-12-11 1987-01-20 Papst-Motoren Gmbh & Co. Kg Linear DC motor
JPH0265656A (en) * 1988-08-31 1990-03-06 Matsushita Electric Ind Co Ltd Coreless linear motor
JPH0434838U (en) * 1990-07-13 1992-03-24
JPH0974733A (en) * 1995-06-28 1997-03-18 Mitsubishi Electric Corp Linear motor
US5910691A (en) * 1995-03-20 1999-06-08 Wavre; Nicolas Permanent-magnet linear synchronous motor
WO2000001059A1 (en) * 1998-06-29 2000-01-06 Siemens Aktiengesellschaft Linear synchronous motor
JP2002209371A (en) * 2001-01-11 2002-07-26 Yaskawa Electric Corp Linear motor
JP2003299342A (en) * 2002-01-29 2003-10-17 Mitsubishi Electric Corp Linear motor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5568870A (en) * 1978-11-15 1980-05-23 Matsushita Electric Ind Co Ltd Rectilinear-moving electric machine
US4638192A (en) * 1981-12-11 1987-01-20 Papst-Motoren Gmbh & Co. Kg Linear DC motor
JPS60174050A (en) * 1984-02-17 1985-09-07 Shibaura Eng Works Co Ltd Field magnetic flux regulating method of dc motor
JPS60223461A (en) * 1984-04-17 1985-11-07 Matsushita Electric Ind Co Ltd Linear stepping motor
JPH0265656A (en) * 1988-08-31 1990-03-06 Matsushita Electric Ind Co Ltd Coreless linear motor
JPH0434838U (en) * 1990-07-13 1992-03-24
US5910691A (en) * 1995-03-20 1999-06-08 Wavre; Nicolas Permanent-magnet linear synchronous motor
JPH0974733A (en) * 1995-06-28 1997-03-18 Mitsubishi Electric Corp Linear motor
WO2000001059A1 (en) * 1998-06-29 2000-01-06 Siemens Aktiengesellschaft Linear synchronous motor
JP2002209371A (en) * 2001-01-11 2002-07-26 Yaskawa Electric Corp Linear motor
JP2003299342A (en) * 2002-01-29 2003-10-17 Mitsubishi Electric Corp Linear motor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009545939A (en) * 2006-07-31 2009-12-24 シーメンス アクチエンゲゼルシヤフト Linear motor with force pulsation compensation
JP2009545940A (en) * 2006-07-31 2009-12-24 シーメンス アクチエンゲゼルシヤフト Force ripple compensation linear motor
JP2009195103A (en) * 2008-02-18 2009-08-27 Siemens Ag Primary part of linear electric machine with force ripple compensation function and linear electric machine
JP2011188709A (en) * 2010-03-11 2011-09-22 Yaskawa Electric Corp Linear motor
US8384252B2 (en) 2010-03-11 2013-02-26 Kabushiki Kaisha Yaskawa Denki Linear motor
JP2012178955A (en) * 2011-02-28 2012-09-13 Mitsubishi Electric Corp Linear motor
DE102015013638A1 (en) 2014-10-29 2016-05-04 Fanuc Corporation Linear motor with reduced latching force
US10355575B2 (en) 2014-10-29 2019-07-16 Fanuc Corporation Linear motor with reduced cogging force
DE102015013638B4 (en) 2014-10-29 2021-08-19 Fanuc Corporation Linear motor with reduced detent force
CN113300567A (en) * 2021-06-15 2021-08-24 东南大学 Motor based on improve Halbach magnetization

Also Published As

Publication number Publication date
JP4522192B2 (en) 2010-08-11

Similar Documents

Publication Publication Date Title
KR101072854B1 (en) Linear motor
EP1968175A2 (en) Linear motor with reduced cogging
JP5484861B2 (en) Linear motor
JP4458238B2 (en) Permanent magnet synchronous linear motor
JP2007037273A (en) Vibratory linear actuator
US6753627B2 (en) Linear motor
KR102339956B1 (en) linear motor
JP5082241B2 (en) Linear motor and method of manufacturing stator included therein
JP4522192B2 (en) Linear motor
JP2005223997A (en) Linear motor
JP2004297977A (en) Linear motor
KR101048055B1 (en) Transverse flux electric equipment with slit in core
JP6790656B2 (en) Linear motor
JP5621372B2 (en) Permanent magnet embedded rotor and rotating electric machine
JP2006527576A (en) Linear brushless DC motor with an iron core with reduced detent power
JP4988233B2 (en) Linear motor
JP4497986B2 (en) Claw pole type three-phase linear motor
JP3793874B2 (en) Permanent magnet type linear motor
JP2007209175A (en) Three-phase linear motor
JP2691672B2 (en) Rectilinear electric machine
JP2004215414A (en) Linear motor
JP5909973B2 (en) Linear drive
KR20190120354A (en) Waveform stator
JP2005057822A (en) Linear motor
JP2005229778A (en) Linear motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100525

R150 Certificate of patent or registration of utility model

Ref document number: 4522192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250