JP2005098865A - Meter apparatus - Google Patents

Meter apparatus Download PDF

Info

Publication number
JP2005098865A
JP2005098865A JP2003333604A JP2003333604A JP2005098865A JP 2005098865 A JP2005098865 A JP 2005098865A JP 2003333604 A JP2003333604 A JP 2003333604A JP 2003333604 A JP2003333604 A JP 2003333604A JP 2005098865 A JP2005098865 A JP 2005098865A
Authority
JP
Japan
Prior art keywords
measurement
state
determination
flow rate
meter device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003333604A
Other languages
Japanese (ja)
Other versions
JP4592268B2 (en
Inventor
Shigeru Tagawa
滋 田川
Shuichi Okada
修一 岡田
Yasuhiro Fujii
泰宏 藤井
Kazuto Kotakane
和人 小高根
Toru Hiroyama
徹 廣山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Tokyo Gas Co Ltd, Toho Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2003333604A priority Critical patent/JP4592268B2/en
Publication of JP2005098865A publication Critical patent/JP2005098865A/en
Application granted granted Critical
Publication of JP4592268B2 publication Critical patent/JP4592268B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately detect leakage in a meter apparatus, such as an ultrasonic meter apparatus for outputting the measurement values of the instantaneous flow rate of a fluid flowing in a measuring flow path at relatively short setup intervals. <P>SOLUTION: A flowless state recognizing means measures determination times C as the number of times of the measurement value q<SB>ave</SB>less than a predetermined threshold Y and outputted at the setup intervals during a decision period D. When the decision number of times C becomes the predetermined setup decision times M of 2 or more, it decides that a flowless state is generated, and a state in which the flowless state is not generated during the decision period D, is sensed as being a leakage state. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、測定流路を流れる流体の瞬時流量に関する測定値を所定の設定時間間隔で出力する測定手段と、
判定期間内において前記測定手段から出力された前記測定値に基づいて無流通状態の発生を判定する無流通状態判定手段と、
前記判定期間内において前記無流通状態判定手段により前記無流通状態が発生したと判定しなかった状態を漏洩状態として検知する漏洩検知手段とを備えたメータ装置に関する。
The present invention provides a measurement means for outputting a measurement value relating to an instantaneous flow rate of a fluid flowing through a measurement flow path at a predetermined set time interval;
A non-circulation state determination unit that determines occurrence of a non-circulation state based on the measurement value output from the measurement unit within a determination period;
The present invention relates to a meter device comprising leakage detection means for detecting, as a leakage state, a state in which the no-flow state determination means does not determine that the non-flow state has occurred within the determination period.

上記のような測定流路を流れる流体の瞬時流量を測定し、その瞬時流量に関する測定値を、例えば2分(120sec)間隔等の比較的短い所定の設定時間間隔で出力する測定手段を有するメータ装置としては、超音波式メータ装置や熱伝導式メータ装置がある。   Meter having measuring means for measuring an instantaneous flow rate of the fluid flowing through the measurement channel as described above and outputting a measurement value related to the instantaneous flow rate at a relatively short predetermined time interval such as an interval of 2 minutes (120 sec) Examples of the device include an ultrasonic meter device and a heat conduction meter device.

従来、都市ガス等の積算流量を計測するためのガスメータに利用されているメータ装置としては、膜式のメータ装置が主流であるが、その利便性などの理由から、超音波式や熱伝導式のメータ装置のように、瞬時流量に関する測定値を2分間隔等で出力することができるメータ装置の利用が提案されている。   Conventionally, as a meter device used for a gas meter for measuring an integrated flow rate of city gas or the like, a membrane type meter device is mainly used. However, for convenience and the like, an ultrasonic type or a heat conduction type is used. The use of a meter device that can output a measured value related to the instantaneous flow rate at intervals of 2 minutes or the like has been proposed.

例えば、超音波式メータ装置は、測定流路の上流側と下流側に一対の送受波器を設置し、測定流路を流れる流体の流れ方向に沿った順方向で超音波が送受波器間を伝播する順方向伝播時間と、順方向とは逆の逆方向で超音波が送受波器間を伝播する逆方向伝播時間とを計測する伝播時間計測手段を備え、測定手段が、伝播時間計測部を働かせて計測した順方向伝播時間と逆方向伝播時間とから流体の瞬時流量を測定するように構成されている。   For example, an ultrasonic meter device has a pair of transducers on the upstream and downstream sides of a measurement channel, and ultrasonic waves are transmitted between the transducers in the forward direction along the flow direction of the fluid flowing through the measurement channel. Propagation time measurement means for measuring the propagation time in the forward direction and the reverse propagation time in which the ultrasonic wave propagates between the transducers in the opposite direction to the forward direction, and the measurement means measures the propagation time. The instantaneous flow rate of the fluid is measured from the forward propagation time and the backward propagation time measured by operating the part.

また、超音波式メータ装置の測定手段は、電気信号のノイズやガスの脈動等による瞬時流量のばらつきを低減するために、2秒間隔等の測定時間間隔で上記伝播時間を計測して間欠的にガスの瞬時流量を計測し、2分間隔等の設定時間内において計測された複数の瞬時流量の平均値を測定値として出力するように構成されている。   In addition, the measuring means of the ultrasonic meter device measures the above propagation time at a measurement time interval such as a 2-second interval in order to reduce fluctuations in the instantaneous flow rate due to noise of electric signals, gas pulsation, etc. The instantaneous flow rate of gas is measured, and an average value of a plurality of instantaneous flow rates measured within a set time such as a 2-minute interval is output as a measured value.

また、従来、ガスメータ等に利用されるメータ装置には、保安機能として、ガスメータの下流側に接続された内管からのガスが漏洩する所謂漏洩状態を検知するための漏洩検知機能が搭載されることがある。   Conventionally, a meter device used for a gas meter or the like is equipped with a leakage detection function for detecting a so-called leakage state in which gas from an inner pipe connected to the downstream side of the gas meter leaks as a safety function. Sometimes.

かかる漏洩検知機能は、測定流路を流れる流体の流量等を測定する測定手段の測定結果に基づいて測定流路に流体が流通しない無流通状態が30日間等の所定の判定期間内において発生したか否かを監視し、上記判定期間内において無流通状態が発生しなかった状態を上記漏洩状態として検知し、漏洩状態を検知した場合に、例えば、警報を発する漏洩通報処理や、遮断弁を働かせてガスの流通を遮断する異常遮断処理等を実行するように構成される(例えば、特許文献1−2参照)。   Such a leak detection function has occurred within a predetermined determination period such as 30 days when no fluid flows through the measurement channel based on the measurement result of the measurement means for measuring the flow rate of the fluid flowing through the measurement channel. Whether or not a non-flowing state has not occurred within the determination period is detected as the leakage state, and when a leakage state is detected, for example, a leakage notification process for issuing an alarm or a shut-off valve It is configured to execute an abnormal shut-off process or the like that works to shut off the gas flow (see, for example, Patent Document 1-2).

周知のように、膜式メータ装置は、膜室へのガスの充填に伴って流量パルス信号を出力し、この流量パルス信号をカウントすることによりガスの流量を計測することができるように構成されている。例えば、一般家庭の半数程度に普及している5号又は7号タイプのガスメータに設けられている膜式メータ装置においては、膜室の計量体積が1.74L/回転であるため、1.74L流れることで流量パルス信号が1パルス出力されることになる。   As is well known, the membrane meter device is configured to output a flow rate pulse signal as the membrane chamber is filled with gas, and to measure the flow rate of the gas by counting the flow rate pulse signal. ing. For example, in a membrane meter device provided in a No. 5 or No. 7 type gas meter that is widespread in about half of ordinary households, the metering volume of the membrane chamber is 1.74 L / rotation, so that 1.74 L By flowing, one pulse of the flow rate pulse signal is output.

また、膜式メータ装置に搭載される漏洩検知機能は、ある時点を起点として、一定の時間単位(例えば1時間程度)における膜式メータ装置の流量パルス信号の有無を監視する。そして、少なくとも1つの流量パルス信号を含む時間単位が、継続して30日間続いた場合に、漏洩状態と判断し警報を発するのである。   In addition, the leakage detection function installed in the membrane meter device monitors the presence or absence of a flow rate pulse signal of the membrane meter device in a certain time unit (for example, about 1 hour) starting from a certain point in time. Then, when a time unit including at least one flow rate pulse signal continues for 30 days, it is determined as a leakage state and an alarm is issued.

しかし、かかる膜式メータ装置は、計量体積が1.74L/回転であるために、例えば3L/hのガスの流通を計測するためには、少なくとも35分程度の時間を要する。この時間に安全率を考慮して、単位時間を1時間程度として、ガスの微小流通の有無を監視している。しかし、例え最低漏洩検知流量を3L/hとしても、3L/hのガスの流通を検知するには、少なくとも35分程度要することになり、この時間を短縮させることはできず、当然状況に応じてこの時間を変更することもできない。もしも、ガスの消費者が、温水床暖房機用の暖房熱源機のように、1時間以下の間隔で間欠的に駆動するようなガス機器を24時間運転している場合は、膜式メータ装置では、流量パルス信号が1時間の間に少なくとも1パルス出力されることになり、結果、その1パルス以上の流量パルス信号が出力される単位時間が30日間継続される場合に、漏洩状態と誤判断する場合がある。   However, such a membrane type meter device has a metered volume of 1.74 L / rotation, and therefore it takes at least about 35 minutes to measure the flow of, for example, 3 L / h of gas. In consideration of the safety factor in this time, the unit time is set to about 1 hour, and the presence or absence of minute gas flow is monitored. However, even if the minimum leakage detection flow rate is 3 L / h, it will take at least 35 minutes to detect the flow of 3 L / h gas, and this time cannot be shortened. You cannot change the time. If a gas consumer operates a gas appliance that is driven intermittently at intervals of 1 hour or less, such as a heating heat source for a hot water floor heater, for 24 hours, a membrane meter device In this case, at least one pulse of the flow rate pulse signal is output during one hour, and as a result, if the unit time during which the flow rate pulse signal of 1 pulse or more is output is continued for 30 days, the flow rate pulse signal is erroneous It may be judged.

そこで、超音波式メータ装置や熱伝導式メータ装置のように、2分間隔等で流体の瞬時流量に関する測定値を出力することができるメータ装置を利用すれば、微小流量を計測するために、膜式メータ装置のように流量パルス信号を1時間程度監視し続ける必要はなく、瞬時流量そのものを監視することができ、微小流量の判定時間を大幅に短縮し、24時間駆動するガス機器などを利用していても、数分のガス供給停止時間があれば上記のような漏洩検知を行うことができる。   Therefore, if a meter device that can output a measured value related to the instantaneous flow rate of the fluid at intervals of 2 minutes, such as an ultrasonic meter device or a heat conduction meter device, is used to measure a minute flow rate, There is no need to keep monitoring the flow rate pulse signal for about 1 hour unlike a membrane meter device, the instantaneous flow rate itself can be monitored, the determination time of minute flow rate is greatly shortened, and gas equipment that is driven for 24 hours Even if it is used, the leakage detection as described above can be performed if the gas supply stop time is several minutes.

特開平8−43154号公報JP-A-8-43154 特開2002−236037号公報Japanese Patent Laid-Open No. 2002-236037

超音波式メータ装置のように、測定流路を流れる流体の瞬時流量に関する測定値を、2分間隔等の比較的短い所定の設定時間間隔で出力する測定手段を有するメータ装置においては、漏洩検知機能を構成するに、以下のような問題が生じる。   Leakage detection in a meter device having a measuring means for outputting a measured value related to an instantaneous flow rate of a fluid flowing through a measurement channel at a relatively short predetermined time interval such as an interval of 2 minutes, such as an ultrasonic meter device The following problems arise in configuring the function.

超音波式メータ装置において、3L/hの最低漏洩検知流量に対して±1.5L/hの許容誤差を考慮して、測定手段から2分間の設定時間間隔で出力される測定値が、30日間の判定期間内において1回でも1.5L/h未満となった場合に無流通状態が発生したと判定し、30日間の判定期間内で上記無流通状態が発生しなかった状態を漏洩状態として検知する漏洩検知機能を想定する。   In the ultrasonic meter device, the measurement value output at a set time interval of 2 minutes from the measuring means is 30 in consideration of the tolerance of ± 1.5 L / h for the minimum leakage detection flow rate of 3 L / h. It is determined that a non-circulation state has occurred when it is less than 1.5 L / h at least once within the determination period of the day, and the state where the non-circulation state has not occurred within the determination period of 30 days is a leakage state Assume a leak detection function to detect as

測定流路を流れる流体の実際の実流量が上記最低漏洩検知流量の3L/hであるにもかかわらず、測定手段から出力される測定値が1.5L/h未満となる確率(以下、誤判定確率と呼ぶ。)pは非常に低いものである。例えば、仮に、2秒間隔で間欠的に計測される瞬時流量の標準偏差σが3L/hである場合に、2分間隔で出力される測定値の標準偏差σ’は、下記の数1に示す関係式から、0.39L/hとなる。そして、この測定値の標準偏差σ’から上記誤判定確率pを約0.005%と求めることができる。   Even though the actual actual flow rate of the fluid flowing through the measurement flow path is 3 L / h, which is the above-mentioned minimum leakage detection flow rate, the probability that the measured value output from the measuring means will be less than 1.5 L / h (hereinafter referred to as an error). Called decision probability.) P is very low. For example, if the standard deviation σ of instantaneous flow rate intermittently measured at intervals of 2 seconds is 3 L / h, the standard deviation σ ′ of measured values output at intervals of 2 minutes is From the relational expression shown, it is 0.39 L / h. Then, the misjudgment probability p can be determined to be about 0.005% from the standard deviation σ 'of the measured value.

Figure 2005098865
Figure 2005098865

しかし、このような漏洩検知機能は、比較的長い30日の判定期間内において比較的短い2分間の設定時間間隔で測定手段から出力される測定値の夫々について無流通状態の判定を行う。即ち、判定期間内において無流通状態の発生の有無の判定を行う回数は21600回と非常に多くなる。よって、上記誤判定確率pが非常に小さい値であったとしても、判定期間内において実際の実流量が継続して3L/hであったにもかかわらず、1回でも測定値が1.5L/h未満となることで無流通状態が発生したと判定して漏洩状態を検知することができない確率(以下、漏洩無検知失敗確率と呼ぶ。)Pは、下記の数2に示す関係式から、約70%と非常に高いものとなる。   However, such a leakage detection function determines a non-flowing state for each of the measurement values output from the measurement means at a relatively short set time interval of 2 minutes within a relatively long 30-day determination period. In other words, the number of times of determining whether or not a non-circulation state has occurred within the determination period is as large as 21600. Therefore, even if the erroneous determination probability p is a very small value, the measured value is 1.5 L even once even though the actual actual flow rate is 3 L / h within the determination period. The probability that the leakage state cannot be detected by determining that the non-circulation state has occurred by being less than / h (hereinafter referred to as leakage non-detection failure probability) P is expressed by the following relational expression 2. About 70%, which is very high.

即ち、30日間の判定期間内において流体の実流量が継続して3L/hの最低漏洩検知流量であったとしても、上記のような高い漏洩無検知確率で、漏洩状態を検知することができない危険性が生じる。   That is, even if the actual flow rate of the fluid continues within the determination period of 30 days and is the lowest leakage detection flow rate of 3 L / h, the leakage state cannot be detected with the high leakage non-detection probability as described above. There is a danger.

Figure 2005098865
Figure 2005098865

したがって、本発明は、上記の事情に鑑みて、超音波式メータ装置のように、測定流路を流れる流体の瞬時流量に関する測定値を比較的短い設定時間間隔で出力するように構成されたメータ装置においても、正確に漏洩を検知することができる技術を提供することを目的とする。   Therefore, in view of the above circumstances, the present invention provides a meter configured to output a measurement value related to an instantaneous flow rate of a fluid flowing through a measurement channel at a relatively short set time interval, as in an ultrasonic meter device. It is an object of the present invention to provide a technique capable of accurately detecting leakage even in an apparatus.

この目的を達成するための本発明に係るメータ装置の第一特徴構成は、特許請求の範囲の欄の請求項1に記載した如く、前記無流通状態判定手段が、前記判定期間内において前記測定手段から前記設定時間間隔で出力される測定値が所定の閾値未満となる回数を判定回数として計測し、前記判定回数が2以上の所定の設定判定回数となったときに前記無流通状態が発生したと判定するように構成されている点にある。   In order to achieve this object, the first characteristic configuration of the meter device according to the present invention is that, as described in claim 1 of the appended claims, the no-flow state determining means performs the measurement within the determination period. The number of times that the measurement value output from the means is less than a predetermined threshold is measured as the number of determinations, and the no-flow state occurs when the number of determinations reaches a predetermined setting determination number of 2 or more. It is in the point comprised so that it may determine with having carried out.

前述のように、流体の実際の実流量が最低漏洩検知流量程度であるにもかかわらず測定値が上記最低漏洩検知流量に対して設定された閾値未満となる確率(即ち、誤判定確率)は比較的小さい値である。しかし、上記無流通状態判定手段において、判定期間内に出力された多くの測定値が1回でも閾値未満であった場合に、無流通状態が発生したと判定する場合には、判定期間内において実際の実流量が継続して最低漏洩検知流量程度であったにもかかわらず、無流通状態判定手段により無流通状態が発生したと誤判定してしまうことで漏洩状態を検知することができない確率(即ち、漏洩無検知確率)は、非常に高い値となり、漏洩状態を正確に検知することができなくなる。   As described above, the probability that the measured value is less than the threshold set for the minimum leakage detection flow rate (that is, the erroneous determination probability) even though the actual actual flow rate of the fluid is about the minimum leakage detection flow rate is as follows. It is a relatively small value. However, in the non-circulation state determination means, when it is determined that the non-circulation state has occurred when many measurement values output within the determination period are less than the threshold value once, Probability that a leakage state cannot be detected by misjudging that a non-flowing state has occurred by the non-flowing state determination means even though the actual actual flow rate has been about the minimum leakage detection flow rate. (That is, the leakage non-detection probability) is a very high value, and the leakage state cannot be accurately detected.

そこで、上記第一特徴構成のメータ装置によれば、上記無流通状態判定手段において、判定期間内に測定値が上記閾値未満となる回数が2以上の設定判定回数に到達した場合にのみ無流通状態が発生したと判定することで、上記誤判定確率を極めて0に近い値として、上記漏洩無検知確率を極めて小さい値とし、漏洩状態を正確に判定することができる。   Therefore, according to the meter device having the first characteristic configuration, the non-circulation state determination means is non-circulation only when the number of times that the measured value is less than the threshold value within the determination period reaches the set determination number of 2 or more. By determining that a state has occurred, it is possible to accurately determine the leakage state by setting the erroneous determination probability to a value very close to 0 and the leakage non-detection probability to an extremely small value.

したがって、超音波式メータ装置のように、測定流路を流れる流体の瞬時流量に関する測定値を比較的短い設定時間間隔で出力するように構成されたメータ装置であって、正確に漏洩を検知することができる漏洩検知機能を備えたメータ装置を実現することができる。   Therefore, the meter device is configured to output a measurement value related to the instantaneous flow rate of the fluid flowing through the measurement flow path at a relatively short set time interval, like an ultrasonic meter device, and accurately detects a leak. It is possible to realize a meter device having a leakage detection function that can be used.

本発明に係るメータ装置の第二特徴構成は、特許請求の範囲の欄の請求項2に記載した如く、上記第一特徴構成に加えて、前記測定流路を流れる流体の実際の実流量が所定の最低漏洩検知流量であるときに、前記測定手段から出力される測定値が前記閾値未満となる確率をpとし、前記判定期間内における前記測定手段の前記設定時間間隔の測定回数をNとした場合に、上記設定判定回数Mが、特許請求の範囲に記載の数1の関係式を満たすように設定されている点にある。   The second characteristic configuration of the meter device according to the present invention is that, in addition to the first characteristic configuration, the actual actual flow rate of the fluid flowing through the measurement flow path is as described in claim 2 of the claims. The probability that the measured value output from the measuring unit is less than the threshold when the predetermined minimum leakage detection flow rate is set to p, and the number of measurements of the set time interval of the measuring unit within the determination period is N. In this case, the setting determination number M is set so as to satisfy the relational expression of the number 1 described in the claims.

即ち、上記第二特徴構成のメータ装置によれば、判定期間内において実際の実流量が継続して最低漏洩検知流量程度であった場合に、無流通状態判定手段により無流通状態が発生したと判定せず、漏洩状態を検知することができる漏洩検知成功確率Qは、1から上記漏洩検知失敗確率Pを差し引いた値となり、上記誤判定確率p、上記測定回数N、上記設定判定回数Mから、下記の数3に示す関係式により求めることができる。   That is, according to the meter device having the second characteristic configuration, when the actual actual flow rate is continuously about the minimum leakage detection flow rate within the determination period, the non-flow state is generated by the non-flow state determination unit. The leakage detection success probability Q that can detect the leakage state without making a determination is a value obtained by subtracting the leakage detection failure probability P from 1, and from the erroneous determination probability p, the measurement number N, and the setting determination number M , And can be obtained from the relational expression shown in Equation 3 below.

Figure 2005098865
Figure 2005098865

そして、この漏洩検知成功確率Qが0.99999(99.999%)以上1(100%)以下の範囲内となるように、設定判定回数Mの値を設定することで、非常に高い成功率ファイブナインを達成して、漏洩状態を検知することができる。  A very high success rate can be obtained by setting the value of the setting determination count M so that the leakage detection success probability Q is in the range of 0.99999 (99.999%) to 1 (100%). A five-nine can be achieved and a leak condition can be detected.

本発明に係るメータ装置の第三特徴構成は、特許請求の範囲の欄の請求項3に記載した如く、上記第一乃至第二の何れかの特徴構成に加えて、前記測定流路の上流側と下流側に一対の送受波器を設置し、前記測定流路を流れる流体の流れ方向に沿った順方向で超音波が前記送受波器間を伝播する順方向伝播時間と、前記順方向とは逆の逆方向で超音波が前記送受波器間を伝播する逆方向伝播時間とを計測する伝播時間計測手段を備え、前記測定手段が、前記伝播時間計測部を働かせて計測した前記順方向伝播時間と前記逆方向伝播時間とから前記瞬時流量を測定するように構成されている点にある。   The third characteristic configuration of the meter device according to the present invention is, in addition to any one of the first to second characteristic configurations described above, in addition to any of the first to second characteristic configurations, in the column of the claims. A forward propagation time in which ultrasonic waves propagate between the transducers in the forward direction along the flow direction of the fluid flowing through the measurement flow path, and a forward propagation time And a propagation time measuring means for measuring a backward propagation time in which the ultrasonic wave propagates between the transducers in the opposite direction, and the measuring means measures the order measured by operating the propagation time measuring unit. The instantaneous flow rate is measured from the direction propagation time and the backward propagation time.

即ち、上記第三特徴構成のメータ装置によれば、上記伝播時間計測手段により上記順方向伝播時間及び上記逆方向伝播時間を計測し、上記測定手段により上記両伝播時間から測定流路を流れる流体の瞬時流量を導出し、比較的短い設定時間間隔でその瞬時流量に関する測定値を出力するように構成された超音波式メータ装置においても、上記無流通状態判定手段において、判定期間内に測定値が上記閾値未満となる回数が2以上の設定判定回数に到達した場合にのみ無流通状態が発生したと判定することで、非常に高い漏洩検知成功確率で漏洩状態を検知することができる。   That is, according to the meter device having the third characteristic configuration, the forward flow time and the reverse propagation time are measured by the propagation time measuring means, and the fluid flowing through the measurement channel from the both propagation times by the measuring means. In the ultrasonic meter device that is configured to derive the instantaneous flow rate and output the measurement value related to the instantaneous flow rate at a relatively short set time interval, the non-flow state determining means also determines the measured value within the determination period. It is possible to detect a leakage state with a very high leakage detection success probability by determining that a non-circulation state has occurred only when the number of times that the value is less than the above threshold reaches the setting determination number of 2 or more.

本発明に係るメータ装置の第四特徴構成は、特許請求の範囲の欄の請求項4に記載した如く、上記第三特徴構成に加えて、前記測定手段が、前記設定時間内に所定の測定時間間隔で前記伝播時間計測手段を働かせて導出した瞬時流量の平均値を前記測定値として出力するように構成されている点にある。   The fourth characteristic configuration of the meter device according to the present invention is that, in addition to the third characteristic configuration, the measurement means performs a predetermined measurement within the set time, as described in claim 4 in the claims. An average value of instantaneous flow rates derived by operating the propagation time measuring means at time intervals is configured to output as the measured value.

超音波式メータ装置において、測定手段で両伝播時間から導出した流体の瞬時流量は、電気信号のノイズやガスの脈動等により、比較的高周波のノイズが付加された不安定な状態となる可能性があり、上記無流通状態判定手段の誤判定確率が高くなることが懸念される。   In an ultrasonic meter device, the instantaneous flow rate of the fluid derived from both propagation times by the measuring means may be in an unstable state with relatively high-frequency noise added due to electrical signal noise, gas pulsation, etc. There is a concern that the misjudgment probability of the non-circulation state judging means is increased.

そこで、上記第四特徴構成のメータ装置によれば、前記測定手段により、比較的短い測定時間間隔で前伝播時間計測手段を働かせて流体の瞬時流量を導出すると共に、その測定時間の数倍である設定時間間隔で、各設定時間内に導出した瞬時流速値の平均値を測定値として出力することで、このように導出した測定値は、上記高周波のノイズを相殺した比較的安定したものとなる。よって、前記無流通状態判定手段において、このように安定した測定値を用いて無流通状態の発生を判定することができる。このように無流通状態を判定することで、無流通状態における上記誤判定確率を小さくし、一層高い漏洩検知成功確率で漏洩状態を検知することができる。   Therefore, according to the meter device having the fourth characteristic configuration, the measurement means derives the instantaneous flow rate of the fluid by using the pre-propagation time measurement means at a relatively short measurement time interval, and is several times the measurement time. By outputting the average value of instantaneous flow velocity values derived within each set time as a measured value at a set time interval, the measured value derived in this way is relatively stable with the high-frequency noise offset. Become. Therefore, the non-circulation state determination means can determine the occurrence of the non-circulation state by using such a stable measurement value. By determining the non-distribution state in this way, it is possible to reduce the erroneous determination probability in the non-distribution state, and to detect the leak state with a higher probability of successful leak detection.

本発明に係るメータ装置の第五特徴構成は、特許請求の範囲の欄の請求項5に記載した如く、上記第四特徴構成に加えて、前記測定手段が、前記測定値と共に、前記複数の瞬時流量の最大値及び最小値を出力するように構成され、
前記無流通状態判定手段が、前記判定回数として、前記測定手段から出力される測定値が所定の閾値未満となり、且つ、前記測定手段から出力される前記最大値と前記最小値との差である変化量が所定の設定変化量未満となる回数を計測するように構成されている点にある。
According to a fifth characteristic configuration of the meter device according to the present invention, in addition to the fourth characteristic configuration, the measuring unit includes the plurality of measured values and the plurality of the measured values, as described in claim 5 in the column of the claims. It is configured to output the maximum and minimum values of instantaneous flow rate,
The non-circulation state determination means is the difference between the maximum value and the minimum value output from the measurement means, and the measurement value output from the measurement means is less than a predetermined threshold as the number of determinations. This is in that it is configured to measure the number of times that the change amount is less than a predetermined set change amount.

上記第五特徴構成のメータ装置によれば、上記無流通状態判定手段により、前記測定手段で導出した前記測定値が閾値未満となり、且つ、その測定値と共に前記測定手段から出力された設定時間内の瞬時流量の最大値と最小値との差、即ち、設定時間内における瞬時流速値の変化量が、比較的小さい設定変化量未満となる回数を上記判定回数として計測し、その判定回数が2以上の所定の設定判定回数となったときに無流通状態が発生したと判定することで、電気信号のノイズやガスの脈動等により不安定な瞬時流量から求められ上記変化量が設定変化量以上となった測定値に対しては、上記無流通状態の判定を行わないで、上記変化量が設定変化量となり信頼性が高い測定値のみ無流通状態の判定対象とすることができる。このように無流通状態を判定することで、無流通状態における上記誤判定確率を小さくし、一層高い漏洩検知成功確率で漏洩状態を検知することができる。   According to the meter device having the fifth characteristic configuration, the measurement value derived by the measurement unit is less than a threshold value by the non-flow state determination unit, and the set value output from the measurement unit together with the measurement value is within the set time. The difference between the maximum value and the minimum value of the instantaneous flow rate, that is, the number of times that the change amount of the instantaneous flow velocity value within the set time is less than the relatively small set change amount is measured as the determination number. By determining that a non-flowing state has occurred when the predetermined number of setting determinations has been reached, the amount of change described above is obtained from an unstable instantaneous flow rate due to noise in the electric signal, gas pulsation, etc. With respect to the measured value, the determination of the non-circulation state is not performed, and only the measurement value having the above change amount as the set change amount and high reliability can be determined as the non-circulation state determination target. By determining the non-distribution state in this way, it is possible to reduce the erroneous determination probability in the non-distribution state, and to detect the leak state with a higher probability of successful leak detection.

本発明に係るメータ装置の第六特徴構成は、特許請求の範囲の欄の請求項6に記載した如く、上記第一乃至第5の何れかの特徴構成に加えて、前記設定時間が30秒以上5分以下の範囲内である点にある。   According to a sixth characteristic configuration of the meter device of the present invention, in addition to any of the first to fifth characteristic configurations, the set time is 30 seconds. This is in the range of 5 minutes or less.

即ち、上記第六特徴構成のメータ装置によれば、上記測定手段により、流体の瞬時流量に関する測定値を、上記のような5分以下の設定時間間隔で出力することで、測定流路の下流側に接続された消費機器等が、比較的短い時間間隔で間欠的に流体を消費しながら判定期間内継続して運転する場合においても、その消費機器が流体を消費していない時間帯に測定手段から出力された測定値を用いて、正確に漏洩状態を検知することができる。   That is, according to the meter device having the sixth characteristic configuration, the measurement unit outputs the measurement value relating to the instantaneous flow rate of the fluid at the set time interval of 5 minutes or less as described above, so that the downstream of the measurement channel. Even when a consumer device connected to the side operates continuously during the judgment period while consuming fluid intermittently at relatively short time intervals, it is measured in a time zone when the consumer device does not consume fluid. By using the measurement value output from the means, the leakage state can be detected accurately.

また、上記設定時間を30秒以上とすることで、判定期間内に測定手段から出力される測定値の数、即ち、判定期間内において無流通状態判定手段が無流通状態の判定を行う回数が、膨大な回数となることを抑制することができ、また、各判定自体の成功確率も高くなることから、漏洩検知失敗確率の上昇を抑制することができる。   In addition, by setting the set time to 30 seconds or more, the number of measurement values output from the measurement unit within the determination period, that is, the number of times the no-flow state determination unit determines the no-flow state within the determination period. In addition, it is possible to suppress an enormous number of times, and since the success probability of each determination itself is increased, an increase in the leakage detection failure probability can be suppressed.

本発明に係るメータ装置の実施の形態について、図面に基づいて説明する。   An embodiment of a meter device according to the present invention will be described with reference to the drawings.

図1に示すように、本実施形態のメータ装置1は、測定流路2を流れるガスfの瞬時流量を測定し、その瞬時流量に関する測定値を出力するように構成されている。   As shown in FIG. 1, the meter device 1 of the present embodiment is configured to measure an instantaneous flow rate of the gas f flowing through the measurement flow path 2 and output a measurement value related to the instantaneous flow rate.

流量測定対象流体であるガスfは、導入部3から測定流路2に流入し、導出部4より排出される。即ち、同図において、測定流路2でのガスfの流れ方向は、左から右に向かう方向である。   A gas f that is a flow rate measurement target fluid flows into the measurement channel 2 from the introduction unit 3 and is discharged from the derivation unit 4. That is, in the same figure, the flow direction of the gas f in the measurement flow path 2 is a direction from left to right.

メータ装置1は、超音波式メータ装置として構成され、測定流路2の上流側と下流側とに設置される一対の送受波器5と、この送受波器5に接続される制御装置10とから構成されている。   The meter device 1 is configured as an ultrasonic meter device, and includes a pair of transducers 5 installed on the upstream side and the downstream side of the measurement flow path 2, and a control device 10 connected to the transducer 5. It is composed of

測定流路2の上流側に設置された送受波器5aと、測定流路2の下流側に設置された送受波器5bとは、距離dを隔てた位置に互いに対向して設置され、その対向方向と測定流路2を流通するガスfの流れ方向とが角度θをなす。   The transducer 5a installed on the upstream side of the measurement channel 2 and the transducer 5b installed on the downstream side of the measurement channel 2 are installed facing each other at a position separated by a distance d. The facing direction and the flow direction of the gas f flowing through the measurement channel 2 form an angle θ.

また、この送受波器5は、制御装置10から電気信号である入力信号が入力されると音響信号である超音波を他方の送受波器5側に向けて送信し、更に、他方の送受波器5側から送信された超音波を受信すると、電気信号である出力信号を制御装置10に出力するように構成されている。   In addition, when an input signal, which is an electrical signal, is input from the control device 10, the transducer 5 transmits an ultrasonic wave, which is an acoustic signal, toward the other transducer 5 side, and further, the other transducer is received. When an ultrasonic wave transmitted from the device 5 side is received, an output signal that is an electric signal is output to the control device 10.

制御装置10は、タイマ17、メモリ又はハードディスク等からなる記憶部18、液晶表示部等からなる出力部19等を備えたコンピュータで構成されており、そのコンピュータが所定のプログラムを実行することにより、後述の伝播時間計測手段11、測定手段12、無流通状態判定手段13、漏洩検知手段14等の様々な手段として機能する。   The control device 10 is configured by a computer including a timer 17, a storage unit 18 including a memory or a hard disk, an output unit 19 including a liquid crystal display unit, and the like, and when the computer executes a predetermined program, It functions as various means such as a propagation time measuring means 11, a measuring means 12, a non-circulation state determining means 13, and a leak detecting means 14 which will be described later.

制御装置10が機能する伝播時間計測手段11は、上流側の送受波器5aに入力信号を入力してから下流側の送受波器5bで出力信号が出力されるまでの時間から順方向の遅延時間を差し引いた時間を、測定流路2を流れるガスfの流れ方向に沿った順方向で超音波が送受波器5間を伝播する順方向伝播時間t1として計測すると共に、下流側の送受波器5bに入力信号を入力してから上流側の送受波器5aで出力信号が出力されるまでの時間からから逆方向の遅延時間を差し引いた時間を、前記順方向とは逆の逆方向で超音波が送受波器5間を伝播する逆方向伝播時間t2として計測するように構成されている。   The propagation time measuring means 11 in which the control device 10 functions is a forward delay from the time from when the input signal is input to the upstream transducer 5a to when the output signal is output from the downstream transducer 5b. The time obtained by subtracting the time is measured as a forward propagation time t1 in which the ultrasonic wave propagates between the transducers 5 in the forward direction along the flow direction of the gas f flowing through the measurement flow path 2, and the downstream transmission / reception wave The time obtained by subtracting the reverse delay time from the time from when the input signal is input to the transmitter 5b until the output signal is output at the upstream transducer 5a is the reverse direction opposite to the forward direction. The ultrasonic wave is configured to be measured as a backward propagation time t <b> 2 for propagating between the transducers 5.

尚、上記順方向及び逆方向の遅延時間とは、順方向及び逆方向の夫々において、一方の送受波器5における入力信号を入力してから実際に音響信号である超音波を送信するまでの送信遅延時間と、他方の送受波器5における音響信号である超音波を受信してから出力信号を出力するまでの受信遅延時間との和であり、これら遅延時間は、メータ装置1の製造時に計測されたものである。   The forward and reverse delay times are the time from the input of the input signal in one transmitter / receiver 5 to the actual transmission of an ultrasonic wave as an acoustic signal in each of the forward and reverse directions. This is the sum of the transmission delay time and the reception delay time from the reception of the ultrasonic wave, which is an acoustic signal in the other transducer 5 to the output of the output signal. It is measured.

伝播時間計測手段11は、図2の処理フロー図に示すように、タイマ17を用いて、このような順方向伝播時間t1と逆方向伝播時間t2との計測を、2秒間の測定時間間隔で実行する(#101)。   As shown in the process flow diagram of FIG. 2, the propagation time measuring means 11 uses the timer 17 to measure such forward propagation time t1 and backward propagation time t2 at a measurement time interval of 2 seconds. Execute (# 101).

また、制御装置10が機能する測定手段12は、伝播時間計測手段11により計測され記憶部18に格納された順方向伝播時間t1と逆方向伝播時間t2とから、下記の数4の関係式を用いて、測定流路2を流れるガスfの瞬時流速vを求め、その瞬時流速vに測定流路2の断面積を乗じて瞬時流量qを導出する(#102)。   Further, the measuring means 12 in which the control device 10 functions has the following relational expression 4 based on the forward propagation time t1 and the backward propagation time t2 measured by the propagation time measuring means 11 and stored in the storage unit 18. The instantaneous flow velocity v of the gas f flowing through the measurement channel 2 is obtained, and the instantaneous flow rate q is derived by multiplying the instantaneous flow velocity v by the cross-sectional area of the measurement channel 2 (# 102).

そして、上記伝播時間計測手段11で計測された順方向伝播時間t1及び方向伝播時間t2、上記測定手段12で導出された瞬時流量qは、2秒間隔で記憶部18に格納される。   The forward propagation time t1 and the direction propagation time t2 measured by the propagation time measuring means 11 and the instantaneous flow rate q derived by the measuring means 12 are stored in the storage unit 18 at intervals of 2 seconds.

Figure 2005098865
Figure 2005098865

メータ装置1に搭載されている漏洩検知機能は、従来のガスメータに設けられていた漏洩検知機能と同様に、測定流路2に流体が流通しない無流通状態が30日の所定の判定期間D内において発生したか否かを監視し、上記判定期間D内において無流通状態が発生しなかった状態、即ち、判定期間D内において継続してガスfが流通した状態を、上記漏洩状態として検知するように構成されているが、上記無流通状態の判定処理に特徴を有し、その詳細構成について以下に説明する。   The leak detection function installed in the meter device 1 is the same as the leak detection function provided in the conventional gas meter. In the determination period D, a state in which no flow state has occurred, that is, a state in which the gas f continues to flow in the determination period D is detected as the leakage state. Although it is configured as described above, it has a feature in the non-circulation state determination process, and a detailed configuration thereof will be described below.

測定手段12は、図3の処理フロー図に示すように、流通状態継続期間T及び判定回数Cを共に0に設定した後に(#201)、2分間(120秒間)の設定時間間隔で、各設定時間中に2秒間隔で導出した60個の上記瞬時流量qの平均値を測定値qaveとして導出すると共に、その設定時間内の60個の瞬時流量qの中から、その最大値qmaxと最小値qminとを抽出する(#202)。 As shown in the process flow diagram of FIG. 3, the measuring means 12 sets each of the distribution state duration T and the number of determinations C to 0 (# 201), and at each set time interval of 2 minutes (120 seconds). The average value of the 60 instantaneous flow rates q derived at intervals of 2 seconds during the set time is derived as a measured value q ave , and the maximum value q max is selected from the 60 instantaneous flow rates q within the set time. And the minimum value q min are extracted (# 202).

尚、上記流通状態計測期間Tは、0にリセットされてからの経過日数を示し、上記判定回数Cは、30日の所定の判定期間D内に後述の#204において測定値qaveが閾値Y未満であると判定した回数を示す。 The distribution state measurement period T indicates the number of days that have elapsed since the reset to 0, and the determination count C is the threshold value Y of the measured value q ave in # 204 (described later) within a predetermined determination period D of 30 days. Indicates the number of times it was determined that the number is less than.

次に、制御装置10が機能する無流通状態判定手段13は、測定手段12から上記設定時間間隔で出力された最大値qmaxと最小値qminとの差である変化量が、5L/hの所定の設定変化量X未満であるかを判定し(#203)、上記変化量が設定変化量X未満である場合には、上記測定値測定値qaveが比較的安定した瞬時流量qの平均値であるとして、後述する#204〜#206において、測定値qaveを用いた無流通状態の判定を行い、上記変化量が設定変化量X以上である場合には、上記測定値測定値qaveが不安定な瞬時流量qの平均値であるとして、#204〜#206をスキップして、測定値qaveを用いた無流通状態の判定を行わずに、後述する#207において漏洩状態の判定をおこなう。 Next, the non-circulation state determination unit 13 in which the control device 10 functions has a change amount, which is a difference between the maximum value q max and the minimum value q min output from the measurement unit 12 at the set time interval, as 5 L / h. If the change amount is less than the set change amount X, the measured value measurement value q ave is a relatively stable instantaneous flow rate q. When the average value is determined in # 204 to # 206, which will be described later, a non-flowing state is determined using the measurement value q ave , and the change amount is equal to or greater than the set change amount X, the measurement value measurement value Assuming that q ave is the average value of the unstable instantaneous flow rate q, the steps # 204 to # 206 are skipped, and the non-flow state is not determined using the measured value q ave , and the leakage state is described later in # 207. Judgment is made.

詳しくは、無流通状態判定手段13は、上記#203において上記変化量が設定変化量X未満であると判定した場合には、測定手段12から上記設定時間間隔で出力された測定値qaveが、測定流路2の下流側に接続されたガス機器が運転時に例えば口火等で消費されるガスの最低流量に相当する3L/hの漏洩検知流量に対して、±1.5L/hの許容誤差を考慮して設定した1.5L/hの閾値Y未満であるかを判定する(#204)。 Specifically, if the non-circulation state determination unit 13 determines in step # 203 that the change amount is less than the set change amount X, the measurement value q ave output from the measurement unit 12 at the set time interval is calculated. ± 1.5 L / h permissible for a leakage detection flow rate of 3 L / h corresponding to the minimum flow rate of gas consumed by, for example, a fire during operation of the gas equipment connected to the downstream side of the measurement flow path 2 It is determined whether it is less than the threshold value Y of 1.5 L / h set in consideration of the error (# 204).

そして、無流通状態判定手段13は、上記#203において上記変化量が設定変化量X未満であると判定し、更に、上記#204において、測定値qaveが上記閾値Y未満であると判定した場合には、測定流路2のガスfの流通が停止している所謂無流通状態である可能性があるとして、そのように測定値qaveが上記閾値Y未満であったと判定した判定回数Cを積算してカウントし(#205)、測定値qaveが上記閾値Y以上であると判定した場合には、測定流路2にガスfが流通している所謂流通状態であるとして、後述する#207において漏洩状態の判定を行う。 Then, the non-circulation state determination unit 13 determines that the change amount is less than the set change amount X in # 203, and further determines that the measurement value q ave is less than the threshold value Y in # 204. In this case, the number of times of determination C determined that the measured value q ave is less than the threshold value Y, because there is a possibility that the flow of the gas f in the measurement channel 2 is stopped. Are counted (# 205), and it is determined that the measured value q ave is equal to or greater than the threshold value Y, it will be described later that the gas f is flowing in the measurement flow path 2. In step # 207, the leakage state is determined.

また、無流通状態判定手段13は、上記の#205において積算カウントした判定回数Cが、2以上の所定の設定判定回数に到達したか否かを判定し(#206)、判定回数Cが上記設定判定回数Mに到達した場合に、測定流路2のガスfの流通が停止している所謂無流通状態が発生したことにより漏洩状態でないと判断して、上記#201において、流通状態継続期間T及び判定回数Cを0にリセットする。   Further, the non-circulation state determination means 13 determines whether or not the determination count C accumulated in # 205 has reached a predetermined setting determination count of 2 or more (# 206). When the set determination number M is reached, it is determined that there is no leakage state due to the occurrence of a so-called no-flow state in which the flow of the gas f in the measurement flow path 2 is stopped. T and the number of determinations C are reset to zero.

制御装置10が機能する漏洩検知手段14は、無流通状態判定手段13において計測される判定回数Cが上記設定判定回数に到達する前に、流通状態継続期間Tが30日の所定の判定期間D継続したか否か、即ち、測定流路2のガスfの流通が判定期間D継続したか否かを判定する(#207)。   The leak detection means 14 in which the control device 10 functions has a predetermined determination period D of 30 days before the distribution state continuation period T reaches the set determination number. It is determined whether or not it has continued, that is, whether or not the circulation of the gas f in the measurement channel 2 has continued for the determination period D (# 207).

そして、漏洩検知手段14は、上記#207において、上記流通状態継続期間Tが判定期間Dに到達したと判定した場合に、測定流路2下流側に接続された内管からガスfが漏洩していると判断し、出力部19より警報を発する等の所定の漏洩通報処理を実行し(#208)、例えば、遮断弁を働かせてガスの流通を遮断するなどの所定の漏洩通報処異常遮断処理等を実行して、本漏洩検知処理を終了する。   When the leakage detection means 14 determines in # 207 that the flow state continuation period T has reached the determination period D, the gas f leaks from the inner pipe connected to the downstream side of the measurement flow path 2. The predetermined leakage notification processing such as issuing an alarm from the output unit 19 is executed (# 208), and the predetermined leakage notification processing abnormal cutoff such as shutting off the gas flow by operating the shut-off valve, for example, is performed. The leakage detection process is terminated by executing the process.

無流通状態が発生したと判定するための上記設定判定回数Mは、非常に高い成功率ファイブナインを達成するべく、前述の数3に示す関係式から求められる漏洩検知成功確率Qが0.99999(99.999%)以上1(100%)未満の範囲内となるような回数に設定される。   The above-mentioned number of setting determinations M for determining that a non-circulation state has occurred has a leak detection success probability Q obtained from the relational expression shown in Equation 3 above of 0.99999 in order to achieve a very high success rate of five nines. The number of times is set within the range of (99.999%) or more and less than 1 (100%).

また、30日間の判定期間D内において、測定流路2の実際の実流量が最低漏洩検知流量の3L/hを維持している場合に、21600個の測定値qaveの内1個の測定値qaveが1.5L/h未満となる誤判定確率pを0.00005(0.005%)とし、30日間の判定期間D内における測定手段12の2分間間隔の測定回数Nが21600回であることから、上記漏洩検知成功確率Qと上記設定判定回数Mとは、下記の表1に示すような相関関係を有する。 Further, in the determination period D of 30 days, when the actual flow rate of the measurement channel 2 maintains 3 L / h of the minimum leakage detection flow rate, one measurement out of 21600 measurement values q ave is performed. The erroneous determination probability p at which the value q ave is less than 1.5 L / h is set to 0.00005 (0.005%), and the number of measurements N at the 2-minute interval of the measurement means 12 within the determination period D of 30 days is 21600. Therefore, the leakage detection success probability Q and the setting determination number M have a correlation as shown in Table 1 below.

Figure 2005098865
即ち、本実施形態においては、上記設定判定回数Mは10回に設定されており、漏洩検知成功確率Qを0.99999(99.999%)以上として、非常に高い成功率ファイブナインで漏洩状態を検知するように構成されている。
Figure 2005098865
That is, in the present embodiment, the setting determination number M is set to 10 and the leakage detection success probability Q is set to 0.99999 (99.999%) or higher, and the leakage state is very high with five nines. It is comprised so that it may detect.

また、上記設定判定回数Mは、上記漏洩検知成功確率Qを許容値以上のできるだけ小さい値とする方が、無流通状態判定手段13により無流通状態の発生を判定できずに漏洩状態を誤判定する確率をできるだけ小さくすることができる。   In addition, the setting determination frequency M is set to the leakage detection success probability Q as small as possible, which is greater than or equal to the allowable value. The probability of doing as much as possible can be made as small as possible.

メータ装置の概略構成図Schematic configuration diagram of meter device メータ装置による瞬時流量の導出処理を示す処理フロー図Process flow diagram showing derivation process of instantaneous flow rate by meter device メータ装置による漏洩検知処理を示す処理フロー図Process flow diagram showing leak detection processing by meter device

符号の説明Explanation of symbols

1:メータ装置
2:測定流路
5:送受波器
10:制御装置
11:伝播時間計測手段
12:測定手段
13:無流通状態判定手段
14:漏洩検知手段
17:タイマ
18:記憶部
f:ガス(流体)
1: Meter device 2: Measurement flow path 5: Transceiver 10: Control device 11: Propagation time measurement means 12: Measurement means 13: No flow state determination means 14: Leakage detection means 17: Timer 18: Storage section f: Gas (fluid)

Claims (6)

測定流路を流れる流体の瞬時流量に関する測定値を所定の設定時間間隔で出力する測定手段と、
判定期間内において前記測定手段から出力された前記測定値に基づいて無流通状態の発生を判定する無流通状態判定手段と、
前記判定期間内において前記無流通状態判定手段により前記無流通状態が発生したと判定しなかった状態を漏洩状態として検知する漏洩検知手段とを備えたメータ装置であって、
前記無流通状態判定手段が、前記判定期間内において前記測定手段から前記設定時間間隔で出力される測定値が所定の閾値未満となる回数を判定回数として計測し、前記判定回数が2以上の所定の設定判定回数となったときに前記無流通状態が発生したと判定するように構成されているメータ装置。
Measurement means for outputting a measurement value related to the instantaneous flow rate of the fluid flowing through the measurement flow path at a predetermined set time interval;
A non-circulation state determination unit that determines occurrence of a non-circulation state based on the measurement value output from the measurement unit within a determination period;
A leak detection means for detecting a state in which the no-flow state has not been determined to have occurred by the no-flow state determination means within the determination period as a leak state;
The non-circulation state determination means measures the number of times that the measurement value output from the measurement means at the set time interval is less than a predetermined threshold within the determination period as the determination number, and the determination number is a predetermined number of 2 or more. A meter device configured to determine that the non-circulation state has occurred when the set determination number of times is reached.
前記測定流路を流れる流体の実際の実流量が所定の最低漏洩検知流量であるときに、前記測定手段から出力される測定値が前記閾値未満となる確率をpとし、
前記判定期間内における前記測定手段の前記設定時間間隔の測定回数をNとした場合に、
上記設定判定回数Mが、数1の関係式を満たすように設定されている請求項1に記載のメータ装置。
Figure 2005098865
When the actual actual flow rate of the fluid flowing through the measurement flow path is a predetermined minimum leakage detection flow rate, the probability that the measurement value output from the measurement means is less than the threshold value is p,
When the number of measurements of the set time interval of the measuring means within the determination period is N,
The meter device according to claim 1, wherein the setting determination number M is set so as to satisfy the relational expression of Equation 1.
Figure 2005098865
前記測定流路の上流側と下流側に一対の送受波器を設置し、前記測定流路を流れる流体の流れ方向に沿った順方向で超音波が前記送受波器間を伝播する順方向伝播時間と、前記順方向とは逆の逆方向で超音波が前記送受波器間を伝播する逆方向伝播時間とを計測する伝播時間計測手段を備え、前記測定手段が、前記伝播時間計測部を働かせて計測した前記順方向伝播時間と前記逆方向伝播時間とから前記瞬時流量を測定するように構成されている請求項1又は2に記載のメータ装置。   A pair of transducers are installed on the upstream and downstream sides of the measurement channel, and forward propagation in which ultrasonic waves propagate between the transducers in the forward direction along the flow direction of the fluid flowing through the measurement channel. Propagation time measuring means for measuring time and a reverse propagation time in which the ultrasonic wave propagates between the transducers in a direction opposite to the forward direction, and the measuring means includes the propagation time measuring unit. 3. The meter device according to claim 1, wherein the instantaneous flow rate is measured from the forward propagation time and the backward propagation time measured by working. 4. 前記測定手段が、前記設定時間内に所定の測定時間間隔で前記伝播時間計測手段を働かせて導出した瞬時流量の平均値を前記測定値として出力するように構成されている請求項3に記載のメータ装置。   The said measurement means is comprised so that the average value of the instantaneous flow volume derived | led-out by making the said propagation time measurement means work at a predetermined measurement time interval within the set time may be output as the measurement value. Meter device. 前記測定手段が、前記測定値と共に、前記複数の瞬時流量の最大値及び最小値を出力するように構成され、
前記無流通状態判定手段が、前記判定回数として、前記測定手段から出力される測定値が所定の閾値未満となり、且つ、前記測定手段から出力される前記最大値と前記最小値との差である変化量が所定の設定変化量未満となる回数を計測するように構成されている請求項4に記載のメータ装置。
The measurement means is configured to output the maximum value and the minimum value of the plurality of instantaneous flow rates together with the measurement value,
The non-circulation state determination means is the difference between the maximum value and the minimum value output from the measurement means, and the measurement value output from the measurement means is less than a predetermined threshold as the number of determinations. The meter device according to claim 4, wherein the meter device is configured to measure the number of times that the change amount is less than a predetermined set change amount.
前記設定時間が30秒以上5分以下の範囲内である請求項1から5の何れか1項に記載のメータ装置。   The meter device according to any one of claims 1 to 5, wherein the set time is in a range of 30 seconds to 5 minutes.
JP2003333604A 2003-09-25 2003-09-25 Meter device Expired - Lifetime JP4592268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003333604A JP4592268B2 (en) 2003-09-25 2003-09-25 Meter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003333604A JP4592268B2 (en) 2003-09-25 2003-09-25 Meter device

Publications (2)

Publication Number Publication Date
JP2005098865A true JP2005098865A (en) 2005-04-14
JP4592268B2 JP4592268B2 (en) 2010-12-01

Family

ID=34461567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003333604A Expired - Lifetime JP4592268B2 (en) 2003-09-25 2003-09-25 Meter device

Country Status (1)

Country Link
JP (1) JP4592268B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216468A (en) * 2008-03-07 2009-09-24 Panasonic Corp Flow measuring instrument
JP2011208977A (en) * 2010-03-29 2011-10-20 Osaka Gas Co Ltd Flowmeter
JP2018071832A (en) * 2016-10-25 2018-05-10 大阪瓦斯株式会社 Energy supply system
JP2018170198A (en) * 2017-03-30 2018-11-01 大阪瓦斯株式会社 Energy supply system
CN112950401A (en) * 2019-12-10 2021-06-11 华晨宝马汽车有限公司 Method, device and system for managing factory resource consumption

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06307909A (en) * 1993-04-26 1994-11-04 Matsushita Electric Ind Co Ltd Leak detector for gas pipe
JPH0843154A (en) * 1994-07-29 1996-02-16 Tokyo Gas Co Ltd Method for judging gas leakage from inner pipe performed by using fluidic gas meter flow sensor
JPH0862002A (en) * 1994-08-25 1996-03-08 Tokyo Gas Co Ltd Method and apparatus for inspecting leakage using fluidic gas meter with flow sensor
JP2001330532A (en) * 2000-05-25 2001-11-30 Matsushita Electric Ind Co Ltd Gas shut-off device
JP2001336739A (en) * 2000-05-26 2001-12-07 Matsushita Electric Ind Co Ltd Gas-blast circuit-breaking device
JP2002236037A (en) * 2001-02-07 2002-08-23 Osaka Gas Co Ltd Measuring apparatus and leak detection method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06307909A (en) * 1993-04-26 1994-11-04 Matsushita Electric Ind Co Ltd Leak detector for gas pipe
JPH0843154A (en) * 1994-07-29 1996-02-16 Tokyo Gas Co Ltd Method for judging gas leakage from inner pipe performed by using fluidic gas meter flow sensor
JPH0862002A (en) * 1994-08-25 1996-03-08 Tokyo Gas Co Ltd Method and apparatus for inspecting leakage using fluidic gas meter with flow sensor
JP2001330532A (en) * 2000-05-25 2001-11-30 Matsushita Electric Ind Co Ltd Gas shut-off device
JP2001336739A (en) * 2000-05-26 2001-12-07 Matsushita Electric Ind Co Ltd Gas-blast circuit-breaking device
JP2002236037A (en) * 2001-02-07 2002-08-23 Osaka Gas Co Ltd Measuring apparatus and leak detection method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216468A (en) * 2008-03-07 2009-09-24 Panasonic Corp Flow measuring instrument
JP2011208977A (en) * 2010-03-29 2011-10-20 Osaka Gas Co Ltd Flowmeter
JP2018071832A (en) * 2016-10-25 2018-05-10 大阪瓦斯株式会社 Energy supply system
JP2018170198A (en) * 2017-03-30 2018-11-01 大阪瓦斯株式会社 Energy supply system
CN112950401A (en) * 2019-12-10 2021-06-11 华晨宝马汽车有限公司 Method, device and system for managing factory resource consumption

Also Published As

Publication number Publication date
JP4592268B2 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
EP2631610B1 (en) Flow-rate measurement device
WO2014068952A1 (en) Flow rate measuring device and flow rate calculation method
JP4592268B2 (en) Meter device
JP2012026822A (en) Gas shut-off device
JP6225325B2 (en) Gas shut-off device
JP4626606B2 (en) Gas shut-off device
JP3464391B2 (en) Guessing flow meter
JP5516182B2 (en) Gas shut-off device
JP5847628B2 (en) Gas shut-off device
JP5946673B2 (en) Gas shut-off device
JP3888946B2 (en) Ultrasonic meter device
JP2010025851A (en) Electronic gas meter
JP2001304930A (en) Ultrasonic gas meter
JP4294834B2 (en) Gas shut-off device
JP4285056B2 (en) Fluid flow measuring device
JP7203355B2 (en) gas meter
JP4089035B2 (en) Gas shut-off device
JP4580506B2 (en) Gas shut-off device
JP2001336739A (en) Gas-blast circuit-breaking device
JP4552952B2 (en) Gas shut-off device
JP2001336740A (en) Gas-blast circuit-breaking device
JP2006105890A (en) Measuring device of flow velocity or flow rate
JP6309864B2 (en) Gas shut-off device
JP2023149979A (en) gas cutoff device
JP2012194142A (en) Gas shut-off device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090127

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4592268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term