JP2005098673A - Method of removing sulfur in fluid bed device and desulfurizing agent - Google Patents

Method of removing sulfur in fluid bed device and desulfurizing agent Download PDF

Info

Publication number
JP2005098673A
JP2005098673A JP2004100913A JP2004100913A JP2005098673A JP 2005098673 A JP2005098673 A JP 2005098673A JP 2004100913 A JP2004100913 A JP 2004100913A JP 2004100913 A JP2004100913 A JP 2004100913A JP 2005098673 A JP2005098673 A JP 2005098673A
Authority
JP
Japan
Prior art keywords
fluidized bed
bed apparatus
lime cake
desulfurizing agent
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004100913A
Other languages
Japanese (ja)
Other versions
JP4625265B2 (en
Inventor
Naoki Fujiwara
尚樹 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2004100913A priority Critical patent/JP4625265B2/en
Priority to CNB2004101005155A priority patent/CN100483026C/en
Publication of JP2005098673A publication Critical patent/JP2005098673A/en
Application granted granted Critical
Publication of JP4625265B2 publication Critical patent/JP4625265B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Industrial Gases (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of removing sulfur in a fluid bed furnace, and a desulfurizing agent. <P>SOLUTION: In this method of removing the sulfur in a gas generated in the furnace in the fluid bed furnace for burning the fuel and/or raw material by fluidized combustion, the desulfurizing agent including a lime cake is charged into the furnace. Preferably, a particle diameter of the lime cake is 0.08 mm or more, and a mol ratio of Ca in the desulfurizing agent to the sulfur in the fuel and/or raw material is 0.5-7. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、流動層装置における硫黄分の除去方法及び脱硫剤に関する。   The present invention relates to a sulfur removal method and a desulfurization agent in a fluidized bed apparatus.

石油、石炭等の化石燃料や産業廃棄物、都市ゴミ等の廃棄物には、硫黄分が含まれていることが多く、それらを燃料とする焼却炉や原料とするガス化炉等においては、硫黄の燃焼によって生ずる亜硫酸ガス、硫酸ガス等の有害な硫黄酸化物(SOx)を環境基準に適合する濃度まで除去して燃焼ガスを排出しなければならない。
従来、これらの炉で使用されている脱硫方法には、大きく分けて次の2つの方法がある。
(1)炉内脱硫法;炉内に脱硫剤を投入し、硫黄酸化物を吸収除去する方法。通常、脱硫剤としては、石灰石かドロマイトが使用され、この方法は、主に流動層炉で使用されている。
(2)排煙脱硫法;炉後流の煙道の一部に脱硫剤と排ガスの接触層(塔)を設け、硫黄酸化物と脱硫剤の中和反応によって排ガス中の硫黄酸化物を除去する方法。この方法では、硫黄酸化物と脱硫剤である石灰石が中和反応し石膏に変化するため、有効利用される。
Oil, coal, and other fossil fuels, industrial waste, municipal waste, etc. often contain sulfur, and incinerators that use them as fuel and gasifiers that use raw materials, Harmful sulfur oxides (SOx) such as sulfurous acid gas and sulfuric acid gas generated by sulfur combustion must be removed to a concentration that meets environmental standards, and the combustion gas must be discharged.
Conventionally, the desulfurization methods used in these furnaces are roughly divided into the following two methods.
(1) In-furnace desulfurization method: A method in which a desulfurizing agent is introduced into the furnace and sulfur oxides are absorbed and removed. Usually, limestone or dolomite is used as the desulfurizing agent, and this method is mainly used in a fluidized bed furnace.
(2) Flue gas desulfurization method: A contact layer (tower) of desulfurization agent and exhaust gas is provided in a part of the flue after the furnace, and sulfur oxide in the exhaust gas is removed by neutralization reaction of sulfur oxide and desulfurization agent. how to. In this method, limestone, which is a sulfur oxide and a desulfurizing agent, is neutralized and converted to gypsum, so that it is effectively used.

上記炉内脱硫法においては、脱硫剤として使用されるカルシウムを主成分とする石灰石やドロマイトの利用率が低く、例えば、常圧バブリング型の流動層ボイラーにおいては、90%以上の脱硫率を得る場合、石灰石の利用率は15〜25%程度であり、循環型流動層ボイラーにおいては、その利用率は25〜35%といわれている。
従って、燃料や原料中に含まれる硫黄分を完全に除去するには、大量の脱硫剤の投入が必要であった。これは平均粒子径200μm程度の石灰石では、その表面でのみ脱硫反応が起こり粒子の内部まで反応しないため、多くのカルシウムが未利用のまま残ってしまうためである。
In the in-furnace desulfurization method, the utilization rate of limestone or dolomite mainly composed of calcium used as a desulfurizing agent is low. For example, in a normal pressure bubbling fluidized bed boiler, a desulfurization rate of 90% or more is obtained. In this case, the utilization rate of limestone is about 15 to 25%, and in a circulating fluidized bed boiler, the utilization rate is said to be 25 to 35%.
Therefore, in order to completely remove the sulfur content contained in the fuel and raw material, it is necessary to input a large amount of desulfurizing agent. This is because, in limestone having an average particle size of about 200 μm, a desulfurization reaction occurs only on the surface and does not react to the inside of the particles, so a lot of calcium remains unused.

このような問題を解決するため、より粒子径が細かく、また、利用可能な表面積の割合が多く、反応性にも優れた脱硫剤として、酸化カルシウム(CaO)や水酸化カルシウム(Ca(OH)2)等の微粒子を用いる方法が検討されてきた。 In order to solve such problems, calcium oxide (CaO) or calcium hydroxide (Ca (OH)) is used as a desulfurizing agent having a finer particle diameter, a larger proportion of available surface area, and excellent reactivity. 2) a method of using fine particles such as have been studied.

しかし、この方法では、石灰石を脱炭酸させてCaOやCa(OH)2を製造するのに多量のエネルギーを要し、経済性に劣ること、及び製造過程で生成されるCaOやCa(OH)2の粒子の粒子径が50μm以下と細かいこと等から、投入した脱硫剤粒子が脱硫反応が十分に行われる前に燃焼排ガスの流れに同伴して炉外へ排出されてしまい利用率が低下してしまう問題があった。 However, in this method, a large amount of energy is required to produce CaO and Ca (OH) 2 by decarboxylating limestone, which is inferior in economic efficiency, and CaO and Ca (OH) produced in the production process. The particle size of particle 2 is as fine as 50 μm or less, etc., so that the desulfurization agent particles introduced are discharged to the outside of the furnace along with the flow of the combustion exhaust gas before the desulfurization reaction is sufficiently performed, and the utilization rate is reduced. There was a problem.

本発明は、上記事情に鑑みなされたものであり、流動層炉における燃焼ガス中の硫黄分の除去方法及び脱硫剤を提供することを目的とする。   This invention is made | formed in view of the said situation, and aims at providing the removal method and desulfurization agent of the sulfur content in the combustion gas in a fluidized bed furnace.

本発明者らは、上記目的を達成するため、鋭意検討を重ねた結果、ライムケーキを脱硫剤として用いることが有効であることを見出し、本発明を完成させた。   As a result of intensive studies to achieve the above object, the present inventors have found that it is effective to use lime cake as a desulfurizing agent, and have completed the present invention.

本発明によれば、流動層炉において、ライムケーキを含む脱硫剤を炉内に投入して、石油や石炭等を燃料又は原料とする酸化反応(燃焼)、ガス化、熱分解等により、炉内で発生するガス中の硫黄分を除去する。   According to the present invention, in a fluidized bed furnace, a desulfurization agent containing lime cake is put into the furnace, and the furnace is subjected to oxidation reaction (combustion), gasification, thermal decomposition, etc. using petroleum or coal as fuel or raw material The sulfur content in the gas generated inside is removed.

ライムケーキは、砂糖の製造過程で、原料であるビートから溶出された糖液から、これに含まれる有機物や色素等の不純物を取り除く過程で排出されるものである。一般的に、この工程では、CaOあるいはCa(OH)2の微粒子を糖液に混入し、さらにCO2ガスを混合して、不純物を該粒子に付着・沈殿させて、純度の高い糖液と沈殿物に分離する。この工程で排出された沈殿物を脱水したものがライムケーキである。即ち、ライムケーキの成分は、微粒子状のCaCO3と有機質からなる混合物である。 Lime cake is discharged in the process of removing impurities such as organic substances and pigments contained in sugar solution eluted from the raw material beet during the sugar production process. Generally, in this process, a CaO or Ca (OH) 2 fine particles mixed in the sugar solution, further mixing the CO 2 gas, the impurity is adhered, it precipitated particulate child, a high purity sugar solution Separate into precipitates. Lime cake is obtained by dehydrating the precipitate discharged in this process. That is, the component of the lime cake is a mixture composed of particulate CaCO 3 and organic matter.

ライムケーキに含まれるビート由来の有機質は、沈殿物を脱水する際に、微粒子のCaCO3を固着させるバインダーの役割を果たすため、脱水されたライムケーキは、粘土状に固まっており、これを自然乾燥することで部分的に造粒される。
ライムケーキの粒子径としては、有機質の割合と乾燥状態によるが、一般的には5〜50mmを最大粒子径とし、本来のCaCO3の最小粒子径である5〜50μm程度までのブロードな粒子径分布を持つ。本発明では、特に大粒径に部分造粒したものが好ましい。
本発明によれば、以下の流動層装置における硫黄分の除去方法及び流動層炉用脱硫剤が提供される。
1.流動層装置において、流動層炉内で発生するガス中の硫黄分を除去する方法であって、ライムケーキを含む脱硫剤を流動層炉内に投入することを特徴とする流動層装置における硫黄分の除去方法。
2.前記脱硫剤がライムケーキであることを特徴とする1に記載の流動層装置における硫黄分の除去方法。
3.前記燃料及び/又は原料の硫黄分に対する前記脱硫剤のCa分が0.5〜7(モル比)であることを特徴とする1又は2に記載の流動層装置における硫黄分の除去方法。
4.燃料及び/又は原料の硫黄分に対する前記脱硫剤のCa分が0.5〜5(モル比)であることを特徴とする1〜3のいずれか一に記載の流動層装置における硫黄分の除去方法。
5.前記脱硫剤が最大粒子径が0.08mm以上であるライムケーキであることを特徴とする1〜4のいずれか一に記載の流動層装置における硫黄分の除去方法。
6.前記ライムケーキを含む脱硫剤を、燃料及び/又は原料中に混合して、流動層炉内に投入することを特徴とする1〜5のいずれか一に記載の流動層装置における硫黄分の除去方法。
7.流動層装置が外部循環流動層装置であって、前記脱硫剤が水分含有量が35%以下であって、かつ最大粒子径が0.08mm以上に造粒されたライムケーキであることを特徴とする1〜5のいずれか一に記載の流動層装置における硫黄分の除去方法。
8.流動層装置がバブリング型流動層装置または内部循環流動層装置であって、前記脱硫剤が水分含有量が35%以下であって、かつ最大粒子径が0.1mm以上に造粒されたライムケーキであることを特徴とする1〜5に記載の流動層装置における硫黄分の除去方法。
9.前記ライムケーキを気流搬送で流動層炉内に直接投入することを特徴とする7又は8に記載の流動層装置における硫黄分の除去方法。
10.前記ライムケーキを気流搬送で燃料及び/又は原料供給経路に搬送し、燃料及び/又は原料とともに流動層炉内に投入することを特徴とする7又は8に記載の流動層装置における硫黄分の除去方法。
11.前記脱硫剤が水分含有量が20%以上であって、かつ粘土状またはスラリー状のライムケーキであり、該ライムケーキを流動層炉内に直接投入することを特徴とする1〜5のいずれか一に記載の流動層装置における硫黄分の除去方法。
12.前記ライムケーキを燃料及び/又は原料の供給経路上で燃料及び/又は原料と混合または同伴させて流動層炉内に投入することを特徴とする11に記載の流動層装置における硫黄分の除去方法。
13.前記ライムケーキを流動層炉内に投入する方法において、機械式供給機を用いて流動層炉内に投入することを特徴とする11又は12に記載の流動層装置における硫黄分の除去方法。
14.ライムケーキを含む流動層用脱硫剤。
The organic matter derived from the beet contained in the lime cake plays a role of a binder that fixes the fine CaCO 3 when the precipitate is dehydrated. Partially granulated by drying.
The particle size of the lime cake depends on the ratio of organic matter and the dry state, but generally the maximum particle size is 5 to 50 mm, and the broad particle size is about 5 to 50 μm, which is the original minimum particle size of CaCO 3. With distribution. In the present invention, those partially granulated to have a large particle size are particularly preferred.
According to the present invention, the following sulfur removal method and fluidized bed furnace desulfurization agent in a fluidized bed apparatus are provided.
1. In a fluidized bed apparatus, a sulfur content in a gas generated in a fluidized bed furnace, wherein a sulfur content in a fluidized bed apparatus is charged with a desulfurizing agent containing lime cake. Removal method.
2. 2. The method for removing a sulfur content in a fluidized bed apparatus according to 1, wherein the desulfurizing agent is a lime cake.
3. The method for removing a sulfur content in a fluidized bed apparatus according to 1 or 2, wherein a Ca content of the desulfurizing agent with respect to a sulfur content of the fuel and / or raw material is 0.5 to 7 (molar ratio).
4). The removal of sulfur in the fluidized bed apparatus according to any one of 1 to 3, wherein the Ca content of the desulfurizing agent with respect to the sulfur content of the fuel and / or raw material is 0.5 to 5 (molar ratio). Method.
5. The method for removing a sulfur content in a fluidized bed apparatus according to any one of claims 1 to 4, wherein the desulfurizing agent is a lime cake having a maximum particle size of 0.08 mm or more.
6). The desulfurization agent containing the lime cake is mixed in fuel and / or raw material and charged into a fluidized bed furnace, and the sulfur content in the fluidized bed apparatus according to any one of 1 to 5 is removed. Method.
7). The fluidized bed apparatus is an external circulating fluidized bed apparatus, wherein the desulfurizing agent is a lime cake granulated to have a water content of 35% or less and a maximum particle size of 0.08 mm or more. The sulfur content removal method in the fluidized bed apparatus as described in any one of 1-5.
8). A fluidized bed apparatus is a bubbling type fluidized bed apparatus or an internal circulating fluidized bed apparatus, wherein the desulfurizing agent has a moisture content of 35% or less and is granulated to have a maximum particle size of 0.1 mm or more. The method for removing a sulfur content in a fluidized bed apparatus according to any one of 1 to 5, wherein
9. The method for removing a sulfur content in a fluidized bed apparatus according to 7 or 8, wherein the lime cake is directly fed into a fluidized bed furnace by airflow conveyance.
10. 9. The removal of sulfur content in a fluidized bed apparatus according to 7 or 8, wherein the lime cake is transported to a fuel and / or raw material supply path by airflow transportation and introduced into a fluidized bed furnace together with the fuel and / or raw material. Method.
11. The desulfurization agent has a water content of 20% or more and is a clay-like or slurry-like lime cake, and the lime cake is directly charged into a fluidized bed furnace. The sulfur removal method in the fluidized-bed apparatus as described in one.
12 12. The method for removing a sulfur content in a fluidized bed apparatus according to 11, wherein the lime cake is mixed with or entrained with the fuel and / or the raw material on the fuel and / or raw material supply path and charged into the fluidized bed furnace. .
13. 13. The method for removing a sulfur content in a fluidized bed apparatus according to 11 or 12, wherein the lime cake is fed into a fluidized bed furnace using a mechanical feeder.
14 Fluidized bed desulfurization agent containing lime cake.

本発明によれば、流動層炉における脱硫効果の高い硫黄分の除去方法及び脱硫剤を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the removal method and desulfurization agent of the sulfur content with a high desulfurization effect in a fluidized bed furnace can be provided.

以下、本発明の一実施形態を、図面を参照して説明する。
図1は、本発明による流動層炉における硫黄分の除去方法の一実施形態に用いる外部循環型流動層装置である。
この図において、1は石炭ホッパー、2はフィーダ、3は空気供給ライン、4は予熱器、5は一次燃焼用空気供給ライン、6は分散板、7はライムケーキホッパー、8は二次燃焼用空気供給ライン、9は流動層炉、10は一次サイクロン、11は粒子排出器、12は二次サイクロン、13はビン、14はガスクーラー、15はガス分析計、16はバグフィルター、17はブロワーである。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is an external circulation type fluidized bed apparatus used in an embodiment of a method for removing sulfur in a fluidized bed furnace according to the present invention.
In this figure, 1 is a coal hopper, 2 is a feeder, 3 is an air supply line, 4 is a preheater, 5 is an air supply line for primary combustion, 6 is a dispersion plate, 7 is a lime cake hopper, 8 is for secondary combustion Air supply line, 9 is a fluidized bed furnace, 10 is a primary cyclone, 11 is a particle ejector, 12 is a secondary cyclone, 13 is a bottle, 14 is a gas cooler, 15 is a gas analyzer, 16 is a bag filter, 17 is a blower It is.

次に、この外部循環型流動層装置の動作について説明する。
石炭ホッパー1から流動層炉9に導入された燃料(石炭)は、流動層炉9で燃焼し、燃焼ガスは燃焼炉9を上昇する。このとき、燃料中の硫黄分は硫黄酸化物となる。一方、脱硫剤であるライムケーキはライムケーキホッパー7から流動層炉9に導入され、ライムケーキ中のカルシウム分により流動層炉9及び一次サイクロン10内で硫黄酸化物が吸着除去される。
Next, the operation of this external circulation type fluidized bed apparatus will be described.
The fuel (coal) introduced from the coal hopper 1 into the fluidized bed furnace 9 is combusted in the fluidized bed furnace 9, and the combustion gas ascends the combustion furnace 9. At this time, the sulfur content in the fuel becomes sulfur oxide. On the other hand, the lime cake, which is a desulfurizing agent, is introduced from the lime cake hopper 7 into the fluidized bed furnace 9, and sulfur oxides are adsorbed and removed in the fluidized bed furnace 9 and the primary cyclone 10 by the calcium content in the lime cake.

尚、本実施形態では、流動層装置として外部循環型流動層装置を用いているが、本発明では、内部循環型の流動層装置を用いることもできる。また、外部・内部循環型の代わりに、バブリング型や加圧型・常圧型の流動層装置を用いることもできる。   In the present embodiment, an external circulation type fluidized bed apparatus is used as the fluidized bed apparatus. However, in the present invention, an internal circulation type fluidized bed apparatus can also be used. Further, instead of the external / internal circulation type, a bubbling type, a pressure type / normal pressure type fluidized bed apparatus may be used.

また、本実施形態では、脱硫剤のみを流動層炉内に投入しているが、本発明では、脱硫剤を燃料及び/又は原料中に混合あるいは同伴させて流動層炉内に投入することもできる。さらに、脱硫剤の形状によっては気流搬送やピストンポンプ、プランジャーポンプ、スクリューフィーダー、ロータリーフィーダー等の機械式供給機を用いて流動層炉内に投入することもできる。   In this embodiment, only the desulfurizing agent is introduced into the fluidized bed furnace. However, in the present invention, the desulfurizing agent may be mixed or entrained in the fuel and / or raw material and then introduced into the fluidized bed furnace. it can. Further, depending on the shape of the desulfurizing agent, it can be introduced into the fluidized bed furnace using a mechanical feeder such as an air flow carrier, a piston pump, a plunger pump, a screw feeder, or a rotary feeder.

本発明の方法では、ライムケーキを含む脱硫剤を用いる。この脱硫剤は、ライムケーキだけから構成されていてもよく、ライムケーキを一部に含んでもよい。
脱硫剤に含まれるライムケーキ以外の成分としては、例えば、石灰石、ドロマイト、酸化カルシウム、カルシウムを含有する生コンクリートスラッジ等が挙げられる。
脱硫剤に含まれるライムケーキの割合は特に制限されず、燃料や原料の種類等に応じて適宜調整することができる。
In the method of the present invention, a desulfurization agent containing a lime cake is used. This desulfurization agent may be comprised only from the lime cake, and may contain a lime cake in part.
Examples of the components other than the lime cake contained in the desulfurizing agent include limestone, dolomite, calcium oxide, and fresh concrete sludge containing calcium.
The ratio of the lime cake contained in the desulfurizing agent is not particularly limited, and can be appropriately adjusted according to the type of fuel or raw material.

本発明の方法では、流動層装置の流動層炉内に、脱硫剤を、通常、燃料及び/又は原料中の硫黄分に対する脱硫剤のCa分が0.5〜7(モル比)になるように投入し、炉内で脱硫を行う。このモル比が0.5より低い場合は、十分な反応が得られない場合がある。一方、7より高い場合は、高い反応率が得られるものの、残渣の発生量が増加し、灰処理量が増えてしまう場合がある。従って、好ましくは1〜5(モル比)になるように投入し、炉内で脱硫を行なうことが好ましい。
また、本発明では、燃料及び/又は原料中の硫黄分に対する脱硫剤中のCa分を好ましくは0.5〜5(モル比)、より好ましくは1.0〜5(モル比)となるように投入することが好ましい。
In the method of the present invention, the desulfurizing agent is usually placed in the fluidized bed furnace of the fluidized bed apparatus so that the Ca content of the desulfurizing agent with respect to the sulfur content in the fuel and / or raw material is 0.5 to 7 (molar ratio). And desulfurize in the furnace. When this molar ratio is lower than 0.5, sufficient reaction may not be obtained. On the other hand, when it is higher than 7, although a high reaction rate is obtained, the amount of residue generated increases and the amount of ash treatment may increase. Therefore, it is preferable to add 1 to 5 (molar ratio) and perform desulfurization in the furnace.
In the present invention, the Ca content in the desulfurizing agent with respect to the sulfur content in the fuel and / or raw material is preferably 0.5 to 5 (molar ratio), more preferably 1.0 to 5 (molar ratio). It is preferable to put in

本発明で用いるライムケーキは、砂糖の製造過程で得られたものをそのままスラリー状で、又は脱水して粘土状で、あるいは脱水後さらに自然乾燥したものをふるいにより粒子径の範囲を調整して用いることができる。   The lime cake used in the present invention is prepared as it is in the form of a slurry obtained in the sugar production process, or dehydrated in a clay form, or further dried naturally after sieving to adjust the particle size range. Can be used.

本発明で用いるライムケーキをスラリー状又は粘土状で用いる場合は、砂糖の製造過程で得られたライムケーキを脱水する際に水分含有量を20%以上に調整することが、ライムケーキの搬送等ハンドリングの上で好ましい。ここで、該ライムケーキを搬送する方法としては、ピストンポンプ、プランジャーポンプ、スクリューフィーダー、ロータリーフィーダー等の機械式供給機が好適に使用できる。   When the lime cake used in the present invention is used in the form of slurry or clay, it is possible to adjust the water content to 20% or more when dehydrating the lime cake obtained in the sugar production process, etc. It is preferable in terms of handling. Here, as a method for conveying the lime cake, a mechanical feeder such as a piston pump, a plunger pump, a screw feeder, or a rotary feeder can be suitably used.

本発明で用いるライムケーキの粒子径の範囲を調整して用いる場合には、流動層システムから飛散し難い粒子径に調整することが好ましく、最大粒子径が0.08mm以上であることが好ましい。具体的には、バブリング型流動層装置や内部循環型流動層装置では、最大粒子径が0.1〜50mm、好ましくは1〜40mm、より好ましくは2〜20mmであり、外部循環型流動層装置では、0.08〜50mm、好ましくは0.5〜25mm、より好ましくは1〜20mmである。さらに、流動によって粒子が粉化・飛散し難くするためには、脱水・自然乾燥により水分含有量を35%以下に調整することが好ましい。   When adjusting and using the range of the particle diameter of the lime cake used by this invention, it is preferable to adjust to the particle diameter which is hard to fly from a fluidized bed system, and it is preferable that a maximum particle diameter is 0.08 mm or more. Specifically, in a bubbling type fluidized bed apparatus or an internal circulation type fluidized bed apparatus, the maximum particle diameter is 0.1 to 50 mm, preferably 1 to 40 mm, more preferably 2 to 20 mm. Is 0.08 to 50 mm, preferably 0.5 to 25 mm, more preferably 1 to 20 mm. Furthermore, in order to make it difficult for the particles to be pulverized and scattered by flow, it is preferable to adjust the water content to 35% or less by dehydration and natural drying.

本発明では、ライムケーキをそのまま脱硫剤として使用できるが、上述した他の成分と混ぜて脱硫剤として使用することができる。他の成分を混ぜるときは、他の成分の粒子経を調整し、カオリン、モンモリナイト等の粘土鉱物をバインダーとして混練、乾燥後、粒子径をふるいにより調整して製造する。   In the present invention, lime cake can be used as it is as a desulfurization agent, but it can be used as a desulfurization agent by mixing with other components described above. When other components are mixed, the particle size of the other components is adjusted, and after kneading and drying clay minerals such as kaolin and montmorillonite, the particle size is adjusted by sieving.

本発明の方法は、RDF(refuse derived fuel)やRPF(refuse paper and plastic fuel)、練炭、石灰ブリケット、豆炭、バイオコール等の加工された固形燃料や、CWM(coal water mixture)、CWP(coal water paste)等の疑似流体燃料等の、脱硫剤と燃料を予め混合して用いるシステムでの利用においては、ライムケーキを燃料中に混合した後、流動層炉に投入することが好ましい。この場合、その混合比は、前述のように燃料中の硫黄分に対するライムケーキ中のCa分が、モル比で0.5〜5となるような割合であることが好ましい。   The method of the present invention includes processed solid fuel such as RDF (refuse derived fuel), RPF (refuse paper and plastic fuel), briquette, lime briquette, bean charcoal, biocoal, CWM (coal water mixture), CWP (coal For use in a system in which a desulfurizing agent and a fuel are mixed in advance, such as a pseudo fluid fuel such as water paste), it is preferable that the lime cake is mixed in the fuel and then charged into the fluidized bed furnace. In this case, the mixing ratio is preferably such that the Ca content in the lime cake with respect to the sulfur content in the fuel is 0.5 to 5 in molar ratio as described above.

本発明の方法において燃焼又はガス化、熱分解、部分酸化される燃料種又は原料としては、亜硫酸ガス、硫酸ガスその他の硫黄酸化物(SOx)等を発生する硫黄分を含有するものが本発明の目的からみて有用であり、例えば、石炭、石油コークス、オイルサンド、バイオマス等の固体燃料、石炭に水あるいは油等を配合した疑似流体燃料、重油、灯油、アルコール混合物等の液体燃料、LPG、LNG、工場排ガス等の気体燃料、ゴミ、汚泥、プラスチック、スラッジ、タイヤ等の廃棄物、又はこれらから選ばれる少なくとも2種類の混合物が使用される。   In the method of the present invention, the fuel species or raw materials to be combusted or gasified, thermally decomposed, or partially oxidized include those containing a sulfur component that generates sulfurous acid gas, sulfuric acid gas, and other sulfur oxides (SOx). For example, solid fuel such as coal, petroleum coke, oil sand and biomass, pseudo fluid fuel obtained by blending water or oil into coal, liquid fuel such as heavy oil, kerosene, alcohol mixture, LPG, LNG, gaseous fuel such as factory exhaust gas, waste, sludge, plastic, sludge, tire and other waste, or at least two types of mixtures selected from these are used.

本発明の方法においては、流動層燃焼ボイラー、流動層ガス化炉、流動層熱分解炉、流動層部分ガス化炉等の各種流動層装置における反応は、好ましくは500〜2,000℃の範囲内の温度で行われるが、さらに脱硫効率を上げるためには、600〜1,000℃の温度で行うことが反応率を向上させる点から好ましい。   In the method of the present invention, the reaction in various fluidized bed apparatuses such as a fluidized bed combustion boiler, a fluidized bed gasification furnace, a fluidized bed pyrolysis furnace, a fluidized bed partial gasification furnace and the like is preferably in the range of 500 to 2,000 ° C. However, in order to further increase the desulfurization efficiency, it is preferable to perform the reaction at a temperature of 600 to 1,000 ° C. from the viewpoint of improving the reaction rate.

本発明では、好ましくは、反応性に優れるCaCO3を生成されたままの微粒子ではなく、炉内に入れて直ちに飛び出さないように、それらの微粒子を部分的に造粒して粒径を大きくしたライムケーキを含む脱硫剤を利用している。
このように、大粒径に部分造粒したライムケーキを流動層システムに導入すると、脱硫剤が直ちに炉外に飛散することがなく、長期にわたって系内に溜まるため、炉内脱硫が十分に行われ、その結果、脱硫効率が向上する。
In the present invention, preferably, the fine particles of CaCO 3 having excellent reactivity are not granulated as they are generated, but are partially granulated so as not to jump out immediately after being put in the furnace to increase the particle size. Desulfurizing agent containing lime cake is used.
In this way, when a lime cake partially granulated to have a large particle size is introduced into the fluidized bed system, the desulfurization agent does not immediately fly out of the furnace and remains in the system for a long period of time. As a result, the desulfurization efficiency is improved.

次に、実施例及び比較例により本発明を具体的に示すが、本発明は下記実施例に限定されるものではない。
実施例1
表1に示す性状を有する日本製糖株式会社製のライムケーキを乾燥後、最大2mm以下、平均粒径1.2mmに調整し、2mm以下に粉砕した表2に示す性状を有する燃料となる石炭と混合した。石炭中の硫黄分に対し、ライムケーキ中のCa分が、モル比(Ca/S)で0,1,2,3となる4種の混合物を調製した。得られた混合物を、図1に示す循環流動層燃焼炉で燃焼させ、燃焼出口のSOx濃度を分析し、以下の計算方法により脱硫率を求めた。結果を表3に示す。
Next, although an example and a comparative example show the present invention concretely, the present invention is not limited to the following example.
Example 1
A lime cake manufactured by Nippon Sugar Co., Ltd. having the properties shown in Table 1 is dried, adjusted to a maximum of 2 mm or less and an average particle size of 1.2 mm, and pulverized to 2 mm or less as coal serving as a fuel having the properties shown in Table 2. Mixed. Four kinds of mixtures were prepared in which the Ca content in the lime cake was 0, 1, 2, 3 in terms of molar ratio (Ca / S) with respect to the sulfur content in the coal. The obtained mixture was burned in the circulating fluidized bed combustion furnace shown in FIG. 1, the SOx concentration at the combustion outlet was analyzed, and the desulfurization rate was determined by the following calculation method. The results are shown in Table 3.

脱硫率(%)=(a/b)×100
a=[石炭単味(Ca/S=0)燃焼時のSOx排出濃度]−(SOx排出濃度)
b=石炭単味(Ca/S=0)燃焼時のSOx排出濃度
Desulfurization rate (%) = (a / b) × 100
a = [SOx emission concentration during simple coal (Ca / S = 0) combustion] − (SOx emission concentration)
b = SOx emission concentration during simple coal (Ca / S = 0) combustion

尚、上記試験の燃焼条件は、燃焼温度:850℃、燃焼圧力:1atm、空気比:1.2、燃料投入速度:4kg/hであった。   The combustion conditions in the above test were combustion temperature: 850 ° C., combustion pressure: 1 atm, air ratio: 1.2, and fuel input speed: 4 kg / h.

比較例1
最大粒径を最大2mm以下、平均粒径1.2mmに調整した石灰石(秩父産、太平洋セメント社製)を、2mm以下に粉砕した表2に示す性状を有する燃料となる石炭と混合した。石炭中の硫黄分に対し、石灰石中のCa分が、モル比(Ca/S)で、0,1,2,3となる4種の混合物を調製した。得られた混合物を図1に示す流動層炉で燃焼させ、燃焼炉出口のSOx濃度を分析し、脱硫率を求めた。試験条件、脱硫率の計算は、実施例1と同様に行った。結果を表3に示す。
Comparative Example 1
Limestone (manufactured by Chichibu, Taiheiyo Cement Co., Ltd.) adjusted to have a maximum particle size of 2 mm or less and an average particle size of 1.2 mm was mixed with coal as a fuel having properties shown in Table 2 pulverized to 2 mm or less. Four types of mixtures were prepared in which the Ca content in the limestone was 0, 1, 2, 3 in terms of molar ratio (Ca / S) with respect to the sulfur content in the coal. The obtained mixture was burned in a fluidized bed furnace shown in FIG. 1, and the SOx concentration at the outlet of the combustion furnace was analyzed to determine the desulfurization rate. The test conditions and the desulfurization rate were calculated in the same manner as in Example 1. The results are shown in Table 3.

比較例2
最大粒径を20μmに調整したCa(OH)2微粒子(JIS−K8575、純度95%
以上)を、2mm以下に粉砕した表2に示す性状を有する燃料となる石炭と混合した。石炭中の硫黄分に対し、Ca(OH)2微粒子中のCa分が、モル比(Ca/S)で、0,1,2,3となる4種の混合物を調製した。得られた混合物を、図1に示す流動層炉で燃焼させ、燃焼炉出口のSOx濃度を分析し、脱硫率を求めた。試験条件、脱硫率の計算は、実施例1と同様に行った。結果を表3に示す。
Comparative Example 2
Ca (OH) 2 fine particles adjusted to a maximum particle size of 20 μm (JIS-K8575, purity 95%
The above was mixed with coal as fuel having properties shown in Table 2 pulverized to 2 mm or less. Four types of mixtures were prepared in which the Ca content in the Ca (OH) 2 fine particles was 0, 1, 2, 3 in terms of molar ratio (Ca / S) with respect to the sulfur content in the coal. The obtained mixture was burned in the fluidized bed furnace shown in FIG. 1, and the SOx concentration at the combustion furnace outlet was analyzed to determine the desulfurization rate. The test conditions and the desulfurization rate were calculated in the same manner as in Example 1. The results are shown in Table 3.

Figure 2005098673
Figure 2005098673

Figure 2005098673
Figure 2005098673

Figure 2005098673
Figure 2005098673

表3の結果から、ライムケーキを脱硫剤として用いた実施例1は、脱硫剤として石灰石、Ca(OH)2を用いた比較例1,2に比べ、低いCa/S比で著しく高い脱硫性を示した。これは、ライムケーキは細かいCaCO3が凝集しているので、比表面積が大きいためである。 From the results in Table 3, Example 1 using lime cake as a desulfurizing agent has a significantly higher desulfurization property at a lower Ca / S ratio than Comparative Examples 1 and 2 using limestone and Ca (OH) 2 as the desulfurizing agent. showed that. This is because the specific surface area of the lime cake is large because fine CaCO 3 aggregates.

本発明の方法は、石炭、重質油等の化石燃料、廃棄物、バイオマス等を焼却、ガス化、熱分解し、生成する排ガスを利用するエネルギー分野及び廃棄物処理分野において好適である。   The method of the present invention is suitable in the fields of energy and waste treatment using the exhaust gas generated by incineration, gasification, pyrolysis, and the like of fossil fuels such as coal and heavy oil, waste, and biomass.

外部循環型流動層燃焼装置の模式図である。It is a schematic diagram of an external circulation type fluidized bed combustion apparatus.

符号の説明Explanation of symbols

1 石炭ホッパー
2 フィーダ
3 空気供給ライン
4 予熱器
5 一次燃焼用空気供給ライン
6 分散板
7 ライムケーキホッパー
8 二次燃焼用空気供給ライン
9 流動層炉
10 一次サイクロン
11 粒子排出器
12 二次サイクロン
13 ビン
14 ガスクーラー
15 ガス分析計
16 バグフィルター
17 ブロワー
DESCRIPTION OF SYMBOLS 1 Coal hopper 2 Feeder 3 Air supply line 4 Preheater 5 Primary combustion air supply line 6 Dispersion plate 7 Lime cake hopper 8 Secondary combustion air supply line 9 Fluidized bed furnace 10 Primary cyclone 11 Particle ejector 12 Secondary cyclone 13 Bottle 14 Gas cooler 15 Gas analyzer 16 Bag filter 17 Blower

Claims (14)

流動層装置において、流動層炉内で発生するガス中の硫黄分を除去する方法であって、ライムケーキを含む脱硫剤を流動層炉内に投入することを特徴とする流動層装置における硫黄分の除去方法。   In a fluidized bed apparatus, a sulfur content in a gas generated in a fluidized bed furnace, wherein a sulfur content in a fluidized bed apparatus is charged with a desulfurizing agent containing lime cake. Removal method. 前記脱硫剤がライムケーキであることを特徴とする請求項1に記載の流動層装置における硫黄分の除去方法。   The method for removing a sulfur content in a fluidized bed apparatus according to claim 1, wherein the desulfurizing agent is a lime cake. 前記燃料及び/又は原料の硫黄分に対する前記脱硫剤のCa分が0.5〜7(モル比)であることを特徴とする請求項1又は2に記載の流動層装置における硫黄分の除去方法。   3. The method for removing sulfur in a fluidized bed apparatus according to claim 1, wherein a Ca content of the desulfurizing agent with respect to a sulfur content of the fuel and / or raw material is 0.5 to 7 (molar ratio). . 前記燃料及び/又は原料の硫黄分に対する前記脱硫剤のCa分が0.5〜5(モル比)であることを特徴とする請求項1〜3のいずれか一項に記載の流動層装置における硫黄分の除去方法。   The fluidized bed apparatus according to any one of claims 1 to 3, wherein a Ca content of the desulfurizing agent with respect to a sulfur content of the fuel and / or raw material is 0.5 to 5 (molar ratio). How to remove sulfur. 前記脱硫剤が最大粒子径が0.08mm以上であるライムケーキであることを特徴とする請求項1〜4のいずれか一項に記載の流動層装置における硫黄分の除去方法。   The method for removing a sulfur content in a fluidized bed apparatus according to any one of claims 1 to 4, wherein the desulfurizing agent is a lime cake having a maximum particle size of 0.08 mm or more. 前記ライムケーキを含む脱硫剤を、燃料及び/又は原料中に混合して、流動層炉内に投入することを特徴とする請求項1〜5のいずれか一項に記載の流動層装置における硫黄分の除去方法。   The sulfur in the fluidized bed apparatus according to any one of claims 1 to 5, wherein the desulfurizing agent containing the lime cake is mixed into fuel and / or raw material and charged into a fluidized bed furnace. Minute removal method. 前記流動層装置が外部循環流動層装置であって、前記脱硫剤が水分含有量が35%以下であって、かつ最大粒子径が0.08mm以上に造粒されたライムケーキであることを特徴とする請求項1〜5のいずれか一項に記載の流動層装置における硫黄分の除去方法。   The fluidized bed apparatus is an external circulating fluidized bed apparatus, wherein the desulfurizing agent is a lime cake granulated to have a water content of 35% or less and a maximum particle size of 0.08 mm or more. The removal method of the sulfur content in the fluidized-bed apparatus as described in any one of Claims 1-5. 前記流動層装置がバブリング型流動層装置または内部循環流動層装置であって、前記脱硫剤が水分含有量が35%以下であって、かつ最大粒子径が0.1mm以上に造粒されたライムケーキであることを特徴とする請求項1〜5に記載の流動層装置における硫黄分の除去方法。   The fluidized bed apparatus is a bubbling fluidized bed apparatus or an internal circulating fluidized bed apparatus, and the desulfurizing agent has a moisture content of 35% or less and is granulated to have a maximum particle size of 0.1 mm or more. It is a cake, The removal method of the sulfur content in the fluidized-bed apparatus of Claims 1-5 characterized by the above-mentioned. 前記ライムケーキを気流搬送で流動層炉内に直接投入することを特徴とする請求項7又は8に記載の流動層装置における硫黄分の除去方法。   The method for removing a sulfur content in a fluidized bed apparatus according to claim 7 or 8, wherein the lime cake is directly fed into the fluidized bed furnace by airflow conveyance. 前記ライムケーキを気流搬送で燃料及び/又は原料供給経路に搬送し、燃料及び/又は原料とともに流動層炉内に投入することを特徴とする請求項7又は8に記載の流動層装置における硫黄分の除去方法。   9. The sulfur content in a fluidized bed apparatus according to claim 7 or 8, wherein the lime cake is transported to a fuel and / or raw material supply path by airflow transport and introduced into a fluidized bed furnace together with the fuel and / or raw material. Removal method. 前記脱硫剤が水分含有量が20%以上であって、かつ粘土状またはスラリー状のライムケーキであり、該ライムケーキを流動層炉内に直接投入することを特徴とする請求項1〜5のいずれか一項に記載の流動層装置における硫黄分の除去方法。   The desulfurization agent has a water content of 20% or more and is a clay-like or slurry-like lime cake, and the lime cake is directly charged into a fluidized bed furnace. The removal method of the sulfur content in the fluidized-bed apparatus as described in any one. 前記ライムケーキを燃料及び/又は原料の供給経路上で燃料及び/又は原料と混合または同伴させて流動層炉内に投入することを特徴とする請求項11に記載の流動層装置における硫黄分の除去方法。   The sulfur content in the fluidized bed apparatus according to claim 11, wherein the lime cake is mixed or entrained with the fuel and / or the raw material on the fuel and / or raw material supply path and charged into the fluidized bed furnace. Removal method. 前記ライムケーキを流動層炉内に投入する方法において、機械式供給機を用いて流動層炉内に投入することを特徴とする請求項11又は12に記載の流動層装置における硫黄分の除去方法。   13. The method for removing sulfur in a fluidized bed apparatus according to claim 11 or 12, wherein the lime cake is charged into a fluidized bed furnace using a mechanical feeder. . ライムケーキを含む流動層用脱硫剤。   Fluidized bed desulfurization agent containing lime cake.
JP2004100913A 2003-09-05 2004-03-30 Method for removing sulfur in fluidized bed apparatus and desulfurizing agent Expired - Lifetime JP4625265B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004100913A JP4625265B2 (en) 2003-09-05 2004-03-30 Method for removing sulfur in fluidized bed apparatus and desulfurizing agent
CNB2004101005155A CN100483026C (en) 2003-09-05 2004-09-03 Sulfur removal method and desulfurizer in fluidized bed device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003313712 2003-09-05
JP2004100913A JP4625265B2 (en) 2003-09-05 2004-03-30 Method for removing sulfur in fluidized bed apparatus and desulfurizing agent

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009232138A Division JP2010008040A (en) 2003-09-05 2009-10-06 Sulfur content eliminating method and desulfurizer for fluidized bed apparatus

Publications (2)

Publication Number Publication Date
JP2005098673A true JP2005098673A (en) 2005-04-14
JP4625265B2 JP4625265B2 (en) 2011-02-02

Family

ID=34467665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004100913A Expired - Lifetime JP4625265B2 (en) 2003-09-05 2004-03-30 Method for removing sulfur in fluidized bed apparatus and desulfurizing agent

Country Status (2)

Country Link
JP (1) JP4625265B2 (en)
CN (1) CN100483026C (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007000721A (en) * 2005-06-22 2007-01-11 Hokkaido Kyodo Sekkai Kk Flue gas treatment method and production method of flue gas treatment agent
JP2008239749A (en) * 2007-03-27 2008-10-09 Nippon Paper Industries Co Ltd Solid fuel and production method of solid fuel
JP2008281297A (en) * 2007-05-11 2008-11-20 Oji Paper Co Ltd Method of removing sulfur in fluid bed combustion equipment
JP2009229056A (en) * 2008-02-28 2009-10-08 Mhi Environment Engineering Co Ltd Circulating type fluidized bed furnace, treatment system with circulating type fluidized bed furnace and operating method for circulating type fluidized bed furnace
JP2010008040A (en) * 2003-09-05 2010-01-14 Idemitsu Kosan Co Ltd Sulfur content eliminating method and desulfurizer for fluidized bed apparatus
WO2011144806A1 (en) * 2010-05-17 2011-11-24 Foster Wheeler Energia Oy Method of capturing sulfur oxides from the flue gas of an oxyfuel combustion cfb boiler
JP2012121734A (en) * 2010-12-06 2012-06-28 Taki Chem Co Ltd Method for producing granular lime cake
JP2014044042A (en) * 2012-07-31 2014-03-13 Idemitsu Kosan Co Ltd Method for removing sulfur contents in pulverized coal combustion device and desulfurization agent
JP2014181249A (en) * 2013-03-18 2014-09-29 Kumagai Gumi Co Ltd Coal combustion auxiliary composition, coal combustion auxiliary agent using the composition and coal combustion method using the coal combustion auxiliary agent
CN104896494A (en) * 2015-06-19 2015-09-09 山西大学 Afterheat recovery device applied to dry desulfurization technology
CN113294994A (en) * 2021-05-27 2021-08-24 辽阳天瑞水泥有限公司 Desulfurization emission reduction device of preheater
CN113332851A (en) * 2021-02-24 2021-09-03 薛援 Moving bed dry flue gas desulfurization method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102145253B (en) * 2010-12-31 2012-12-12 东莞理文造纸厂有限公司 Gas desulfurization system in recirculating fluidized bed boiler
CN114514060A (en) * 2019-11-05 2022-05-17 乐佧本有限股份公司 Pretreatment desulfurization method for bunker fuel oil by using pretreatment desulfurizing agent

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3907674A (en) * 1974-04-24 1975-09-23 Dorr Oliver Inc Fluid bed incineration of wastes containing alkali metal chlorides
CN1058004A (en) * 1991-08-15 1992-01-22 常州飞机制造厂技术开发服务部 Method with preparing high-purity calcium oxide from calcium carbide dregs
DE4300751C2 (en) * 1993-01-14 1994-10-27 Bernhard Reintanz Device for spraying liquid, in particular of a lime milk suspension in flue gases from flue gas desulfurization plants of power plants and waste incineration plants of power plants and waste incineration plants
CN1033493C (en) * 1994-03-21 1996-12-11 秦效敏 Fume desulfurization dust catching apparatus
JP3384435B2 (en) * 1997-03-28 2003-03-10 出光興産株式会社 Fluidized bed furnace exhaust gas desulfurization method
TR200401879T1 (en) * 1999-05-17 2005-08-22 Mitsubishi Heavy Industries, Ltd. A method for removing flue gas desulfurization and a system for removing flue gas desulfurization.

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008040A (en) * 2003-09-05 2010-01-14 Idemitsu Kosan Co Ltd Sulfur content eliminating method and desulfurizer for fluidized bed apparatus
JP2007000721A (en) * 2005-06-22 2007-01-11 Hokkaido Kyodo Sekkai Kk Flue gas treatment method and production method of flue gas treatment agent
JP2008239749A (en) * 2007-03-27 2008-10-09 Nippon Paper Industries Co Ltd Solid fuel and production method of solid fuel
JP2008281297A (en) * 2007-05-11 2008-11-20 Oji Paper Co Ltd Method of removing sulfur in fluid bed combustion equipment
JP2009229056A (en) * 2008-02-28 2009-10-08 Mhi Environment Engineering Co Ltd Circulating type fluidized bed furnace, treatment system with circulating type fluidized bed furnace and operating method for circulating type fluidized bed furnace
WO2010097976A1 (en) * 2008-02-28 2010-09-02 三菱重工環境・化学エンジニアリング株式会社 Circulation type fluidized-bed furnace, treating system equipped with circulation type fluidized-bed furnace, and method of operating circulation type fluidized-bed furnace
WO2011144806A1 (en) * 2010-05-17 2011-11-24 Foster Wheeler Energia Oy Method of capturing sulfur oxides from the flue gas of an oxyfuel combustion cfb boiler
JP2012121734A (en) * 2010-12-06 2012-06-28 Taki Chem Co Ltd Method for producing granular lime cake
JP2014044042A (en) * 2012-07-31 2014-03-13 Idemitsu Kosan Co Ltd Method for removing sulfur contents in pulverized coal combustion device and desulfurization agent
JP2014181249A (en) * 2013-03-18 2014-09-29 Kumagai Gumi Co Ltd Coal combustion auxiliary composition, coal combustion auxiliary agent using the composition and coal combustion method using the coal combustion auxiliary agent
CN104896494A (en) * 2015-06-19 2015-09-09 山西大学 Afterheat recovery device applied to dry desulfurization technology
CN113332851A (en) * 2021-02-24 2021-09-03 薛援 Moving bed dry flue gas desulfurization method
CN113332851B (en) * 2021-02-24 2023-08-29 薛援 Dry flue gas desulfurization method for moving bed
CN113294994A (en) * 2021-05-27 2021-08-24 辽阳天瑞水泥有限公司 Desulfurization emission reduction device of preheater

Also Published As

Publication number Publication date
JP4625265B2 (en) 2011-02-02
CN1607354A (en) 2005-04-20
CN100483026C (en) 2009-04-29

Similar Documents

Publication Publication Date Title
US20050066860A1 (en) Use of organic waste/mineral by-product mixtures in cement manufacturing processes
JP4625265B2 (en) Method for removing sulfur in fluidized bed apparatus and desulfurizing agent
EP2891843B1 (en) Method for combusting waste with a mineral additive
US8309052B2 (en) Carbon heat-treatment process
RU2673285C1 (en) Method for reducing the content of sulfur dioxide in a flue gas coming out of a boiler installation with a circulating fluidized bed
US9828249B2 (en) Operational conditions and method for production of high quality activated carbon
US5002741A (en) Method for SOX /NOX pollution control
TWI795750B (en) Apparatus and method for combustion exhaust gas purification
JP6224903B2 (en) Method for removing sulfur in pulverized coal combustion equipment
JP3384435B2 (en) Fluidized bed furnace exhaust gas desulfurization method
CN102303957B (en) Method and system for treating waste gas by combining dual-effect reactor and cement production
JP2010008040A (en) Sulfur content eliminating method and desulfurizer for fluidized bed apparatus
CN113074366B (en) Coal-fired flue gas CO2 solidification adsorption system
CN113897225A (en) Two-section type cement kiln multi-source solid waste coupling pyrolysis gasification method and device and application thereof
JP4957371B2 (en) Method for removing sulfur in fluidized bed combustor
JP2001201008A (en) Circulating fluidized bed boiler system and its operating method
KR20140016840A (en) Method for removing sulphur component in pulverized coal combustion apparatus, and desulphurizing agent
JP2008170107A (en) Oxide reducing method and oxide reducer for coal addition used in the same
US9109801B2 (en) Coal heat-treatment process and system
CN1332000C (en) Desulfate agent for fuel coal and preparation process thereof
FI117125B (en) Reducing sulfur oxide content of exhaust gas generated by burning fuel, comprises contacting gas with green liquor sludge from sulfate pulp cooking process
JP2003119479A (en) Solid fuel having desulfurizing function
Tokheim et al. Energy recovery from wastes: experience with solid alternative fuels combustion in a precalciner cement kiln
US20150059625A1 (en) Low emission fuel pellet
Hooper et al. Method for SO X/NO X pollution control

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100922

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101105

R150 Certificate of patent or registration of utility model

Ref document number: 4625265

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3