JP2005098173A - System using internal energy as heat source for evaporating/condensing refrigerant gas - Google Patents

System using internal energy as heat source for evaporating/condensing refrigerant gas Download PDF

Info

Publication number
JP2005098173A
JP2005098173A JP2003331479A JP2003331479A JP2005098173A JP 2005098173 A JP2005098173 A JP 2005098173A JP 2003331479 A JP2003331479 A JP 2003331479A JP 2003331479 A JP2003331479 A JP 2003331479A JP 2005098173 A JP2005098173 A JP 2005098173A
Authority
JP
Japan
Prior art keywords
refrigerant gas
heat source
temperature
internal energy
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003331479A
Other languages
Japanese (ja)
Other versions
JP2005098173A5 (en
Inventor
Kota Noda
恒太 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIBAMOTO KIYOKO
Original Assignee
SHIBAMOTO KIYOKO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIBAMOTO KIYOKO filed Critical SHIBAMOTO KIYOKO
Priority to JP2003331479A priority Critical patent/JP2005098173A/en
Publication of JP2005098173A publication Critical patent/JP2005098173A/en
Publication of JP2005098173A5 publication Critical patent/JP2005098173A5/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat source performing heat exchange for the evaporation/condensation of a refrigerant gas with internal energy. <P>SOLUTION: Nitrogen gas is filled in a vacuum chamber, an artificial solar light is lit in the chamber, and a temperature in the chamber is increased to 100 to 120°C to perform evaporation by a heat exchanger. The nitrogen gas is filled in the other vacuum chamber, the temperature in the chamber is kept at -30°C to perform condensation by the heat exchanger so as to stabilize a temperature difference. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、冷媒ガスの熱格差で蒸発・凝縮する熱交換のシステムに関するものである。   The present invention relates to a heat exchange system that evaporates and condenses due to a thermal difference in refrigerant gas.

従来、冷媒ガスの蒸発・凝縮の熱源にはいろいろなエネルギーを利用しているが、装置も大型となり、ランニングコストも高価である。   Conventionally, various energies are used as a heat source for evaporating and condensing refrigerant gas, but the apparatus is large and running cost is also expensive.

上記の問題点を解決し、設備・ランニングの両コストを低廉化を計る内部エネルギーを利用した冷媒ガスの蒸発・凝縮を提供するためになされたものである。   The present invention was made in order to solve the above problems and to provide evaporation and condensation of refrigerant gas using internal energy to reduce both the cost of equipment and running.

上記課題を解決するため本発明は、冷媒ガスを蒸発させるため高温部液体(水・不凍液)は電熱ヒーターで温め、凝縮するため低温部液体(塩水・不凍液)は冷凍機で冷やす。この二熱源で高低温の循環液体を内部エネルギーを使用して生成するシステム。   In order to solve the above problems, in the present invention, in order to evaporate the refrigerant gas, the high temperature liquid (water / antifreeze) is warmed by an electric heater, and since it is condensed, the low temperature liquid (salt / antifreeze) is cooled by a refrigerator. A system that uses this internal heat to generate high and low temperature circulating liquids.

本発明は、温度格差発電装置で、温度差を生成する熱源の課題を性能・環境・省資源・低コスト面について在来の太陽光発電は天候日照時間・風力発電は風速の安定性両者とも天候に左右され併せて発電効率は低く、燃料発電は水素酸素の安全性に問題が大きく機器の寿命も短い等々何れの発電と比較しても優れることとなる。   The present invention is a temperature disparity power generation device, and the problem of the heat source that generates the temperature difference is the performance, environment, resource saving, and low cost. Depending on the weather, the power generation efficiency is low, and fuel power generation is superior to any power generation, such as the problem of hydrogen oxygen safety and short equipment life.

図1は、ランキンサイクル温度格差発電装置のフローシートである。冷媒ガスを蒸発器5で蒸気にし、タービン1へ噴射し1を回転排出し、凝縮器6に入り液になり、ポンプ4で加圧し5に戻る一連の循環サイクルを示す。1の回転をカップリング2を介し、発電機8と冷凍機3及び4を運転する。発電装置を示す。   FIG. 1 is a flow sheet of a Rankine cycle temperature differential power generation device. Refrigerant gas is vaporized by the evaporator 5, injected into the turbine 1, 1 is rotated and discharged, enters the condenser 6, becomes liquid, is pressurized by the pump 4, and returns to 5. The generator 8 and the refrigerators 3 and 4 are operated via the coupling 2 by rotating 1. A power generator is shown.

高温加熱部Aは5に設けた熱交換器(加熱)5´へ加熱槽9´に湛えた加熱水(水・不凍液)9を、8で発生した電力Pを使い加熱ヒーター9''で9を温め温度コントロールしPで動くポンプ5''で5´へ送り更に逆止弁7を経て9´へ戻す循環サイクルである。AはPを使用した冷媒ガスを蒸発させる高温発生の熱源である。   The high-temperature heating part A uses heating water (water / antifreeze) 9 stored in a heating tank 9 ′ to a heat exchanger (heating) 5 ′ provided in 5, and uses a power P generated in 8 to heat 9 Is a circulation cycle in which the temperature is controlled and sent to 5 ′ by a pump 5 ″ moved by P and further returned to 9 ′ via a check valve 7. A is a high-temperature heat source that evaporates the refrigerant gas using P.

低温冷却部Bは3で発生する低温冷媒ガスを6に設けた熱交換器(冷却)6´へ冷却槽10´に満たした冷却水(塩水・不凍液)10を冷却熱交換器10''で温度コントロールで冷却しPで動くポンプ6''で6´へ送り更に逆止弁7を経て10´へ戻る循環サイクルである。Bは1の出力回転を使った冷媒ガスを凝縮させる低温発生の熱源を示す。以上、外部エネルギーを利用しないランキンサイクルのフローシートを示す。   The low-temperature cooling section B uses the cooling heat exchanger 10 ″ to cool the cooling water (salt water / antifreeze) 10 filled in the cooling tank 10 ′ into the heat exchanger (cooling) 6 ′ provided with the low-temperature refrigerant gas generated in 3 in the cooling heat exchanger 10 ″. This is a circulation cycle which is cooled by temperature control and sent to 6 'by a pump 6' 'which is moved by P and then returns to 10' via a check valve 7. B shows a heat source of low temperature generation that condenses the refrigerant gas using the output rotation of 1. As mentioned above, the flow sheet of Rankine cycle which does not use external energy is shown.

本発明に係わる冷媒ガスの蒸発・凝縮熱交換器の熱源生成のシステム図である。It is a system diagram of heat source generation of a refrigerant gas evaporation / condensation heat exchanger according to the present invention.

符号の説明Explanation of symbols

1 タービン
2 カップリング
3 冷凍機
4 ポンプ
5 蒸発器
5' 熱交換器(加熱)
5'' ポンプ
6 凝縮器
6' 熱交換器(冷却)
6'' ポンプ
7 逆止弁
8 発電機
9 加熱水(水・不凍液)
9' 加熱槽
9'' 加熱ヒーター
10 冷却水(塩水・不凍液)
10' 冷却槽
10'' 冷却熱交換器
P 電力(自己発電)
A 高温加熱部
B 低温冷却部

1 Turbine 2 Coupling 3 Refrigerator 4 Pump 5 Evaporator 5 'Heat exchanger (heating)
5 '' pump 6 condenser 6 'heat exchanger (cooling)
6 '' pump 7 check valve 8 generator 9 heated water (water / antifreeze)
9 'Heating tank 9 "Heater 10 Cooling water (salt water / antifreeze)
10 'Cooling tank 10 "Cooling heat exchanger P Electric power (self-generation)
A High temperature heating part B Low temperature cooling part

Claims (1)

外部エネルギーを利用しないで、冷媒ガスを蒸発・凝縮させる熱交換器の熱源発生システム


Heat source generation system for heat exchanger that evaporates and condenses refrigerant gas without using external energy


JP2003331479A 2003-09-24 2003-09-24 System using internal energy as heat source for evaporating/condensing refrigerant gas Withdrawn JP2005098173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003331479A JP2005098173A (en) 2003-09-24 2003-09-24 System using internal energy as heat source for evaporating/condensing refrigerant gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003331479A JP2005098173A (en) 2003-09-24 2003-09-24 System using internal energy as heat source for evaporating/condensing refrigerant gas

Publications (2)

Publication Number Publication Date
JP2005098173A true JP2005098173A (en) 2005-04-14
JP2005098173A5 JP2005098173A5 (en) 2006-05-11

Family

ID=34460137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003331479A Withdrawn JP2005098173A (en) 2003-09-24 2003-09-24 System using internal energy as heat source for evaporating/condensing refrigerant gas

Country Status (1)

Country Link
JP (1) JP2005098173A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020153042A1 (en) * 2019-01-22 2020-07-30 雄一郎 渡邊 Power generation plant and power generation method
WO2024105286A1 (en) * 2022-11-17 2024-05-23 Santiago Lopez Comin Method for obtaining free energy in a cyclical thermodynamic cycle and installation for implementing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020153042A1 (en) * 2019-01-22 2020-07-30 雄一郎 渡邊 Power generation plant and power generation method
JP6799697B1 (en) * 2019-01-22 2020-12-16 雄一郎 渡邊 Power plant and power generation method
WO2024105286A1 (en) * 2022-11-17 2024-05-23 Santiago Lopez Comin Method for obtaining free energy in a cyclical thermodynamic cycle and installation for implementing same

Similar Documents

Publication Publication Date Title
JP2010540837A (en) Cascade type organic Rankine cycle (ORC) system using waste heat from reciprocating engine
CN103993921A (en) Power generating apparatus and method of operating power generating apparatus
KR20090002643U (en) Sola Lowtemp Water Absorption cooling System
JP2010065862A (en) Second class absorption heat pump system
KR101208459B1 (en) Organic rankine cycle turbo generation system generating cooling air and hot water
KR101528935B1 (en) The generating system using the waste heat of condenser
KR101481010B1 (en) Ocean thermal energy conversion system and operation method thereof
KR200445537Y1 (en) Hybrid Absoption Cooling System
JP5312644B1 (en) Air conditioning power generation system
JP3905986B2 (en) Waste heat utilization air conditioning system
KR20100125830A (en) Exhaust heat power generation system by low temperature refrigerants vaporization activity
KR101038249B1 (en) Air cooling apparustus for gas turbine
KR100814615B1 (en) Cogeneration system using compression type cycle and absorption type cycle
KR101336788B1 (en) A cooling system of the organic rankine cycle
JP2007322028A (en) Absorption type refrigerating system
KR101699905B1 (en) Absorption chiller system having fuel cell
JP2005098173A (en) System using internal energy as heat source for evaporating/condensing refrigerant gas
JP2004301344A (en) Ammonia absorption heat pump
KR200431243Y1 (en) air cooling and heating system
JP3520927B2 (en) Power generator
CN208040471U (en) The heated type refrigeration and generation circulatory system
JP2022537062A (en) Binary cycle power generation system
JP2005147447A (en) Ammonia-water non-azeotropic mixture medium circulation system
CN108343484A (en) The heated type refrigeration and generation circulatory system
CN219283675U (en) Efficient superconductive solar lithium bromide refrigerating device

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20051011

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Effective date: 20051011

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051201

A521 Written amendment

Effective date: 20060111

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Effective date: 20051011

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060918

A072 Dismissal of procedure

Effective date: 20061031

Free format text: JAPANESE INTERMEDIATE CODE: A073

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070419