JP2005097773A - Fiber fabric supporting photocatalyst and having deodorizing, antimicrobial and antifouling function - Google Patents

Fiber fabric supporting photocatalyst and having deodorizing, antimicrobial and antifouling function Download PDF

Info

Publication number
JP2005097773A
JP2005097773A JP2003331490A JP2003331490A JP2005097773A JP 2005097773 A JP2005097773 A JP 2005097773A JP 2003331490 A JP2003331490 A JP 2003331490A JP 2003331490 A JP2003331490 A JP 2003331490A JP 2005097773 A JP2005097773 A JP 2005097773A
Authority
JP
Japan
Prior art keywords
fiber fabric
titanium oxide
oxide photocatalyst
deodorizing
binder resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003331490A
Other languages
Japanese (ja)
Inventor
Yasutaro Seto
保太郎 瀬戸
Tatsuo Nakamura
達男 中村
Shuichi Yonezawa
修一 米澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suminoe Textile Co Ltd
Original Assignee
Suminoe Textile Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suminoe Textile Co Ltd filed Critical Suminoe Textile Co Ltd
Priority to JP2003331490A priority Critical patent/JP2005097773A/en
Publication of JP2005097773A publication Critical patent/JP2005097773A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a fiber fabric that keeps a soft feeling of fiber fabric, completely prevents discoloration and deterioration of fiber fabric by oxidation action of photocatalyst and has deodorizing, antimicrobial and antifouling function. <P>SOLUTION: The fiber fabric having excellent deodorizing, antimicrobial and antifouling function and keeping a soft feeling while preventing discoloration and deterioration of the fiber fabric and the binder resin by oxidation action of photocatalyst is obtained by using an acrylic silicone-based binder resin and supporting a titanium oxide photocatalyst on a fiber fabric by a silanol bond. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、衣料や、カーテン、カーペット、壁紙等のインテリア用品、衛生材料などに広く応用でき、消臭、抗菌および防汚機能を有するようにした繊維布帛に関する技術である。   The present invention relates to a textile fabric that can be widely applied to clothing, interior goods such as curtains, carpets, and wallpaper, and sanitary materials, and has a deodorizing, antibacterial, and antifouling function.

従来技術として、消臭、抗菌および防汚等の機能に関する技術は良く知られている。例えば、活性炭の優れた吸着作用を利用した消臭剤が知られているが、これらは悪臭成分を吸着し、周辺の臭気濃度を短期的に低下さす働きには優れているが、悪臭成分の量が減少するわけではなく、有効期間に限りのある消臭方法である。   As conventional techniques, techniques relating to functions such as deodorization, antibacterial action, and antifouling are well known. For example, deodorizers using the excellent adsorption action of activated carbon are known, but these adsorb bad odor components and are excellent in the action of lowering the odor concentration in the short term. The amount is not reduced, but it is a deodorizing method with a limited shelf life.

また、消臭スプレーを、直接臭気を発するものに吹きつけ消臭するものもあるが、この方法は、芳香剤の働きにより、一時的に臭いは消えるものの時間がたてば再び臭気が発生し、根本的な解決にはつながらない。   In addition, there is a deodorizing spray that blows directly on those that emit odor, but this method causes the odor to reappear after a while although the odor temporarily disappears due to the action of the fragrance. , It does not lead to a fundamental solution.

次ぎに、悪臭成分を分解して消臭する方法としては、フタロシアニンが良く知られているが、全ての悪臭に有効なものではなく、タバコ臭や、人体の汗の臭いであるイソ吉草酸等の悪臭に対しては有効な消臭方法とは言いがたいものである。   Next, phthalocyanine is well known as a method for decomposing and deodorizing malodorous components, but it is not effective for all bad odors, such as tobacco odor and isovaleric acid which is the smell of human sweat. It is difficult to say that it is an effective deodorizing method for the bad odors.

フタロシアニンの他では、悪臭成分を分解して消臭する方法として、酸化チタン光触媒が良く知られている。酸化チタン光触媒は、水中のハロゲン含有有機物を炭酸ガスと水に分解したり、たばこ臭や人体の汗の臭いであるイソ吉草酸等の悪臭を消臭したり、布に付着したたばこのヤニ等の着色物質を分解して防汚効果もあることが知られている。   In addition to phthalocyanine, a titanium oxide photocatalyst is well known as a method for decomposing and deodorizing malodorous components. Titanium oxide photocatalyst decomposes halogen-containing organic substances in water into carbon dioxide gas and water, deodorizes bad odors such as cigarette odor and isovaleric acid which is the smell of human sweat, cigarette spider adhering to cloth, etc. It is known that there is also an antifouling effect by decomposing the colored substances.

また、酸化チタン光触媒は、その強力な酸化力によって、大腸菌などを殺す機能もあることは確認されており、抗菌効果のあることが知られている。   Further, it has been confirmed that the titanium oxide photocatalyst has a function of killing Escherichia coli and the like by its strong oxidizing power, and is known to have an antibacterial effect.

しかしながら、光触媒はそのような有益な機能を有する反面、光触媒を直接繊維布帛にバインダー樹脂によって担持させると、光触媒の強い酸化分解力によって、バインダー樹脂や繊維布帛が有機質の炭化水素を含む樹脂であるため分解したり、着色したり、異臭が発生するなどの諸問題が生じていたため、使用が限定され、酸化に強いタイルやガラス等の無機の担持素材へ応用されることが多かった。   However, the photocatalyst has such a useful function, but when the photocatalyst is directly supported on the fiber cloth by the binder resin, the binder resin or the fiber cloth is a resin containing organic hydrocarbons due to the strong oxidative decomposition power of the photocatalyst. As a result, various problems such as decomposition, coloring, and off-flavor generation have occurred, so the use is limited, and it is often applied to inorganic support materials such as tiles and glass that are resistant to oxidation.

これを改善するため特許文献1においては、繊維布帛に酸化チタン光触媒をシリコーン架橋型樹脂で固定することにより、使用に際して繊維布帛に変色や劣化がなく、持続性のある優れた消臭、抗菌および防汚機能を有する繊維布帛の技術を開示している。   In order to improve this, in Patent Document 1, a titanium cloth photocatalyst is fixed to a fiber cloth with a silicone cross-linked resin, so that the fiber cloth is not discolored or deteriorated during use, and has excellent deodorizing, antibacterial and antibacterial properties. A technique of a fiber fabric having an antifouling function is disclosed.

また、特許文献2においても、繊維布帛の表面にフッ素樹脂からなる耐食性皮膜を形成し、この耐食性被膜の上に光触媒皮膜を形成することにより、繊維布帛に変色や劣化がない消臭性布帛の技術を開示している。   Also in Patent Document 2, a deodorant fabric having no discoloration or deterioration of the fiber fabric is formed by forming a corrosion-resistant coating made of a fluororesin on the surface of the fiber fabric and forming a photocatalytic coating on the corrosion-resistant coating. The technology is disclosed.

特開平10−1879JP-A-10-1879 特願平10−216210Japanese Patent Application No. 10-216210

しかし、上記方法では、繊維布帛の風合いが硬くなり、また、光触媒の酸化作用から完全に繊維布帛を保護することが不可能で、繊維布帛やバインダー樹脂の変色や劣化を防ぐことに満足のできるものは出来ていない。本発明の課題は、上述の事情に鑑み、繊維布帛の柔らかな風合いを維持し、光触媒の酸化作用による変色や劣化を完全に防いだ消臭、抗菌および防汚機能を有する繊維布帛を提供することにある。   However, in the above method, the texture of the fiber fabric becomes hard, and it is impossible to completely protect the fiber fabric from the oxidation action of the photocatalyst, and it is satisfactory to prevent discoloration and deterioration of the fiber fabric and the binder resin. Things are not made. An object of the present invention is to provide a fiber fabric having a deodorizing, antibacterial, and antifouling function that maintains the soft texture of the fiber fabric and completely prevents discoloration and deterioration due to the oxidation action of the photocatalyst in view of the above-described circumstances. There is.

本発明は、繊維布帛の柔らかな風合いを維持し、変色や劣化を完全に防いだ消臭、抗菌および防汚機能を有する繊維布帛を提供すべく検討を行なった結果、アクリルシリコン系バインダー樹脂で、酸化チタン光触媒を繊維布帛に担持させることによって、柔らかな風合いのままで消臭、抗菌および防汚機能に優れた繊維布帛が得られることを見出し、本発明に至ったものである。   The present invention has been studied to provide a fiber fabric having a deodorizing, antibacterial and antifouling function that maintains the soft texture of the fiber fabric and completely prevents discoloration and deterioration. The present inventors have found that by supporting a titanium oxide photocatalyst on a fiber cloth, a fiber cloth excellent in deodorizing, antibacterial and antifouling functions can be obtained while maintaining a soft texture.

すなわち第1の発明は、繊維布帛に酸化チタン光触媒がアクリルシリコン系バインダー樹脂により固定されてなる、消臭、抗菌、および防汚機能を有する繊維布帛である。   That is, the first invention is a fiber fabric having a deodorizing, antibacterial, and antifouling function, wherein a titanium oxide photocatalyst is fixed to the fiber fabric with an acrylic silicon binder resin.

本発明は衣料用や、カーテン、カーペット、壁紙等のインテリア用品、衛生材料などに広く有用な繊維布帛として使用することができる。また、繊維布帛の繊維としては、ポリエステル、ポリアミド、アクリルなどの合成繊維、アセテート、レーヨンなどの半合成繊維、羊毛、絹、木綿、麻などの天然繊維などから選ばれる、1種または複数の繊維を使用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used as a textile fabric that is widely useful for clothing, interior goods such as curtains, carpets, and wallpaper, and sanitary materials. In addition, as the fiber of the fiber fabric, one or more fibers selected from synthetic fibers such as polyester, polyamide and acrylic, semi-synthetic fibers such as acetate and rayon, natural fibers such as wool, silk, cotton and hemp Can be used.

本発明のメカニズムは十分解明されていないが、酸化チタン光触媒は、アクリルシリコン系バインダー樹脂のシリコン基とシラノール結合 で接合し、又アクリルシリコン系バインダー樹脂のアクリル基は、繊維布帛と強力に接合する。このよう、酸化チタン光触媒が繊維布帛に直接結合するのではなく、シリコン基と酸化チタン光触媒、アクリル基と繊維布帛がそれぞれ選択的に結合することから、光触媒の酸化作用から繊維布帛の変色や劣化を防ぐことができるものである。また、アクリル基を介して繊維布帛と酸化チタン光触媒とが間接的に接合することから、繊維の柔らかい風合いが守られるものである。   Although the mechanism of the present invention has not been fully elucidated, the titanium oxide photocatalyst is bonded to the silicon group of the acrylic silicon-based binder resin by a silanol bond, and the acrylic group of the acrylic silicon-based binder resin is strongly bonded to the fiber fabric. . As described above, the titanium oxide photocatalyst is not directly bonded to the fiber cloth, but the silicon group and the titanium oxide photocatalyst and the acrylic group and the fiber cloth are selectively bonded to each other. Can be prevented. Moreover, since the fiber fabric and the titanium oxide photocatalyst are indirectly bonded via an acrylic group, the soft texture of the fibers is protected.

また、酸化チタン光触媒をアクリルシリコン系バインダー樹脂のシリコン基を介して、繊維布帛と間接的に固定することにより、酸化チタン光触媒によって繊維やバインダー樹脂が侵されない状態を確保したうえで、従来消臭が困難であったタバコ臭、汗臭などを簡単に消臭することができ、また付着したタバコのヤニなどの着色物質を分解して、防汚効果も得ることができるものである。   In addition, by fixing the titanium oxide photocatalyst indirectly to the fiber fabric through the silicon group of the acrylic silicon binder resin, the titanium oxide photocatalyst ensures a state in which the fiber and the binder resin are not attacked, and the conventional deodorization is performed. It is possible to easily deodorize tobacco odors, sweat odors, etc., which have been difficult to remove, and to disassemble colored substances such as tobacco crabs, which can also provide an antifouling effect.

さらに、酸化チタン光触媒は、その酸化力により、黄色ブドウ球菌などに殺菌力があることは知られており、菌が人体代謝物などを分解する時に発生する悪臭を抑制し、抗菌効果も得ることができるものである。   Furthermore, titanium oxide photocatalysts are known to have bactericidal properties against Staphylococcus aureus due to their oxidative power, which suppresses malodors that occur when bacteria decompose human metabolites and the like, and also has an antibacterial effect It is something that can be done.

第2の発明は、前記酸化チタン光触媒の粒径が5nm〜20μmである請求項1記載の消臭、抗菌、および防汚機能を有する繊維布帛である。酸化チタン光触媒の粒径が20μmを越えると悪臭の分解速度が遅くなり好ましくない。また、5nmを下回る粒径とすることは技術的に製造することは困難で、コスト的にも採算が合わず好ましくない。より好ましくは7nm〜5μmがよい。   2nd invention is a fiber fabric which has a deodorizing, antibacterial, and antifouling function of Claim 1 whose particle size of the said titanium oxide photocatalyst is 5 nm-20 micrometers. When the particle size of the titanium oxide photocatalyst exceeds 20 μm, the malodor decomposition rate is slow, which is not preferable. Further, it is difficult to technically produce a particle size of less than 5 nm, which is not preferable because it is not profitable in terms of cost. More preferably, the thickness is 7 nm to 5 μm.

第3の発明は、前記酸化チタン光触媒の繊維布帛への付着量が、繊維布帛100重量部に対し、0.5〜25重量%である請求項1又は2記載の消臭、抗菌、および防汚機能を有する繊維布帛である。   According to a third aspect of the present invention, the amount of the titanium oxide photocatalyst attached to the fiber fabric is 0.5 to 25% by weight with respect to 100 parts by weight of the fiber fabric. It is a fiber fabric having a soiling function.

酸化チタン光触媒の繊維布帛への付着量が25重量%を越えると風合いが硬くなり、また繊維布帛が白化して好ましくない。また、0.5重量%を下回ると悪臭の分解速度が遅く、消臭効果が弱くなり好ましくない。より好ましくは0.7〜10重量%である。   If the amount of the titanium oxide photocatalyst attached to the fiber cloth exceeds 25% by weight, the texture becomes hard and the fiber cloth is whitened. On the other hand, if it is less than 0.5% by weight, the malodor decomposition rate is slow and the deodorizing effect becomes weak, which is not preferable. More preferably, it is 0.7 to 10% by weight.

本発明によれば、アクリルシリコン系バインダー樹脂のシリコン基とアクリル基が選択的に酸化チタン光触媒と繊維布帛に強く結合することから、酸化チタン光触媒の強い酸化作用の影響が回避され、使用に際して繊維布帛の変色や劣化がなく、かつ持続性のある優れた消臭、抗菌、および防汚機能を有する繊維布帛を得ることができる。本発明の繊維布帛は、衣料、カーテン、カーペット、壁紙等のインテリア用品、衛生材料などに広く有用な繊維布帛として用いられる。   According to the present invention, since the silicon group and the acrylic group of the acrylic silicon-based binder resin are selectively strongly bonded to the titanium oxide photocatalyst and the fiber fabric, the influence of the strong oxidizing action of the titanium oxide photocatalyst is avoided, and the fiber is used in use. There is no discoloration or deterioration of the fabric, and it is possible to obtain a fiber fabric having excellent deodorant, antibacterial, and antifouling functions that is durable. The fiber fabric of the present invention is used as a fiber fabric that is widely useful for interior goods such as clothing, curtains, carpets, wallpaper, and sanitary materials.

本発明の消臭、抗菌および防汚機能を有する繊維布帛について詳細に説明する。酸化チタン光触媒はアクリルシリコン系バインダー樹脂のシリコン基とシラノール結合で接合し、又アクリルシリコン系バインダー樹脂のアクリル基は繊維布帛とそれぞれ選択的に強力に接合する。   The fiber fabric having the deodorizing, antibacterial and antifouling functions of the present invention will be described in detail. The titanium oxide photocatalyst is bonded to the silicon group of the acrylic silicon-based binder resin by a silanol bond, and the acrylic group of the acrylic silicon-based binder resin is selectively and strongly bonded to the fiber fabric.

このように、選択的にシリコン基が酸化チタン光触媒とシラノール結合するため、アクリルシリコン系バインダー樹脂と酸化チタン光触媒との混合液をつくる時に、優先してシリコン基は酸化チタン光触媒と結合を完了している。その後繊維布帛に浸漬・塗布されることにより、アクリルシリコン系バインダー樹脂のアクリル基が繊維と直接接合することから、酸化チタン光触媒が繊維と直接接合するのを防ぎ、さらに柔軟性を保ちながら繊維と接合するものである。   In this way, since the silicon group selectively forms a silanol bond with the titanium oxide photocatalyst, the silicon group preferentially completes the bond with the titanium oxide photocatalyst when making a mixture of the acrylic silicon binder resin and the titanium oxide photocatalyst. ing. Thereafter, the acrylic group of the acrylic silicone binder resin is directly bonded to the fiber by being dipped and applied to the fiber fabric, so that the titanium oxide photocatalyst is prevented from directly bonding to the fiber, and the fiber is maintained while maintaining flexibility. It is what is joined.

アクリルシリコン系バインダー樹脂によって酸化チタン光触媒を繊維布帛に担持させる方法は、浸漬法とコーティング法を例示できる。アクリルシリコン系バインダー樹脂は水溶性であるので、容易に酸化チタン光触媒との混合液を得ることができる。   Examples of the method of supporting the titanium oxide photocatalyst on the fiber fabric with the acrylic silicon-based binder resin include an immersion method and a coating method. Since the acrylic silicon-based binder resin is water-soluble, a liquid mixture with the titanium oxide photocatalyst can be easily obtained.

浸漬法は、繊維布帛をアクリルシリコン系バインダー樹脂と酸化チタン光触媒の混合液に浸漬した後マングルで絞り、これを乾燥させることによって繊維布帛に酸化チタン光触媒を担持させるもので均一に担持することができる。   In the dipping method, the fiber fabric is immersed in a mixed solution of an acrylic silicon binder resin and a titanium oxide photocatalyst, then squeezed with mangle, and dried to support the titanium oxide photocatalyst on the fiber fabric. it can.

コーティング法は、繊維布帛にアクリルシリコン系バインダー樹脂と酸化チタン光触媒の混合液をコーティングした後乾燥させることによって繊維布帛に酸化チタン光触媒を担持させるもので、生産性を顕著に向上でき、担持量も精度高く制御できる。前記コーティング方法は、特に限定されるものではないが、例えばグラビアロール加工、スプレー加工、ロールコーター加工、ジェットプリント加工、転写プリント加工、スクリーンプリント加工等を例示することができる。   In the coating method, the fiber cloth is coated with a mixed liquid of an acrylic silicon binder resin and a titanium oxide photocatalyst and then dried to support the titanium oxide photocatalyst on the fiber cloth. Control with high accuracy. The coating method is not particularly limited, and examples thereof include gravure roll processing, spray processing, roll coater processing, jet print processing, transfer print processing, and screen print processing.

コーティング法は、アクリルシリコン系バインダー樹脂を繊維布帛上に皮膜状に層となって全面接着するよりも、網目状に接着させることが可能な加工方法として有用な加工である。これは、バインダー樹脂が層となって全面接着するのではなく、網目状に接着させることにより、繊維布帛を構成する糸が相対的に動きうることから、繊維布帛の柔軟性が確保されることと、繊維布帛に消臭、抗菌、防汚以外の機能性を付与する部分としての空間を残すことができ、難燃、撥水、撥油等の機能をさらに付与することができる。   The coating method is a processing useful as a processing method capable of adhering an acrylic silicon-based binder resin in a mesh form, rather than adhering the entire surface in a film form on a fiber fabric. This is because the flexibility of the fiber fabric is ensured because the yarns constituting the fiber fabric can move relatively by adhering the binder resin as a layer instead of adhering to the whole surface in a mesh form. In addition, it is possible to leave a space as a portion for imparting functionalities other than deodorizing, antibacterial, and antifouling to the fiber fabric, and further impart functions such as flame retardancy, water repellency, and oil repellency.

酸化チタン光触媒はアナターゼ型酸化チタン光触媒、ルチル型酸化チタン光触媒、ブルカイト型酸化チタン光触媒が好ましく、中でも、アナターゼ型酸化チタン光触媒が特に好適である。酸化チタン光触媒は、紫外線により励起されて水や酸素が・OHや・O となり、強い酸化作用で有機物を、水とニ酸化炭素に分解し、消臭するものである。また、酸化チタン光触媒の触媒活性を高めるため、白金、パラジウム、ロジウムなどの白金族金属を担持させたものや、銀、銅、亜鉛などの殺菌性のある金属を担持させたものを使用することもできる。 As the titanium oxide photocatalyst, an anatase-type titanium oxide photocatalyst, a rutile-type titanium oxide photocatalyst, and a brookite-type titanium oxide photocatalyst are preferable. Titanium oxide photocatalyst is excited by ultraviolet rays, water and oxygen OH or - O 2 -, and the organic matter with a strong oxidizing action, decomposes into water and carbon dioxide, is intended to deodorization. In addition, in order to increase the catalytic activity of the titanium oxide photocatalyst, use one that carries a platinum group metal such as platinum, palladium, or rhodium, or one that carries a sterilizable metal such as silver, copper, or zinc. You can also.

また、本発明においては、酸化チタン光触媒としてアパタイト被覆酸化チタン光触媒を用いることもできる。アパタイト被覆酸化チタン光触媒は、酸化チタン光触媒の表面がリン酸カルシウムアパタイトにより被覆された複合材料である。アパタイト被覆酸化チタン光触媒は、酸化チタン光触媒が直接繊維布帛やバインダー樹脂と接合するのを防ぎ、強い酸化作用によって繊維布帛やバインダー樹脂が侵されることから守るものである。   In the present invention, an apatite-coated titanium oxide photocatalyst can also be used as the titanium oxide photocatalyst. The apatite-coated titanium oxide photocatalyst is a composite material in which the surface of the titanium oxide photocatalyst is coated with calcium phosphate apatite. The apatite-coated titanium oxide photocatalyst prevents the titanium oxide photocatalyst from directly joining to the fiber cloth or the binder resin, and protects the fiber cloth or the binder resin from being attacked by a strong oxidizing action.

また、酸化チタンの一部にNドープ等を行なった、可視光域で励起する可視光応答型酸化チタン光触媒も知られており、これらも本発明において使うことができる。例えばNやSで酸化チタンのOの一部を置換したアニオンドープ型や、Tiの一部を別の原子で置換したカチオンドープ型が挙げられる。   In addition, a visible light responsive titanium oxide photocatalyst that is excited in the visible light region in which a part of titanium oxide is doped with N or the like is also known, and these can also be used in the present invention. For example, an anion doped type in which a part of titanium oxide O is substituted with N or S, and a cation doped type in which a part of Ti is substituted with another atom.

酸化チタン光触媒の粒径は酸化作用の効果から小さいほど好ましく、また繊維径の10分の1以下の粒径のものが、脱落のし易さの面から好ましく、20μm以下が推奨される。   The particle size of the titanium oxide photocatalyst is preferably as small as possible from the effect of oxidation, and a particle size of 1/10 or less of the fiber diameter is preferable from the viewpoint of easy removal, and 20 μm or less is recommended.

本発明に使用されるアクリルシリコン系バインダー樹脂は、共栄社化学製S−60NFEを使用した。   The acrylic silicon-based binder resin used in the present invention was S-60NFE manufactured by Kyoeisha Chemical.

シリコン基の末端が

Figure 2005097773
であるため、酸化チタン光触媒と優先的にシラノール結合で強く接合する。 The end of the silicon group is
Figure 2005097773
Therefore, it preferentially bonds strongly with the titanium oxide photocatalyst with a silanol bond.

また、アクリル基は繊維との密着性に富み、物理的に強く結合する。特に、有機繊維であるアクリル、ナイロン、ポリエステル等の繊維との結合力は非常に強く、アクリル基が優先的に繊維布帛に結合し、接着部の柔軟性が確保され、耐久性も十分なものとなる。   In addition, the acrylic group is rich in adhesiveness with the fiber and is physically strongly bonded. In particular, the bonding strength with organic fibers such as acrylic, nylon, and polyester is very strong, the acrylic group is preferentially bonded to the fiber fabric, and the flexibility of the bonded portion is ensured, and the durability is sufficient. It becomes.

酸化チタン光触媒とアクリルシリコン系バインダー樹脂の配合割合は特に限定しないが、酸化チタン光触媒の配合量が増えると、酸化チタン光触媒の繊維布帛に結合する確率が増え、繊維布帛を劣化させる原因となる。また、アクリルシリコン系バインダー樹脂配合量が増えると、酸化チタン光触媒とアクリルシリコン系バインダー樹脂と結合する割合が増加し、酸化チタン光触媒の表面を覆ってしまうようになり、消臭、抗菌、防汚の機能性が低下する。   The blending ratio of the titanium oxide photocatalyst and the acrylic silicon-based binder resin is not particularly limited. However, when the blending amount of the titanium oxide photocatalyst increases, the probability of binding to the fiber cloth of the titanium oxide photocatalyst increases, which causes the fiber cloth to deteriorate. In addition, when the amount of the acrylic silicon binder resin is increased, the proportion of the titanium oxide photocatalyst and the acrylic silicon binder resin combined increases, and the surface of the titanium oxide photocatalyst is covered. The functionality of is reduced.

酸化チタン光触媒が無駄なくその消臭能力を十分発揮するために、繊維布帛へ担持する工程を2工程に分けて加工することも可能である。まず、第1の工程において、繊維布帛へアクリルシリコン系バインダー樹脂のみを担持させる。次に第2の工程において、酸化チタン光触媒を第1の工程で得た繊維布帛上に塗布することによって、酸化チタン光触媒を無駄なく均一に塗布することができる。   In order for the titanium oxide photocatalyst to fully exhibit its deodorizing ability without waste, it is possible to process the process of supporting the fiber fabric in two processes. First, in the first step, only the acrylic silicon-based binder resin is supported on the fiber fabric. Next, in the second step, the titanium oxide photocatalyst is applied onto the fiber fabric obtained in the first step, so that the titanium oxide photocatalyst can be uniformly applied without waste.

酸化チタン光触媒の繊維布帛への付着量は、繊維布帛100重量部に対し、0.5〜25重量%であることが好ましい。酸化チタン光触媒の繊維布帛への付着量が25重量%を越えると風合いが硬くなり、また、白化して好ましくない。また、0.5重量%を下回ると悪臭の分解速度が遅く、消臭効果が弱くなり好ましくない。さらに好ましくは、0.7〜10重量%である。   The adhesion amount of the titanium oxide photocatalyst to the fiber fabric is preferably 0.5 to 25% by weight with respect to 100 parts by weight of the fiber fabric. If the amount of the titanium oxide photocatalyst attached to the fiber fabric exceeds 25% by weight, the texture becomes hard and undesirably whitens. On the other hand, if it is less than 0.5% by weight, the malodor decomposition rate is slow and the deodorizing effect becomes weak, which is not preferable. More preferably, it is 0.7 to 10% by weight.

次ぎに実施例により、本発明を具体的に説明する。なお実施例における各種消臭性能の測定は次のように行った。
(アンモニア消臭性能)
酸化チタン光触媒を5重量%担持した繊維布帛(10×10cm角)を内容量2リットルのテトラバッグ袋内に入れた後、袋内において濃度が100ppmとなるようにアンモニアガスを注入し、この袋を紫外線ランプ(ナショナル・ブラックライト・ブルーFL20S・BL−B・20ワット)の直下30cmに設置し、紫外線照射強度が3.0mワット/cmになるように微調整を行なった。100時間経過後にアンモニアガスの残存濃度を測定し、この測定値よりアンモニアガスを除去した総量を算出し、これよりアンモニアガスの除去率(%)を算出した。
Next, the present invention will be described specifically by way of examples. In addition, the measurement of various deodorizing performance in an Example was performed as follows.
(Ammonia deodorization performance)
After putting a fiber fabric (10 × 10 cm square) carrying 5% by weight of a titanium oxide photocatalyst into a tetra-bag bag having an inner volume of 2 liters, ammonia gas is injected so that the concentration in the bag becomes 100 ppm. Was placed 30 cm directly below an ultraviolet lamp (National Blacklight Blue FL20S / BL-B / 20 Watts), and fine adjustment was performed so that the ultraviolet irradiation intensity was 3.0 mW / cm 2 . After 100 hours, the residual concentration of ammonia gas was measured, the total amount from which ammonia gas was removed was calculated from the measured value, and the ammonia gas removal rate (%) was calculated from this.

(硫化水素消臭性能)
アンモニアガスに代えて硫化水素ガスを用いて袋内において濃度が10ppmとなるように注入した以外は、上記アンモニア消臭性能測定と同様にして硫化水素ガスの除去率(%)を算出した。
(Hydrogen sulfide deodorization performance)
The removal rate (%) of hydrogen sulfide gas was calculated in the same manner as in the ammonia deodorization performance measurement except that hydrogen sulfide gas was used instead of ammonia gas and the concentration was 10 ppm in the bag.

(メチルメルカプタン消臭性能)
アンモニアガスに代えてメチルメルカプタンガスを用いて袋内において濃度が10ppmとなるように注入した以外は、上記アンモニア消臭性能測定と同様にしてメチルメルカプタンガスの除去率(%)を算出した。
(Methyl mercaptan deodorization performance)
The methyl mercaptan gas removal rate (%) was calculated in the same manner as in the ammonia deodorization performance measurement, except that methyl mercaptan gas was used instead of ammonia gas and the concentration was 10 ppm in the bag.

(酢酸消臭性能)
アンモニアガスに代えて酢酸ガスを用いて袋内において濃度が10ppmとなるように注入した以外は、上記アンモニア消臭性能測定と同様にして酢酸ガスの除去率(%)を算出した。
(Acetic acid deodorization performance)
The acetic acid gas removal rate (%) was calculated in the same manner as in the ammonia deodorizing performance measurement except that acetic acid gas was used instead of ammonia gas and the concentration was 10 ppm in the bag.

(アセトアルデヒド消臭性能)
アンモニアガスに代えてアセトアルデヒドガスを用いて袋内において濃度が10ppmとなるように注入した以外は、上記アンモニア消臭性能測定と同様にしてアセトアルデヒドの除去率(%)を算出した。
(Acetaldehyde deodorization performance)
The removal rate (%) of acetaldehyde was calculated in the same manner as in the ammonia deodorization performance measurement, except that acetaldehyde gas was used instead of ammonia gas and the concentration was 10 ppm in the bag.

(ホルムアルデヒド消臭性能)
アンモニアガスに代えてホルムアルデヒドガスを用いて袋内において濃度が10ppmとなるように注入した以外は、上記アンモニア消臭性能測定と同様にしてホルムアルデヒドの除去率(%)を算出した。
(Formaldehyde deodorization performance)
The removal rate (%) of formaldehyde was calculated in the same manner as in the ammonia deodorization performance measurement except that formaldehyde gas was used instead of ammonia gas and the concentration was 10 ppm in the bag.

(トルエン消臭性能)
アンモニアガスに代えてトルエンガスを用いて袋内において濃度が10ppmとなるように注入した以外は、上記アンモニア消臭性能測定と同様にしてトルエンの除去率(%)を算出した。
(Toluene deodorization performance)
The toluene removal rate (%) was calculated in the same manner as the above ammonia deodorization performance measurement except that toluene gas was used instead of ammonia gas and the concentration was 10 ppm in the bag.

そして、除去率が95%以上であるものを「◎」、除去率が90%以上95%未満であるものを「○」、除去率が85%以上90%未満であるものを「△」、除去率が85%未満であるものを「×」と評価した。   The removal rate is 95% or more, “」 ”, the removal rate is 90% or more and less than 95%,“ ◯ ”, the removal rate is 85% or more and less than 90%,“ △ ”, Those having a removal rate of less than 85% were evaluated as “x”.

(ニ酸化炭素発生試験)
酸化チタン光触媒を5重量%担持し、バインダー樹脂が、アクリルシリコン系バインダー樹脂、アクリルバインダー樹脂である繊維布帛と、酸化チタン光触媒を担持していない未加工の布帛の3種類の繊維布帛をそれぞれ内容量2リットルのテトラバッグ袋内に入れた後、アンモニアガスに代えて空気を注入し、上記アンモニア消臭性能測定と同様にしてニ酸化炭素発生量を10時間ごとに測定し図1のようなグラフを得た。これにより、アクリルシリコン系バインダー樹脂による酸化チタン光触媒を担持させる方法が、アクリルバインダー樹脂によるものより繊維布帛やバインダー樹脂が酸化チタン光触媒に侵されることなく(ニ酸化炭素発生量も少なく)、未加工の布帛に近い値で推移し、優れていることが確認された。
(Carbon dioxide generation test)
Three types of fiber fabrics, each containing 5% by weight of a titanium oxide photocatalyst and the binder resin being an acrylic silicon binder resin, an acrylic binder resin, and an unprocessed fabric not carrying a titanium oxide photocatalyst After putting in a 2 liter tetra bag, air was injected instead of ammonia gas, and the amount of carbon dioxide generated was measured every 10 hours in the same manner as in the ammonia deodorization performance measurement, as shown in FIG. A graph was obtained. As a result, the method of supporting the titanium oxide photocatalyst with the acrylic silicon-based binder resin allows the fiber fabric and binder resin to be attacked by the titanium oxide photocatalyst rather than with the acrylic binder resin (the amount of carbon dioxide generated is also small). It was confirmed that the value was close to that of the fabric and excellent.

<実施例1>
粒径10nmの酸化チタン光触媒1重量部を79重量部の水に加えた後、攪拌機により攪拌を行ない、分散液を得た。この分散液にさらに20重量部のアクリルシリコン系バインダー樹脂(固形分50%)を加え、良く攪拌して均一な分散液(処理液)を得た。この処理液に、ポリエステル製のスパンボンド不織布(目付40g/m) を浸漬した後、取り出してマングルで絞って乾燥させて、消臭繊維布帛を得た。酸化チタン光触媒のスパンボンド不織布への付着量は1.5重量%であった。この酸化チタン光触媒をスパンボンド不織布へ担持させた繊維布帛を、上記の各種ガスの消臭試験をおこない除去率を表に記載した。
<Example 1>
After adding 1 part by weight of a titanium oxide photocatalyst having a particle size of 10 nm to 79 parts by weight of water, stirring was performed with a stirrer to obtain a dispersion. 20 parts by weight of an acrylic silicon binder resin (solid content 50%) was further added to this dispersion and stirred well to obtain a uniform dispersion (treatment liquid). A polyester spunbonded nonwoven fabric (weight per unit area: 40 g / m 2 ) was immersed in this treatment liquid, and then taken out and squeezed with mangles and dried to obtain a deodorized fiber fabric. The adhesion amount of the titanium oxide photocatalyst to the spunbonded nonwoven fabric was 1.5% by weight. The fiber fabric in which the titanium oxide photocatalyst was supported on a spunbonded nonwoven fabric was subjected to the deodorization test of the various gases described above, and the removal rate was listed in the table.

<実施例2>
次に、実施例1において、酸化チタン光触媒2重量部を78重量部の水に加えた以外は実施例1と同様にして、消臭繊維布帛を得た。酸化チタン光触媒のスパンボンド不織布への付着量は3.0重量%であった。
<Example 2>
Next, a deodorant fiber fabric was obtained in the same manner as in Example 1 except that 2 parts by weight of the titanium oxide photocatalyst was added to 78 parts by weight of water. The adhesion amount of the titanium oxide photocatalyst to the spunbonded nonwoven fabric was 3.0% by weight.

<実施例3>
次に、実施例1において、粒径10nmの酸化チタン光触媒を粒径5μmとした以外は実施例1と同様にして、消臭繊維布帛を得た。酸化チタン光触媒のスパンボンド不織布への付着量は1.5重量%であった。
<Example 3>
Next, a deodorant fiber fabric was obtained in the same manner as in Example 1 except that the titanium oxide photocatalyst having a particle diameter of 10 nm was changed to 5 μm in Example 1. The adhesion amount of the titanium oxide photocatalyst to the spunbonded nonwoven fabric was 1.5% by weight.

<比較例1>
実施例1において、アクリルシリコン系バインダー樹脂(固形分50%)をアクリル樹脂(固形分50%) とした以外は実施例1と同様にして、消臭繊維布帛を得た。酸化チタン光触媒のスパンボンド不織布への付着量は1.5重量%であった。
<Comparative Example 1>
A deodorant fiber fabric was obtained in the same manner as in Example 1, except that the acrylic resin (solid content 50%) was changed to an acrylic resin (solid content 50%). The adhesion amount of the titanium oxide photocatalyst to the spunbonded nonwoven fabric was 1.5% by weight.

<比較例2>
実施例1において、粒径10nmの酸化チタン光触媒を粒径50μmとした以外は実施例1と同様にして、消臭繊維布帛を得た。酸化チタン光触媒のスパンボンド不織布への付着量は1.5重量%であった。

Figure 2005097773
<Comparative example 2>
A deodorized fiber fabric was obtained in the same manner as in Example 1 except that the titanium oxide photocatalyst having a particle size of 10 nm was changed to 50 μm in Example 1. The adhesion amount of the titanium oxide photocatalyst to the spunbonded nonwoven fabric was 1.5% by weight.
Figure 2005097773

本発明の技術は、酸化チタン光触媒を繊維と結合させるもので、利用される分野は広く、衣料や、カーテン、カーペット、壁紙等のインテリア用品、車両等のシート地、天井材、衛生材料などに広く利用される。   The technology of the present invention combines a titanium oxide photocatalyst with a fiber, and is used in a wide range of fields such as clothing, interior goods such as curtains, carpets, and wallpaper, seats for vehicles, ceiling materials, sanitary materials, etc. Widely used.

ニ酸化炭素の発生量を比較したグラフGraph comparing the amount of carbon dioxide generated

Claims (3)

繊維布帛に酸化チタン光触媒がアクリルシリコン系バインダー樹脂により固定されてなる、消臭、抗菌、および防汚機能を有する繊維布帛。 A fiber fabric having a deodorizing, antibacterial, and antifouling function, wherein a titanium oxide photocatalyst is fixed to a fiber fabric with an acrylic silicon binder resin. 前記酸化チタン光触媒の粒径が5nm〜20μmである請求項1記載の消臭、抗菌、および防汚機能を有する繊維布帛。 The fiber fabric having a deodorizing, antibacterial, and antifouling function according to claim 1, wherein the titanium oxide photocatalyst has a particle size of 5 nm to 20 µm. 前記酸化チタン光触媒の繊維布帛への付着量が、繊維布帛100重量部に対し、0.5〜25重量%である請求項1又は2記載の消臭、抗菌、および防汚機能を有する繊維布帛。 The fiber fabric having a deodorizing, antibacterial, and antifouling function according to claim 1 or 2, wherein the amount of the titanium oxide photocatalyst attached to the fiber fabric is 0.5 to 25% by weight with respect to 100 parts by weight of the fiber fabric. .
JP2003331490A 2003-09-24 2003-09-24 Fiber fabric supporting photocatalyst and having deodorizing, antimicrobial and antifouling function Pending JP2005097773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003331490A JP2005097773A (en) 2003-09-24 2003-09-24 Fiber fabric supporting photocatalyst and having deodorizing, antimicrobial and antifouling function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003331490A JP2005097773A (en) 2003-09-24 2003-09-24 Fiber fabric supporting photocatalyst and having deodorizing, antimicrobial and antifouling function

Publications (1)

Publication Number Publication Date
JP2005097773A true JP2005097773A (en) 2005-04-14

Family

ID=34460142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003331490A Pending JP2005097773A (en) 2003-09-24 2003-09-24 Fiber fabric supporting photocatalyst and having deodorizing, antimicrobial and antifouling function

Country Status (1)

Country Link
JP (1) JP2005097773A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007229667A (en) * 2006-03-02 2007-09-13 National Institute Of Advanced Industrial & Technology Method for coating polyester fiber with photocatalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007229667A (en) * 2006-03-02 2007-09-13 National Institute Of Advanced Industrial & Technology Method for coating polyester fiber with photocatalyst
JP4635185B2 (en) * 2006-03-02 2011-02-16 独立行政法人産業技術総合研究所 Photocatalytic coating method for polyester fiber

Similar Documents

Publication Publication Date Title
JPWO2006046443A1 (en) Fiber cloth with VOC removal function
ES2220391T3 (en) FIBER STRUCTURE THAT HAS DEODORANT OR ANTIBACTERIAL PROPERTY.
JP5102034B2 (en) Tungsten oxide photocatalyst, method for producing the same, and fiber fabric having deodorizing and antifouling functions
JP3761248B2 (en) Fiber fabric having deodorant, antibacterial and antifouling functions
JP2008002007A (en) Nanoparticle support material and method for producing the same
JP2007262621A (en) Fiber having photocatalytic ability, cloth using the fiber, and cloth product using the cloth
JP4428510B2 (en) A fiber fabric carrying a photocatalyst and having a deodorizing function.
JP3022192B2 (en) Fiber fabric having deodorant, antibacterial and antifouling functions
JP2010265561A (en) Fiber fabric having deodorization and voc removing function
JP2004350935A (en) Filter
JP2005097773A (en) Fiber fabric supporting photocatalyst and having deodorizing, antimicrobial and antifouling function
JP3990951B2 (en) Photocatalyst-containing substrate
JP4679790B2 (en) Functional fiber fabric
JP3705621B2 (en) Deodorant and antibacterial composition and fiber fabric using the same
JP4840615B2 (en) Photocatalyst deodorization sterilization method
JP2000119958A (en) Functional fiber structure
JP2007321263A (en) Fibrous cloth carrying photocatalyst and having deodorizing function, and method for producing the same
JP2006322101A (en) Deodorant fabric
JP2007111333A (en) Footwear provided with deodorization and antibacterial property
JP2000328439A (en) Polyester fiber cloth
JP2004195416A (en) Photocatalyst-containing fiber
JPH09217278A (en) Antibromic and water repellent textile treating agent
JP3952602B2 (en) Functional fiber structure
JP2002284614A (en) Working fluid for antibacterial and deodorant treatment
JP2000328438A (en) Fabric processed with photocatalyst and production of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081009

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090217