JP2005095785A - Treatment method for alkaline wastewater - Google Patents

Treatment method for alkaline wastewater Download PDF

Info

Publication number
JP2005095785A
JP2005095785A JP2003333283A JP2003333283A JP2005095785A JP 2005095785 A JP2005095785 A JP 2005095785A JP 2003333283 A JP2003333283 A JP 2003333283A JP 2003333283 A JP2003333283 A JP 2003333283A JP 2005095785 A JP2005095785 A JP 2005095785A
Authority
JP
Japan
Prior art keywords
alkaline
wastewater
tank
added
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003333283A
Other languages
Japanese (ja)
Inventor
Yuji Arai
祐二 新井
Shinji Kiriyama
真治 桐山
Tomisaku Yamagishi
富作 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maeda Corp
Miyama Inc
Original Assignee
Maeda Corp
Miyama Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maeda Corp, Miyama Inc filed Critical Maeda Corp
Priority to JP2003333283A priority Critical patent/JP2005095785A/en
Publication of JP2005095785A publication Critical patent/JP2005095785A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alkaline wastewater treatment method for removing fluorine, arsenic, selenium, and boron by neutralizing alkaline wastewater containing silicates, fluorine, arsenic, selenium and boron, generated when producing zeolite from cinder ash, and the like, such as coal ash, without the gelation of the silicates. <P>SOLUTION: In the alkaline wastewater treatment method, after an alkaline earth metal salt is added to the alkaline wastewater containing the silicate, fluorine, arsenic, selenium, and boron, a mineral acid is added to neutralize the wastewater. An iron compound is added to supernatant liquid obtained by subjecting the wastewater to solid-liquid separation after addition of a coagulant, and then solid-liquid separation is performed after the addition of the coagulant to drain supernatant liquid. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、石炭灰等の燃え殻灰などからゼオライトを製造する際に発生する、ケイ酸塩、フッ素、ヒ素、セレン、ホウ素を含むアルカリ性排水の処理方法に関する。   The present invention relates to a method for treating alkaline wastewater containing silicate, fluorine, arsenic, selenium, and boron, which is generated when zeolite is produced from burnt ash such as coal ash.

ゼオライトは一定のサイズの細孔を有するアルミノケイ酸塩の多孔質結晶である。ゼオライトには、分子ふるい機能や触媒機能があり、吸着分離材、イオン交換材、洗剤ビルダー等の用途がある。   Zeolites are aluminosilicate porous crystals with pores of a certain size. Zeolite has a molecular sieving function and a catalytic function, and has uses such as an adsorption separation material, an ion exchange material, and a detergent builder.

ゼオライトの安価な製造方法としては、石炭灰から発生するフライアッシュを水酸化ナトリウム等の強アルカリ成分とともに水熱処理して多孔質結晶物(ゼオライト)に改質する方法がある。   As an inexpensive method for producing zeolite, there is a method in which fly ash generated from coal ash is hydrothermally treated together with a strong alkali component such as sodium hydroxide to be modified into a porous crystal (zeolite).

ゼオライトを製造する際に発生する排水には、溶解したケイ酸塩や、フッ素、ヒ素、セレン、ホウ素及び強アルカリ成分が含まれており、排水を下水道、河川または海洋などに放流するにはこれらの有害物を除去して浄化する必要がある。   Wastewater generated during the production of zeolite contains dissolved silicates, fluorine, arsenic, selenium, boron, and strong alkali components. These are used to discharge the wastewater to sewers, rivers, oceans, etc. It is necessary to purify by removing harmful substances.

排水中のフッ素を除去する方法としては、カルシウム塩を添加してフッ化カルシウムとして沈澱分離する方法などがある(例えば、特許文献1参照)。また、ヒ素やセレンを除去する方法としては、鉄化合物と反応させて沈澱分離する方法などがある(例えば、特許文献2参照)。またホウ素はアルカリ土類金属などと反応させて沈澱分離する方法などがある(例えば、特許文献3参照)。また強アルカリ成分は塩酸や硫酸などの鉱酸により中和させる方法が古くから行われている。
特開2002−102864号公報 特開2003−175370号公報 特開2002−119955号公報
As a method of removing fluorine in waste water, there is a method of adding calcium salt to precipitate separation as calcium fluoride (see, for example, Patent Document 1). Moreover, as a method of removing arsenic and selenium, there is a method of reacting with an iron compound and separating by precipitation (see, for example, Patent Document 2). In addition, there is a method in which boron is reacted with an alkaline earth metal or the like and separated by precipitation (for example, see Patent Document 3). Moreover, the method of neutralizing a strong alkali component with mineral acids, such as hydrochloric acid and a sulfuric acid, has been performed for a long time.
JP 2002-102864 A JP 2003-175370 A JP 2002-119955 A

しかしゼオライトを製造する際に発生する排水には、ケイ酸ナトリウムが含まれており、pHを下げるとゲル化するため、フッ素、ヒ素、セレン、ホウ素などを上述の方法で除去する妨げとなった。   However, the wastewater generated when producing zeolite contains sodium silicate and gels when the pH is lowered, which hinders removal of fluorine, arsenic, selenium, boron, and the like by the above-described method. .

本発明の課題は、石炭灰等の燃え殻灰などからゼオライトを製造する際に発生する、ケイ酸塩、フッ素、ヒ素、セレン、ホウ素を含むアルカリ性排液を、ケイ酸塩をゲル化させずに中和させてフッ素、ヒ素、セレン、ホウ素を除去する処理方法を提供することである。   An object of the present invention is to produce an alkaline effluent containing silicate, fluorine, arsenic, selenium, and boron generated when producing zeolite from burnt ash such as coal ash without gelling the silicate. It is to provide a treatment method for neutralizing and removing fluorine, arsenic, selenium and boron.

以上の課題を解決するため、本発明の請求項1に記載の発明は、アルカリ性排水の処理方法であって、ケイ酸塩、フッ素、ヒ素、セレン、ホウ素を含むアルカリ性排水にアルカリ土類金属塩を添加した後に鉱酸を添加して中和させることを特徴とする。   In order to solve the above problems, an invention according to claim 1 of the present invention is a method for treating alkaline wastewater, wherein alkaline earth metal salt is added to alkaline wastewater containing silicate, fluorine, arsenic, selenium and boron. After adding, mineral acid is added to neutralize.

請求項2に記載の発明は、請求項1に記載のアルカリ性排水の処理方法であって、前記アルカリ土類金属塩として、ゼオライトにイオン交換を行う際に使用したカルシウム溶液の排液をアルカリ性排水に混合することを特徴とする。   Invention of Claim 2 is the processing method of the alkaline waste_water | drain of Claim 1, Comprising: As said alkaline-earth metal salt, the waste_water | drain of the calcium solution used when performing ion exchange to a zeolite is made into alkaline waste_water | drain. It is characterized by mixing.

請求項3に記載の発明は、請求項1または2に記載のアルカリ性排水の処理方法であって、アルカリ性排水を中和させた後に凝集剤を添加して固液分離することを特徴とする。   Invention of Claim 3 is the processing method of the alkaline waste_water | drain of Claim 1 or 2, Comprising: After neutralizing alkaline waste_water | drain, a flocculant is added and it solid-liquid-separates.

請求項4に記載の発明は、請求項3に記載のアルカリ性排水の処理方法であって、凝集剤を添加して固液分離した上澄液に鉄化合物を添加し、その後凝集剤を添加して固液分離し、上澄液を排水することを特徴とする。   Invention of Claim 4 is the processing method of the alkaline waste_water | drain of Claim 3, Comprising: An iron compound is added to the supernatant liquid which added the flocculant and solid-liquid separated, and added the flocculant after that. The liquid is separated into solid and liquid, and the supernatant is drained.

本発明によれば、ケイ酸塩、フッ素、ヒ素、セレン、ホウ素を含むアルカリ性排水にアルカリ土類金属塩を添加した後に鉱酸を添加して中和させて凝集剤を添加して固液分離することにより、中和したときにケイ酸塩がゲル化することを防ぐことができ、アルカリ性排水中のケイ酸塩、フッ素、ヒ素、セレン、ホウ素を沈澱させて除去することができる。   According to the present invention, after adding an alkaline earth metal salt to an alkaline wastewater containing silicate, fluorine, arsenic, selenium, and boron, a mineral acid is added to neutralize, and a flocculant is added to perform solid-liquid separation. By doing so, it is possible to prevent the silicate from gelling when neutralized, and to precipitate and remove silicate, fluorine, arsenic, selenium and boron in the alkaline waste water.

以下、本発明について詳細に説明する。図1、図2は本発明の排水の処理方法を実施する処理プラントを示すフロー図である。本発明の処理プラントは、図1に示す浄化プラント10と、図2に示す沈澱処理プラント20とからなる。   Hereinafter, the present invention will be described in detail. 1 and 2 are flow charts showing a treatment plant for carrying out the wastewater treatment method of the present invention. The treatment plant of the present invention comprises a purification plant 10 shown in FIG. 1 and a precipitation treatment plant 20 shown in FIG.

浄化プラント10は図1に示すように、反応槽101、106、pH調整槽102、107、ポンプ槽103、108、凝集槽104、109、沈澱槽105、110、最終中和槽111、監視槽112等から構成される。   As shown in FIG. 1, the purification plant 10 includes reaction tanks 101 and 106, pH adjustment tanks 102 and 107, pump tanks 103 and 108, agglomeration tanks 104 and 109, precipitation tanks 105 and 110, a final neutralization tank 111, and a monitoring tank. 112 and the like.

反応槽101にはゼオライトの製造工程から発生するアルカリ性排水か搬入される。ゼオライトの製造工程では、石炭灰等の燃え殻灰に水酸化ナトリウム水溶液等のアルカリ水溶液を添加し、水熱処理して多孔質結晶物(ゼオライト)に改質するが、その際に排出されるアルカリ性排水にはケイ酸塩や、フッ素、ヒ素、セレン、ホウ素等が含まれている。   Alkaline wastewater generated from the zeolite production process is carried into the reaction tank 101. In the manufacturing process of zeolite, alkaline aqueous solution such as sodium hydroxide aqueous solution is added to burning ash such as coal ash, and hydrothermal treatment is performed to reform the porous crystalline material (zeolite). Contains silicate, fluorine, arsenic, selenium, boron and the like.

反応槽101では、上記のアルカリ性排水に消石灰などのアルカリ土類金属塩が混合され、攪拌される。
ところで、ゼオライトの製造工程では、ゼオライトにイオン交換能を持たせるために多孔質結晶物をカルシウム水溶液で洗浄してイオン交換を行うが、このイオン交換に使用した洗浄水をアルカリ土類金属塩として反応槽101でアルカリ性排水に混合してもよい。
In the reaction tank 101, an alkaline earth metal salt such as slaked lime is mixed with the alkaline drainage and stirred.
By the way, in the production process of zeolite, in order to give the zeolite ion exchange ability, the porous crystalline material is washed with an aqueous calcium solution to perform ion exchange. You may mix with alkaline waste_water | drain in the reaction tank 101. FIG.

アルカリ土類金属塩が混合された排水は、pH調整槽102へ搬出される。pH調整槽102では、pHメーターでpHが8〜13程度であることを確認し、硫酸などの鉱酸を投入する。鉱酸を投入された排水は、ポンプ槽103へ貯められた後に、ポンプ槽103の水位に応じてポンプ槽103内のレベルスイッチ(LVS)が開閉し、ポンプで凝集槽104へ搬出される。   The wastewater mixed with the alkaline earth metal salt is carried out to the pH adjustment tank 102. In the pH adjustment tank 102, it is confirmed that the pH is about 8 to 13 with a pH meter, and a mineral acid such as sulfuric acid is added. The wastewater charged with mineral acid is stored in the pump tank 103, and then a level switch (LVS) in the pump tank 103 is opened and closed according to the water level of the pump tank 103, and is carried out to the aggregation tank 104 by the pump.

凝集槽104では、排水に凝集剤が混合される。ここで凝集剤としてはアニオン系やノニオン系の高分子凝集剤を使用することができ、具体的には、例えばラサフロックRA51(ラサ工業(株))などを使用することができる。凝集剤の混合された排水は、沈澱槽105に搬入される。   In the coagulation tank 104, the coagulant is mixed with the waste water. Here, as the flocculant, an anionic or nonionic polymer flocculant can be used, and specifically, for example, Rasafloc RA51 (Rasa Industrial Co., Ltd.) or the like can be used. The waste water mixed with the flocculant is carried into the sedimentation tank 105.

沈澱槽105では、排水中のケイ酸塩とともに、フッ素、ヒ素、セレン、ホウ素などが沈澱する。沈澱はポンプで沈澱処理プラント20へ搬出されるとともに、上清は反応槽106へ搬出される。   In the precipitation tank 105, fluorine, arsenic, selenium, boron and the like are precipitated together with the silicate in the waste water. The precipitate is carried out to the precipitation treatment plant 20 by a pump, and the supernatant is carried out to the reaction tank 106.

反応槽106では、排水に塩化鉄などの鉄塩を混合し、攪拌する。鉄塩の混合された排水は、pH調整槽107へ搬出される。   In the reaction tank 106, an iron salt such as iron chloride is mixed in the waste water and stirred. The wastewater mixed with the iron salt is carried out to the pH adjusting tank 107.

pH調整槽107では、pHメーターでpHを6〜10程度であることを確認し、消石灰などの中和剤を投入する。消石灰を投入された排水は、ポンプ槽108へ貯められた後に、ポンプ槽108の水位に応じてポンプ槽108内のフロートレベルスイッチ(FLTS)が開閉し、ポンプで凝集槽109へ搬出される。   In the pH adjusting tank 107, it is confirmed that the pH is about 6 to 10 with a pH meter, and a neutralizing agent such as slaked lime is added. The wastewater charged with slaked lime is stored in the pump tank 108, and then the float level switch (FLTS) in the pump tank 108 is opened and closed according to the water level of the pump tank 108, and is carried out to the aggregation tank 109 by the pump.

凝集槽109では、排水に凝集剤が混合される。ここで凝集剤としてはアニオン系やノニオン系の高分子凝集剤を使用することができる。凝集剤の混合された排水は、沈澱槽110に搬入される。   In the coagulation tank 109, the coagulant is mixed with the waste water. Here, an anionic or nonionic polymer flocculant can be used as the flocculant. The waste water mixed with the flocculant is carried into the sedimentation tank 110.

沈澱槽110では、沈殿槽105で沈澱しなかったケイ酸塩、フッ素、ヒ素、セレン、ホウ素や重金属などが沈澱する。沈澱はポンプで沈澱処理プラント20へ搬出されるとともに、上清は最終中和槽111へ搬出される。   In the precipitation tank 110, silicate, fluorine, arsenic, selenium, boron, heavy metal, etc. that have not been precipitated in the precipitation tank 105 are precipitated. The precipitate is carried out to the precipitation treatment plant 20 by a pump, and the supernatant is carried out to the final neutralization tank 111.

沈澱処理プラント20は沈澱槽105、110の沈澱を処理する。沈澱処理プラントは図2に示すように、汚泥槽201、フィルタープレス202、アームロール203、濾液槽204からなる。   The precipitation processing plant 20 processes the precipitation in the precipitation tanks 105 and 110. As shown in FIG. 2, the precipitation processing plant includes a sludge tank 201, a filter press 202, an arm roll 203, and a filtrate tank 204.

汚泥槽201には沈澱槽105、110の沈澱が搬入される。汚泥槽201の沈澱は汚泥槽201の水位に応じて汚泥槽201内のフロートレベルスイッチ(FLTS)が開閉し、ポンプでフィルタープレス202へ搬出される。また汚泥槽201の上清は濾液槽204へ流入する。   The sludge tank 201 is loaded with the precipitates of the precipitation tanks 105 and 110. The sediment in the sludge tank 201 is opened and closed by a float level switch (FLTS) in the sludge tank 201 according to the water level of the sludge tank 201, and is carried out to the filter press 202 by a pump. The supernatant of the sludge tank 201 flows into the filtrate tank 204.

フィルタープレス202へ搬入された沈澱は脱水されて脱水ケーキとなる。脱水ケーキはアームロール203で搬出され、最終処分場へ運搬される。またフィルタープレス202で絞り出された水は濾液槽204へ貯められる。   The precipitate carried into the filter press 202 is dehydrated to form a dehydrated cake. The dehydrated cake is carried out by the arm roll 203 and transported to the final disposal site. The water squeezed out by the filter press 202 is stored in the filtrate tank 204.

濾液槽204へ貯められた水は濾液槽204の水位に応じてポンプで汲み出され、反応槽101、または反応槽106のいずれかへ戻される。   The water stored in the filtrate tank 204 is pumped out according to the water level in the filtrate tank 204 and returned to either the reaction tank 101 or the reaction tank 106.

最終中和槽111では硫酸などの鉱酸を排水に加えて中和させるとともに、工業用水で排水を適宜希釈する。中和されるとともに希釈された排水は、監視槽112でpHを最終確認した後に、下水道へ放流される。   In the final neutralization tank 111, mineral acid such as sulfuric acid is added to the wastewater for neutralization, and the wastewater is appropriately diluted with industrial water. The neutralized and diluted waste water is finally discharged into the sewer after the pH is finally confirmed in the monitoring tank 112.

以下、実施例を挙げて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, although an example is given and explained concretely, the present invention is not limited to these examples.

ケイ素2489mg/L、カルシウム2mg/L、ホウ素38mg/L、フッ素12mg/L、ヒ素1.08mg/L、セレン0.55mg/L、無色透明の混合原液を作成し、確認実験を行った。   A confirmation experiment was conducted by preparing a mixed stock solution of 2489 mg / L of silicon, 2 mg / L of calcium, 38 mg / L of boron, 12 mg / L of fluorine, 1.08 mg / L of arsenic, 0.55 mg / L of selenium and colorless and transparent.

<硫酸中和法> 混合原液1350mLに、10%硫酸を210mL加えpHを11にしたところ、沈澱が生じた(沈降速度30cm/hr)。300mLを分取し、濾過後乾燥したところ、混合原液1L当たり乾燥重量で27.9gとなった。残りを0.4kgw/cm2で加圧濾過し、上澄液を200mL採取し分析した(サンプル1)。また濾液を200mLずつ2つ分取した(濾液1、濾液2)。汚泥量は混合原液1L当たり湿重量で71.7g、乾燥重量で27.9gであり、含水率は56%であった。 <Sulfuric acid neutralization method> To 1350 mL of the mixed stock solution, 210 mL of 10% sulfuric acid was added to adjust the pH to 11. As a result, precipitation occurred (sedimentation rate 30 cm / hr). When 300 mL was collected, filtered and dried, the dry weight was 27.9 g per liter of the mixed stock solution. The remainder was filtered under pressure at 0.4 kgw / cm 2 , and 200 mL of the supernatant was collected and analyzed (Sample 1). Two 200 mL portions of the filtrate were collected (filtrate 1, filtrate 2). The amount of sludge was 71.7 g wet weight per liter of the mixed stock solution, 27.9 g dry weight, and the moisture content was 56%.

濾液1に35%塩化鉄水溶液を0.2mL、10%硫酸を6mL加えて濾過し、濾液を分析した(サンプル2)。また、濾液2にはホウ素処理剤(UM剤)を0.1mL、10%硫酸を6mL加えて濾過し、濾液を分析した(サンプル3)。   The filtrate 1 was filtered by adding 0.2 mL of 35% aqueous iron chloride solution and 6 mL of 10% sulfuric acid, and the filtrate was analyzed (sample 2). Further, 0.1 mL of a boron treating agent (UM agent) and 6 mL of 10% sulfuric acid were added to the filtrate 2 and filtered, and the filtrate was analyzed (sample 3).

<塩酸中和法> 混合原液1350mLに、35%塩酸を36mL加えpHを11にしたところ、溶液全体が濁り、上澄液を採取することができなかった(沈降速度2mm/hr)。300mLを分取し、濾過後乾燥したところ、混合原液1L当たり乾燥重量で37.6gとなった。   <Hydrochloric acid neutralization method> When 36 mL of 35% hydrochloric acid was added to 1350 mL of the mixed stock solution to adjust the pH to 11, the whole solution became cloudy and the supernatant could not be collected (precipitation rate 2 mm / hr). When 300 mL was collected, dried after filtration, it became 37.6 g in dry weight per liter of the mixed stock solution.

<消石灰22g+硫酸中和法> 混合原液1350mLに、消石灰22g、10%硫酸を450mL加えpHを10.1にして混合/攪拌したところ、沈澱が生じた(沈降速度4cm/hr)。上澄液を1000mL分取し、残りを2kgw/cm2で加圧濾過した。汚泥量は混合原液1L当たり湿重量で207g、乾燥重量で64gであり、含水率は69%であった。 <Slaked Lime 22g + Sulfuric Acid Neutralization Method> To 1350 mL of the mixed stock solution, 22 mL of slaked lime, 450 mL of 10% sulfuric acid was added and the pH was set to 10.1, and the mixture was mixed / stirred. 1000 mL of the supernatant was collected, and the remainder was filtered under pressure at 2 kgw / cm 2 . The amount of sludge was 207 g wet weight per liter of the mixed stock solution, 64 g dry weight, and the moisture content was 69%.

濾液と上澄液とを混合し500mLずつ分取(濾液3、濾液4)するとともに、残りを分析した(サンプル4)。濾液3に35%塩化鉄水溶液を1.25mL、10%硫酸を6mL加えると、沈澱が生じたので濾過し、濾液を分析した(サンプル5)。また、濾液4にはホウ素処理剤(UM剤)を0.1mL、10%硫酸を6mL加えると、沈澱が生じたので濾過し、濾液を分析した(サンプル6)。   The filtrate and the supernatant were mixed and 500 mL each was collected (filtrate 3 and filtrate 4), and the remainder was analyzed (sample 4). When 1.25 mL of 35% iron chloride aqueous solution and 6 mL of 10% sulfuric acid were added to the filtrate 3, a precipitate was formed, which was filtered and the filtrate was analyzed (sample 5). Further, 0.1 mL of a boron treating agent (UM agent) and 6 mL of 10% sulfuric acid were added to the filtrate 4, so that precipitation occurred, and the filtrate was analyzed (sample 6).

<消石灰6g+硫酸中和法> 混合原液1350mLに、消石灰6g、10%硫酸を400mL加えて混合/攪拌したところ、沈澱が生じた(沈降速度0.02cm/hr)ので加圧濾過し、上澄液を分析した(サンプル7)。汚泥量は混合原液1L当たり湿重量で143g、乾燥重量で38gであり、含水率は78%であった。   <Slaked lime 6g + sulfuric acid neutralization method> To 1350 mL of the mixed stock solution, 400 mL of 10 g of slaked lime and 10% sulfuric acid was added and mixed / stirred. The liquid was analyzed (Sample 7). The amount of sludge was 143 g wet weight per liter of the mixed stock solution, 38 g dry weight, and the moisture content was 78%.

<結果> 上記サンプル1〜7の成分を分析した結果を下記表1に示す。

Figure 2005095785
<Results> Results of analyzing the components of Samples 1 to 7 are shown in Table 1 below.
Figure 2005095785

硫酸中和(硫酸中和法)と塩酸中和(塩酸中和法)とでは、硫酸を用いたほうが汚泥の発生量が少なく、中和用の酸は硫酸がよいと判断される。また硫酸中和後の塩化鉄処理(サンプル2)やUM剤処理(サンプル3)を行ったが、ケイ素、フッ素、ヒ素、セレン、ホウ素の濃度を低減することができなかった。   In sulfuric acid neutralization (sulfuric acid neutralization method) and hydrochloric acid neutralization (hydrochloric acid neutralization method), it is judged that sulfuric acid produces less sludge, and that the acid for neutralization is better. Further, iron chloride treatment (sample 2) and UM agent treatment (sample 3) after neutralization with sulfuric acid were performed, but the concentrations of silicon, fluorine, arsenic, selenium and boron could not be reduced.

硫酸中和の前に消石灰を加えた場合(サンプル4、7)には、加えない場合(サンプル1)と比較してケイ素、フッ素、ヒ素、セレン、ホウ素の濃度を低減することができた。フッ素、ヒ素、セレン、ホウ素は、消石灰を少量加えた場合(サンプル7)よりも、多量に加えた場合(サンプル4)のほうがより濃度を低減することができた。また消石灰を添加して硫酸中和した後の塩化鉄処理(サンプル5)やUM剤処理(サンプル6)を行うことで、ケイ素、フッ素、ヒ素、セレン、ホウ素の濃度を低減することができた。   When slaked lime was added before neutralization with sulfuric acid (samples 4 and 7), the concentrations of silicon, fluorine, arsenic, selenium, and boron could be reduced compared to the case where slaked lime was not added (sample 1). The concentration of fluorine, arsenic, selenium, and boron could be reduced more when a large amount was added (sample 4) than when a small amount of slaked lime was added (sample 7). Moreover, the concentration of silicon, fluorine, arsenic, selenium and boron could be reduced by performing iron chloride treatment (sample 5) and UM agent treatment (sample 6) after adding slaked lime and neutralizing with sulfuric acid. .

上述した処理プラントで、石炭灰等の燃え殻灰などからゼオライトを製造する際に発生するアルカリ性排水、及びゼオライトにイオン交換を行う際に使用した洗浄水を処理した。プラントから放流される処理水を採取し、アルカリ性排水、洗浄水とともに分析した。   In the above-described treatment plant, alkaline drainage generated when producing zeolite from burnt ash such as coal ash and washing water used when ion exchange was performed on the zeolite were treated. The treated water discharged from the plant was collected and analyzed with alkaline waste water and washing water.

表2にアルカリ性排水、洗浄水、及び処理水の分析結果を示す。

Figure 2005095785
Table 2 shows the analysis results of alkaline drainage, washing water, and treated water.
Figure 2005095785

上述した処理プラントにより、フッ素、ヒ素、セレン、ホウ素の濃度を低減することができた上に、銅、亜鉛、鉛、全クロム等の重金属も除去することができた。これは、重金属がケイ酸塩などと共沈するためと考えられる。   The treatment plant described above could reduce the concentration of fluorine, arsenic, selenium, and boron, and also remove heavy metals such as copper, zinc, lead, and total chromium. This is thought to be because heavy metals coprecipitate with silicates and the like.

以上の実施例から、消石灰を加えた後に、硫酸で中和し、その後塩化鉄やUM剤で処理する方法が適していると判断される。   From the above examples, it is judged that a method of adding slaked lime, neutralizing with sulfuric acid, and then treating with iron chloride or UM agent is suitable.

本発明のアルカリ性排水の処理方法を実施する浄化プラントを示すフロー図である。It is a flowchart which shows the purification plant which enforces the processing method of the alkaline waste_water | drain of this invention. 図1の浄化プラントから搬出される沈澱を処理する沈澱処理プラントを示すフロー図である。It is a flowchart which shows the precipitation processing plant which processes the precipitation carried out from the purification plant of FIG.

符号の説明Explanation of symbols

10 浄化プラント
20 沈澱処理プラント
101、106 反応槽
102、107 調整槽
103、108 ポンプ槽
104、109 凝集槽
105、110 沈殿槽
111 最終中和槽
112 監視槽
201 汚泥槽
202 フィルタープレス
203 アームロール
204 濾液槽
DESCRIPTION OF SYMBOLS 10 Purification plant 20 Precipitation processing plant 101,106 Reaction tank 102,107 Adjustment tank 103,108 Pump tank 104,109 Coagulation tank 105,110 Precipitation tank 111 Final neutralization tank 112 Monitoring tank 201 Sludge tank 202 Filter press 203 Arm roll 204 Filtrate tank

Claims (4)

ケイ酸塩、フッ素、ヒ素、セレン、ホウ素を含むアルカリ性排水にアルカリ土類金属塩を添加した後に鉱酸を添加して中和させることを特徴とするアルカリ性排水の処理方法。   A method for treating alkaline wastewater, comprising adding an alkaline earth metal salt to an alkaline wastewater containing silicate, fluorine, arsenic, selenium, and boron, and then neutralizing by adding a mineral acid. 前記アルカリ土類金属塩として、ゼオライトにイオン交換を行う際に使用したカルシウム溶液の排液をアルカリ性排水に混合することを特徴とする請求項1に記載のアルカリ性排水の処理方法。   2. The method of treating alkaline wastewater according to claim 1, wherein the alkaline earth metal salt is mixed with the wastewater of the calcium solution used when performing ion exchange on the zeolite to the alkaline wastewater. アルカリ性排水を中和した後に凝集剤を添加して固液分離することを特徴とする請求項1または2に記載のアルカリ性排水の処理方法。   The method for treating alkaline wastewater according to claim 1 or 2, wherein after the alkaline wastewater is neutralized, a flocculant is added for solid-liquid separation. 凝集剤を添加して固液分離した上澄液に鉄化合物を添加し、その後凝集剤を添加して固液分離し、上澄液を排水することを特徴とする請求項3に記載のアルカリ性排水の処理方法。   4. The alkaline property according to claim 3, wherein an iron compound is added to the supernatant obtained by solid-liquid separation by adding a flocculant, followed by solid-liquid separation by adding a flocculant, and draining the supernatant. Wastewater treatment method.
JP2003333283A 2003-09-25 2003-09-25 Treatment method for alkaline wastewater Pending JP2005095785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003333283A JP2005095785A (en) 2003-09-25 2003-09-25 Treatment method for alkaline wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003333283A JP2005095785A (en) 2003-09-25 2003-09-25 Treatment method for alkaline wastewater

Publications (1)

Publication Number Publication Date
JP2005095785A true JP2005095785A (en) 2005-04-14

Family

ID=34461327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003333283A Pending JP2005095785A (en) 2003-09-25 2003-09-25 Treatment method for alkaline wastewater

Country Status (1)

Country Link
JP (1) JP2005095785A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096795A1 (en) * 2008-01-30 2009-08-06 Elkem Solar As Method for production of calcium compounds.
JP2017159205A (en) * 2016-03-08 2017-09-14 オルガノ株式会社 Processing apparatus and processing method of boron/selenium-containing water

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096795A1 (en) * 2008-01-30 2009-08-06 Elkem Solar As Method for production of calcium compounds.
JP2011513163A (en) * 2008-01-30 2011-04-28 エルケム ソウラー アクシエセルスカプ Method for producing calcium compound
EA016672B1 (en) * 2008-01-30 2012-06-29 Элкем Солар Ас Method for production of calcium compounds
US8268280B2 (en) 2008-01-30 2012-09-18 Elkem Solar As Method for production of calcium compounds
JP2017159205A (en) * 2016-03-08 2017-09-14 オルガノ株式会社 Processing apparatus and processing method of boron/selenium-containing water

Similar Documents

Publication Publication Date Title
US8603344B2 (en) Method and apparatus for removing metal from waste water
US9242878B2 (en) Heavy metal removal from waste streams
TW412433B (en) Processes for the treatment of flue gas desulfurization waste water
CA2996811A1 (en) Removal of sulfur substances from an aqueous medium with a solid material
CN103951114A (en) Heavy metal wastewater tertiary treatment and deep purification recycling process
JP2007209886A (en) Fluorine removing agent, and method and apparatus for treating drain containing fluorine using the agent
JP5915834B2 (en) Method for producing purification treatment material
JP2010036107A (en) Sewage treatment method
JP4508600B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP4468571B2 (en) Water purification system and water purification method
JP4723624B2 (en) Disposal of chlorine-containing fine powder waste
JP2005095785A (en) Treatment method for alkaline wastewater
JP4559755B2 (en) Wastewater treatment method
JP2010075928A (en) Treatment method and treatment device for fluorine-containing waste water
CN105923707B (en) A kind of desulfurization wastewater vibration membrane processing method and processing device
JP2008149222A (en) Removal method of fluorine ions in hot spring water
JP4761612B2 (en) Treatment method for boron-containing wastewater
JP4167512B2 (en) Waste liquid treatment method
RU2792510C1 (en) Method for purification of multicomponent industrial wastewater containing zinc and chromium
US20210261452A1 (en) Sulfate and trace metal precipitation methods and compositions
JP4016564B2 (en) Treatment method for fluorine-containing wastewater
RU2465215C2 (en) Method of purifying acidic multicomponent drainage solutions from copper and concomitant ions of toxic metals
JP3272216B2 (en) Treatment of chromium-containing wastewater
JP2010240625A (en) Method of recovering phosphorus
JP2003047972A (en) Method for treating fluorine-containing wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100216