JP2005093961A - Method for manufacturing multilayer ceramic substrate with cavity - Google Patents

Method for manufacturing multilayer ceramic substrate with cavity Download PDF

Info

Publication number
JP2005093961A
JP2005093961A JP2003329217A JP2003329217A JP2005093961A JP 2005093961 A JP2005093961 A JP 2005093961A JP 2003329217 A JP2003329217 A JP 2003329217A JP 2003329217 A JP2003329217 A JP 2003329217A JP 2005093961 A JP2005093961 A JP 2005093961A
Authority
JP
Japan
Prior art keywords
cavity
green sheet
inorganic composition
glass
ceramic substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003329217A
Other languages
Japanese (ja)
Other versions
JP4291656B2 (en
Inventor
Hiroyuki Takahashi
裕之 高橋
Hiroyuki Katagiri
弘至 片桐
Manabu Sato
学 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2003329217A priority Critical patent/JP4291656B2/en
Publication of JP2005093961A publication Critical patent/JP2005093961A/en
Application granted granted Critical
Publication of JP4291656B2 publication Critical patent/JP4291656B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49109Connecting at different heights outside the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for surely obtaining a multilayer ceramic substrate with a cavity wherein calcination shrinkage is little and dimensional accuracy is high. <P>SOLUTION: This manufacturing method includes a process wherein green sheets s4-s6 and green sheets s1-s3 having pierced holes c are laminated and a green sheet lamination ss with a cavity C is formed, a process wherein the inside of the cavity C is filled with a paste-shaped inorganic composition z whose sintering temperature is higher than those of the green sheets s1-s6 while decompressing is performed, a process wherein calcination shrinkage suppression sheets y1, y2 whose sintering temperatures are higher than those of the green sheets s1-s6 are laminated on both surfaces 1, 2 of the lamination ss with the cavity C which contains inorganic composition z and a compound lamination fs is formed, a process wherein the calcination of the compound lamination fs is performed at sintering temperatures of the sheets s1-s6, and a process wherein the calcination shrinkage suppression sheets y1, y2 and the inorganic composition z which are not yet sintered are eliminated from the compound lamination fs after calcination. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、焼成収縮が少なく形状および寸法精度の高いキャビティ付き多層セラミック基板の製造方法に関する。   The present invention relates to a method for manufacturing a multilayer ceramic substrate with a cavity that has less firing shrinkage and high shape and dimensional accuracy.

複数のグリーンシートを積層し、その両面にかかるグリーンシートよりも焼結温度が高い収縮抑制シートをそれぞれ積層した状態で上記グリーンシートの焼結温度にて焼成した後、未焼成の収縮抑制シートを除去することにより、平面方向の寸法精度が高いキャビティ付き多層セラミック基板を得るための製造方法が提案されている。
例えば、ガラスセラミック・グリーンシートを積層して凹部を有する積層体を作製し、かかる凹部に拘束用無機組成物を充填し、この積層体の両面に密着剤層を介在させて、難焼結性無機材料および有機バインダを含む拘束グリーンシートをそれぞれ積層し、得られた積層体を焼成した後、上記拘束用無機組成物と拘束グリーンシートとを除去する、という工程からなるガラスセラミック基板の製造方法が提案されている(例えば、特許文献1参照)。
After laminating a plurality of green sheets and firing a shrinkage suppression sheet having a sintering temperature higher than that of the green sheets on both sides, the green sheet is fired at the sintering temperature. A manufacturing method for obtaining a multilayer ceramic substrate with a cavity having high dimensional accuracy in the planar direction by removing the substrate has been proposed.
For example, it is difficult to sinter by making a laminated body having concave portions by laminating glass ceramic green sheets, filling the concave portions with a restraining inorganic composition, and interposing an adhesive layer on both sides of the laminated body. A method for producing a glass ceramic substrate comprising the steps of laminating a constraining green sheet containing an inorganic material and an organic binder, firing the resulting laminate, and then removing the constraining inorganic composition and the constraining green sheet. Has been proposed (see, for example, Patent Document 1).

特開2002−193674号公報(1〜8頁、図1)Japanese Patent Laid-Open No. 2002-193694 (1-8 pages, FIG. 1)

前記拘束用無機組成物は、ペースト状または粉体状のものであり、例えばペースト状の拘束用無機組成物を印刷法により前記凹部に充填した場合、かかる組成物と凹部(キャビティ)の内面との間には、密着が不十分で隙間を生じることがある。かかる隙間があると、凹部の底面を形成する前記グリーンシートに対する前記焼成工程での拘束が不十分になるため、当該グリーンシートにクラックを生じる、という問題があった。
一方、前記凹部に予め所定形状および寸法に成形した無機成形物を挿入する方法もあるが、当該凹部に見合った高い寸法精度の無機成形物でないと、その凹部が変形することがあり、しかも、凹部の寸法や形状が変更される度に成形型を変更する必要があるため、製造上の負担が大きい、という問題があった。
The restraining inorganic composition is in a paste or powder form.For example, when the concave inorganic composition is pasted into the recess by a printing method, the composition and the inner surface of the recess (cavity) In some cases, the gap is insufficient due to insufficient adhesion. If there is such a gap, there is a problem in that the green sheet forming the bottom surface of the recess is insufficiently restrained in the firing step, and thus the green sheet is cracked.
On the other hand, there is also a method of inserting an inorganic molded product that has been preliminarily molded into a predetermined shape and size into the recess, but the recess may be deformed if it is not an inorganic molded product with high dimensional accuracy corresponding to the recess, Since it is necessary to change the mold every time the dimensions and shape of the recesses are changed, there is a problem that the manufacturing burden is large.

本発明は、以上において説明した背景技術の問題点を解決し、焼成収縮が少なく形状および寸法精度の高いキャビティ付き多層セラミック基板を確実に得るための製造方法を提供する、ことを課題とする。   An object of the present invention is to solve the problems of the background art described above, and to provide a manufacturing method for reliably obtaining a multilayer ceramic substrate with a cavity having a small shape shrinkage and a high shape and dimensional accuracy.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

本発明は、上記課題を解決するため、複数のグリーンシートを積層して形成したキャビティ内に無機組成物を充填するに際し、キャビティ内面と充填した無機組成物との間に隙間を生じないように減圧に伴う圧力差により強制的に充填する、ことに着目して成されたものである。
即ち、本発明のキャビティ付き多層セラミック基板の製造方法(請求項1)は、表面および裏面を有するグリーンシートと、表面および裏面を有し且つかかる表面と裏面との間を貫通する貫通孔を有するグリーンシートと、を積層してキャビティ付きグリーンシート積層体を形成する工程と、上記グリーンシートの焼結温度よりも高い焼結温度を有するペースト状の無機組成物を、上記キャビティ内に減圧しつつ充填するか、あるいは当該キャビティ内に充填した後に減圧する工程と、上記無機組成物を含むキャビティ付きグリーンシート積層体の両面に上記グリーンシートの焼結温度よりも高い焼結温度を有する焼成収縮抑制シートを積層して複合積層体を形成する工程と、かかる複合積層体を上記グリーンシートの焼結温度で焼成する工程と、焼成後の上記複合積層体から未焼結の上記焼成収縮抑制シートおよび未焼結の上記無機組成物を除去する工程と、を含む、ことを特徴とする。
In order to solve the above problems, the present invention prevents a gap from being formed between the cavity inner surface and the filled inorganic composition when filling the inorganic composition into the cavity formed by laminating a plurality of green sheets. It is made paying attention to forcibly filling by the pressure difference accompanying pressure reduction.
That is, the method for manufacturing a multilayer ceramic substrate with a cavity according to the present invention (Claim 1) has a green sheet having a front surface and a back surface, and a through-hole having the front surface and the back surface and penetrating between the front surface and the back surface. A step of laminating a green sheet to form a green sheet laminate with a cavity, and a paste-like inorganic composition having a sintering temperature higher than the sintering temperature of the green sheet while reducing the pressure in the cavity Filling or reducing pressure after filling into the cavity, and suppression of firing shrinkage having a sintering temperature higher than the sintering temperature of the green sheet on both sides of the green sheet laminate with the cavity containing the inorganic composition A step of laminating sheets to form a composite laminate, and a step of firing the composite laminate at the sintering temperature of the green sheet. , And a step of removing the firing shrinkage suppression sheet and unsintered inorganic composition of the green from the composite laminate after the firing, characterized in that.

これによれば、ペースト状の上記無機組成物は、キャビティ内に減圧しつつ充填されるか、あるいは当該キャビティ内に充填された後に減圧されるため、キャビティの内面との間に隙間を生じることなく均一に充填される。このため、グリーンシート積層体の焼成時において、かかる無機組成物によるキャビティの底面を形成するグリーンシートの焼成収縮を抑制できるので、形状および寸法精度の高いキャビティを有するキャビティ付き多層セラミック基板を確実に製造することが可能となる。
尚、前記表・裏面を有するグリーンシートや貫通孔を有するグリーンシートは、それぞれ単一のグリーンシートの形態の他、複数のグリーンシートを積層した形態も含まれ、これらの間には所定パターンの配線層が形成されている。
According to this, the paste-like inorganic composition is filled while reducing the pressure in the cavity, or is reduced in pressure after being filled in the cavity, so that a gap is formed between the inner surface of the cavity. Evenly filled. For this reason, when the green sheet laminate is fired, the firing shrinkage of the green sheet that forms the bottom surface of the cavity due to the inorganic composition can be suppressed, so that a multilayer ceramic substrate with a cavity having a cavity with high shape and dimensional accuracy can be reliably obtained. It can be manufactured.
The green sheet having the front and back surfaces and the green sheet having the through-holes include not only a single green sheet but also a plurality of stacked green sheets, each having a predetermined pattern between them. A wiring layer is formed.

また、本発明には、前記グリーンシートは、セラミックとガラス(成分)との混合物からなると共に、前記無機組成物は、前記焼成収縮抑制シートを構成するセラミックのみからなるか、あるいは上記セラミックとガラスとの混合物からなり且つかかるガラスの含有量は20wt%以下で且つ上記グリーンシートのガラス含有量よりも少ない、キャビティ付き多層セラミック基板の製造方法(請求項2)も含まれる。これによれば、焼成工程において、無機組成物中のガラスが軟化した後、グリーンシートの表面に均一に拡散するため、キャビティの底面を形成するグリーンシートの焼成収縮を確実に抑制することができる。
尚、上記セラミックには、アルミナや窒化アルミニウム(AlN)などが含まれ、上記ガラスには、アルミナ、ケイ酸、およびBを主成分とするケイ酸ホウケイ酸系ガラスが含まれる。また、無機組成物におけるガラスの含有量が20wt%を越えると、隣接し且つキャビティの底面を形成するグリーンシートとの間に、軟化および流動化したガラス(成分)が介在して固まるため、焼成後における無機組成物の除去が困難となり、キャビティの形状および寸法精度が低下する。これを防ぐため、上記範囲としたものである。
Further, in the present invention, the green sheet is made of a mixture of ceramic and glass (component), and the inorganic composition is made only of the ceramic constituting the fired shrinkage suppressing sheet, or the ceramic and glass are mixed. And a method for producing a multilayer ceramic substrate with a cavity, wherein the glass content is 20 wt% or less and less than the glass content of the green sheet (Claim 2). According to this, in the firing step, after the glass in the inorganic composition is softened, it is uniformly diffused on the surface of the green sheet, so that the firing shrinkage of the green sheet forming the bottom surface of the cavity can be reliably suppressed. .
The ceramic includes alumina, aluminum nitride (AlN), and the like, and the glass includes alumina, silicic acid, and silicate borosilicate glass mainly containing B 2 O 3 . In addition, when the glass content in the inorganic composition exceeds 20 wt%, the softened and fluidized glass (component) is interposed between the adjacent green sheets forming the bottom surface of the cavity and hardened. It becomes difficult to remove the inorganic composition later, and the shape and dimensional accuracy of the cavity are lowered. In order to prevent this, the above range is adopted.

更に、本発明には、前記無機組成物に含まれるガラスの軟化点は、前記グリーンシートに含まれるガラスの軟化点と同等またはそれ以下である、キャビティ付き多層セラミック基板の製造方法(請求項3)も含まれる。
これによれば、焼成工程において、無機組成物に含まれるガラスは、グリーンシートに含まれるガラスと同時に、あるいはこれよりも早く軟化するが、無機組成物に隣接し且つキャビティの底面を形成するグリーンシートに対して、かかる無機組成物中のガラス(成分)が、両者の界面を経て当該グリーンシート中に浸透(拡散)し易くなる。この結果、かかる無機組成物に隣接するグリーンシートの焼成収縮を確実に抑制できるため、クラックがなく形状および寸法精度の高いキャビティを形成できる。
Furthermore, the present invention provides a method for producing a multilayer ceramic substrate with a cavity, wherein the softening point of the glass contained in the inorganic composition is equal to or lower than the softening point of the glass contained in the green sheet. ) Is also included.
According to this, in the firing step, the glass contained in the inorganic composition is softened simultaneously with or earlier than the glass contained in the green sheet, but is adjacent to the inorganic composition and forms the bottom surface of the cavity. The glass (component) in the inorganic composition easily permeates (diffuses) into the green sheet through the interface between the two. As a result, since the firing shrinkage of the green sheet adjacent to the inorganic composition can be surely suppressed, a cavity having high shape and dimensional accuracy can be formed without cracks.

加えて、本発明には、前記無機組成物は、前記グリーンシートが溶解可能な有機溶媒を含む、キャビティ付き多層セラミック基板の製造方法(請求項4)も含まれる。これによれば、キャビティ内に均一に充填された無機組成物から有機触媒がかかる無機組成物に隣接するグリーンシートを溶解するため、当該無機組成物とグリーンシートとの密着性を更に高められる。このため、焼成工程におけるキャビティ底面を形成するグリーンシートのクラックの発生を防ぎ、且つかかるキャビティの形状および寸法精度を確保することが容易となる。
尚、有機溶媒は、例えば酢酸ブチルが用いられ、1〜5wt%の範囲で無機組成物に添加されるが、望ましい含有量は、1〜3wt%である。
In addition, the present invention includes a method for producing a multilayer ceramic substrate with a cavity, wherein the inorganic composition contains an organic solvent in which the green sheet can be dissolved (Claim 4). According to this, since the green sheet adjacent to the inorganic composition to which the organic catalyst is applied is dissolved from the inorganic composition uniformly filled in the cavity, the adhesion between the inorganic composition and the green sheet can be further enhanced. For this reason, it becomes easy to prevent generation | occurrence | production of the crack of the green sheet which forms the cavity bottom face in a baking process, and to ensure the shape and dimensional accuracy of this cavity.
For example, butyl acetate is used as the organic solvent, and it is added to the inorganic composition in the range of 1 to 5 wt%, but the desirable content is 1 to 3 wt%.

以下において、本発明を実施するための最良の形態について説明する。
図1は、表面および裏面を有し且つかかる表面と裏面との間を貫通する貫通孔cを有するグリーンシートs1〜s3と、表面および裏面を有するグリーンシートs4〜s6との断面を示す。グリーンシートs1〜s6は、重量比が1:1のホウケイ酸系ガラスとアルミナとを主成分とし、これらの粉末に有機バインダおよび可塑剤成分を添加して混合し、得られたセラミックスラリをドクターブレード法によりシート化したもので、それぞれ約150μmの厚みを有する。また、貫通孔cは、平面視で正方形(例えば3mm×3mm)または長方形を呈する。
In the following, the best mode for carrying out the present invention will be described.
FIG. 1 shows cross sections of green sheets s1 to s3 having a front surface and a back surface and having through holes c penetrating between the front surface and the back surface, and green sheets s4 to s6 having a front surface and a back surface. The green sheets s1 to s6 are mainly composed of a borosilicate glass having a weight ratio of 1: 1 and alumina, and an organic binder and a plasticizer component are added to and mixed with these powders. Each of which is formed into a sheet by a blade method and has a thickness of about 150 μm. Moreover, the through-hole c exhibits a square (for example, 3 mm × 3 mm) or a rectangle in plan view.

図1に示すように、グリーンシートs1〜s6の表面および裏面の少なくとも一方には、配線(表層電極)4,10または所定パターンの配線層5〜9が形成されている。配線・配線層4〜10は、厚みが約15μmのAg粉などを含む導電性ペーストからなる。上記配線・配線層4〜10には、グリーンシートs1〜s6の表面と裏面との間を貫通する直径約150μmのビア導体vが個別に接続され、かかるビア導体vもAg粉などを含む導電性ペーストからなる。尚、グリーンシートs1〜s6は、多数個取り用の大版のグリーンシートとしても良い。
次に、図1に示すように、グリーンシートs1〜s6をそれらの順序で積層して圧着する。
As shown in FIG. 1, wirings (surface layer electrodes) 4 and 10 or wiring layers 5 to 9 having a predetermined pattern are formed on at least one of the front and back surfaces of the green sheets s1 to s6. The wiring / wiring layers 4 to 10 are made of a conductive paste containing Ag powder having a thickness of about 15 μm. The wiring / wiring layers 4 to 10 are individually connected with via conductors v having a diameter of about 150 μm that penetrate between the front and back surfaces of the green sheets s1 to s6. The via conductors v are also electrically conductive including Ag powder. It consists of sex paste. The green sheets s1 to s6 may be large green sheets for taking a large number of pieces.
Next, as shown in FIG. 1, the green sheets s <b> 1 to s <b> 6 are stacked in that order and pressed.

その結果、図2に示すように、積層されたグリーンシートs1〜s6からなり、表面1に開口するキャビティCを有するキャビティ付きグリーンシート積層体ssが形成され、キャビティCの底面には、グリーンシートs4の表面が露出する。同時に、前記配線・配線層4〜10間は、ビア導体vを介して接続される。また、上記積層体ssの表面1と裏面2とには、配線4,10が位置する。尚、上記キャビティCは、平面視が一辺3mmの正方形を呈し、その深さは約0.5mmである。
次いで、キャビティ付きグリーンシート積層体ssを図示しない気密チャンバ内に収容し、かかるチャンバ内を約2.5×10Paに減圧する。
この減圧状態で、図3に示すように、キャビティ付きグリーンシート積層体ssのキャビティCの開口部付近にペースト状の無機組成物zを塗布する。かかる無機組成物zは、少なくともアルミナと1〜5wt%の酢酸ブチルとを含み、更にこれらに20wt%以下のガラスを含んだものである。このガラスの軟化点は、グリーンシートs1〜s6に含まれるガラスの軟化点と同じか、それ以下である。
As a result, as shown in FIG. 2, a green sheet laminate ss with cavities having cavities C opened on the surface 1 is formed, and the green sheets are formed on the bottom surface of the cavities C. The surface of s4 is exposed. At the same time, the wiring / wiring layers 4 to 10 are connected via via conductors v. Further, wirings 4 and 10 are located on the front surface 1 and the back surface 2 of the laminate ss. The cavity C has a square shape with a side of 3 mm in plan view, and the depth is about 0.5 mm.
Next, the green sheet laminate ss with cavities is accommodated in an airtight chamber (not shown), and the inside of the chamber is decompressed to about 2.5 × 10 4 Pa.
In this reduced pressure state, as shown in FIG. 3, the paste-like inorganic composition z is applied in the vicinity of the opening of the cavity C of the green sheet laminate ss with cavities. Such an inorganic composition z contains at least alumina and 1 to 5 wt% of butyl acetate, and further contains 20 wt% or less of glass. The softening point of this glass is the same as or lower than the softening point of the glass contained in the green sheets s1 to s6.

次に、前記気密チャンバ内を約5.0×10Paに加圧する。この結果、前記積層体ssのキャビティC外の圧力p1がキャビティC内の圧力p2よりも相対的に高くなって差圧が生じるため、図3中の矢印で示すように、ペースト状の無機組成物zは、当該キャビティCの底面寄りに強制的に吸引される。同時に、当該キャビティC中の残留エアは、泡状の気泡となって上記無機組成物zを通過し、キャビティCの外側に放出される。即ち、上記無機組成物zは、減圧されつつあるキャビティC中に均一に充填される。尚、図示しないメタルマスクおよびスキージを用い、無機組成物zをキャビティCに物理的に充填した後、前記気密チャンバ内を約1.0×10Paに減圧して強制的に充填しても良い。この場合も、キャビティCの底面内隅部に残る隙間のエアを気泡として放出できる。 Next, the inside of the airtight chamber is pressurized to about 5.0 × 10 4 Pa. As a result, the pressure p1 outside the cavity C of the laminate ss becomes relatively higher than the pressure p2 inside the cavity C, resulting in a differential pressure. Therefore, as shown by the arrows in FIG. The object z is forcibly sucked closer to the bottom surface of the cavity C. At the same time, the residual air in the cavity C becomes bubble-like bubbles, passes through the inorganic composition z, and is discharged to the outside of the cavity C. That is, the inorganic composition z is uniformly filled into the cavity C being decompressed. In addition, after physically filling the cavity C with the inorganic composition z using a metal mask and a squeegee (not shown), the inside of the airtight chamber may be reduced to about 1.0 × 10 4 Pa and forcibly filled. good. Also in this case, the air in the gap remaining at the inner corner of the bottom surface of the cavity C can be released as bubbles.

その結果、図4に示すように、無機組成物zは、キャビティC中に隙間なく均一に充填される。尚、キャビティCの開口部よりも上方の余分な無機組成物zは、スキージなどにより掻き出されるため、無機組成物zの上面は、キャビティ付きグリーンシート積層体ssの表面1と面一となる。
更に、キャビティCに無機組成物zが充填されたキャビティ付きグリーンシート積層体ssを前記チャンバから取り出し、図5に示すように、その表面1および裏面2(両面)に、焼成収縮抑制シートy1,y2を圧着し且つ積層して複合積層体fsを形成する。かかる焼成収縮抑制シートy1,y2は、アルミナ粉末に有機バインダおよび可塑剤成分を添加して得たセラミックスラリをドクターブレード法によって、厚さ約250μmにシート化したものである。
尚、図6に示すように、焼成収縮抑制シートy1に替えて、前記同様の形状および大きさの貫通孔cを内側に有する焼成収縮抑制シートy3をグリーンシート積層体ssの表面1上に積層し、上記貫通孔cの底面に無機組成物zの上面を位置させた複合積層体fsを形成しても良い。
As a result, as shown in FIG. 4, the inorganic composition z is uniformly filled in the cavity C without a gap. In addition, since the excess inorganic composition z above the opening part of the cavity C is scraped out by a squeegee or the like, the upper surface of the inorganic composition z is flush with the surface 1 of the green sheet laminate ss with cavities. .
Furthermore, the green sheet laminate ss with cavities in which the cavity C is filled with the inorganic composition z is taken out of the chamber, and as shown in FIG. The composite laminate fs is formed by pressing and stacking y2. Such firing shrinkage-suppressing sheets y1 and y2 are obtained by forming a ceramic slurry obtained by adding an organic binder and a plasticizer component to alumina powder into a thickness of about 250 μm by a doctor blade method.
As shown in FIG. 6, instead of the firing shrinkage suppression sheet y1, a firing shrinkage suppression sheet y3 having a through-hole c having the same shape and size as described above is laminated on the surface 1 of the green sheet laminate ss. And you may form the composite laminated body fs which located the upper surface of the inorganic composition z in the bottom face of the said through-hole c.

次に、複合積層体fsを図示しない焼成炉に挿入し、グリーンシートs1〜s6の焼結温度(800〜1000℃)で所要時間にわたり加熱して焼成する。この際、前記配線層5などやビア導体vも同時に焼結される。また、焼成後において、グリーンシートs1〜s6が焼結したセラミック層は、未焼結の焼成収縮抑制シートy1,y2に表面1および裏面2で拘束されるため、平面方向の焼成収縮を抑制される。しかも、キャビティCの底面を形成するグリーンシートs4が焼結して得られるセラミック層も、隣接する未焼結の無機組成物zにより拘束されるため、平面方向の焼成収縮を抑制される。   Next, the composite laminate fs is inserted into a firing furnace (not shown), and fired at a sintering temperature (800 to 1000 ° C.) of the green sheets s1 to s6 for a required time. At this time, the wiring layer 5 and the via conductors v are also sintered at the same time. In addition, after firing, the ceramic layers in which the green sheets s1 to s6 are sintered are restrained by the unfired firing shrinkage suppression sheets y1 and y2 on the front surface 1 and the back surface 2, so that firing shrinkage in the planar direction is suppressed. The Moreover, since the ceramic layer obtained by sintering the green sheet s4 forming the bottom surface of the cavity C is also restrained by the adjacent unsintered inorganic composition z, the firing shrinkage in the planar direction is suppressed.

更に、焼成された複合積層体fsから未焼結の焼成収縮抑制シートy1(y3),y2およびキャビティC内の無機組成物zを除去する。かかる除去工程は、焼成後の複合積層体fsを例えば25℃において30分以上保持した後、10℃の冷水(冷却媒体)中に投入して浸漬し、焼成収縮抑制シートy1,y2および無機組成物z中の焼結時の残留応力を瞬時に開放する熱衝撃によって迅速に行える。
その結果、図7に示すように、前記グリーンシートs1〜s6が焼結したセラミック層S1〜S6からなるセラミック基板SK、前記導電性ペーストが焼結した配線4,10や所定パターンの配線層5〜9、ビア導体v、および表面1に開口するキャビティCを有するキャビティ付き多層セラミック基板K1を得ることができる。
尚、焼成収縮抑制シートy1,y2および無機組成物zの除去は、水とアルミナなどの硬質粒子との混合物を吹き付ける方法により行っても良い。
Further, the unsintered firing shrinkage suppression sheets y1 (y3) and y2 and the inorganic composition z in the cavity C are removed from the fired composite laminate fs. In this removal step, the fired composite laminate fs is held, for example, at 25 ° C. for 30 minutes or more, and then poured into 10 ° C. cold water (cooling medium) and immersed therein, and the firing shrinkage suppression sheets y1, y2 and the inorganic composition Residual stress at the time of sintering in the object z can be quickly achieved by thermal shock that instantaneously releases the residual stress.
As a result, as shown in FIG. 7, the ceramic substrate SK composed of the ceramic layers S1 to S6 sintered with the green sheets s1 to s6, the wirings 4 and 10 sintered with the conductive paste, and the wiring layer 5 with a predetermined pattern. To 9, a multi-layer ceramic substrate K1 with cavities having via conductors v and cavities C opening on the surface 1 can be obtained.
The removal of the firing shrinkage suppression sheets y1 and y2 and the inorganic composition z may be performed by a method of spraying a mixture of water and hard particles such as alumina.

尚、図7に示すように、キャビティC内に実装したICチップ12は、その上面に位置する図示しない接続端子が表面1の配線(表層電極)4との間でロウ付けされるワイヤwを介して接続される。また、基板K1の裏面2の配線(表層電極)10は、その表面にAuメッキおよびNiメッキが被覆され、図示しないマザーボードとの接続端子として活用される。
以上のような工程を経る製造方法によれば、平面方向の焼成収縮が抑制されたセラミック層S1〜S6および底面にクラックがなく且つ形状や寸法精度の高いキャビティCを有するキャビティ付き多層セラミック基板K1を確実に提供することができる。尚、前述した多数個取り用の大版のグリーンシートを用いて、前記積層体ssの形成工程、無機組成物zのキャビティCへの充填工程、複合積層体fsの形成工程、焼成工程、および無機組成物zなどの除去工程を行っても良い。この場合、上記除去工程の後、大版の多層セラミック基板の集合体を、例えばダイシング加工で個別のキャビティ付き多層セラミック基板K1に分割する。
As shown in FIG. 7, the IC chip 12 mounted in the cavity C has a wire w brazed between a connection terminal (not shown) located on the upper surface and the wiring (surface layer electrode) 4 on the surface 1. Connected through. Further, the wiring (surface layer electrode) 10 on the back surface 2 of the substrate K1 is coated with Au plating and Ni plating on its surface, and is used as a connection terminal for a mother board (not shown).
According to the manufacturing method through the steps as described above, the multilayer ceramic substrate K1 with the cavity having the ceramic layers S1 to S6 in which the firing shrinkage in the planar direction is suppressed and the cavity C having no cracks on the bottom surface and high shape and dimensional accuracy. Can be reliably provided. In addition, using the large-sized green sheet for multi-cavity described above, the step of forming the laminate ss, the step of filling the inorganic composition z into the cavity C, the step of forming the composite laminate fs, the firing step, You may perform the removal process of inorganic composition z. In this case, after the removing step, the large-sized multilayer ceramic substrate assembly is divided into individual multilayer ceramic substrates K1 with cavities, for example, by dicing.

ここで本発明の具体的な実施例について、比較例と併せて説明する。
ケイ酸、アルミナ、およびBを主成分とするホウケイ酸系ガラス粉末とアルミナ粉末とを、重量比が1:1で且つ総重量1kgに秤量して、アルミナ製のポットに投入した。上記アルミナ粉末は、平均粒径:3μm、比表面積:1.0m/gである。また、上記ガラス粉末とアルミナ粉末との重量比1:1は、一般的な低温焼成基板に比べて、ガラス成分が過剰である。
上記ポット中に、アクリル樹脂系バインダ:120gと、適当なスラリ粘度およびシート強度を与えるのに必要な量の溶剤(MEK:メチルエチルケトン)と可塑剤(DOP:ジオクチルフタレート)とを添加した後、5時間にわたり混合することで、セラミックスラリを得た。かかるスラリをドクターブレード法によって、厚みが150μmで且つ縦・横200mmずつの大版のグリーンシートに形成した。かかるグリーンシートを複数枚用意した。
Here, specific examples of the present invention will be described together with comparative examples.
A borosilicate glass powder mainly composed of silicic acid, alumina, and B 2 O 3 and alumina powder were weighed to a weight ratio of 1: 1 and a total weight of 1 kg, and charged into an alumina pot. The alumina powder has an average particle size of 3 μm and a specific surface area of 1.0 m 2 / g. Moreover, the weight ratio 1: 1 of the glass powder and the alumina powder has an excessive glass component as compared with a general low-temperature fired substrate.
After adding 120 g of an acrylic resin binder, an amount of a solvent (MEK: methyl ethyl ketone) and a plasticizer (DOP: dioctyl phthalate) necessary to give an appropriate slurry viscosity and sheet strength to the pot, 5 A ceramic slurry was obtained by mixing over time. This slurry was formed on a large green sheet having a thickness of 150 μm and a length and width of 200 mm by the doctor blade method. A plurality of such green sheets were prepared.

また、前記と同じアルミナ粉末のみからなる1組のアルミナ粉末と、アルミナ粉末および5〜20wt%の前記と同じ種類のガラス粉末からなる複数組の混合粉末を用意した。尚、上記ガラス(成分)の軟化点は、前記グリーンシートに含まれるガラスの軟化点とほぼ同じである。
上記アルミナ粉末または混合粉末に、前記同様のアクリル樹脂系バインダを個別に添加し、更に1組の混合粉末を除き、1,3,5wt%の酢酸ブチル(有機溶媒)を添加して、合計9種類のペースト状の無機組成物を用意した。
更に、前記と同じアルミナ粉末に、アクリル樹脂系バインダ、溶剤(MEK)、および可塑剤(DOP)を前記同様に添加し且つ混合してセラミックスラリを得ると共に、かかるスラリをドクターブレード法により、厚みが250μmの焼成収縮抑制シートを複数枚形成した。
A set of mixed powders consisting of only one set of alumina powder consisting of the same alumina powder as described above, and 5-20 wt% of the same kind of glass powder as described above were prepared. The softening point of the glass (component) is substantially the same as the softening point of the glass contained in the green sheet.
To the above-mentioned alumina powder or mixed powder, an acrylic resin binder similar to the above is added individually, and one set of mixed powder is removed, and 1,3,5 wt% of butyl acetate (organic solvent) is added, for a total of 9 Various types of paste-like inorganic compositions were prepared.
Further, an acrylic resin binder, a solvent (MEK), and a plasticizer (DOP) are added to the same alumina powder as described above and mixed in the same manner as described above to obtain a ceramic slurry, and the slurry is thickened by a doctor blade method. Were formed a plurality of baking shrinkage suppression sheets having a thickness of 250 μm.

前記大版のグリーンシートのうち、一部について縦・横:3mm×3mmの貫通孔を縦×横方向にそれぞれ6個ずつ合計36個穿孔した。かかる貫通孔付きのグリーンシート3枚と、貫通孔のないグリーンシート3枚とを積層して、9組の多数個取り用のキャビティ付きグリーンシート積層体を形成した。
各組の上記グリーンシート積層体における36個のキャビティに対し、表1に示すように、先に減圧された気密チャンバ中に移し、各キャビティの開口部に無機組成物を塗布してから更にキャビティの内外に差圧を設けて減圧しつつ充填するか、予めキャビティにペースト状の無機組成物を物理的に充填した後に気密チャンバ中に移して減圧するか、あるいは、何れの減圧充填も行わずにメタルマスクとスキージとを用いて物理的に無機組成物を充填した。
A part of the large size green sheet was perforated with a total of 36 through-holes of 3 mm × 3 mm in the vertical and horizontal directions. Three green sheets with through-holes and three green sheets without through-holes were laminated to form nine sets of green sheet laminates with cavities for multi-cavity.
As shown in Table 1, the 36 cavities in each set of the green sheet laminates were transferred to an airtight chamber previously depressurized, and the inorganic composition was applied to the openings of the cavities, and then the cavities were further increased. Fill the cavity with a differential pressure inside and outside, or fill the cavity in advance with a paste-like inorganic composition and then transfer it into an airtight chamber to reduce the pressure, or do not perform any vacuum filling The inorganic composition was physically filled using a metal mask and a squeegee.

各組のキャビティへの無機組成物の充填方法、各組の無機組成物のガラス含有量、およびグリーンシートが溶解可能な有機溶媒成分(酢酸ブチル:有機溶媒)量によって、表1に示すように、実施例1〜6および比較例1〜3に区分した。
各例のキャビティに無機組成物を充填したグリーンシート積層体の両面に、焼成収縮抑制シートをそれぞれ圧着して積層し、各組ごとに複合積層体を得た。
各例の複合積層体を図示しない焼成炉に入れ、前記グリーンシートの焼結温度(約900℃)で焼成した。焼成後の各例の複合積層体を25℃に30分以上保持した後、10℃の冷水中に浸漬して、未焼成の焼成収縮抑制シートと無機組成物とを除去し、各例ごとにキャビティ付き多層セラミック基板(大版)を得た。
As shown in Table 1, depending on the filling method of the inorganic composition into each set of cavities, the glass content of each set of inorganic composition, and the amount of organic solvent component (butyl acetate: organic solvent) in which the green sheet can be dissolved These were divided into Examples 1 to 6 and Comparative Examples 1 to 3.
A fired shrinkage suppression sheet was laminated on both sides of a green sheet laminate in which the cavity of each example was filled with an inorganic composition, and a composite laminate was obtained for each set.
The composite laminate of each example was placed in a firing furnace (not shown) and fired at the green sheet sintering temperature (about 900 ° C.). After holding the composite laminate of each example after firing at 25 ° C. for 30 minutes or more, it was immersed in cold water at 10 ° C. to remove the unfired firing shrinkage suppression sheet and the inorganic composition, and for each example A multilayer ceramic substrate (large plate) with cavities was obtained.

各例の上記多層セラミック基板について、36個のキャビティ全てを目視で観察した上、それらの底面にクラックが1箇所も発見されなかったものを「○無」とし、1箇所でもクラックが発見されたものを「×有」として、表1に示した。
また、前記除去工程で、各例のキャビティの全てから無機組成物が容易に除去できたものを「○容易」とし、1箇所のキャビティでも無機組成物の除去が困難であったものを「×困難」として、表1に示した。
Regarding the multilayer ceramic substrate in each example, all 36 cavities were visually observed, and no cracks were found on the bottom surface of the multilayer ceramic substrates. The results are shown in Table 1 as “x present”.
Further, in the removal step, the case where the inorganic composition could be easily removed from all the cavities of each example was “◯ easy”, and the case where it was difficult to remove the inorganic composition even at one cavity was “× It is shown in Table 1 as “difficult”.

Figure 2005093961
Figure 2005093961

表1によれば、実施例1〜6のキャビティ付き多層セラミック基板は、何れかの減圧充填方法で無機組成物がキャビティに均一に充填され、且つ用いた無機組成物のガラス含有量が無いか20wt%以下であり、しかも、グリーンシートが溶解可能な成分の酢酸ブチル(有機溶媒)が1,3,5wt%の何れかであったため、全てのキャビティでクラックが発生しなかった。また、グリーンシートに含まれるガラスの一部が無機組成物に浸透したが、無機組成物のガラス含有量が無いか若しくは少ないため、キャビティの底面に溶出せず、焼成後での無機組成物の除去が容易に行え、且つ形状および寸法精度が高く清浄な底面のキャビティを得ることができた。
一方、表1によれば、比較例1のキャビティ付き多層セラミック基板は、無機組成物を物理的に充填したため、図8に示すように、キャビティCの底面の内隅に沿って隙間qが形成されていた。かかる隙間qが残った状態で、焼成したため、隙間qの直下におけるセラミック層S4には、クラックkが発生していた。
According to Table 1, the multilayer ceramic substrates with cavities of Examples 1 to 6 are filled with the inorganic composition uniformly by any vacuum filling method, and there is no glass content of the used inorganic composition. Since the content of butyl acetate (organic solvent), which is 20 wt% or less and the green sheet can be dissolved, was 1, 3, 5 wt%, cracks did not occur in all the cavities. In addition, a part of the glass contained in the green sheet penetrated into the inorganic composition, but since there is no or little glass content of the inorganic composition, it does not elute on the bottom of the cavity, and the inorganic composition after firing Removal was easy, and a clean bottom cavity with high shape and dimensional accuracy could be obtained.
On the other hand, according to Table 1, since the multilayer ceramic substrate with a cavity of Comparative Example 1 was physically filled with an inorganic composition, a gap q was formed along the inner corner of the bottom surface of the cavity C as shown in FIG. It had been. Since firing was performed with the gap q remaining, cracks k occurred in the ceramic layer S4 immediately below the gap q.

また、表1に示すように、比較例2のキャビティ付き多層セラミック基板は、無機組成物をキャビティに充填と同時に減圧して均一に充填したが、かかる無機組成物にはグリーンシート溶解可能な成分の酢酸ブチル(有機溶媒)に含まれていなかった。このため、キャビティの底面や側面のグリーンシートに対する拘束力が小さくなり、クラックキャビティの底面にクラックが発生した。
更に、表1に示すように、比較例3のキャビティ付き多層セラミック基板も、無機組成物をキャビティに充填と同時に減圧して均一に充填したが、かかる無機組成物のガラス含有量が30wt%と過多であったため、隣接するグリーンシートへ浸透すべきガラス(成分)がキャビティ底面において溶出した。この結果、前記除去工程で、キャビティの底面やこれに近接する側面に固着したガラス(成分)が残ったため、無機組成物の除去が困難となった。
以上のような実施例1〜6の結果によって、本発明の製造方法における作用および効果が容易に理解されよう。
Moreover, as shown in Table 1, the multilayer ceramic substrate with cavity of Comparative Example 2 was uniformly filled by reducing the pressure simultaneously with filling the cavity with the inorganic composition. Of butyl acetate (organic solvent). For this reason, the restraining force with respect to the green sheet of the bottom face or side surface of the cavity was reduced, and a crack was generated on the bottom face of the crack cavity.
Furthermore, as shown in Table 1, the multilayer ceramic substrate with a cavity of Comparative Example 3 was also uniformly filled by reducing the pressure simultaneously with filling the cavity with the inorganic composition. The glass content of the inorganic composition was 30 wt%. Since it was excessive, the glass (component) to penetrate into the adjacent green sheet was eluted at the bottom of the cavity. As a result, since the glass (component) adhered to the bottom surface of the cavity and the side surface adjacent thereto remained in the removing step, it was difficult to remove the inorganic composition.
From the results of Examples 1 to 6 as described above, the operation and effect of the manufacturing method of the present invention will be easily understood.

図9は、異なる形態のキャビティC1を有するキャビティ付きグリーンシート積層体ssの断面を示す。この積層体ssは、大きな貫通孔を有するグリーンシートs7とこれよりもやや小さな貫通孔を有するグリーンシートs8とを、前記と同じグリーンシートs3〜s6の上方に積層したものであり、キャビティC1側のグリーンシートs7,s8,s3の間には段部d1,d2が階段状に位置している。尚、グリーンシートs7,s8も前記同様の材料および厚みを有する。
図9に示すように、グリーンシートs7〜s6間には、前記同様の導電性ペーストからなる配線層5〜9が所定パターンで形成され、且つ上記積層体ssの表面1および裏面2には、表層電極の配線4,10が前記同様に配置されると共に、これらの間はビア導体vを介して接続されている。また、配線層5,6から段部d1,d2上に接続端子である複数の配線5a,6aが個別に延びている。
FIG. 9 shows a cross section of a green sheet laminate ss with cavities having cavities C1 of different forms. This laminated body ss is obtained by laminating a green sheet s7 having a large through hole and a green sheet s8 having a slightly smaller through hole above the same green sheets s3 to s6 as described above, and on the cavity C1 side. Between the green sheets s7, s8, and s3, step portions d1 and d2 are positioned stepwise. The green sheets s7 and s8 also have the same material and thickness as described above.
As shown in FIG. 9, between the green sheets s7 to s6, wiring layers 5 to 9 made of the same conductive paste are formed in a predetermined pattern, and on the front surface 1 and the back surface 2 of the laminate ss, The wirings 4 and 10 for the surface layer electrodes are disposed in the same manner as described above, and are connected via the via conductors v. A plurality of wirings 5a and 6a, which are connection terminals, extend individually from the wiring layers 5 and 6 on the step portions d1 and d2.

次に、グリーンシート積層体ssのキャビティC1に前記同様の材料からなるペースト状の無機組成物zを充填した後、図示しない気密チャンバに挿入して減圧する。その結果、図10に示すように、無機組成物zは、側面が階段状のキャビティC1中に隙間なく均一になるよう強制的に充填される。
尚、グリーンシート積層体ssを減圧した気密チャンバに挿入し、キャビティC1の開口部付近に無機組成物zを塗布した後、当該チャンバ内を加圧して、キャビティC1内との差圧により、上記無機組成物zを強制的に充填しても良い。
次いで、図11に示すように、グリーンシート積層体ssの表面1および裏面2(両面)に、前記同様の焼成収縮抑制シートy1,y2を圧着し且つ積層して複合積層体fsを形成する。
Next, after filling the cavity C1 of the green sheet laminate ss with the paste-like inorganic composition z made of the same material as described above, it is inserted into an airtight chamber (not shown) and decompressed. As a result, as shown in FIG. 10, the inorganic composition z is forcibly filled so that the side surface is uniform in the stepped cavity C <b> 1 without a gap.
The green sheet laminate ss is inserted into an airtight chamber having a reduced pressure, and after applying the inorganic composition z in the vicinity of the opening of the cavity C1, the inside of the chamber is pressurized and the pressure difference between the inside and the cavity C1 The inorganic composition z may be forcibly filled.
Next, as shown in FIG. 11, the same firing shrinkage suppression sheets y1 and y2 as those described above are pressure-bonded and laminated on the front surface 1 and the back surface 2 (both surfaces) of the green sheet laminate ss to form a composite laminate fs.

更に、複合積層体fsを図示しない焼成炉に挿入し、グリーンシートs3〜s8の焼結温度(800〜1000℃)で所要時間にわたり加熱して焼成する。この際、前記配線層5などやビア導体vも同時に焼結される。また、焼成後において、グリーンシートs3〜s8が焼結したセラミック層は、未焼結の焼成収縮抑制シートy1,y2に表面1および裏面2で拘束されているため、平面方向の焼成収縮を抑制される。しかも、キャビティC1の底面を形成するグリーンシートs4やキャビティC1の段部d1,d2を形成するグリーンシートs3,s8が焼結して得られるセラミック層も、隣接する未焼結の無機組成物zに拘束されるため、平面方向の焼成収縮を抑制される。   Further, the composite laminate fs is inserted into a firing furnace (not shown), and heated and fired at a sintering temperature (800 to 1000 ° C.) of the green sheets s3 to s8 for a required time. At this time, the wiring layer 5 and the via conductors v are also sintered at the same time. In addition, after firing, the ceramic layers in which the green sheets s3 to s8 are sintered are restrained by the unfired firing shrinkage suppression sheets y1 and y2 on the front surface 1 and the back surface 2, thereby suppressing firing shrinkage in the planar direction. Is done. Moreover, the green layers s4 forming the bottom surface of the cavity C1 and the green layers s3 and s8 forming the step portions d1 and d2 of the cavity C1 are also sintered, and the adjacent unsintered inorganic composition z Therefore, firing shrinkage in the planar direction is suppressed.

次に、焼成された複合積層体fsから未焼結の焼成収縮抑制シートy1,y2およびキャビティC1内の無機組成物zを除去する。かかる除去工程も、焼成後の複合積層体fsを例えば25℃において30分以上保持した後、10℃の冷水中に浸漬し、焼成収縮抑制シートy1,y2および無機組成物z中の焼結時における残留応力を瞬時に開放する熱衝撃によって迅速に行われる。
その結果、図12に示すように、前記グリーンシートs3〜s8が焼結したセラミック層S3〜S8からなるセラミック基板SK、前記導電性ペーストが焼結した配線4,10や所定パターンの配線層5〜9、ビア導体v、および表面1に開口するキャビティC1を有するキャビティ付き多層セラミック基板K2を得られる。
Next, the unsintered firing shrinkage suppression sheets y1 and y2 and the inorganic composition z in the cavity C1 are removed from the fired composite laminate fs. Also in this removal step, the fired composite laminate fs is held at, for example, 25 ° C. for 30 minutes or more, then immersed in cold water at 10 ° C., and sintered in the firing shrinkage suppression sheets y1, y2 and the inorganic composition z. This is done quickly by thermal shock that instantaneously releases the residual stress at.
As a result, as shown in FIG. 12, the ceramic substrate SK composed of the ceramic layers S3 to S8 sintered with the green sheets s3 to s8, the wirings 4 and 10 sintered with the conductive paste, and the wiring layer 5 with a predetermined pattern. To 9, a multi-layer ceramic substrate K 2 with cavities having via conductors v and cavities C 1 opening on the surface 1.

尚、図12に示すように、キャビティC1内に実装したICチップ12は、その上面に位置する図示しない接続端子が表面1の配線4や段部d1,d2の配線5a,6aとの間でロウ付けされるワイヤwを介して接続される。
以上のような工程を経る製造方法によれば、平面方向の焼成収縮が抑制されたセラミックS3〜S8と底面などにクラックがなく且つ形状や寸法精度の高いキャビティC1とを有するキャビティ付き多層セラミック基板K2を確実に提供できる。尚、前述した多数個取り用の大版のグリーンシートを用いて、前記積層体ssの形成工程、無機組成物zのキャビティC1への充填工程、複合積層体fsの形成工程、焼成工程、および無機組成物zなどの除去工程を行っても良い。
As shown in FIG. 12, the IC chip 12 mounted in the cavity C1 has a connection terminal (not shown) located on the upper surface between the wiring 4 on the surface 1 and the wirings 5a and 6a on the steps d1 and d2. They are connected via a wire w to be brazed.
According to the manufacturing method through the above steps, a multilayer ceramic substrate with a cavity having ceramics S3 to S8 in which firing shrinkage in the planar direction is suppressed and a cavity C1 having no cracks in the bottom surface and the like and having a high shape and dimensional accuracy. K2 can be reliably provided. In addition, using the large-sized green sheet for multi-cavity described above, the step of forming the laminate ss, the step of filling the inorganic composition z into the cavity C1, the step of forming the composite laminate fs, the firing step, and You may perform the removal process of inorganic composition z.

本発明は、以上において説明した各形態に限定されるものではない。
例えば、前記配線層4などやビア導体vは、W、Mo、Cuなどの金属、またはAg−Cu、Cu−W、Ag−Pd、Ag−Ptなどの合金としても良く、前記各製造方法の準備工程では、これらの金属粉末または合金粉末を含む導電性ペーストを用いて良い。
また、キャビティ付き多層セラミック基板K1,K2の裏面2に位置する表層電極の配線10には、NiメッキおよびAuメッキした表面10bに、ハンダボールまたは導体ピンなどをハンダ付けしても良い。
更に、前記キャビティ付き多層セラミック基板K1,K2には、複数のキャビティC,C1を形成しても良く、この場合、前記グリーンシートs1〜s3またはグリーンシートs3,s7,s8に複数の貫通孔cを予め開設しておく。
The present invention is not limited to the embodiments described above.
For example, the wiring layer 4 and the via conductor v may be a metal such as W, Mo, or Cu, or an alloy such as Ag—Cu, Cu—W, Ag—Pd, or Ag—Pt. In the preparation step, a conductive paste containing these metal powders or alloy powders may be used.
Further, the surface layer electrode wiring 10 located on the back surface 2 of the multilayer ceramic substrates K1 and K2 with cavities may be soldered with solder balls or conductor pins or the like on the Ni-plated and Au-plated surface 10b.
Furthermore, a plurality of cavities C, C1 may be formed in the multilayer ceramic substrates K1, K2 with cavities. In this case, a plurality of through holes c are formed in the green sheets s1 to s3 or the green sheets s3, s7, s8. Is established in advance.

本発明の製造方法に用いる複数のグリーンシートを示す断面図。Sectional drawing which shows the some green sheet used for the manufacturing method of this invention. 上記複数のグリーンシートを積層した積層体を示す断面図。Sectional drawing which shows the laminated body which laminated | stacked the said some green sheet. 上記積層体のキャビティに無機組成物を充填する工程を示す断面図。Sectional drawing which shows the process of filling the inorganic composition in the cavity of the said laminated body. 上記無機組成物をキャビティに充填した状態を示す断面図。Sectional drawing which shows the state with which the said inorganic composition was filled into the cavity. 上記積層体を含む複合積層体を示す断面図。Sectional drawing which shows the composite laminated body containing the said laminated body. 異なる形態の複合積層体を示す断面図。Sectional drawing which shows the composite laminated body of a different form. 上記製造方法により得られたキャビティ付き多層セラミック基板を示す断面図。Sectional drawing which shows the multilayer ceramic substrate with a cavity obtained by the said manufacturing method. 比較例のキャビティ付き多層セラミック基板を示す断面図。Sectional drawing which shows the multilayer ceramic substrate with a cavity of a comparative example. 本発明に用いる異なる形態のグリーンシート積層体を示す断面図。Sectional drawing which shows the green sheet laminated body of a different form used for this invention. 上記積層体のキャビティに無機組成物を充填した状態を示す断面図。Sectional drawing which shows the state which filled the cavity of the said laminated body with the inorganic composition. 上記積層体を含む複合積層体を示す断面図。Sectional drawing which shows the composite laminated body containing the said laminated body. 上記製造方法により得られたキャビティ付き多層セラミック基板を示す断面図。Sectional drawing which shows the multilayer ceramic substrate with a cavity obtained by the said manufacturing method.

符号の説明Explanation of symbols

1………………表面
2………………裏面
s1〜s8……グリーンシート
c………………貫通孔
ss……………グリーンシート積層体
C,C1………キャビティ
z………………無機組成物
y1〜y3……焼成収縮抑制シート
fs……………複合積層体
K1,K2……キャビティ付き多層セラミック基板
1 ……………… Front side 2 ……………… Back side s1 to s8 …… Green sheet c ……………… Through hole ss ……………… Green sheet laminate C, C1 ……… Cavity z ……………… Inorganic composition y1 to y3 …… Firing shrinkage suppression sheet fs ……………… Composite laminate K1, K2 …… Multilayer ceramic substrate with cavity

Claims (4)

表面および裏面を有するグリーンシートと、表面および裏面を有し且つかかる表面と裏面との間を貫通する貫通孔を有するグリーンシートと、を積層してキャビティ付きグリーンシート積層体を形成する工程と、
上記グリーンシートの焼結温度よりも高い焼結温度を有するペースト状の無機組成物を、上記キャビティ内に減圧しつつ充填するか、あるいは当該キャビティ内に充填した後に減圧する工程と、
上記無機組成物を含むキャビティ付きグリーンシート積層体の両面に上記グリーンシートの焼結温度よりも高い焼結温度を有する焼成収縮抑制シートを積層して複合積層体を形成する工程と、
上記複合積層体を上記グリーンシートの焼結温度で焼成する工程と、
焼成後の上記複合積層体から未焼結の上記焼成収縮抑制シートおよび未焼結の上記無機組成物を除去する工程と、
を含む、ことを特徴とするキャビティ付き多層セラミック基板の製造方法。
A step of laminating a green sheet having a front surface and a back surface and a green sheet having a front surface and a back surface and having a through-hole penetrating between the front surface and the back surface to form a green sheet laminate with a cavity;
Filling the paste-like inorganic composition having a sintering temperature higher than the sintering temperature of the green sheet while reducing the pressure in the cavity, or reducing the pressure after filling the cavity;
Forming a composite laminate by laminating a firing shrinkage suppression sheet having a sintering temperature higher than the sintering temperature of the green sheet on both sides of the cavity-attached green sheet laminate containing the inorganic composition;
Firing the composite laminate at the sintering temperature of the green sheet;
Removing the unsintered firing shrinkage-suppressing sheet and unsintered inorganic composition from the composite laminate after firing;
A method for producing a multilayer ceramic substrate with cavities, comprising:
前記グリーンシートは、セラミックとガラスとの混合物からなると共に、前記無機組成物は、前記焼成収縮抑制シートを構成するセラミックのみからなるか、あるいは上記セラミックとガラスとの混合物からなり且つかかるガラスの含有量は20wt%以下で且つ上記グリーンシートのガラス含有量よりも少ない、請求項1に記載のキャビティ付き多層セラミック基板の製造方法。 The green sheet is made of a mixture of ceramic and glass, and the inorganic composition is made of only the ceramic constituting the fired shrinkage suppression sheet, or is made of a mixture of the ceramic and glass and contains such glass. The method for producing a multilayer ceramic substrate with a cavity according to claim 1, wherein the amount is 20 wt% or less and less than the glass content of the green sheet. 前記無機組成物に含まれるガラスの軟化点は、前記グリーンシートに含まれるガラスの軟化点と同等またはそれ以下である、
請求項1または2に記載のキャビティ付き多層セラミック基板の製造方法。
The softening point of the glass contained in the inorganic composition is equal to or less than the softening point of the glass contained in the green sheet.
The manufacturing method of the multilayer ceramic substrate with a cavity of Claim 1 or 2.
前記無機組成物は、前記グリーンシートが溶解可能な有機溶媒を含む、請求項1乃至3の何れか一項に記載のキャビティ付き多層セラミック基板の製造方法。
The said inorganic composition is a manufacturing method of the multilayer ceramic substrate with a cavity as described in any one of Claim 1 thru | or 3 containing the organic solvent in which the said green sheet can melt | dissolve.
JP2003329217A 2003-09-22 2003-09-22 Manufacturing method of multilayer ceramic substrate with cavity Expired - Fee Related JP4291656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003329217A JP4291656B2 (en) 2003-09-22 2003-09-22 Manufacturing method of multilayer ceramic substrate with cavity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003329217A JP4291656B2 (en) 2003-09-22 2003-09-22 Manufacturing method of multilayer ceramic substrate with cavity

Publications (2)

Publication Number Publication Date
JP2005093961A true JP2005093961A (en) 2005-04-07
JP4291656B2 JP4291656B2 (en) 2009-07-08

Family

ID=34458521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003329217A Expired - Fee Related JP4291656B2 (en) 2003-09-22 2003-09-22 Manufacturing method of multilayer ceramic substrate with cavity

Country Status (1)

Country Link
JP (1) JP4291656B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042893A (en) * 2005-08-03 2007-02-15 Murata Mfg Co Ltd Ceramic substrate and its manufacturing method
JP2010272751A (en) * 2009-05-22 2010-12-02 Mitsubishi Electric Corp Method of manufacturing ceramic structure
JP2013028164A (en) * 2011-07-18 2013-02-07 Micro Systems Engineering Gmbh Multilayer ceramic structure and method for producing the same
JP2020050533A (en) * 2018-09-25 2020-04-02 日本特殊陶業株式会社 Method of producing ceramic member
JP2020186151A (en) * 2019-05-15 2020-11-19 日本特殊陶業株式会社 METHOD FOR PRODUCING SiC SINTERED MEMBER

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042893A (en) * 2005-08-03 2007-02-15 Murata Mfg Co Ltd Ceramic substrate and its manufacturing method
JP2010272751A (en) * 2009-05-22 2010-12-02 Mitsubishi Electric Corp Method of manufacturing ceramic structure
JP2013028164A (en) * 2011-07-18 2013-02-07 Micro Systems Engineering Gmbh Multilayer ceramic structure and method for producing the same
JP2020050533A (en) * 2018-09-25 2020-04-02 日本特殊陶業株式会社 Method of producing ceramic member
JP7058580B2 (en) 2018-09-25 2022-04-22 日本特殊陶業株式会社 Manufacturing method of ceramic parts
JP2020186151A (en) * 2019-05-15 2020-11-19 日本特殊陶業株式会社 METHOD FOR PRODUCING SiC SINTERED MEMBER
JP7216611B2 (en) 2019-05-15 2023-02-01 日本特殊陶業株式会社 Manufacturing method of SiC sintered member

Also Published As

Publication number Publication date
JP4291656B2 (en) 2009-07-08

Similar Documents

Publication Publication Date Title
US7736544B2 (en) Electrically conductive composition for via-holes
JP2012031040A (en) Low temperature co-firing ceramic composition, low temperature co-fired ceramic substrate comprising the same and method for producing the same
WO2008018227A1 (en) Method of producing multilayer ceramic substrate
JP4291656B2 (en) Manufacturing method of multilayer ceramic substrate with cavity
JPWO2006040941A1 (en) Multilayer ceramic component and manufacturing method thereof
JP2005116938A (en) Multilayer ceramic board having cavity and manufacturing method thereof
JPH025315B2 (en)
JP2004319706A (en) Conductive paste, and multilayer substrate and its manufacturing method
JP4967668B2 (en) Manufacturing method of multilayer ceramic substrate
JP4599783B2 (en) Low temperature fired ceramic circuit board manufacturing method
JP4888564B2 (en) Manufacturing method of ceramic multilayer substrate with cavity
JP4705320B2 (en) Manufacturing method of multilayer ceramic substrate
WO2009151006A1 (en) Method for producing ceramic molded body
JP4567328B2 (en) Manufacturing method of multilayer ceramic substrate
JP2007221115A (en) Manufacturing method of conductor paste and multilayer ceramic substrate
JP4003011B2 (en) Multilayer ceramic substrate with cavity and method for manufacturing the same
JP2004087990A (en) Composite and its production method, and production of ceramic substrate
JP3811381B2 (en) Manufacturing method of glass ceramic substrate
JP3909200B2 (en) Manufacturing method of glass ceramic substrate
JP4610185B2 (en) Wiring board and manufacturing method thereof
JP3811378B2 (en) Manufacturing method of glass ceramic substrate
JP2005072558A (en) Ceramic substrate and its manufacturing method
JP2005179097A (en) Method of manufacturing multilayer ceramic substrate and multilayer ceramic substrate obtained by the same
JPS59193095A (en) Ceramic circuit board and its producing method
JP3909192B2 (en) Manufacturing method of glass ceramic substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090403

R150 Certificate of patent or registration of utility model

Ref document number: 4291656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees