JP2005091323A - Control device of gas sensor - Google Patents

Control device of gas sensor Download PDF

Info

Publication number
JP2005091323A
JP2005091323A JP2003328926A JP2003328926A JP2005091323A JP 2005091323 A JP2005091323 A JP 2005091323A JP 2003328926 A JP2003328926 A JP 2003328926A JP 2003328926 A JP2003328926 A JP 2003328926A JP 2005091323 A JP2005091323 A JP 2005091323A
Authority
JP
Japan
Prior art keywords
energization
heater
gas
gas sensor
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003328926A
Other languages
Japanese (ja)
Other versions
JP3987016B2 (en
Inventor
Hidetoshi Oishi
英俊 大石
Hirotoshi Inoue
弘敏 井上
Takushi Saito
卓志 斎藤
Takashi Sasaki
孝 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003328926A priority Critical patent/JP3987016B2/en
Publication of JP2005091323A publication Critical patent/JP2005091323A/en
Application granted granted Critical
Publication of JP3987016B2 publication Critical patent/JP3987016B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the damage, deterioration and fall in detection precision of a gas sensor. <P>SOLUTION: When the ignition switch of a vehicle is turned ON, the energization quantity to the heater of the gas sensor is sent to the energization quantity of a warming heater and the energization quantity to each element of the gas sensor is set to the energization quantity of a warming element. Even if power is stepwise fed to each element in a state that the energization quantity to the heater is set to that of the warming heater as the energization quantity to the heater, the heat stress caused in each element becomes a predetermined value and the energization quantity causing no damage or deterioration of the gas sensor caused by heat stress is set. After the temperature of the element becomes the predetermined finish temperature of the warming machine or above, the energization quantity of the heater is lowered to the normal energization quantity of the heater from the energization quantity of the warming machine heater and the energization quantity of the element is increased to the usual energization quantity of the element from the energization quantity of the warming machine element. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、例えば燃料電池車両に搭載される接触燃焼式水素センサ等のガスセンサの制御装置に関する。   The present invention relates to a control device for a gas sensor such as a catalytic combustion type hydrogen sensor mounted on a fuel cell vehicle, for example.

従来、例えば固体高分子膜型燃料電池は、固体高分子電解質膜を燃料極と酸素極とで両側から挟み込んで形成されたセルに対し、複数のセルを積層して構成されたスタック(以下において燃料電池と呼ぶ)を備えており、燃料極に燃料として水素が供給され、酸素極に酸化剤として空気が供給されて、燃料極で触媒反応により発生した水素イオンが、固体高分子電解質膜を通過して酸素極まで移動して、酸素極で酸素と電気化学反応を起こして発電するようになっている。
このような固体高分子膜型燃料電池等の燃料電池において、従来、例えば燃料電池の酸素極側の排出系に水素検出器(ガスセンサ)を備え、この水素検出器によって、燃料極側の水素が固体高分子電解質膜を通じて酸素極側に漏洩したことを検知したときは、燃料の供給を遮断する保護装置が知られている(例えば、特許文献1参照)。
また、水素検出器としては、例えば白金等の触媒からなるガス検出素子と温度補償素子とを一対備え、水素が白金等の触媒に接触した際の燃焼により発生する熱によってガス検出素子が相対的に高温の状態になったときに、例えば雰囲気温度下等の相対的に低温の状態の温度補償素子との間に生じる電気抵抗の差異に応じて、水素ガスの濃度を検出するガス接触燃焼式の水素検出器が知られている。
特開平6−223850号公報
Conventionally, for example, a polymer electrolyte fuel cell is a stack formed by laminating a plurality of cells to a cell formed by sandwiching a polymer electrolyte membrane between a fuel electrode and an oxygen electrode from both sides (hereinafter referred to as a stack). (Referred to as a fuel cell), hydrogen is supplied to the fuel electrode as fuel, air is supplied to the oxygen electrode as oxidant, and hydrogen ions generated by a catalytic reaction at the fuel electrode are converted into a solid polymer electrolyte membrane. It passes through to the oxygen electrode and generates electricity by causing an electrochemical reaction with oxygen at the oxygen electrode.
In such a fuel cell such as a solid polymer membrane fuel cell, conventionally, for example, a hydrogen detector (gas sensor) is provided in the discharge system on the oxygen electrode side of the fuel cell, and hydrogen on the fuel electrode side is provided by this hydrogen detector. A protection device that shuts off the supply of fuel when it is detected that leakage has occurred to the oxygen electrode side through the solid polymer electrolyte membrane is known (see, for example, Patent Document 1).
The hydrogen detector includes a pair of a gas detection element made of a catalyst such as platinum and a temperature compensation element, for example, and the gas detection element is relatively moved by heat generated by combustion when hydrogen comes into contact with the catalyst such as platinum. Gas contact combustion type that detects the concentration of hydrogen gas according to the difference in electrical resistance that occurs between the temperature compensation element in a relatively low temperature state, such as under ambient temperature, for example There are known hydrogen detectors.
JP-A-6-223850

ところで、上述したようなガス接触燃焼式の水素検出器においては、例えば起動時の通電開始等に伴って各素子の内部と外縁部近傍との間の温度差が増大する場合があり、この温度差が過剰に増大すると、ガス検出素子の触媒や、この触媒を坦持するアルミナ等の坦体に過剰な熱応力が生じ、各素子の劣化や破損等が生じる虞がある。
また、上述したような固体高分子膜型燃料電池等の燃料電池においては、固体高分子電解質膜のイオン導電性を保つために、燃料電池に供給される反応ガス(例えば、水素や空気)には加湿装置等によって水(加湿水)が混合されており、さらに、燃料電池の作動時には電気化学反応による反応生成水が生成されるため、燃料電池の排出ガス、特に酸素極側の排出ガスは高湿潤のガスとなっている。
このため、上記従来技術の一例に係る燃料電池の保護装置においては、燃料電池から排出される高湿潤のオフガスによって、オフガスの流路内に配置された水素検出器等に結露が発生する場合があり、この場合には、水素検出器の劣化や破損等が生じる虞がある。特に、上述した固体高分子膜型燃料電池では、通常作動温度が水の蒸気化温度よりも低く、オフガスは多湿度で水分量が多いガスとなって排出されるため、オフガス中の水分が結露しやすいという問題がある。そして、前述のガス接触燃焼式の水素検出器を、特に燃料電池の酸素極側の排出系に備える場合等において、ガス検出素子に加湿水、反応生成水等が付着した状態で通電を行うと、素子表面に局所的な温度分布の不均一が発生し、素子破壊や感度低下が生じる虞がある。
本発明は上記事情に鑑みてなされたもので、ガスセンサの破損、劣化、検出精度の低下を防止することが可能なガスセンサの制御装置を提供することを目的とする。
By the way, in the gas contact combustion type hydrogen detector as described above, for example, the temperature difference between the inside of each element and the vicinity of the outer edge portion may increase with the start of energization at the time of startup. If the difference is excessively increased, excessive thermal stress is generated in the catalyst of the gas detection element and the carrier such as alumina supporting the catalyst, and there is a possibility that deterioration or breakage of each element may occur.
Further, in a fuel cell such as the above-described solid polymer membrane fuel cell, in order to maintain the ionic conductivity of the solid polymer electrolyte membrane, a reactive gas (for example, hydrogen or air) supplied to the fuel cell is used. Since water (humidified water) is mixed by a humidifier or the like, and reaction product water is generated by an electrochemical reaction when the fuel cell is operated, the exhaust gas of the fuel cell, particularly the exhaust gas on the oxygen electrode side is It is a highly humid gas.
For this reason, in the fuel cell protection device according to the above-described prior art, dew condensation may occur in a hydrogen detector or the like disposed in the flow path of the off gas due to the highly humid off gas discharged from the fuel cell. In this case, the hydrogen detector may be deteriorated or damaged. In particular, in the solid polymer membrane fuel cell described above, the normal operating temperature is lower than the vaporization temperature of water, and the offgas is discharged as a gas with a high humidity and a large amount of moisture. There is a problem that it is easy to do. When the above-described gas catalytic combustion type hydrogen detector is provided in the exhaust system on the oxygen electrode side of the fuel cell, etc., when energization is performed with humidified water, reaction product water, etc. attached to the gas detection element, In addition, local non-uniform temperature distribution occurs on the element surface, which may cause element destruction and sensitivity reduction.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a control device for a gas sensor that can prevent the gas sensor from being damaged, deteriorated, and reduced in detection accuracy.

上記課題を解決して係る目的を達成するために、請求項1に記載の本発明のガスセンサの制御装置は、検出素子(例えば、後述する実施の形態での検出素子31)と補償素子(例えば、後述する実施の形態での温度補償素子32)との電気抵抗値の差異に基づき検査対象ガスに含まれる被検出ガスのガス濃度を検出するガスセンサの制御装置であって、前記検出素子および前記補償素子への通電量を徐々に増大させる素子通電開始手段(例えば、後述する実施の形態でのステップS02及びステップS07、ステップS22及びステップS28及びステップS31)を備えることを特徴としている。   In order to solve the above problems and achieve the object, a control device for a gas sensor according to a first aspect of the present invention includes a detection element (for example, a detection element 31 in an embodiment described later) and a compensation element (for example, A control device for a gas sensor for detecting a gas concentration of a gas to be detected contained in a gas to be inspected based on a difference in electrical resistance value from a temperature compensation element 32) in an embodiment described later, the detection element and the An element energization start unit (for example, step S02 and step S07, step S22, step S28, and step S31 in the embodiment described later) that gradually increases the energization amount to the compensation element is provided.

上記構成のガスセンサの制御装置によれば、ガスセンサの作動開始時に素子通電開始手段によって検出素子および補償素子への通電量を徐々に増大させることによって、通電に伴い各素子の内部に発生する熱応力が過剰に増大することを防止し、熱応力に起因する各素子の破損や劣化等が生じることを防止することができる。   According to the gas sensor control device having the above configuration, the thermal stress generated inside each element due to energization by gradually increasing the energization amount to the detection element and the compensation element by the element energization start means at the start of operation of the gas sensor. Can be prevented from excessively increasing, and damage or deterioration of each element due to thermal stress can be prevented.

さらに、請求項2に記載の本発明のガスセンサの制御装置は、前記検出素子および前記補償素子の温度状態を検出する状態検出手段(例えば、後述する実施の形態でのセンサ37)を備え、前記素子通電開始手段は前記状態検出手段にて検出される前記検出素子および前記補償素子の温度状態に応じて前記検出素子および前記補償素子への通電量を増大させることを特徴としている。   Furthermore, the gas sensor control device according to the second aspect of the present invention includes a state detection means (for example, a sensor 37 in an embodiment described later) for detecting a temperature state of the detection element and the compensation element. The element energization start means increases the energization amount to the detection element and the compensation element according to the temperature state of the detection element and the compensation element detected by the state detection means.

上記構成のガスセンサの制御装置によれば、検出素子および補償素子の温度状態に応じて通電量を徐々に増大させることによって、通電に伴い各素子の内部に発生する熱応力が過剰に増大することを防止し、熱応力に起因する各素子の破損や劣化等が生じることを、より一層、防止することができる。   According to the gas sensor control device having the above-described configuration, the thermal stress generated inside each element excessively increases with energization by gradually increasing the energization amount according to the temperature state of the detection element and the compensation element. It is possible to further prevent the elements from being damaged or deteriorated due to thermal stress.

さらに、請求項3に記載の本発明のガスセンサの制御装置では、前記検出素子および前記補償素子は前記検査対象ガスが導入されるガス検出室(例えば、後述する実施の形態でのガス検出室27)内に配置され、前記ガス検出室内に設けられたヒータ(例えば、後述する実施の形態でのヒータ36)と、前記素子通電開始手段により前記検出素子および前記補償素子への通電量が徐々に増大させられる暖機通電動作の実行時に、前記ヒータへの通電量を所定の通常時通電量よりも大きい暖機時通電量とし、前記暖機通電動作の終了以後に、前記ヒータへの通電量を前記暖機時通電量から前記通常時通電量へと低下させるヒータ通電変更手段(例えば、後述する実施の形態でのステップS01及びステップS06、ステップS21及びステップS29及びステップS30)とを備えることを特徴としている。   Furthermore, in the gas sensor control device according to the third aspect of the present invention, the detection element and the compensation element are a gas detection chamber into which the inspection target gas is introduced (for example, a gas detection chamber 27 in an embodiment described later). ) And a heater provided in the gas detection chamber (for example, a heater 36 in an embodiment described later) and the element energization start means gradually increase the energization amount to the detection element and the compensation element. When the warm-up energization operation that is increased is performed, the energization amount to the heater is set to a warm-up energization amount that is larger than a predetermined normal energization amount, and the energization amount to the heater after the end of the warm-up energization operation Heater energization changing means for reducing the warming-up energization amount to the normal energization amount (for example, step S01 and step S06, step S21 and step in the embodiment described later) It is characterized in that it comprises 29 and step S30) and.

上記構成のガスセンサの制御装置によれば、素子通電開始手段による通電開始によって検出素子および補償素子の内部の温度が上昇する場合であっても、ヒータ通電変更手段によってヒータへの通電量を所定の通常時通電量よりも大きい暖機時通電量とすることで、検出素子および補償素子の内部の温度と、検出素子および補償素子の外部の温度との温度差が過剰に増大することを抑制し、検出素子および補償素子の内部と外周面近傍との間における温度分布および熱応力分布に過剰な不均一が生じることを抑制することができ、各素子の破損や劣化等が生じることを防止することができる。   According to the gas sensor control apparatus having the above configuration, even when the internal temperature of the detection element and the compensation element rises due to the start of energization by the element energization start means, the energization amount to the heater is predetermined by the heater energization change means. By setting the warm-up energization amount to be larger than the normal energization amount, it is possible to suppress an excessive increase in the temperature difference between the temperature inside the detection element and the compensation element and the temperature outside the detection element and the compensation element. In addition, it is possible to suppress the occurrence of excessive non-uniformity in the temperature distribution and thermal stress distribution between the inside of the detection element and the compensation element and the vicinity of the outer peripheral surface, and prevent the occurrence of damage or deterioration of each element. be able to.

さらに、請求項4に記載の本発明のガスセンサの制御装置では、前記素子通電開始手段は、前記検出素子および前記補償素子の熱応力が所定値以下となるようにして前記検出素子および前記補償素子への通電量を設定することを特徴としている。   Furthermore, in the gas sensor control apparatus according to claim 4, the element energization start means includes the detection element and the compensation element so that thermal stresses of the detection element and the compensation element are not more than a predetermined value. It is characterized by setting the energization amount to.

上記構成のガスセンサの制御装置によれば、熱応力に起因する各素子の破損や劣化等が生じることを防止しつつ、検出素子および補償素子への通電量を適切に設定することができる。   According to the gas sensor control apparatus having the above-described configuration, it is possible to appropriately set the energization amount to the detection element and the compensation element while preventing damage or deterioration of each element due to thermal stress.

さらに、請求項5に記載の本発明のガスセンサの制御装置では、前記ヒータ通電変更手段は、前記検出素子および前記補償素子の熱応力が所定値以下となるようにして前記暖機時通電量を設定することを特徴としている。   Further, in the gas sensor control device according to the fifth aspect of the present invention, the heater energization changing means controls the warm-up energization amount so that thermal stresses of the detection element and the compensation element are not more than a predetermined value. It is characterized by setting.

上記構成のガスセンサの制御装置によれば、熱応力に起因する各素子の破損や劣化等が生じることを防止しつつ、ヒータへの通電量を適切に設定することができる。   According to the gas sensor control device having the above-described configuration, it is possible to appropriately set the energization amount to the heater while preventing the elements from being damaged or deteriorated due to thermal stress.

請求項1に記載の本発明のガスセンサの制御装置によれば、通電に伴い各素子の内部に発生する熱応力が過剰に増大することを防止し、熱応力に起因する各素子の破損や劣化等が生じることを防止することができる。
さらに、請求項2に記載の本発明のガスセンサの制御装置によれば、通電に伴い各素子の内部に発生する熱応力が過剰に増大することを防止し、熱応力に起因する各素子の破損や劣化等が生じることを、より一層、防止することができる。
さらに、請求項3に記載の本発明のガスセンサの制御装置によれば、検出素子および補償素子の内部と外周面近傍との間における温度分布および熱応力分布に過剰な不均一が生じることを抑制することができ、各素子の破損や劣化等が生じることを防止することができる。
さらに、請求項4に記載の本発明のガスセンサの制御装置によれば、熱応力に起因する各素子の破損や劣化等が生じることを防止しつつ、検出素子および補償素子への通電量を適切に設定することができる。
さらに、請求項5に記載の本発明のガスセンサの制御装置によれば、熱応力に起因する各素子の破損や劣化等が生じることを防止しつつ、ヒータへの通電量を適切に設定することができる。
According to the control device for a gas sensor of the present invention as set forth in claim 1, it is possible to prevent thermal stress generated in each element from excessively increasing with energization, and damage or deterioration of each element due to thermal stress. Or the like can be prevented.
Furthermore, according to the gas sensor control device of the present invention as set forth in claim 2, it is possible to prevent the thermal stress generated in each element from excessively increasing with energization, and to damage each element due to the thermal stress. It is possible to further prevent the occurrence of deterioration and the like.
Furthermore, according to the control device for a gas sensor of the present invention as set forth in claim 3, it is possible to suppress excessive nonuniformity in temperature distribution and thermal stress distribution between the inside of the detection element and the compensation element and the vicinity of the outer peripheral surface. It is possible to prevent each element from being damaged or deteriorated.
Furthermore, according to the gas sensor control apparatus of the present invention as set forth in claim 4, the amount of current supplied to the detection element and the compensation element is appropriately controlled while preventing damage or deterioration of each element due to thermal stress. Can be set to
Furthermore, according to the control device for a gas sensor of the present invention as set forth in claim 5, it is possible to appropriately set the energization amount to the heater while preventing the elements from being damaged or deteriorated due to thermal stress. Can do.

以下、本発明の実施の形態に係るガスセンサの制御装置について添付図面を参照しながら説明する。   Hereinafter, a control device for a gas sensor according to an embodiment of the present invention will be described with reference to the accompanying drawings.

本実施形態に係るガスセンサ1は、例えば水素を検出する水素センサをなし、例えば図1に示すように、制御装置2と、記憶装置3と、警報装置4と、車両の動力源とされる燃料電池5と、燃料電池5に接続されて反応ガスを供給する各配管6,7,8,9とを備える燃料電池システム10において、酸素極側の出口側配管9に設けられ、この出口側配管9から水素が排出されていないことを確認するためのものである。
制御装置2は、酸素極側の出口側配管9に取り付けられたガスセンサ1に接続され、例えば、ガスセンサ1から出力される検出信号と、記憶装置3に格納されている所定の判定閾値との比較結果に応じて、燃料電池5の異常状態が発生しているか否かを判定し、異常状態であると判定した際には、警報装置4によって警報等を出力する。ここで、記憶装置3は、燃料電池5の作動状態、例えば極間差圧や作動圧力等に応じた、ガスセンサ1の検出値に対する所定の判定閾値のマップ等を記憶している。
The gas sensor 1 according to the present embodiment is, for example, a hydrogen sensor that detects hydrogen. For example, as shown in FIG. 1, a control device 2, a storage device 3, an alarm device 4, and a fuel that is used as a vehicle power source. In a fuel cell system 10 including a battery 5 and pipes 6, 7, 8, 9 connected to the fuel cell 5 and supplying a reaction gas, the outlet side pipe 9 is provided on the oxygen electrode side outlet side pipe 9. It is for confirming that hydrogen is not discharged | emitted from 9.
The control device 2 is connected to the gas sensor 1 attached to the outlet side pipe 9 on the oxygen electrode side. For example, the detection signal output from the gas sensor 1 is compared with a predetermined determination threshold value stored in the storage device 3. According to the result, it is determined whether or not an abnormal state of the fuel cell 5 has occurred. When it is determined that the fuel cell 5 is in an abnormal state, the alarm device 4 outputs an alarm or the like. Here, the storage device 3 stores a map or the like of a predetermined determination threshold for the detection value of the gas sensor 1 according to the operating state of the fuel cell 5, for example, the inter-electrode differential pressure, the operating pressure, or the like.

燃料電池5は、例えば電気自動車等の動力源として車両に搭載されており、例えば陽イオン交換膜等からなる固体高分子電解質膜を燃料極と酸素極で挟持した電解質電極構造体を、更に一対のセパレータで挟持してなる燃料電池セル(図示略)を多数組積層して構成されている。
燃料極に入口側配管6から供給された水素などの燃料ガスにより、燃料極の触媒電極上で水素がイオン化され、適度に加湿された固体高分子電解質膜を介して酸素極へと移動する、その間に生じた電子が外部回路に取り出され、直流の電気エネルギとして利用される。酸素極には、例えば、酸素などの酸化剤ガスあるいは空気が入口側配管7を介して供給されているために、この酸素極において、水素イオン、電子及び酸素が反応して水が生成される。そして、燃料極側、酸素極側共に出口側配管8、9から反応済みのいわゆるオフガスが系外に排出される。
The fuel cell 5 is mounted on a vehicle as a power source of, for example, an electric vehicle, and further includes a pair of electrolyte electrode structures in which a solid polymer electrolyte membrane made of, for example, a cation exchange membrane is sandwiched between a fuel electrode and an oxygen electrode. A large number of fuel battery cells (not shown) sandwiched between the separators are stacked.
Hydrogen is ionized on the catalyst electrode of the fuel electrode by a fuel gas such as hydrogen supplied from the inlet side pipe 6 to the fuel electrode, and moves to the oxygen electrode through a solid polymer electrolyte membrane that is appropriately humidified. Electrons generated in the meantime are taken out to an external circuit and used as direct current electric energy. For example, since an oxidant gas such as oxygen or air is supplied to the oxygen electrode through the inlet-side pipe 7, water is generated by reaction of hydrogen ions, electrons, and oxygen at the oxygen electrode. . Then, so-called off-gas that has been reacted is discharged out of the system from the outlet side pipes 8 and 9 on both the fuel electrode side and the oxygen electrode side.

例えば図2および図3に示すように、ガスセンサ1は水平方向に伸びる出口側配管9の長手方向、つまり水平方向に沿って長い直方形状のケース21を備えている。ケース21は、例えばポリフェニレンサルファイド製であって、長手方向両端部にフランジ部22を備えている。フランジ部22にはカラー23が取り付けられており、例えば図3に示すように、このカラー23内にボルト24が挿入されることで、フランジ部22は酸素極側の出口側配管9に設けられた取付座25に締め付け固定されるようになっている。
また、例えば図3に示すように、ケース21の厚さ方向の端面には筒状部26が形成され、筒状部26の内部はガス検出室27として形成され、ガス検出室27の内部側面には、内側に向かってフランジ部28が形成され、フランジ部28の内周部分がガス導入部29として開口形成されている。
For example, as shown in FIGS. 2 and 3, the gas sensor 1 includes a case 21 having a rectangular shape that is long in the longitudinal direction of the outlet side pipe 9 extending in the horizontal direction, that is, in the horizontal direction. The case 21 is made of, for example, polyphenylene sulfide, and includes flange portions 22 at both ends in the longitudinal direction. A collar 23 is attached to the flange portion 22. For example, as shown in FIG. 3, a bolt 24 is inserted into the collar 23, so that the flange portion 22 is provided in the outlet side pipe 9 on the oxygen electrode side. The mounting seat 25 is fastened and fixed.
For example, as shown in FIG. 3, a cylindrical portion 26 is formed on the end surface in the thickness direction of the case 21, and the inside of the cylindrical portion 26 is formed as a gas detection chamber 27. A flange portion 28 is formed inwardly, and an inner peripheral portion of the flange portion 28 is formed as an opening as a gas introduction portion 29.

ケース21内には樹脂で封止された回路基板30が設けられ、筒状部26の内部に配置された検出素子31および温度補償素子32は、回路基板30に接続されている。そして、各素子31,32は回路基板30に接続された複数、例えば4個の通電用のステー33およびリード線33aにより、ガス検出室27の底面27A上に配置されたベース34から、ガスセンサ1の厚さ方向に所定距離だけ離間した位置において、所定間隔を隔てて対をなすようにして配置されている。また、筒状部26の外周面にシール材35が取り付けられ、このシール材35が出口側配管9の貫通孔9aの内周壁に密接して気密性を確保している。   A circuit board 30 sealed with resin is provided in the case 21, and the detection element 31 and the temperature compensation element 32 disposed inside the cylindrical portion 26 are connected to the circuit board 30. Each element 31, 32 is connected to the gas sensor 1 from the base 34 disposed on the bottom surface 27 </ b> A of the gas detection chamber 27 by a plurality of, for example, four energizing stays 33 and lead wires 33 a connected to the circuit board 30. In a position spaced apart by a predetermined distance in the thickness direction, they are arranged so as to form a pair with a predetermined interval. Further, a sealing material 35 is attached to the outer peripheral surface of the cylindrical portion 26, and the sealing material 35 is in close contact with the inner peripheral wall of the through hole 9 a of the outlet side pipe 9 to ensure airtightness.

検出素子31は周知の素子であって、例えば図4に示すように、電気抵抗に対する温度係数が高い白金等を含む金属線のコイル31aの表面が、被検出ガスとされる水素に対して活性な貴金属等からなる触媒31bを坦持するアルミナ等の坦体で被覆されて形成されている。
温度補償素子32は、被検出ガスに対して不活性とされ、例えば検出素子31と同等のコイル32aの表面がアルミナ等の坦体で被覆されて形成されている。
そして、被検出ガスである水素が検出素子31の触媒31bに接触した際に生じる燃焼反応の発熱により高温となった検出素子31と、被検出ガスによる燃焼反応が発生せず検出素子31よりも低温の温度補償素子32との間に電気抵抗値の差が生ずることを利用し、雰囲気温度による電気抵抗値の変化分を相殺して水素濃度を検出することができるようになっている。
The detection element 31 is a well-known element. For example, as shown in FIG. 4, the surface of the coil 31a of the metal wire containing platinum or the like having a high temperature coefficient with respect to the electric resistance is active against hydrogen as a detection gas. It is formed by being coated with a carrier such as alumina carrying a catalyst 31b made of a noble metal or the like.
The temperature compensation element 32 is inactive with respect to the gas to be detected. For example, the surface of the coil 32a equivalent to the detection element 31 is covered with a carrier such as alumina.
And the detection element 31 which became high temperature by the heat_generation | fever of the combustion reaction produced when hydrogen which is to-be-detected gas contacts the catalyst 31b of the detection element 31, and the combustion reaction by a to-be-detected gas does not generate | occur | produce rather than the detection element 31. By utilizing the fact that a difference in electrical resistance value occurs between the temperature compensation element 32 and the low temperature compensation element 32, it is possible to detect the hydrogen concentration by offsetting the change in the electrical resistance value due to the ambient temperature.

ここで、例えば図2に示すように、ガス検出室27内には検出素子31と温度補償素子32との間に、両者を遮るようにして被検出ガスの流入方向に沿って立てられた状態で略矩形板状のヒータ36が配置されている。このヒータ36は抵抗体等から構成され、回路基板30によって通電されることでガス検出室27内および各素子31,32を加熱するもので、放熱面36Aを検出素子31および温度補償素子32に指向した状態で配置されている。つまりヒータ36は各面が放熱面36Aとして構成されている。このヒータ36により流入する被検出ガスが検出素子31と温度補償素子32とに振り分けられるようにして均等に分配される。
また、ガス検出室27にはガス検出室27内の温度および湿度等を検出するセンサ37が取り付けられている。
Here, for example, as shown in FIG. 2, the gas detection chamber 27 stands between the detection element 31 and the temperature compensation element 32 along the inflow direction of the detection gas so as to block both. A heater 36 having a substantially rectangular plate shape is disposed. The heater 36 is composed of a resistor or the like, and heats the inside of the gas detection chamber 27 and the elements 31 and 32 when energized by the circuit board 30. The heat radiating surface 36 </ b> A is connected to the detection element 31 and the temperature compensation element 32. It is arranged in a state of being oriented. That is, each surface of the heater 36 is configured as a heat radiating surface 36A. The detected gas flowing in by the heater 36 is evenly distributed so as to be distributed to the detection element 31 and the temperature compensation element 32.
In addition, a sensor 37 for detecting temperature, humidity and the like in the gas detection chamber 27 is attached to the gas detection chamber 27.

例えば図4に示すように、検出素子31(抵抗値R4)及び温度補償素子32(抵抗値R3)が直列接続されてなる枝辺と、固定抵抗41(抵抗値R1)及び固定抵抗42(抵抗値R2)が直列接続されてなる枝辺とが、外部の電源43から供給される電圧に基づいて所定の基準電圧を印加する基準電圧発生回路44に対して並列に接続されてなるブリッジ回路において、検出素子31と温度補償素子32同志の接続点PSと、固定抵抗41,42同志の接続点PRとの間に、これらの接続点PS,PR間の電圧を検出する検出回路45が接続されており、さらに、検出回路45には出力回路46が接続されている。   For example, as shown in FIG. 4, a branch side formed by connecting a detection element 31 (resistance value R4) and a temperature compensation element 32 (resistance value R3) in series, a fixed resistance 41 (resistance value R1), and a fixed resistance 42 (resistance value) In a bridge circuit in which a branch edge having a value R2) connected in series is connected in parallel to a reference voltage generation circuit 44 that applies a predetermined reference voltage based on a voltage supplied from an external power supply 43 The detection circuit 45 for detecting the voltage between the connection points PS and PR is connected between the connection point PS between the detection element 31 and the temperature compensation element 32 and the connection point PR between the fixed resistors 41 and 42. Furthermore, an output circuit 46 is connected to the detection circuit 45.

ここで、ガス検出室27内に導入された検査対象ガス中に被検出ガスである水素が存在しないときには、ブリッジ回路はバランスしてR1×R4=R2×R3の状態にあり、検出回路45の出力がゼロとなる。一方、水素が存在すると、検出素子31の触媒31bにおいて水素が燃焼し、コイル31aの温度が上昇し、抵抗値R4が増大する。これに対して温度補償素子32においては水素は燃焼せず、抵抗値R3は変化しない。これにより、ブリッジ回路の平衡が破れて検出回路45に、水素濃度の増大変化に応じて増大傾向に変化する適宜の電圧が印加される。この検出回路45から出力される電圧の検出値は出力回路46へ出力され、出力回路46は入力された検出値を制御装置2へ出力する。そして、制御装置2においては、この電圧の検出値の変化に応じて予め設定された水素濃度のマップ等に基づいて、水素濃度が算出される。   Here, when hydrogen, which is a gas to be detected, does not exist in the inspection target gas introduced into the gas detection chamber 27, the bridge circuit is balanced and is in a state of R1 × R4 = R2 × R3. Output is zero. On the other hand, when hydrogen is present, hydrogen burns in the catalyst 31b of the detection element 31, the temperature of the coil 31a rises, and the resistance value R4 increases. On the other hand, in the temperature compensation element 32, hydrogen does not burn and the resistance value R3 does not change. As a result, the balance of the bridge circuit is broken and an appropriate voltage is applied to the detection circuit 45 that changes in an increasing trend in response to an increasing change in the hydrogen concentration. The detection value of the voltage output from the detection circuit 45 is output to the output circuit 46, and the output circuit 46 outputs the input detection value to the control device 2. The control device 2 calculates the hydrogen concentration based on a hydrogen concentration map or the like set in advance according to the change in the detected voltage value.

制御装置2は、ガス検出室27内のセンサ37およびヒータ36に接続され、例えばセンサ37から出力されるガス検出室27内の雰囲気の温度状態や湿度状態、燃料電池5の負荷状態や運転状態等に応じて、各素子31,32およびヒータ36の作動状態、例えば通電開始および通電停止の各タイミングや通電量等を制御する。このとき、制御装置2は、例えばヒータ36へ通電する電流値に対するフィードバック制御や、例えばスイッチング素子のオン/オフ動作等に基づくチョッパ制御(つまり、通電のオン/オフの切替制御)等によってヒータ36への通電量を制御する。
例えば、制御装置2は、センサ37の検出温度に基づいてヒータ36への通電を制御し、センサ37から検出されるガス検出室27内の温度が、少なくとも露点温度よりも高い所定温度範囲の温度となるように、また、センサ37から検出されるガス検出室27内の相対湿度が、例えば所定湿度範囲の相対湿度や、例えば予め作成されたガス検出室27内の温度状態に応じた相対湿度のマップ等から得られる相対湿度の検索値等となるように、ヒータ36への通電開始および通電停止のタイミングや通電量を制御する。
The control device 2 is connected to a sensor 37 and a heater 36 in the gas detection chamber 27. For example, the temperature state and humidity state of the atmosphere in the gas detection chamber 27 output from the sensor 37, the load state and operating state of the fuel cell 5. In accordance with the above, the operating states of the elements 31, 32 and the heater 36, for example, the timing of energization start and energization, the energization amount, and the like are controlled. At this time, the control device 2 controls the heater 36 by, for example, feedback control with respect to a current value energized to the heater 36, chopper control based on, for example, on / off operation of the switching element (that is, on / off switching control). Controls the amount of current flowing through.
For example, the control device 2 controls energization to the heater 36 based on the detection temperature of the sensor 37, and the temperature in the gas detection chamber 27 detected from the sensor 37 is a temperature in a predetermined temperature range that is at least higher than the dew point temperature. Further, the relative humidity in the gas detection chamber 27 detected from the sensor 37 is, for example, a relative humidity in a predetermined humidity range, or a relative humidity in accordance with, for example, a temperature state in the gas detection chamber 27 created in advance. The energization start and energization stop timing and energization amount to the heater 36 are controlled so as to obtain the relative humidity search value obtained from the above map.

さらに、制御装置2は、センサ37により検出されるガス検出室27内の温度状態に加えて、例えば燃料電池5の運転状態(つまり、燃料電池5の作動開始や作動停止を含む作動状態)や、例えば燃料電池5の運転時における負荷状態、例えば燃料電池5に対する発電指令(FC出力指令値)や、例えば出力電流センサ(図示略)により検出される燃料電池5の出力電流の電流値や、例えば流量センサ(図示略)等により検出されるエアーコンプレッサ(図示略)から燃料電池5へ供給される空気の流量の検出値等に基づき算出される燃料電池5の発電状態に応じてヒータ36への通電量を制御する。
例えば、制御装置2は、燃料電池5の負荷状態が高負荷状態に変化する場合等において、酸素極側の出口側配管9内を流通するオフガスの流量が増大してオフガスに曝されるガスセンサ1のガス検出室27内の温度が低下したり、例えば燃料電池5にて生成されオフガスに含まれる生成水の量が増大してガス検出室27内の相対湿度が増大する虞がある場合には、ヒータ36への通電量を増大させてガス検出室27内の温度を上昇させることでガス検出室27内に結露が発生することを防止する。一方、燃料電池5の負荷状態が低負荷状態に変化する場合等においては、制御装置2は、ヒータ36への通電量を低下させて過剰なエネルギ消費を抑制する。
Further, in addition to the temperature state in the gas detection chamber 27 detected by the sensor 37, the control device 2, for example, the operation state of the fuel cell 5 (that is, the operation state including the start and stop of operation of the fuel cell 5) For example, a load state during operation of the fuel cell 5, for example, a power generation command (FC output command value) for the fuel cell 5, a current value of the output current of the fuel cell 5 detected by, for example, an output current sensor (not shown), For example, to the heater 36 according to the power generation state of the fuel cell 5 calculated based on the detected value of the flow rate of air supplied to the fuel cell 5 from an air compressor (not shown) detected by a flow sensor (not shown) or the like. To control the amount of current flow.
For example, when the load state of the fuel cell 5 changes to a high load state, for example, the control device 2 increases the flow rate of the off gas flowing in the outlet side pipe 9 on the oxygen electrode side and is exposed to the off gas. When the temperature in the gas detection chamber 27 decreases or the relative humidity in the gas detection chamber 27 increases due to, for example, an increase in the amount of generated water generated in the fuel cell 5 and included in the off-gas. In addition, the amount of electricity supplied to the heater 36 is increased to increase the temperature in the gas detection chamber 27, thereby preventing condensation from occurring in the gas detection chamber 27. On the other hand, when the load state of the fuel cell 5 changes to a low load state, the control device 2 reduces the amount of current supplied to the heater 36 to suppress excessive energy consumption.

また、制御装置2は、燃料電池5の作動停止時等において、例えば各出口側配管8,9内を流通するオフガスの流量が増大させられて燃料電池システム内に残留する水が外部に排出されるパージ処理が実行される場合には、ヒータ36への通電量を増大させ、ガス検出室27内の温度を一時的に上昇させることでガス検出室27内の雰囲気ガスの飽和水蒸気量を増大させ、ガス検出室27内に結露が発生することを防止する。
また、制御装置2は、燃料電池5の作動開始時において、酸素極側の出口側配管9内におけるオフガスの流通開始に先立って、ガスセンサ1の各素子31,32と、ヒータ36とに対する通電を開始し、燃料電池5の作動停止時において、酸素極側の出口側配管9内におけるオフガスの流通を停止した後に、ガスセンサ1の各素子31,32と、ヒータ36とに対する通電を停止する。
Further, when the operation of the fuel cell 5 is stopped, for example, the control device 2 increases the flow rate of off-gas flowing through the outlet side pipes 8 and 9 to discharge water remaining in the fuel cell system to the outside. When the purge process is executed, the amount of energization to the heater 36 is increased and the temperature in the gas detection chamber 27 is temporarily increased to increase the saturated water vapor amount of the atmospheric gas in the gas detection chamber 27. Thus, the occurrence of condensation in the gas detection chamber 27 is prevented.
In addition, the control device 2 energizes the elements 31 and 32 of the gas sensor 1 and the heater 36 prior to the start of the off-gas flow in the outlet side pipe 9 on the oxygen electrode side when the operation of the fuel cell 5 starts. When the operation of the fuel cell 5 is stopped, the flow of the off gas in the outlet side pipe 9 on the oxygen electrode side is stopped, and then the energization to the elements 31 and 32 of the gas sensor 1 and the heater 36 is stopped.

そして、制御装置2は、後述するように、予め設定された所定の通電増大量に応じて各素子31,32への通電量(例えば、通電電圧)を徐々に増大させることによって各素子31,32に対する通電を開始すると共に、各素子31,32に対する通電開始に伴い、ヒータ36への通電量を所定の通常ヒータ通電量よりも大きい暖機ヒータ通電量まで増大させ、各素子31,32の温度状態が所定の温度状態に到達した時点で、各素子31,32への通電量を所定の通常素子通電量とし、ヒータ36への通電量を暖機ヒータ通電量よりも小さい通常ヒータ通電量へと低下させる。   Then, as will be described later, the control device 2 gradually increases the energization amount (e.g., energization voltage) to each of the elements 31 and 32 in accordance with a predetermined energization increase amount set in advance. As the energization of the elements 31 and 32 is started, the energization amount to the heater 36 is increased to a warm-up heater energization amount larger than a predetermined normal heater energization amount. When the temperature state reaches a predetermined temperature state, the energization amount to each element 31, 32 is set as a predetermined normal element energization amount, and the energization amount to the heater 36 is smaller than the warm-up heater energization amount. To lower.

次に、上述した本実施の形態のガスセンサの制御装置の動作、特に、ガスセンサ1の作動開始方法について説明する。
先ず、例えば、図6に示す時刻t0のように、運転者の操作によって車両のイグニッションスイッチ(IG)がONとされると、図5に示すステップS01以下の処理を実行する。
例えば図5に示すステップS01においては、ヒータ36へのヒータ通電量(例えば、通電電流)として、所定の暖機ヒータ通電量(例えば図6に示す通電電流A2)を設定する。
そして、ステップS02においては、各素子31,32への素子通電量(例えば、通電電圧)として、所定の暖機素子通電量(例えば図6に示す通電電圧V1)を設定する。この暖機素子通電量は、例えばヒータ36への通電量が所定の暖機ヒータ通電量とされている状態において、各素子31,32に対してステップ状に通電した場合であっても各素子31,32に生じる熱応力が所定値以下となる通電量であって、各素子31,32に生じる熱応力に起因する破損や劣化等が生じることがない通電量とされ、例えば予め所定の実験等により得られる。
次に、ステップS03においては、センサ37により検出されるガス検出室27内の温度および相対湿度の検出値を取得する。
次に、ステップS04においては、取得したガス検出室27内の温度および相対湿度の検出値に応じて、例えば所定マップに対するマップ検索や所定の数式の演算等により、各素子31,32の素子温度(例えば、各素子31,32の表面温度や内部温度等)を算出する。
次に、ステップS05においては、算出した素子温度が所定の暖機終了温度(例えば図6に示す温度T1)以上であるか否かを判定する。
この判定結果が「NO」の場合には、上述したステップS03に戻る。
一方、この判定結果が「YES」の場合には、ステップS06に進む。
ステップS06においては、例えば図6に示す時刻t2のように、ヒータ通電量を暖機ヒータ通電量から通常ヒータ通電量(例えば図6に示す通電電流A1<A2)へと低下させる。
そして、ステップS07においては、例えば図6に示す時刻t2のように、素子通電量を暖機素子通電量から通常素子通電量(例えば図6に示す通電電圧V2>V1)へと増大させ、一連の処理をする。
Next, the operation of the above-described gas sensor control device of the present embodiment, in particular, the operation start method of the gas sensor 1 will be described.
First, for example, when the ignition switch (IG) of the vehicle is turned on by the driver's operation at time t0 shown in FIG. 6, the processing after step S01 shown in FIG. 5 is executed.
For example, in step S01 shown in FIG. 5, a predetermined warm-up heater energization amount (for example, energization current A2 shown in FIG. 6) is set as the heater energization amount (for example, energization current) to the heater 36.
In step S02, a predetermined warm-up element energization amount (for example, energization voltage V1 shown in FIG. 6) is set as the element energization amount (for example, energization voltage) to each of the elements 31 and 32. This warm-up element energization amount is, for example, when each element 31 and 32 is energized stepwise when the energization amount to the heater 36 is a predetermined warm-up heater energization amount. The energization amount is such that the thermal stress generated in the elements 31 and 32 is less than or equal to a predetermined value and does not cause damage or deterioration due to the thermal stress generated in the elements 31 and 32. Etc.
Next, in step S03, the detected values of the temperature and relative humidity in the gas detection chamber 27 detected by the sensor 37 are acquired.
Next, in step S04, the element temperature of each of the elements 31 and 32 is determined by, for example, a map search for a predetermined map or a calculation of a predetermined mathematical expression in accordance with the acquired temperature and relative humidity detection values in the gas detection chamber 27. (For example, the surface temperature and internal temperature of each element 31, 32) are calculated.
Next, in step S05, it is determined whether or not the calculated element temperature is equal to or higher than a predetermined warm-up end temperature (for example, temperature T1 shown in FIG. 6).
If this determination is “NO”, the flow returns to step S 03 described above.
On the other hand, if this determination is “YES”, the flow proceeds to step S 06.
In step S06, for example, at time t2 shown in FIG. 6, the heater energization amount is reduced from the warm-up heater energization amount to the normal heater energization amount (eg energization current A1 <A2 shown in FIG. 6).
In step S07, the element energization amount is increased from the warming element energization amount to the normal element energization amount (for example, energization voltage V2> V1 shown in FIG. 6), for example, at time t2 shown in FIG. Process.

上述したように、本実施の形態によるガスセンサの制御装置によれば、例えば各素子31,32への素子通電量を暖機素子通電量よりも大きい通常素子通電量までステップ状に瞬時に増大させる場合に比べて、各素子31,32への素子通電量を徐々に増大させることによって、各素子31,32に熱応力に起因する破損や劣化等が生じることを防止しつつ、適切に通電を開始することができる。   As described above, according to the gas sensor control apparatus of the present embodiment, for example, the element energization amount to each of the elements 31 and 32 is instantaneously increased stepwise to the normal element energization amount larger than the warm-up element energization amount. Compared to the case, by gradually increasing the element energization amount to each element 31, 32, the element 31, 32 is appropriately energized while preventing the element 31, 32 from being damaged or deteriorated due to thermal stress. Can start.

なお、上述した実施の形態においては、各素子31,32の素子温度が所定の暖機終了温度以上であるか否かの判定結果に応じて、素子通電量を暖機素子通電量から通常素子通電量へと増大させるとしたが、これに限定されず、例えば素子通電量に暖機素子通電量を設定してからの経過時間が所定時間以上であるか否かの判定結果や、例えば素子通電量に暖機素子通電量を設定した状態において、各素子31,32への通電電流に所定の時間変化が生じたか否かの判定結果に応じて、素子通電量を暖機素子通電量から通常素子通電量へと増大させてもよい。   In the above-described embodiment, the element energization amount is changed from the warm-up element energization amount to the normal element according to the determination result of whether or not the element temperature of each of the elements 31 and 32 is equal to or higher than the predetermined warm-up end temperature. Although it is assumed that the energization amount is increased, the present invention is not limited to this. For example, whether or not the elapsed time after setting the warm-up element energization amount to the element energization amount is equal to or longer than a predetermined time, for example, the element In the state where the warming element energization amount is set as the energization amount, the element energization amount is changed from the warming element energization amount according to the determination result of whether or not a predetermined time change has occurred in the energization current to each of the elements 31 and 32. The normal element energization amount may be increased.

なお、上述した実施の形態においては、素子温度が所定の暖機終了温度以上となるまでの期間に亘って素子通電量に暖機素子通電量を設定するとしたが、これに限定されず、例えば図7に示す本実施形態の変形例に係るガスセンサ1の作動開始方法のように、素子温度が所定の暖機終了温度以上となるまでの期間に亘って、素子通電量を徐々に増大させてもよい。
例えば図7に示すステップS21においては、ヒータ36へのヒータ通電量(例えば、通電電流)として、所定の初期ヒータ通電量(例えば図8に示す通電電流A4)を設定する。
そして、ステップS22においては、各素子31,32への素子通電量(例えば、通電電圧)として、所定の初期素子通電量(例えば図8に示す通電電圧V4)を設定する。
次に、ステップS23においては、通電継続タイマーの計時を開始する。
次に、ステップS24においては、通電継続タイマーのタイマー値が所定時間以上であるか否かを判定する。
この判定結果が「NO」の場合には、ステップS24の処理を繰り返す。
一方、この判定結果が「YES」の場合には、通電継続タイマーのタイマー値をリセットして、ステップS25に進む。
In the above-described embodiment, the warming element energization amount is set to the element energization amount over a period until the element temperature becomes equal to or higher than a predetermined warming-up end temperature. As in the method for starting the operation of the gas sensor 1 according to the modification of the present embodiment shown in FIG. 7, the element energization amount is gradually increased over the period until the element temperature becomes equal to or higher than the predetermined warm-up end temperature. Also good.
For example, in step S21 shown in FIG. 7, a predetermined initial heater energization amount (for example, energization current A4 shown in FIG. 8) is set as the heater energization amount (for example, energization current) to the heater 36.
In step S22, a predetermined initial element energization amount (for example, energization voltage V4 shown in FIG. 8) is set as the element energization amount (for example, energization voltage) to each of the elements 31 and 32.
Next, in step S23, the time measurement of the energization continuation timer is started.
Next, in step S24, it is determined whether the timer value of the energization continuation timer is equal to or longer than a predetermined time.
If the determination result is “NO”, the process of step S24 is repeated.
On the other hand, if the determination result is “YES”, the timer value of the energization continuation timer is reset, and the process proceeds to step S25.

次に、ステップS25においては、センサ37により検出されるガス検出室27内の温度および相対湿度の検出値を取得する。
次に、ステップS26においては、取得したガス検出室27内の温度および相対湿度の検出値に応じて、例えば所定マップに対するマップ検索や所定の数式の演算等により、各素子31,32の素子温度(例えば、表面温度や内部温度等)を算出する。
次に、ステップS27においては、算出した素子温度が所定の暖機終了温度(例えば図6に示す温度T1)以上であるか否かを判定する。
この判定結果が「YES」の場合には、後述するステップS30に進む。
一方、この判定結果が「NO」の場合には、ステップS28に進む。
ステップS28においては、各素子31,32への素子通電量(例えば、通電電圧)に所定素子加算量(例えば図8に示す所定加算電圧#ΔV)を加算して得た値を、新たに素子通電量として設定する。なお、ここで設定される素子通電量は、暖機素子通電量(例えば図8に示す通電電流A2)以下の値となるように設定されている。
そして、ステップS29においては、ヒータ36へのヒータ通電量(例えば、通電電流)に所定ヒータ加算量(例えば図8に示す所定加算電流#ΔA)を加算して得た値を、新たにヒータ通電量として設定し、上述したステップS23に戻る。なお、ここで設定されるヒータ通電量は、暖機ヒータ通電量(例えば図8に示す通電電流A2)以下の値となるように設定されている。
また、ステップS30においては、ヒータ36へのヒータ通電量に通常ヒータ通電量(例えば図8に示す通電電流A1)を設定する。
次に、ステップS31においては、各素子31,32への素子通電量に通常素子通電量(例えば図8に示す通電電圧V2)を設定して、一連の処理を終了する。
Next, in step S25, the detected values of the temperature and relative humidity in the gas detection chamber 27 detected by the sensor 37 are acquired.
Next, in step S26, the element temperature of each of the elements 31 and 32 is determined by, for example, a map search for a predetermined map or calculation of a predetermined mathematical expression in accordance with the acquired temperature and relative humidity detection values in the gas detection chamber 27. (For example, surface temperature, internal temperature, etc.) are calculated.
Next, in step S27, it is determined whether or not the calculated element temperature is equal to or higher than a predetermined warm-up end temperature (for example, temperature T1 shown in FIG. 6).
If this determination is “YES”, the flow proceeds to step S 30 described later.
On the other hand, if this determination is “NO”, the flow proceeds to step S 28.
In step S28, a value obtained by adding a predetermined element addition amount (for example, the predetermined addition voltage # ΔV shown in FIG. 8) to the element energization amount (for example, the energization voltage) to each of the elements 31, 32 is newly added to the element. Set as energization amount. The element energization amount set here is set to be a value equal to or less than the warm-up element energization amount (for example, the energization current A2 shown in FIG. 8).
In step S29, a value obtained by adding a predetermined heater addition amount (for example, the predetermined addition current # ΔA shown in FIG. 8) to the heater energization amount (for example, the energization current) to the heater 36 is newly added. The amount is set, and the process returns to step S23 described above. The heater energization amount set here is set to be a value equal to or less than the warm-up heater energization amount (for example, energization current A2 shown in FIG. 8).
In step S30, a normal heater energization amount (for example, energization current A1 shown in FIG. 8) is set as the heater energization amount to the heater 36.
Next, in step S31, the normal element energization amount (for example, the energization voltage V2 shown in FIG. 8) is set as the element energization amount to each of the elements 31 and 32, and the series of processing ends.

なお、上述した実施の形態において、ガスセンサ1を水素センサとしたが、これに限定されず、その他のガス、例えば一酸化炭素やメタン等の可燃性ガスを検出するガスセンサであってもよい。
また、上述した実施の形態においては、各素子31,32を接続してなる回路をブリッジ回路としたが、これに限定されず、例えば直列回路等のその他の回路であってもよく、検出素子31の抵抗値R4に関連した状態量として、所定接点間の電圧や電流の検出値が制御装置2へ出力されてもよい。
また、上述した実施の形態においては、ヒータ36は検出素子31と温度補償素子32との間に配置されるとしたが、これに限定されず、例えばガス検出室27内の各素子31,32とガス導入部29との間に配置されてもよい。
In the above-described embodiment, the gas sensor 1 is a hydrogen sensor. However, the present invention is not limited to this, and may be a gas sensor that detects other gases, for example, combustible gases such as carbon monoxide and methane.
In the above-described embodiment, the circuit formed by connecting the elements 31 and 32 is a bridge circuit. However, the circuit is not limited to this, and may be another circuit such as a series circuit. As a state quantity related to the resistance value R4 of 31, a detection value of a voltage or current between predetermined contacts may be output to the control device 2.
In the above-described embodiment, the heater 36 is disposed between the detection element 31 and the temperature compensation element 32. However, the present invention is not limited to this. For example, each element 31, 32 in the gas detection chamber 27 is provided. Between the gas inlet 29 and the gas inlet 29.

適用できる。 Applicable.

本発明の一実施形態に係るガスセンサを備える燃料電池システムの要部構成図である。It is a principal part block diagram of a fuel cell system provided with the gas sensor which concerns on one Embodiment of this invention. 図1に示すガスセンサの断面図である。It is sectional drawing of the gas sensor shown in FIG. 図2に示すA−A線に沿う概略断面図である。It is a schematic sectional drawing which follows the AA line shown in FIG. 図1に示すガスセンサの回路図である。It is a circuit diagram of the gas sensor shown in FIG. 図1に示すガスセンサの制御装置の動作、特に、ガスセンサの作動開始方法を示すフローチャートである。It is a flowchart which shows the operation | movement of the control apparatus of the gas sensor shown in FIG. 1, especially the operation | movement start method of a gas sensor. 図1に示す実施の形態に係るガスセンサの各素子およびヒータへの通電量の時間変化と各素子の温度の時間変化の一例を示すグラフ図である。It is a graph which shows an example of the time change of the energization amount to each element and heater of the gas sensor which concerns on embodiment shown in FIG. 1, and the temperature of each element. 図1に示す実施の形態の第1変形例に係るガスセンサの制御装置の動作、特に、ガスセンサの作動開始方法を示すフローチャートである。It is a flowchart which shows the operation | movement of the control apparatus of the gas sensor which concerns on the 1st modification of embodiment shown in FIG. 1, especially the operation | movement start method of a gas sensor. 図1に示す実施の形態の第1変形例に係るガスセンサの各素子およびヒータへの通電量の時間変化と各素子の温度の時間変化の一例を示すグラフ図である。It is a graph which shows an example of the time change of the energization amount to each element and heater of a gas sensor which concerns on the 1st modification of embodiment shown in FIG. 1, and the time change of the temperature of each element.

符号の説明Explanation of symbols

1 ガスセンサ
27 ガス検出室
29 ガス導入部
31 検出素子
32 温度補償素子(補償素子)
36 ヒータ
37 センサ(状態検出手段)
ステップS02及びステップS07 素子通電開始手段
ステップS22及びステップS28及びステップS31 素子通電開始手段
ステップS01及びステップS06 ヒータ通電変更手段
ステップS21及びステップS29及びステップS30 ヒータ通電変更手段

DESCRIPTION OF SYMBOLS 1 Gas sensor 27 Gas detection chamber 29 Gas introduction part 31 Detection element 32 Temperature compensation element (compensation element)
36 heater 37 sensor (state detection means)
Step S02 and Step S07 Element energization start means Step S22 and Step S28 and Step S31 Element energization start means Step S01 and Step S06 Heater energization change means Step S21, Step S29 and Step S30 Heater energization change means

Claims (5)

検出素子と補償素子との電気抵抗値の差異に基づき検査対象ガスに含まれる被検出ガスのガス濃度を検出するガスセンサの制御装置であって、
前記検出素子および前記補償素子への通電量を徐々に増大させる素子通電開始手段を備えることを特徴とするガスセンサの制御装置。
A control device for a gas sensor that detects a gas concentration of a gas to be detected included in a gas to be inspected based on a difference in electrical resistance value between a detection element and a compensation element,
A gas sensor control apparatus comprising element energization start means for gradually increasing energization amounts to the detection element and the compensation element.
前記検出素子および前記補償素子の温度状態を検出する状態検出手段を備え、
前記素子通電開始手段は前記状態検出手段にて検出される前記検出素子および前記補償素子の温度状態に応じて前記検出素子および前記補償素子への通電量を増大させることを特徴とする請求項1に記載のガスセンサの制御装置。
A state detecting means for detecting a temperature state of the detecting element and the compensating element;
2. The element energization start unit increases an energization amount to the detection element and the compensation element according to a temperature state of the detection element and the compensation element detected by the state detection unit. The control device of the gas sensor described in 1.
前記検出素子および前記補償素子は前記検査対象ガスが導入されるガス検出室内に配置され、前記ガス検出室内に設けられたヒータと、
前記素子通電開始手段により前記検出素子および前記補償素子への通電量が徐々に増大させられる暖機通電動作の実行時に、前記ヒータへの通電量を所定の通常時通電量よりも大きい暖機時通電量とし、前記暖機通電動作の終了以後に、前記ヒータへの通電量を前記暖機時通電量から前記通常時通電量へと低下させるヒータ通電変更手段と
を備えることを特徴とする請求項1または請求項2に記載のガスセンサの制御装置。
The detection element and the compensation element are disposed in a gas detection chamber into which the inspection target gas is introduced, and a heater provided in the gas detection chamber;
When performing warm-up energization operation in which the energization amount to the detection element and the compensation element is gradually increased by the element energization start means, the energization amount to the heater is larger than a predetermined normal energization amount. Heater energization change means for reducing the energization amount to the heater from the warm-up energization amount to the normal energization amount after the end of the warm-up energization operation. The control device for a gas sensor according to claim 1 or 2.
前記素子通電開始手段は、前記検出素子および前記補償素子の熱応力が所定値以下となるようにして前記検出素子および前記補償素子への通電量を設定することを特徴とする請求項1から請求項3の何れかひとつに記載のガスセンサの制御装置。 2. The element energization start means sets the energization amount to the detection element and the compensation element so that thermal stresses of the detection element and the compensation element become a predetermined value or less. Item 4. The control device for a gas sensor according to any one of Items 3 to 3. 前記ヒータ通電変更手段は、前記検出素子および前記補償素子の熱応力が所定値以下となるようにして前記暖機時通電量を設定することを特徴とする請求項3に記載のガスセンサの制御装置。

4. The gas sensor control device according to claim 3, wherein the heater energization changing unit sets the warm-up energization amount so that a thermal stress of the detection element and the compensation element is a predetermined value or less. 5. .

JP2003328926A 2003-09-19 2003-09-19 Gas sensor control device Expired - Fee Related JP3987016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003328926A JP3987016B2 (en) 2003-09-19 2003-09-19 Gas sensor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003328926A JP3987016B2 (en) 2003-09-19 2003-09-19 Gas sensor control device

Publications (2)

Publication Number Publication Date
JP2005091323A true JP2005091323A (en) 2005-04-07
JP3987016B2 JP3987016B2 (en) 2007-10-03

Family

ID=34458350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003328926A Expired - Fee Related JP3987016B2 (en) 2003-09-19 2003-09-19 Gas sensor control device

Country Status (1)

Country Link
JP (1) JP3987016B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064491A (en) * 2006-09-05 2008-03-21 Yazaki Corp Gas detection device
JP2009092587A (en) * 2007-10-11 2009-04-30 Honda Motor Co Ltd Device for controlling gas sensor having built-in heater
JP2010002217A (en) * 2008-06-18 2010-01-07 Honda Motor Co Ltd Gas sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064491A (en) * 2006-09-05 2008-03-21 Yazaki Corp Gas detection device
JP2009092587A (en) * 2007-10-11 2009-04-30 Honda Motor Co Ltd Device for controlling gas sensor having built-in heater
JP2010002217A (en) * 2008-06-18 2010-01-07 Honda Motor Co Ltd Gas sensor

Also Published As

Publication number Publication date
JP3987016B2 (en) 2007-10-03

Similar Documents

Publication Publication Date Title
EP1505386B1 (en) Gas sensor operation method
US7342505B2 (en) Gas detection apparatus and method for controlling gas sensor
US7418855B2 (en) Gas sensor and control method therefor
US7269993B2 (en) Gas detecting apparatus, gas detecting method and fuel cell vehicle
JP3746778B2 (en) Gas sensor control device
JP4568140B2 (en) Gas detector
JP4083652B2 (en) Gas sensor control device
JP3905800B2 (en) Fuel cell protection device
JP4011429B2 (en) Fuel cell system including gas sensor and fuel cell vehicle including gas sensor
JP3839360B2 (en) Gas sensor calibration method
JP3836403B2 (en) Gas detection method
JP3987016B2 (en) Gas sensor control device
JP2009092587A (en) Device for controlling gas sensor having built-in heater
JP4308107B2 (en) Gas sensor
JP3986984B2 (en) Calibration method for catalytic combustion type hydrogen sensor
JP4021827B2 (en) Gas sensor
JP3801950B2 (en) Gas sensor, gas sensor failure detection apparatus, and gas sensor failure detection method
JP2006010622A (en) Gas detection system and fuel cell vehicle
JP2007024627A (en) Hydrogen detection device and fuel cell system
JP3875163B2 (en) Gas sensor state determination device
JP4131801B2 (en) Degradation detection method of hydrogen sensor provided in fuel cell system
JP3839377B2 (en) Gas sensor and gas detection method
JP3857218B2 (en) Gas sensor
JP2012149894A (en) Control apparatus of gas sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070711

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140720

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees