JP2005090434A - Emission control system for internal combustion engine - Google Patents

Emission control system for internal combustion engine Download PDF

Info

Publication number
JP2005090434A
JP2005090434A JP2003327828A JP2003327828A JP2005090434A JP 2005090434 A JP2005090434 A JP 2005090434A JP 2003327828 A JP2003327828 A JP 2003327828A JP 2003327828 A JP2003327828 A JP 2003327828A JP 2005090434 A JP2005090434 A JP 2005090434A
Authority
JP
Japan
Prior art keywords
exhaust gas
exhaust
fuel
temperature
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003327828A
Other languages
Japanese (ja)
Inventor
Takeshi Hashizume
剛 橋詰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003327828A priority Critical patent/JP2005090434A/en
Priority to FR0409791A priority patent/FR2860033B1/en
Priority to DE102004045234A priority patent/DE102004045234A1/en
Publication of JP2005090434A publication Critical patent/JP2005090434A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an emission control system for an internal combustion engine with an emission control means having an oxidizing function with a precious metal for trapping particulate materials in exhaust gas, minimizing the release to the air of fuel to be supplied to the emission control means for oxidizing and removing the trapped particulate materials. <P>SOLUTION: The emission control system for the internal combustion engine is provided with the emission control means having oxidizing function with the precious metal for trapping the particulate materials in exhaust gas from the internal combustion engine. It comprises a fuel supply means for supplying the fuel to the emission control means, a temperature rise control means for allowing fuel supply to the emission control means with the fuel supply means and giving temperature rise to the emission control means when the temperature of the emission control means is a preset temperature or higher, and fuel supply temperature correcting means (S103, S104, S105) for correcting the preset temperature which allows the fuel supply to the emission control means with the fuel supply means, in accordance with the flow rate of the exhaust gas flowing into the emission control means. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、内燃機関のから排出される排気に含まれる粒子状物質を浄化する内燃機関の排気浄化システムに関する。   The present invention relates to an exhaust gas purification system for an internal combustion engine that purifies particulate matter contained in exhaust gas discharged from the internal combustion engine.

内燃機関から排出される粒子状物質が大気中に放出されるのを回避するために、内燃機関の排気通路にフィルタを設け、該フィルタによって排気中の粒子状物質を捕集する。しかし、粒子状物質がフィルタに捕集され続けると、フィルタによる粒子状物質の捕集能力が低下するとともに、排気通路内の圧力が上昇し、内燃機関における良好な燃料の燃焼が阻害され、内燃機関の出力が低下する。   In order to prevent the particulate matter discharged from the internal combustion engine from being released into the atmosphere, a filter is provided in the exhaust passage of the internal combustion engine, and the particulate matter in the exhaust is collected by the filter. However, if the particulate matter continues to be collected by the filter, the ability of the particulate matter to be collected by the filter will decrease, the pressure in the exhaust passage will rise, and the combustion of good fuel in the internal combustion engine will be hindered. The engine output decreases.

そこで、貴金属を担持し酸化能を有するフィルタを内燃機関の排気通路に設けることで、排気中の粒子状物質を捕集する内燃機関の排気浄化システムにおいて、フィルタが低温で酸化能が発揮されないときは、フィルタに流入する排気の温度を上昇させて酸化能が発揮し得る状態にした後に、フィルタに燃料を供給することで、供給された燃料を酸化して発生する酸化熱によって、フィルタに捕集されている粒子状物質を酸化除去する技術が公開されている(例えば、特許文献1を参照。)。
特開2001−303980号公報 特開2002−38939号公報 特開2002−285897号公報
Therefore, in the exhaust gas purification system for an internal combustion engine that collects particulate matter in the exhaust gas by providing a filter that supports the noble metal and has an oxidation ability in the exhaust passage of the internal combustion engine, when the filter does not exhibit the oxidation ability at a low temperature. After the temperature of the exhaust gas flowing into the filter is raised to a state where the oxidation ability can be exerted, the fuel is supplied to the filter, and the filter is captured by the oxidation heat generated by oxidizing the supplied fuel. A technique for oxidizing and removing the collected particulate matter is disclosed (for example, see Patent Document 1).
JP 2001-303980 A JP 2002-38939 A JP 2002-285897 A

内燃機関の排気通路に、貴金属による酸化能を有し、内燃機関から排出される粒子状物質を捕集する排気浄化手段を設けた内燃機関において、捕集された粒子状物質を酸化除去するために排気浄化手段に燃料を供給する場合、排気浄化手段の温度が、該酸化能が発揮される温度でなければ、供給された燃料が酸化されずに大気中に放出される虞がある。   In an internal combustion engine having an exhaust gas purifying means for collecting particulate matter discharged from an internal combustion engine having an oxidizing ability by a noble metal in an exhaust passage of the internal combustion engine, for oxidizing and removing the collected particulate matter When the fuel is supplied to the exhaust gas purification means, the supplied fuel may be released into the atmosphere without being oxidized unless the temperature of the exhaust gas purification means is a temperature at which the oxidizing ability is exhibited.

更に、排気浄化手段に流入する排気の流量が多くなると、排気中に含まれる燃料が排気浄化手段の酸化能によって酸化され得る時間が短くなるため、燃料が十分に酸化されずに、やはり大気中へ放出される虞がある。   Further, when the flow rate of the exhaust gas flowing into the exhaust gas purification unit increases, the time during which the fuel contained in the exhaust gas can be oxidized by the oxidizing ability of the exhaust gas purification unit is shortened. May be released.

本発明では、上記した問題に鑑み、貴金属による酸化能を有し、且つ排気中の粒子状物質を捕集する排気浄化手段を備える内燃機関の排気浄化システムにおいて、捕集された粒子状物質を酸化除去するために排気浄化手段へ供給される燃料が大気へ放出されるのを可及的に抑制することを目的とする。   In the present invention, in view of the problems described above, in an exhaust gas purification system for an internal combustion engine having an exhaust gas purification means that has an ability to oxidize by a noble metal and collects particulate matter in exhaust gas, the collected particulate matter is An object of the present invention is to suppress as much as possible the release of the fuel supplied to the exhaust gas purification means for the purpose of oxidation removal to the atmosphere.

本発明は、上記した課題を解決するために、捕集された粒子状物質を除去するために排気浄化手段に燃料を供給する際の、排気浄化手段の温度と排気浄化手段に流入する排気の流量とに着目した。排気浄化手段の酸化能は、排気浄化手段における貴金属の温度の上昇に従い上昇し、且つ排気浄化手段に流入する排気の流量の増加に従い低下するからである。   In order to solve the above-described problems, the present invention provides the temperature of the exhaust gas purification unit and the exhaust gas flowing into the exhaust gas purification unit when fuel is supplied to the exhaust gas purification unit in order to remove the collected particulate matter. We focused on the flow rate. This is because the oxidizing ability of the exhaust purification means increases as the temperature of the noble metal in the exhaust purification means increases and decreases as the flow rate of the exhaust gas flowing into the exhaust purification means increases.

そこで、本発明は、内燃機関の排気浄化システムにおいて、内燃機関の排気通路に設けられ、該内燃機関からの排気中に含まれる粒子状物質を捕集し、且つ貴金属による酸化能を有する排気浄化手段と、前記排気浄化手段に燃料を供給する燃料供給手段と、前記排気浄化手段の温度が所定の温度以上であるときに、前記燃料供給手段による該排気浄化手段への燃料供給を許容し該排気浄化手段の温度を上昇させる昇温制御手段と、前記排気浄化手段に流入する排気の流量に基づいて、前記燃料供給手段による該排気浄化手段への燃料供給が許容される前記所定の温度を補正する燃料供給温度補正手段と、を備える。   Therefore, the present invention provides an exhaust gas purification system for an internal combustion engine, which is provided in an exhaust passage of the internal combustion engine, collects particulate matter contained in the exhaust gas from the internal combustion engine, and has an oxidizing ability by a noble metal. Means, fuel supply means for supplying fuel to the exhaust purification means, and fuel supply to the exhaust purification means by the fuel supply means when the temperature of the exhaust purification means is equal to or higher than a predetermined temperature. Based on the temperature rise control means for raising the temperature of the exhaust purification means and the flow rate of the exhaust gas flowing into the exhaust purification means, the predetermined temperature at which fuel supply to the exhaust purification means by the fuel supply means is allowed is set. And a fuel supply temperature correcting means for correcting.

排気浄化手段は、排気中の粒子状物質を捕集するとともに、燃料供給手段によって供給された燃料を排気浄化手段の有する酸化能によって酸化させて、そこで発生する酸化熱によって捕集された粒子状物質を酸化除去するものである。尚、排気浄化手段としては、粒子状物質を捕集するフィルタ上に酸化能を発揮する貴金属を担持する態様や、または酸化能を発揮する貴金属から構成される触媒を粒子状物質を捕集するフィルタの上流側に配置する態様等が考え得る。   The exhaust purification unit collects particulate matter in the exhaust gas, oxidizes the fuel supplied by the fuel supply unit by the oxidizing ability of the exhaust purification unit, and collects the particulate matter collected by the oxidation heat generated there. The substance is removed by oxidation. In addition, as an exhaust purification means, the aspect which carries the noble metal which exhibits oxidation ability on the filter which collects particulate matter, or the catalyst comprised from the noble metal which exhibits oxidation ability collects particulate matter. A mode in which the filter is disposed on the upstream side of the filter can be considered.

ここで、燃料供給手段による排気浄化手段への燃料供給は、排気浄化手段に流入する排気に燃料を添加すること、または内燃機関における燃料噴射条件である燃料噴射時期や燃料噴射回数を制御すること等で行われる。   Here, the fuel supply to the exhaust purification means by the fuel supply means is to add fuel to the exhaust flowing into the exhaust purification means, or to control the fuel injection timing and the number of times of fuel injection that are fuel injection conditions in the internal combustion engine Etc.

このような排気浄化手段に捕集された粒子状物質を酸化除去するためには、排気浄化手段に含まれる貴金属が酸化能を発揮すべく排気浄化手段の温度が所定の温度以上である必要がある。また、排気浄化手段に流入する排気の流量が増大するに従い、排気中に含まれる燃料が排気浄化手段中に存在することで、排気浄化手段に含まれる貴金属によって酸化され得る時間が短くなる。従って、排気中の燃料が大気へ放出されるのをより確実に抑制するためには、該排気の流量が増大するに従って、排気浄化手段に含まれる貴金属の酸化能がより強く発揮される必要がある。そこで、排気浄化手段への燃料供給を行う該排気浄化手段の温度を排気流量に基づいて補正する必要がある。   In order to oxidize and remove the particulate matter collected by the exhaust gas purification unit, the temperature of the exhaust gas purification unit needs to be equal to or higher than a predetermined temperature so that the noble metal contained in the exhaust gas purification unit exhibits an oxidizing ability. is there. Further, as the flow rate of the exhaust gas flowing into the exhaust gas purification unit increases, the fuel contained in the exhaust gas is present in the exhaust gas purification unit, so that the time that can be oxidized by the noble metal contained in the exhaust gas purification unit is shortened. Therefore, in order to more reliably suppress the fuel in the exhaust from being released to the atmosphere, it is necessary that the oxidizing ability of the noble metal contained in the exhaust purification means be exerted more strongly as the flow rate of the exhaust increases. is there. Therefore, it is necessary to correct the temperature of the exhaust purification unit that supplies fuel to the exhaust purification unit based on the exhaust flow rate.

更には、燃料供給温度補正手段によって、排気浄化手段への燃料供給を行う排気浄化手段の温度を、排気の流量に基づいて補正する。例えば、前記燃料供給温度補正手段は、前記排気浄化手段に流入する排気の流量が大きくなるほど、前記所定の温度を高くする補正を行う。   Further, the temperature of the exhaust gas purification unit that supplies fuel to the exhaust gas purification unit is corrected by the fuel supply temperature correction unit based on the flow rate of the exhaust gas. For example, the fuel supply temperature correction unit performs correction to increase the predetermined temperature as the flow rate of the exhaust gas flowing into the exhaust gas purification unit increases.

このような補正を行うことで、排気浄化手段に流入する排気の流量が増大するに従い、排気浄化手段への燃料の供給が行われる排気浄化手段の温度が上昇される。その結果、排気浄化手段に含まれる貴金属の発揮する酸化能が、より強くなるため、該排気流量の増大に伴って貴金属の酸化能により酸化され得る時間が短くなっても、排気浄化手段において排気中の燃料が酸化され、大気へ放出されるのが可及的に抑制され得る。   By performing such correction, as the flow rate of the exhaust gas flowing into the exhaust gas purification unit increases, the temperature of the exhaust gas purification unit that supplies fuel to the exhaust gas purification unit increases. As a result, since the oxidizing ability exhibited by the noble metal contained in the exhaust purification means becomes stronger, even if the time that can be oxidized by the noble metal oxidizing ability becomes shorter as the exhaust flow rate increases, The fuel inside can be oxidized and released to the atmosphere as much as possible.

また、上記の内燃機関の排気浄化システムにおいて、前記排気浄化手段に流入する排気の流量を制御する排気流量制御手段を更に備え、前記排気浄化手段の温度が前記所定の温度より低いときに、前記排気流量制御手段により該排気浄化手段に流入する排気の流量を低減するようにしてもよい。   The exhaust gas purification system for an internal combustion engine may further include an exhaust flow rate control unit that controls a flow rate of exhaust gas flowing into the exhaust gas purification unit, and when the temperature of the exhaust gas purification unit is lower than the predetermined temperature, The flow rate of the exhaust gas flowing into the exhaust gas purification unit may be reduced by the exhaust gas flow rate control unit.

排気浄化手段に流入する排気の流量を低減することで、排気中に含まれる燃料が排気浄化手段の貴金属の酸化能により酸化され得る時間が長くなる。その結果、排気浄化手段の酸化能が比較的低い場合であっても、排気中の燃料が十分に酸化されるため大気中へ放出される虞が少ない。従って、早期に排気浄化手段に捕集された粒子状物質を除去することが可能となる。尚、排気浄化手段へ流入する排気の流量は、内燃機関の吸気通路に設けられた吸気絞り弁や排気再循環装置(以下、「EGR装置」)におけるEGR弁の開度を制
御することで行われる。
By reducing the flow rate of the exhaust gas flowing into the exhaust gas purification means, the time during which the fuel contained in the exhaust gas can be oxidized by the noble metal oxidizing ability of the exhaust gas purification means becomes longer. As a result, even if the oxidizing ability of the exhaust purification means is relatively low, the fuel in the exhaust is sufficiently oxidized, so there is little risk of being released into the atmosphere. Therefore, it becomes possible to remove the particulate matter collected by the exhaust gas purification means at an early stage. The flow rate of the exhaust gas flowing into the exhaust gas purification means is controlled by controlling the opening degree of the EGR valve in an intake throttle valve or an exhaust gas recirculation device (hereinafter referred to as “EGR device”) provided in the intake passage of the internal combustion engine. Is called.

貴金属による酸化能を有し、且つ排気中の粒子状物質を捕集する排気浄化手段を備える内燃機関の排気浄化システムにおいて、捕集された粒子状物質を酸化除去するために排気浄化手段へ供給される燃料が大気へ放出されるのが可及的に抑制される。   In an exhaust gas purification system for an internal combustion engine that has an oxidizing ability by a precious metal and has an exhaust gas purification unit that collects particulate matter in exhaust gas, the collected particulate matter is supplied to the exhaust gas purification unit in order to oxidize and remove it. It is possible to suppress the released fuel to the atmosphere as much as possible.

ここで、本発明に係る内燃機関の排気浄化システムの実施の形態について図面に基づいて説明する。   Here, an embodiment of an exhaust gas purification system for an internal combustion engine according to the present invention will be described based on the drawings.

図1は、本発明が適用される排気浄化システム、該排気浄化システムを含む圧縮着火式の内燃機関1およびその制御系統の概略構成を表すブロック図である。   FIG. 1 is a block diagram showing a schematic configuration of an exhaust purification system to which the present invention is applied, a compression ignition type internal combustion engine 1 including the exhaust purification system, and a control system thereof.

内燃機関1は、4つの気筒2を有する内燃機関である。また、気筒2の燃焼室に直接燃料を噴射する燃料噴射弁3を備えている。燃料噴射弁3は、燃料を所定圧に蓄圧する蓄圧室4と接続されている。蓄圧室4は燃料供給管5を介して燃料ポンプ6と連通している。   The internal combustion engine 1 is an internal combustion engine having four cylinders 2. Further, a fuel injection valve 3 for directly injecting fuel into the combustion chamber of the cylinder 2 is provided. The fuel injection valve 3 is connected to a pressure accumulation chamber 4 that accumulates fuel at a predetermined pressure. The pressure accumulating chamber 4 communicates with a fuel pump 6 through a fuel supply pipe 5.

次に、内燃機関1には吸気枝管7が接続されており、吸気枝管7の各枝管は、気筒2の燃焼室と吸気ポートを介して連通している。ここで、気筒2の燃焼室と吸気ポートとの連通は、吸気弁の開閉によって行われる。また、吸気枝管7は吸気管8に接続されている。吸気管8には、該吸気管8内を流通する吸気の質量に対応した電気信号を出力するエアフローメータ9が取り付けられている。前記吸気管8における吸気枝管7の直上流に位置する部位には、該吸気管8内を流通する吸気の流量を調節する吸気絞り弁10が設けられている。この吸気絞り弁10には、ステップモータ等で構成されて該吸気絞り弁10を開閉駆動する吸気絞り用アクチュエータ11が取り付けられている。   Next, an intake branch pipe 7 is connected to the internal combustion engine 1, and each branch pipe of the intake branch pipe 7 communicates with a combustion chamber of the cylinder 2 via an intake port. Here, the communication between the combustion chamber of the cylinder 2 and the intake port is performed by opening and closing the intake valve. The intake branch pipe 7 is connected to the intake pipe 8. An air flow meter 9 that outputs an electrical signal corresponding to the mass of the intake air flowing through the intake pipe 8 is attached to the intake pipe 8. An intake throttle valve 10 for adjusting the flow rate of the intake air flowing through the intake pipe 8 is provided at a portion of the intake pipe 8 located immediately upstream of the intake branch pipe 7. The intake throttle valve 10 is provided with an intake throttle actuator 11 that is configured by a step motor or the like and that opens and closes the intake throttle valve 10.

ここで、エアフローメータ9と吸気絞り弁10との間に位置する吸気管8には、排気のエネルギーを駆動源として作動する遠心過給機(ターボチャージャ)16のコンプレッサハウジング16aが設けられ、コンプレッサハウジング16aより下流の吸気管8には、前記コンプレッサハウジング16a内で圧縮されて高温となった吸気を冷却するためのインタークーラ15設けられている。   Here, the intake pipe 8 positioned between the air flow meter 9 and the intake throttle valve 10 is provided with a compressor housing 16a of a centrifugal supercharger (turbocharger) 16 that operates using exhaust energy as a drive source. The intake pipe 8 downstream of the housing 16a is provided with an intercooler 15 for cooling the intake air that has been compressed in the compressor housing 16a and has reached a high temperature.

一方、内燃機関1には排気枝管12が接続され、排気枝管12の各枝管が排気ポートを介して気筒2の燃焼室と連通している。ここで、気筒2の燃焼室と排気ポートとの連通は、排気弁の開閉によって行われる。更に、内燃機関1には、EGR装置21が設けられている。EGR装置21は排気枝管12の排気の一部を吸気枝管7へ再循環させる。EGR装置21は、排気枝管12(上流側)から吸気枝管7(下流側)へ延出しているEGR通路22と、EGR通路22上に上流側から順に設けられたEGRクーラ23、EGR弁24と、から構成される。   On the other hand, an exhaust branch pipe 12 is connected to the internal combustion engine 1, and each branch pipe of the exhaust branch pipe 12 communicates with the combustion chamber of the cylinder 2 through an exhaust port. Here, the communication between the combustion chamber of the cylinder 2 and the exhaust port is performed by opening and closing the exhaust valve. Further, the internal combustion engine 1 is provided with an EGR device 21. The EGR device 21 recirculates part of the exhaust from the exhaust branch pipe 12 to the intake branch pipe 7. The EGR device 21 includes an EGR passage 22 extending from the exhaust branch pipe 12 (upstream side) to the intake branch pipe 7 (downstream side), an EGR cooler 23 provided on the EGR passage 22 in order from the upstream side, and an EGR valve. 24.

EGRクーラ23はEGR通路22を流れる排気を冷却し、EGR弁24はEGR通路22を流れる排気の流量を調整する。EGR弁24が開弁することで、排気枝管12にある排気の一部がEGR通路22に流入し、EGRクーラ24、EGR弁25を経て、吸気枝管7に再循環される。   The EGR cooler 23 cools the exhaust gas flowing through the EGR passage 22, and the EGR valve 24 adjusts the flow rate of the exhaust gas flowing through the EGR passage 22. When the EGR valve 24 is opened, a part of the exhaust gas in the exhaust branch pipe 12 flows into the EGR passage 22 and is recirculated to the intake branch pipe 7 through the EGR cooler 24 and the EGR valve 25.

また、前記排気枝管12は、前記遠心過給機16のタービンハウジング16bと接続されている。前記タービンハウジング16bは、排気管13と接続され、この排気管13は、下流にてマフラーに接続されている。そして、排気管13の途中には、内燃機関1から
の排気中の物質を酸化する機能を有する貴金属が担持されるとともに、排気中の粒子状物質を捕集する機能を有するフィルタ14が設けられている。更に、フィルタ14の上流側の排気管13には、排気管13を流れる排気に対して燃料を添加する燃料添加弁30が設けられている。
The exhaust branch pipe 12 is connected to a turbine housing 16 b of the centrifugal supercharger 16. The turbine housing 16b is connected to an exhaust pipe 13, and the exhaust pipe 13 is connected to a muffler downstream. In the middle of the exhaust pipe 13, a noble metal having a function of oxidizing a substance in the exhaust from the internal combustion engine 1 is carried and a filter 14 having a function of collecting particulate matter in the exhaust is provided. ing. Further, a fuel addition valve 30 for adding fuel to the exhaust gas flowing through the exhaust pipe 13 is provided in the exhaust pipe 13 on the upstream side of the filter 14.

ここで、燃料噴射弁3および燃料添加弁30は、電子制御ユニット(以下、「ECU」という)20からの制御信号によって開閉動作を行う。即ち、ECU20からの指令によって、燃料噴射弁3および燃料添加弁30における燃料の噴射時期および噴射量が弁毎に制御される。また、EGR弁24も、ECU20からの指令に従い、開弁制御される。   Here, the fuel injection valve 3 and the fuel addition valve 30 are opened and closed by a control signal from an electronic control unit (hereinafter referred to as “ECU”) 20. That is, in accordance with a command from the ECU 20, the fuel injection timing and the fuel injection amount in the fuel injection valve 3 and the fuel addition valve 30 are controlled for each valve. The EGR valve 24 is also controlled to open according to a command from the ECU 20.

更に、アクセル開度センサ34がECU20と電気的に接続されており、ECU20はアクセル開度に応じた信号を受け取り、それより内燃機関1に要求される機関トルク等を算出する。また、クランクポジションセンサ32がECU20と電気的に接続されており、ECU20は内燃機関1の出力軸の回転角に応じた信号を受け取り、内燃機関1の機関回転速度等を算出する。   Further, an accelerator opening sensor 34 is electrically connected to the ECU 20, and the ECU 20 receives a signal corresponding to the accelerator opening and calculates an engine torque required for the internal combustion engine 1 based on the signal. In addition, the crank position sensor 32 is electrically connected to the ECU 20, and the ECU 20 receives a signal corresponding to the rotation angle of the output shaft of the internal combustion engine 1 and calculates the engine rotational speed and the like of the internal combustion engine 1.

また、フィルタ14の下流の排気管13には、フィルタ14から流出する排気の温度を検出する排気温度センサ31が設けられ、ECU20と電気的に接続されている。更に、フィルタ14の上流側の排気管13には排気を導入する上流側導入管33aの一端が接続され、フィルタ14の下流の排気管13には排気を導入する下流側導入管33bの一端が接続される。上流側導入管33a及び下流側導入管33bの他端は差圧センサ33に接続されている。差圧センサ33が、上流側導入管33a及び下流側導入管33bから導入された排気の差圧に対応した電圧をECU20に伝えることで、フィルタ14の上流側と下流側の間の差圧が検出される。   The exhaust pipe 13 downstream of the filter 14 is provided with an exhaust temperature sensor 31 that detects the temperature of the exhaust gas flowing out from the filter 14, and is electrically connected to the ECU 20. Further, one end of an upstream introduction pipe 33a that introduces exhaust gas is connected to the exhaust pipe 13 upstream of the filter 14, and one end of a downstream introduction pipe 33b that introduces exhaust gas is connected to the exhaust pipe 13 downstream of the filter 14. Connected. The other ends of the upstream introduction pipe 33 a and the downstream introduction pipe 33 b are connected to the differential pressure sensor 33. The differential pressure sensor 33 transmits a voltage corresponding to the differential pressure of the exhaust gas introduced from the upstream introduction pipe 33a and the downstream introduction pipe 33b to the ECU 20, so that the differential pressure between the upstream side and the downstream side of the filter 14 is increased. Detected.

これらのセンサとフィルタ14、燃料噴射弁3、燃料添加弁30等で構成される排気浄化システムによって、内燃機関1から排出される排気の浄化が行われる。そこで、フィルタ14には、排気中に含まれる粒子状物質が捕集されるが、その捕集量が増加すると内燃機関1の運転状態に悪影響を与えるため、捕集された粒子状物質を除去する必要がある。そこで、図2に基づいて、フィルタ14に捕集された粒子状物質を除去するための制御について、説明する。ここで、図2は粒子状物質を除去するための制御のフローを示す図である。   Exhaust gas discharged from the internal combustion engine 1 is purified by an exhaust gas purification system including these sensors, the filter 14, the fuel injection valve 3, the fuel addition valve 30, and the like. Therefore, the particulate matter contained in the exhaust gas is collected in the filter 14, but if the amount of collection is increased, the operating state of the internal combustion engine 1 is adversely affected, so the collected particulate matter is removed. There is a need to. Then, based on FIG. 2, the control for removing the particulate matter collected by the filter 14 is demonstrated. Here, FIG. 2 is a diagram showing a control flow for removing the particulate matter.

S101では、内燃機関1のフィルタ14において、捕集された粒子状物質を除去する必要があるか否か、差圧センサ33からの信号に基づいて、判断する。具体的には、フィルタ14に粒子状物質が捕集されるに従い、差圧センサ33によって検出される差圧が大きくなるため、該差圧が所定の圧力以上となるときにフィルタ14に捕集された粒子状物質の除去を行う必要があると判断される。捕集された粒子状物質を酸化除去する必要があると判断されるとS102へ進み、必要がないと判断されると本制御を終了する。   In S101, the filter 14 of the internal combustion engine 1 determines whether it is necessary to remove the collected particulate matter based on a signal from the differential pressure sensor 33. Specifically, as the particulate matter is collected by the filter 14, the differential pressure detected by the differential pressure sensor 33 increases, so that the particulate matter is collected when the differential pressure exceeds a predetermined pressure. It is judged that it is necessary to remove the particulate matter. If it is determined that it is necessary to oxidize and remove the collected particulate matter, the process proceeds to S102, and if it is determined that it is not necessary, the present control is terminated.

S102では、燃料噴射弁3からの燃料噴射時期を遅角側に移行することで、内燃機関1から排出される排気の温度を上昇させる。これにより、フィルタ14に担持されている貴金属を活性状態へと導く。S102の処理が終了すると、S103へ進む。   In S102, the temperature of the exhaust discharged from the internal combustion engine 1 is raised by shifting the fuel injection timing from the fuel injection valve 3 to the retard side. As a result, the noble metal supported on the filter 14 is guided to an active state. When the process of S102 ends, the process proceeds to S103.

S103では、排気管13を流れフィルタ14に流入する排気の流量QEを推定する。具体的には、エアフローメータ9からの信号や、内燃機関1の機関回転速度等に基づいて、推定する。S103の処理が終了すると、S104へ進む。   In S103, the flow rate QE of the exhaust gas flowing into the flow filter 14 through the exhaust pipe 13 is estimated. Specifically, the estimation is based on a signal from the air flow meter 9, the engine speed of the internal combustion engine 1, and the like. When the process of S103 ends, the process proceeds to S104.

S104では、S103で推定された排気流量QEに基づいて、フィルタ14に燃料を供給するフィルタ14の温度Ts(以下、「燃料供給開始温度Ts」という)を補正する
。燃料供給開始温度Tsの補正について、図3に基づいて説明する。図3は、排気流量QEに対する燃料供給開始温度Tsの関係を表すグラフである。グラフの横軸は排気流量QEを、縦軸は燃料供給開始温度Tsを示す。ここで、フィルタ14に流入する排気の流量QEが増大するに従い、排気中の燃料がフィルタ14に担持されている貴金属によって酸化され得る時間が短くなることを考慮すると、フィルタ14に流入する排気の流量QEが増大するのに伴い、該貴金属の酸化能がより強く発揮される必要がある。そこで、図3に示すように、排気流量QEが増大するに従い、燃料供給開始温度Tsを高くする補正を行う。S104の処理が終了すると、S105へ進む。
In S104, the temperature Ts of the filter 14 that supplies fuel to the filter 14 (hereinafter referred to as “fuel supply start temperature Ts”) is corrected based on the exhaust flow rate QE estimated in S103. The correction of the fuel supply start temperature Ts will be described with reference to FIG. FIG. 3 is a graph showing the relationship of the fuel supply start temperature Ts to the exhaust flow rate QE. The horizontal axis of the graph represents the exhaust gas flow rate QE, and the vertical axis represents the fuel supply start temperature Ts. Here, considering that the time during which the fuel in the exhaust gas can be oxidized by the noble metal supported by the filter 14 becomes shorter as the flow rate QE of the exhaust gas flowing into the filter 14 increases, the exhaust gas flowing into the filter 14 becomes shorter. As the flow rate QE increases, the oxidizing ability of the noble metal needs to be exerted more strongly. Therefore, as shown in FIG. 3, correction is performed to increase the fuel supply start temperature Ts as the exhaust flow rate QE increases. When the process of S104 ends, the process proceeds to S105.

S105では、フィルタ14の温度がS104において補正された燃料供給開始温度Ts以上であるか否かが判断される。フィルタ14の温度は、排気温度センサ31によって検出されるフィルタ14から排出される排気の温度に基づいて推定される。フィルタ14の温度が燃料供給開始温度Ts以上であることは、現時点の排気流量QEにおいて、フィルタ14に担持されている貴金属が排気に含まれる燃料を十分に酸化し得る酸化能を発揮できることを意味し、S106へ進む。一方で、フィルタ14の温度が燃料供給開始温度Tsより低いことは、現時点の排気流量QEにおいて、フィルタ14に担持されている貴金属が排気に含まれる燃料を十分に酸化し得る酸化能を発揮できないことを意味するので、フィルタ14の温度が燃料供給開始温度Tsに上昇するまで、S103以降の処理が再び行われる。   In S105, it is determined whether or not the temperature of the filter 14 is equal to or higher than the fuel supply start temperature Ts corrected in S104. The temperature of the filter 14 is estimated based on the temperature of the exhaust discharged from the filter 14 detected by the exhaust temperature sensor 31. That the temperature of the filter 14 is equal to or higher than the fuel supply start temperature Ts means that at the current exhaust gas flow rate QE, the noble metal supported on the filter 14 can exhibit an oxidizing ability capable of sufficiently oxidizing the fuel contained in the exhaust gas. Then, the process proceeds to S106. On the other hand, the fact that the temperature of the filter 14 is lower than the fuel supply start temperature Ts cannot exhibit the oxidizing ability that the noble metal supported on the filter 14 can sufficiently oxidize the fuel contained in the exhaust at the current exhaust gas flow rate QE. This means that the processing after S103 is performed again until the temperature of the filter 14 rises to the fuel supply start temperature Ts.

S106では、フィルタ14へ燃料の供給が開始される。フィルタ14に燃料が供給されることで、燃料がフィルタ14に担持された貴金属によって酸化され、その酸化熱によってフィルタ14に捕集された粒子状物質の酸化除去が行われる。ここで、フィルタ14への燃料供給は、燃料添加弁30によってフィルタ14に流入する排気に燃料を添加することで行う。また、燃料噴射弁3からの燃料噴射を圧縮上死点近傍で行う主噴射後であって、噴射される燃料が内燃機関の機関出力に寄与しない時期、例えば圧縮上死点後90°に燃料噴射を行う副噴射によって、フィルタ14へ燃料を供給してもよい。尚、粒子状物質の酸化除去に伴って発生する酸化熱により、フィルタ14の温度が過度に上昇しフィルタ14が溶損するのを回避するために、排気温度センサ31によって検出される排気温度に基づいて、フィルタ14へ供給される燃料の量が制御される。S106の処理が終了すると、S107、S108の処理が順次行われる。   In S106, the supply of fuel to the filter 14 is started. By supplying the fuel to the filter 14, the fuel is oxidized by the noble metal supported on the filter 14, and the particulate matter collected on the filter 14 is oxidized and removed by the oxidation heat. Here, the fuel is supplied to the filter 14 by adding fuel to the exhaust gas flowing into the filter 14 by the fuel addition valve 30. Further, after the main injection in which fuel injection from the fuel injection valve 3 is performed in the vicinity of the compression top dead center, the fuel is injected at a time when the injected fuel does not contribute to the engine output of the internal combustion engine, for example, 90 ° after the compression top dead center. Fuel may be supplied to the filter 14 by sub-injection that performs injection. Note that, based on the exhaust temperature detected by the exhaust temperature sensor 31, in order to prevent the temperature of the filter 14 from excessively rising due to the oxidation heat generated by the oxidation removal of the particulate matter, the filter 14 may be melted. Thus, the amount of fuel supplied to the filter 14 is controlled. When the process of S106 is completed, the processes of S107 and S108 are sequentially performed.

S107およびS108では、それぞれS103、S104と同一の処理が行われ、その後S109へ進む。   In S107 and S108, the same processing as that in S103 and S104 is performed, and then the process proceeds to S109.

S109では、S105と同様に、フィルタ14の温度がS108において補正された燃料供給開始温度Ts以上であるか否かが判断される。即ち、S109では、フィルタ14に捕集された粒子状物質の酸化除去が行われている期間において、排気流量QEの増加によって、フィルタ14に担持された貴金属の酸化能が排気中の燃料を酸化するに十分でない状態となっているか否かが判断されることになる。そこで、フィルタ14の温度がS108において補正された燃料供給開始温度Ts以上であると判断されるとS110へ進む。S110では、フィルタ14への燃料の供給を継続し、またはS111において燃料の供給が中断されている場合には、燃料の供給を再開する。一方で、フィルタ14の温度がS108において補正された燃料供給開始温度Tsより低いと判断されるとS111でフィルタ14への燃料の供給が中断される。S110またはS111の処理が終了すると、S112へ進む。   In S109, as in S105, it is determined whether or not the temperature of the filter 14 is equal to or higher than the fuel supply start temperature Ts corrected in S108. That is, in S109, during the period in which particulate matter collected by the filter 14 is oxidized and removed, the oxidation capacity of the noble metal supported by the filter 14 oxidizes the fuel in the exhaust gas by increasing the exhaust flow rate QE. It is determined whether or not the state is insufficient. If it is determined that the temperature of the filter 14 is equal to or higher than the fuel supply start temperature Ts corrected in S108, the process proceeds to S110. In S110, the fuel supply to the filter 14 is continued, or when the fuel supply is interrupted in S111, the fuel supply is resumed. On the other hand, if it is determined that the temperature of the filter 14 is lower than the fuel supply start temperature Ts corrected in S108, the supply of fuel to the filter 14 is interrupted in S111. When the process of S110 or S111 ends, the process proceeds to S112.

S112では、フィルタ14に捕集された粒子状物質の酸化除去が完了したか否かが、差圧センサ33からの信号に基づいて、判断される。フィルタ14に捕集された粒子状物質の酸化除去が完了したと判断されるとS113へ進み、フィルタ14への燃料供給を終
了させて、本制御を終える。一方で、フィルタ14に捕集された粒子状物質の酸化除去が完了していないと判断されると、再びS107以降の処理が行われる。
In S <b> 112, it is determined based on the signal from the differential pressure sensor 33 whether or not the particulate matter collected by the filter 14 has been oxidized and removed. If it is determined that the oxidation removal of the particulate matter collected by the filter 14 is completed, the process proceeds to S113, the fuel supply to the filter 14 is terminated, and this control is finished. On the other hand, if it is determined that the particulate matter collected by the filter 14 has not been oxidized and removed, the processing from S107 is performed again.

本制御によると、フィルタ14に燃料を供給することで、フィルタ14に捕集された粒子状物質を酸化除去する際に、フィルタ14の温度およびフィルタ14に流入する排気の流量に基づいて、フィルタ14への燃料の供給を行うか否かが決定される。これにより、排気流量の増量に伴う排気中の燃料の大気への放出を可及的に抑制することが可能となる。また、フィルタ14への燃料供給を行っているときであっても、排気流量が増量することで燃料が大気へ放出される虞がある場合には、該燃料供給が中断され、燃料の大気への放出が回避され得る。   According to this control, when the particulate matter trapped in the filter 14 is oxidized and removed by supplying fuel to the filter 14, the filter is based on the temperature of the filter 14 and the flow rate of the exhaust gas flowing into the filter 14. Whether or not to supply fuel to 14 is determined. Thereby, it becomes possible to suppress as much as possible the release of the fuel in the exhaust gas to the atmosphere accompanying the increase in the exhaust gas flow rate. Even when the fuel is being supplied to the filter 14, if there is a risk that the fuel will be released to the atmosphere due to an increase in the exhaust flow rate, the fuel supply is interrupted and the fuel is released to the atmosphere. Release may be avoided.

尚、本制御においてはフィルタ14への燃料の供給の可否を、フィルタ14の温度とフィルタ14へ流入する排気の流量に基づいて、判断したが、更にフィルタ14に担持された貴金属の劣化に応じても判断してよい。即ち、該貴金属の酸化能が経年劣化することを踏まえて、貴金属の使用期間が長くなるに従いフィルタ14へ燃料を供給するための基準となる燃料供給開始温度Tsをより高い値に補正することで、捕集された粒子状物質の酸化除去時における大気への燃料の放出を、より確実に回避することが可能となる。   In this control, whether or not the fuel can be supplied to the filter 14 is determined based on the temperature of the filter 14 and the flow rate of the exhaust gas flowing into the filter 14, but further according to the deterioration of the noble metal carried on the filter 14. You may judge. That is, based on the fact that the oxidation ability of the noble metal deteriorates over time, the fuel supply start temperature Ts that serves as a reference for supplying fuel to the filter 14 is corrected to a higher value as the use period of the noble metal becomes longer. Further, it is possible to more reliably avoid the release of fuel to the atmosphere when the collected particulate matter is oxidized and removed.

フィルタ14に捕集された粒子状物質を除去するための制御の別の実施の形態について、図4に基づいて説明する。尚、図4は粒子状物質を除去するための制御のフローを示す図であり、図4に示す制御の処理と図2に示す制御の処理と同一の処理については、同一の参照番号を付して、その説明を省略する。   Another embodiment of the control for removing the particulate matter collected by the filter 14 will be described with reference to FIG. FIG. 4 is a diagram showing a control flow for removing particulate matter, and the same reference numerals are assigned to the control process shown in FIG. 4 and the same process as the control process shown in FIG. Therefore, the description is omitted.

本制御においては、S109で、フィルタ14の温度がS108において補正された燃料供給開始温度Ts以上であると判断されるとS201へ進み、フィルタ14への燃料の供給を継続する。一方で、フィルタ14の温度がS108において補正された燃料供給開始温度Tsより低いと判断されるとS202へ進む。   In this control, if it is determined in S109 that the temperature of the filter 14 is equal to or higher than the fuel supply start temperature Ts corrected in S108, the process proceeds to S201, and the supply of fuel to the filter 14 is continued. On the other hand, if it is determined that the temperature of the filter 14 is lower than the fuel supply start temperature Ts corrected in S108, the process proceeds to S202.

S202では、吸気絞り弁10またはEGR弁24の開度を調整して、フィルタ14に流入する排気の流量を低減する。これにより、排気に含まれる燃料がフィルタ14に担持された貴金属によって酸化され得る時間が長くなり、燃料が未酸化の状態で大気へ放出されるのが抑制される。そして、更にフィルタ14への燃料の供給を中断しないため、フィルタ14に捕集された粒子状物質の酸化除去を早期に行うことが可能となる。S201またはS202の処理が終了すると、S112以降の処理が順次行われる。   In S202, the opening degree of the intake throttle valve 10 or the EGR valve 24 is adjusted to reduce the flow rate of the exhaust gas flowing into the filter 14. As a result, the time during which the fuel contained in the exhaust gas can be oxidized by the noble metal supported on the filter 14 is lengthened, and the fuel is suppressed from being released into the atmosphere in an unoxidized state. Further, since the supply of fuel to the filter 14 is not interrupted, the particulate matter collected by the filter 14 can be oxidized and removed at an early stage. When the process of S201 or S202 is completed, the processes after S112 are sequentially performed.

本発明の実施の形態に係る排気浄化システムおよび該排気浄化システムを含む内燃機関およびその制御系統の概略構成を表すブロック図である。1 is a block diagram showing a schematic configuration of an exhaust purification system according to an embodiment of the present invention, an internal combustion engine including the exhaust purification system, and a control system thereof. 本発明の実施の形態に係る内燃機関の排気浄化システムにおいて、フィルタに捕集された粒子状物質を除去する制御を示すフロー図である。It is a flowchart which shows control which removes the particulate matter collected by the filter in the exhaust gas purification system of the internal combustion engine which concerns on embodiment of this invention. 本発明の実施の形態に係る内燃機関の排気浄化システムにおいて、フィルタに流入する排気の流量に対する、フィルタに燃料の供給を開始するフィルタ温度の関係を表すグラフである。5 is a graph showing a relationship between a filter temperature at which fuel supply to the filter is started and a flow rate of exhaust gas flowing into the filter in the exhaust gas purification system for an internal combustion engine according to the embodiment of the present invention. 本発明の実施の形態に係る内燃機関の排気浄化システムにおいて、フィルタに捕集された粒子状物質を除去する制御を示す第二のフロー図である。It is a 2nd flowchart which shows the control which removes the particulate matter collected by the filter in the exhaust gas purification system of the internal combustion engine which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1・・・・内燃機関
3・・・・燃料噴射弁
7・・・・吸気枝管
8・・・・吸気管
9・・・・エアフローメータ
10・・・・吸気絞り弁
12・・・・排気枝管
13・・・・排気管
14・・・・フィルタ
20・・・・ECU
21・・・・EGR装置
24・・・・EGR弁
30・・・・燃料添加弁
31・・・・排気温度センサ
32・・・・クランクポジションセンサ
33・・・・差圧センサ
DESCRIPTION OF SYMBOLS 1 .... Internal combustion engine 3 .... Fuel injection valve 7 .... Intake branch pipe 8 .... Intake pipe 9 .... Air flow meter 10 .... Intake throttle valve 12 .... Exhaust branch pipe 13 ... Exhaust pipe 14 ... Filter 20 ... ECU
21 ... EGR device 24 ... EGR valve 30 ... Fuel addition valve 31 ... Exhaust temperature sensor 32 ... Crank position sensor 33 ... Differential pressure sensor

Claims (3)

内燃機関の排気通路に設けられ、該内燃機関からの排気中に含まれる粒子状物質を捕集し且つ貴金属による酸化能を有する排気浄化手段と、
前記排気浄化手段に燃料を供給する燃料供給手段と、
前記排気浄化手段の温度が所定の温度以上であるときに、前記燃料供給手段による該排気浄化手段への燃料供給を許容し該排気浄化手段の温度を上昇させる昇温制御手段と、
前記排気浄化手段に流入する排気の流量に基づいて、前記燃料供給手段による該排気浄化手段への燃料供給が許容される前記所定の温度を補正する燃料供給温度補正手段と、を備えることを特徴とする内燃機関の排気浄化システム。
An exhaust purification means that is provided in an exhaust passage of the internal combustion engine, collects particulate matter contained in the exhaust from the internal combustion engine, and has an oxidizing ability by a noble metal;
Fuel supply means for supplying fuel to the exhaust purification means;
A temperature increase control means for allowing the fuel supply means to supply fuel to the exhaust purification means and increasing the temperature of the exhaust purification means when the temperature of the exhaust purification means is equal to or higher than a predetermined temperature;
Fuel supply temperature correction means for correcting the predetermined temperature at which fuel supply to the exhaust purification means is allowed by the fuel supply means based on the flow rate of the exhaust gas flowing into the exhaust purification means. An exhaust purification system for an internal combustion engine.
前記燃料供給温度補正手段は、前記排気浄化手段に流入する排気の流量が大きくなるほど、前記所定の温度を高くする補正を行うことを特徴とする請求項1に記載の内燃機関の排気浄化システム。 2. The exhaust gas purification system for an internal combustion engine according to claim 1, wherein the fuel supply temperature correction unit performs correction to increase the predetermined temperature as the flow rate of the exhaust gas flowing into the exhaust gas purification unit increases. 前記排気浄化手段に流入する排気の流量を制御する排気流量制御手段を更に備え、
前記排気浄化手段の温度が前記所定の温度より低いときに、前記排気流量制御手段により該排気浄化手段に流入する排気の流量を低減することを特徴とする請求項1又は請求項2に記載の内燃機関の排気浄化システム。
An exhaust flow rate control means for controlling the flow rate of the exhaust gas flowing into the exhaust gas purification means,
The flow rate of exhaust gas flowing into the exhaust gas purification unit is reduced by the exhaust gas flow rate control unit when the temperature of the exhaust gas purification unit is lower than the predetermined temperature. An exhaust purification system for an internal combustion engine.
JP2003327828A 2003-09-19 2003-09-19 Emission control system for internal combustion engine Pending JP2005090434A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003327828A JP2005090434A (en) 2003-09-19 2003-09-19 Emission control system for internal combustion engine
FR0409791A FR2860033B1 (en) 2003-09-19 2004-09-15 EXHAUST GAS PURIFYING SYSTEM FOR AN INTERNAL COMBUSTION ENGINE
DE102004045234A DE102004045234A1 (en) 2003-09-19 2004-09-17 Emission control system for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003327828A JP2005090434A (en) 2003-09-19 2003-09-19 Emission control system for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2005090434A true JP2005090434A (en) 2005-04-07

Family

ID=34225346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003327828A Pending JP2005090434A (en) 2003-09-19 2003-09-19 Emission control system for internal combustion engine

Country Status (3)

Country Link
JP (1) JP2005090434A (en)
DE (1) DE102004045234A1 (en)
FR (1) FR2860033B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086253A1 (en) * 2006-01-27 2007-08-02 Isuzu Motors Limited Exhaust gas purification method and exhaust gas purification system
CN101839163A (en) * 2009-03-03 2010-09-22 通用汽车环球科技运作公司 Particulate filter temperature correction system and method
US7845163B2 (en) * 2005-12-02 2010-12-07 Toyota Jidosha Kabushiki Kaisha Device for purifying exhaust gas of an internal combustion engine
CN101907013A (en) * 2009-06-05 2010-12-08 通用汽车环球科技运作公司 Use the regenerative system that is used for particulate filter and the method for virtual brick temperature sensors

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7784275B2 (en) * 2005-03-14 2010-08-31 Gm Global Technology Operations, Inc. Optimization of hydrocarbon injection during diesel particulate filter (DPF) regeneration
US7533524B2 (en) * 2005-05-18 2009-05-19 Cummins Inc. Method and apparatus for soot filter catalyst temperature control with oxygen flow constraint
FR2925586A3 (en) * 2007-12-21 2009-06-26 Renault Sas Exhaust line for turbocharged type combustion engine of vehicle, has intermediate duct with fixation unit receiving additional fuel injector, and connected in upstream of engine, where duct and turbine case are formed as single piece
DE102009014179B4 (en) * 2009-03-20 2014-12-31 Bayerische Motoren Werke Aktiengesellschaft exhaust system
CN110711755B (en) * 2019-09-18 2021-09-03 南京林业大学 Modularized industrial exhaust purification system and branch pipe number setting method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6568178B2 (en) * 2000-03-28 2003-05-27 Toyota Jidosha Kabushiki Kaisha Device for purifying the exhaust gas of an internal combustion engine
JP2001303980A (en) * 2000-04-27 2001-10-31 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP3599012B2 (en) * 2001-10-01 2004-12-08 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7845163B2 (en) * 2005-12-02 2010-12-07 Toyota Jidosha Kabushiki Kaisha Device for purifying exhaust gas of an internal combustion engine
WO2007086253A1 (en) * 2006-01-27 2007-08-02 Isuzu Motors Limited Exhaust gas purification method and exhaust gas purification system
US7788909B2 (en) 2006-01-27 2010-09-07 Isuzu Motors Limited Exhaust gas purification method and exhaust gas purification system
CN101839163A (en) * 2009-03-03 2010-09-22 通用汽车环球科技运作公司 Particulate filter temperature correction system and method
CN101907013A (en) * 2009-06-05 2010-12-08 通用汽车环球科技运作公司 Use the regenerative system that is used for particulate filter and the method for virtual brick temperature sensors

Also Published As

Publication number Publication date
FR2860033A1 (en) 2005-03-25
DE102004045234A1 (en) 2005-05-04
FR2860033B1 (en) 2006-09-01

Similar Documents

Publication Publication Date Title
KR100504422B1 (en) Exhaust emission control device for engine
EP3051105B1 (en) Exhaust gas purification system for internal combustion engine
KR100794946B1 (en) Exhaust gas control apparatus and exhaust gas control method for internal combustion engine
JP4670592B2 (en) Exhaust gas recirculation system for internal combustion engines
JP2004339993A (en) Exhaust emission control system of internal combustion engine
JP2006022770A (en) Exhaust emission control device for internal combustion engine
ES2383566T3 (en) Exhaust gas purification system for internal combustion engine
JP4430705B2 (en) Exhaust gas purification device for internal combustion engine
US11293320B2 (en) Control device, exhaust gas purification system, and control method of engine
JP2005090434A (en) Emission control system for internal combustion engine
JP2002047986A (en) Exhaust air particulate treatment device for internal combustion engine
JP4211466B2 (en) Exhaust gas purification system for compression ignition internal combustion engine
JP4345344B2 (en) Exhaust gas purification system for internal combustion engine
JP2008196325A (en) Starting aid device for diesel engine
JP2005016393A (en) Exhaust-emission control system of internal combustion engine
JP2008144688A (en) Control device of internal combustion engine
JP4858023B2 (en) Exhaust gas purification system for internal combustion engine
JP2007064055A (en) Exhaust emission control device for internal combustion engine
JP4241279B2 (en) Exhaust gas purification system for internal combustion engine
JP2006274980A (en) Exhaust emission control device
JP2006029301A (en) Exhaust emission control device for compression ignition internal combustion engine and exhaust emission control method for compression ignition internal combustion engine
JP5796278B2 (en) Exhaust gas purification system
JP5544758B2 (en) Diesel engine control system
JP3257233B2 (en) Exhaust particulate processing equipment for internal combustion engines
JP2010013963A (en) Multi-stage supercharging system for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080304