JP2005089822A - Vacuum deposition method for alloy - Google Patents

Vacuum deposition method for alloy Download PDF

Info

Publication number
JP2005089822A
JP2005089822A JP2003324790A JP2003324790A JP2005089822A JP 2005089822 A JP2005089822 A JP 2005089822A JP 2003324790 A JP2003324790 A JP 2003324790A JP 2003324790 A JP2003324790 A JP 2003324790A JP 2005089822 A JP2005089822 A JP 2005089822A
Authority
JP
Japan
Prior art keywords
alloy
composition
film
vapor deposition
alloy film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003324790A
Other languages
Japanese (ja)
Inventor
Kenji Sakaguchi
坂口  健二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2003324790A priority Critical patent/JP2005089822A/en
Publication of JP2005089822A publication Critical patent/JP2005089822A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To deposit an alloy thin film whose alloy film composition is uniform and film thickness precision is high by a vacuum deposition method, in an electronic component comprising an alloy thin film, and to provide an electronic component having high reliability. <P>SOLUTION: In the vacuum deposition method where an alloy film composed of at least two kinds of metals is deposited, a vapor deposition source is provided by an amount larger than that consumed in one batch. Regarding the composition of the vapor deposition source, compared with the composition of the alloy film, the content of the metal having low vapor pressure is made high. Also, regarding the composition of the alloy supplied for the vapor deposition source after the vapor deposition treatment, compared with the composition of the alloy film, the content of the metal having low vapor pressure is made low. Further, the amount of the alloy to be supplied is equivalent to the one consumed by the vapor deposition treatment. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、合金膜を形成する真空蒸着法に関し、特に蒸気圧が異なる合金膜を安定に形成する真空蒸着法に関する。   The present invention relates to a vacuum deposition method for forming an alloy film, and more particularly to a vacuum deposition method for stably forming alloy films having different vapor pressures.

従来より、電子部品等に形成される金属膜の形成法として、成膜速度や処理能力の関係から真空蒸着法が広く用いられている。一方、金属膜の形成法としては、電子部品等における小型化および高精度化の要望が高まるなか、その形成する膜厚の精度の向上が求められる。更に、金属膜の形成法は、電子部品等の機能に対応した種々の金属材料を形成することが求められる。
真空蒸着法は、金属膜として形成する金属を、その金属の融点以上に加熱することにより、所望する基板に成膜する。しかし、成膜する金属が合金の時、その合金を構成する金属の蒸気圧が異なることにより、形成された金属膜と、蒸着源とした金属との組成に差異が生ずるとの課題を有していた。
そこで、このような課題を解決するために、次のような金属膜の真空蒸着法が提案されている。この方法によれば、所望する金属膜の組成に比較し、蒸気圧の高い成分の割合が少ない蒸着材料と、蒸気圧の高い成分の割合が多い蒸着材料とを選択的に加熱溶融させ、蒸発るつぼ内に供給する。これにより、形成される金属膜の膜組成を均一化することを特徴とする金属膜の真空蒸着法である(例えば特許文献1参照)。
特公平6−10344号公報
Conventionally, a vacuum deposition method has been widely used as a method for forming a metal film formed on an electronic component or the like because of the film formation speed and the processing capability. On the other hand, as a method for forming a metal film, an increase in the accuracy of the film thickness to be formed is required as electronic components and the like are increasingly demanded for miniaturization and high accuracy. Further, the metal film forming method is required to form various metal materials corresponding to the functions of electronic parts and the like.
In the vacuum vapor deposition method, a metal to be formed as a metal film is heated on a melting point of the metal or higher to form a film on a desired substrate. However, when the metal to be deposited is an alloy, there is a problem that the composition of the formed metal film and the metal used as the vapor deposition source differs because the vapor pressure of the metal constituting the alloy is different. It was.
In order to solve such problems, the following metal film vacuum deposition method has been proposed. According to this method, a vapor deposition material with a small proportion of components having a high vapor pressure and a vapor deposition material with a high proportion of components with a high vapor pressure are selectively heated and melted to evaporate as compared with the desired metal film composition. Supply into crucible. This is a metal film vacuum deposition method characterized in that the film composition of the formed metal film is made uniform (see, for example, Patent Document 1).
Japanese Patent Publication No. 6-10344

しかしながら、上記に説明した従来技術による金属膜の真空蒸着法には、以下の問題が存在する。
特許文献1においては、第1の電子線によりるつぼを加熱する。所望する膜組成の蒸気圧の高い成分の割合よりもその割合が少ない第1の蒸着材料と、第1の蒸着材料よりも蒸気圧の高い成分の割合が多い第2の蒸着材料とを第2の電子線により選択的に加熱溶融しながらるつぼ内に供給する。以上により、所望する金属膜を真空蒸着法によって形成する。そのため、所望する膜組成の金属膜を形成するためには、金属材料に応じた複数の電子線が必要となり、成膜装置としての専用化および装置価格が高騰するとの課題を有していた。
However, the following problems exist in the vacuum deposition method of the metal film according to the prior art described above.
In Patent Document 1, a crucible is heated by a first electron beam. A first vapor deposition material having a lower ratio than a component having a high vapor pressure of a desired film composition and a second vapor deposition material having a higher ratio of a component having a higher vapor pressure than the first vapor deposition material. Are supplied into the crucible while being selectively heated and melted. As described above, a desired metal film is formed by vacuum deposition. For this reason, in order to form a metal film having a desired film composition, a plurality of electron beams corresponding to the metal material is required, and there is a problem that the film formation apparatus is dedicated and the apparatus price increases.

上記問題を解決すべく本発明の真空蒸着法は、少なくとも2種類の金属からなる合金膜を成膜する真空蒸着法であって、蒸着源は、1バッチで消費する量より大きな量を備える。蒸着源の組成は、合金膜の組成に比較して、蒸気圧の小さい金属ほどその含有量を大きくする。更に、蒸着処理後に蒸着源に補充する合金の組成は、合金膜の組成に比較して、蒸気圧の小さい金属ほどその含有量を小さくすることを特徴とする真空蒸着法である。
また、補充する合金の量は、蒸着処理で消費した量と等量であることを特徴とする。
また、真空蒸着法は、電子ビーム加熱式真空蒸着法であることを特徴とする。
In order to solve the above problem, the vacuum vapor deposition method of the present invention is a vacuum vapor deposition method for forming an alloy film made of at least two kinds of metals, and the vapor deposition source has an amount larger than the amount consumed in one batch. As for the composition of the vapor deposition source, the content of the metal having a lower vapor pressure is increased as compared with the composition of the alloy film. Furthermore, the composition of the alloy to be replenished to the deposition source after the deposition process is a vacuum deposition method characterized in that the content of the metal having a lower vapor pressure is smaller than that of the alloy film.
The amount of the alloy to be replenished is equal to the amount consumed in the vapor deposition process.
The vacuum deposition method is an electron beam heating type vacuum deposition method.

以上のような真空蒸着法によれば、所望する合金膜を均一な組成に形成することおよび膜厚精度の高い合金膜を形成することが可能なる。 According to the above vacuum deposition method, it is possible to form a desired alloy film with a uniform composition and to form an alloy film with high film thickness accuracy.

よって、合金膜を有する電子部品等において、真空蒸着法により、合金膜の組成が均一で、かつ膜厚の精度の高い合金膜を形成することが可能となり、その結果、製造コストを抑えた、信頼性の高い電子部品を提供することが可能となる。   Therefore, in an electronic component or the like having an alloy film, it is possible to form an alloy film with a uniform alloy film composition and a high film thickness accuracy by a vacuum deposition method. It becomes possible to provide highly reliable electronic components.

以下、本発明の実施例について詳細に説明する。
本発明の真空蒸着法により形成したAl−10wt%Cu合金膜の製造方法について説明する。
蒸着源には、1バッチで消費する量より大きな量を備えた。また、蒸着源の合金の組成は、形成する合金膜の組成に比較して、蒸気圧の小さい金属の含有量を大きくした。また、蒸着処理後に蒸着源に補充する合金の組成は、形成する合金膜の組成に比較して、蒸気圧の小さい金属の含有量を小さくした。
より具体的には、蒸着源の合金は、Al−34wt%Cuを用いた。その際、蒸着源の重量を40gとした。また、蒸着後に補充する合金として、Al−8wt%Cuを用い、処理毎に蒸着源の重量が等量となるように補充した。今回用いた真空蒸着装置では、形成する合金膜の膜厚が100nm〜1000nmの時の補充量は、1〜2gであった。
図1に得られた結果について示す。
図1に示すように、蒸着処理バッチに対し、成膜された合金膜のCu濃度組成が10±1wt%内で推移していることが確認できる。また、蒸着処理バッチ数の増加による合金膜の組成の変動は認められず、安定した膜組成の合金膜の形成が確認できる。また、Al−10wt%Cu合金膜に対する蒸着源の合金の組成については、図2に示すように、事前に形成する合金膜と蒸発源の合金との最適な組成の関係を評価しておくことにより決定される。
図2に示す結果より、所望する合金膜の組成に対し、最適な蒸着源の合金の組成が決定される。
また、補充する合金は、蒸着で消費した量と等量とすることにより、形成される合金膜の膜厚のばらつきを低減することができる。図3に、蒸着処理バッチ数と狙い膜厚に対する実測値との関係を示す。蒸着処理バッチ数が39バッチまでについては、蒸着で消費した量に対する補充する量の重量管理がされていない従来技術の結果を示す。また、蒸着処理バッチ数が40バッチ以降については、蒸着で消費した量と等量を補充する重量管理を導入した結果を示す。図3に示す結果より、狙い膜厚に対する合金膜の膜厚のばらつきを低減させる効果が明確に確認できる。補充する重量管理の導入前後において、膜厚のばらつきであるσが0.89から0.50へと低下した。
重量管理することにより、成膜時の蒸着源の高さが安定した範囲内で成膜されることから、膜厚のばらつきの低減が可能となる。この蒸着源の高さの変化は、蒸着密度分布の変化となり、膜厚のばらつきの要因となる。
Examples of the present invention will be described in detail below.
A method for producing an Al-10 wt% Cu alloy film formed by the vacuum deposition method of the present invention will be described.
The vapor deposition source was provided with an amount larger than the amount consumed in one batch. In addition, the composition of the alloy of the vapor deposition source was increased in the content of the metal having a low vapor pressure as compared with the composition of the alloy film to be formed. In addition, the composition of the alloy that is replenished to the deposition source after the deposition treatment is such that the content of the metal having a low vapor pressure is smaller than the composition of the alloy film to be formed.
More specifically, Al-34 wt% Cu was used as the alloy of the vapor deposition source. At that time, the weight of the evaporation source was 40 g. In addition, Al-8 wt% Cu was used as an alloy to be replenished after deposition, and supplemented so that the weight of the deposition source became equal for each treatment. In the vacuum deposition apparatus used this time, the replenishment amount when the film thickness of the alloy film to be formed was 100 nm to 1000 nm was 1 to 2 g.
FIG. 1 shows the results obtained.
As shown in FIG. 1, it can be confirmed that the Cu concentration composition of the formed alloy film is shifted within 10 ± 1 wt% with respect to the vapor deposition treatment batch. Further, no change in the composition of the alloy film due to an increase in the number of vapor deposition batches is observed, and the formation of an alloy film having a stable film composition can be confirmed. As for the composition of the deposition source alloy with respect to the Al-10 wt% Cu alloy film, as shown in FIG. 2, the relationship between the optimal composition of the alloy film to be formed in advance and the alloy of the evaporation source should be evaluated. Determined by.
From the results shown in FIG. 2, the optimum alloy composition of the vapor deposition source is determined for the desired alloy film composition.
Further, by making the supplemented alloy equivalent to the amount consumed by vapor deposition, it is possible to reduce variations in the thickness of the formed alloy film. FIG. 3 shows the relationship between the number of vapor deposition batches and the actual measured value for the target film thickness. For the number of vapor deposition treatment batches up to 39, the results of the prior art in which the weight management of the amount to be supplemented with respect to the amount consumed in the vapor deposition is not performed are shown. Moreover, about the number of vapor deposition treatment batches 40 or more, the result of having introduced weight management which replenishes the quantity equivalent to the quantity consumed by vapor deposition is shown. From the results shown in FIG. 3, the effect of reducing the variation in the thickness of the alloy film with respect to the target film thickness can be clearly confirmed. Before and after the introduction of weight management to replenish, σ, which is a variation in film thickness, decreased from 0.89 to 0.50.
By controlling the weight, the deposition is performed within a stable range of the vapor deposition source at the time of film formation, so that variations in film thickness can be reduced. This change in the height of the vapor deposition source results in a change in the vapor deposition density distribution, which causes variations in film thickness.

本発明の真空蒸着法により形成したNi−30wt%Cr合金膜の製造方法について説明する。
蒸着源には、1バッチで消費する量より大きな量を備えた。また、蒸着源の合金の組成は、形成する合金膜の組成に比較して、蒸気圧の小さい金属の含有量を大きくした。また、蒸着処理後に蒸着源に補充する合金の組成は、形成する合金膜の組成に比較して、蒸気圧の小さい金属の含有量を小さくした。
より具体的には、蒸着源の合金は、Ni−20wt%Crを用いた。その際、蒸着源の重量を80gとした。また、蒸着後に補充する合金として、Ni−35wt%Crを用い、処理毎に蒸着源の重量が等量となるように補充した。今回用いた真空蒸着装置では、形成する合金膜の膜厚が200nm〜500nmの時の補充量は、2〜4gであった。
図4に得られた結果について示す。
図4に示すように、蒸着処理バッチに対し、成膜された合金膜のCr濃度組成が30±2wt%内で推移していることが確認できる。また、蒸着処理バッチ数の増加による合金膜の組成の変動は認められず、安定した膜組成の合金膜の形成が確認できる。また、Ni−20wt%Cr合金膜に対する蒸着源の合金の組成については、図5に示すように、事前に形成する合金膜と蒸発源の合金との最適な組成の関係を評価しておくことにより決定される。図5に示す結果より、所望する合金膜の組成に対し、最適な蒸着源の合金の組成が決定される。
また、補充する合金は、蒸着で消費した量と等量とすることにより、形成される合金膜の膜厚のばらつきを低減することができる。その効果については、実施例1で示した内容と同様であることから記載を省略する。
また、上記した真空蒸着装置における熱源は、電子ビーム加熱式を用いることが好ましい。電子ビーム蒸着源を用いることで安定した蒸着が可能となる。
ここでは、2種類の金属で構成される合金膜についての説明をしたが、本発明においては、3種類以上の金属から構成される合金膜の形成においても同様に所望の合金膜を形成することが可能である。
A method for producing a Ni-30 wt% Cr alloy film formed by the vacuum deposition method of the present invention will be described.
The vapor deposition source was provided with an amount larger than the amount consumed in one batch. In addition, the composition of the alloy of the vapor deposition source was increased in the content of the metal having a low vapor pressure as compared with the composition of the alloy film to be formed. In addition, the composition of the alloy that is replenished to the deposition source after the deposition treatment is such that the content of the metal having a low vapor pressure is smaller than the composition of the alloy film to be formed.
More specifically, Ni-20 wt% Cr was used as the deposition source alloy. At that time, the weight of the vapor deposition source was set to 80 g. Further, Ni-35 wt% Cr was used as an alloy to be replenished after vapor deposition, and supplemented so that the weight of the vapor deposition source became equal for each treatment. In the vacuum deposition apparatus used this time, the replenishment amount when the thickness of the alloy film to be formed was 200 nm to 500 nm was 2 to 4 g.
FIG. 4 shows the results obtained.
As shown in FIG. 4, it can be confirmed that the Cr concentration composition of the alloy film formed changes within 30 ± 2 wt% with respect to the vapor deposition treatment batch. Further, no change in the composition of the alloy film due to an increase in the number of vapor deposition batches is observed, and the formation of an alloy film having a stable film composition can be confirmed. As for the composition of the alloy of the vapor deposition source with respect to the Ni-20 wt% Cr alloy film, as shown in FIG. 5, the relationship between the optimal composition of the alloy film formed in advance and the alloy of the evaporation source should be evaluated. Determined by. From the results shown in FIG. 5, the optimum alloy composition of the vapor deposition source is determined for the desired alloy film composition.
Further, by making the supplemented alloy equivalent to the amount consumed by vapor deposition, it is possible to reduce variations in the thickness of the formed alloy film. Since the effect is the same as that shown in the first embodiment, the description is omitted.
Moreover, it is preferable to use an electron beam heating type as the heat source in the vacuum deposition apparatus described above. Stable vapor deposition is possible by using an electron beam vapor deposition source.
Here, the alloy film composed of two kinds of metals has been described. However, in the present invention, a desired alloy film is formed in the same manner in the formation of an alloy film composed of three or more kinds of metals. Is possible.

本発明の真空蒸着法における一実施例の処理バッチによる膜組成の関係を示す図である。(実施例1)It is a figure which shows the relationship of the film | membrane composition by the process batch of one Example in the vacuum evaporation method of this invention. (Example 1) 本発明の真空蒸着法における一実施例の蒸着源組成と膜組成の関係を示す図である。(実施例1)It is a figure which shows the relationship between the vapor deposition source composition and film | membrane composition of one Example in the vacuum evaporation method of this invention. (Example 1) 本発明の真空蒸着法における一実施例の処理バッチと膜厚ばらつきの関係を示す図である。(実施例1)It is a figure which shows the relationship between the process batch of one Example in the vacuum evaporation method of this invention, and film thickness dispersion | variation. (Example 1) 本発明の真空蒸着法における別の実施例の処理バッチによる膜組成の関係を示す図である。(実施例2)It is a figure which shows the relationship of the film | membrane composition by the process batch of another Example in the vacuum evaporation method of this invention. (Example 2) 本発明の真空蒸着法における別の実施例の蒸着源組成と膜組成の関係を示す図である。(実施例2)It is a figure which shows the relationship between the vapor deposition source composition and film | membrane composition of another Example in the vacuum evaporation method of this invention. (Example 2)

Claims (3)

少なくとも2種類の金属からなる合金膜を成膜する真空蒸着法において、
蒸着源は、1バッチで消費する量より大きな量を備え、前記蒸着源の組成は、前記合金膜の組成に比較して、蒸気圧の小さい金属ほどその含有量を大きくし、蒸着処理後に前記蒸着源に補充する合金の組成は、前記合金膜の組成に比較して、蒸気圧の小さい金属ほどその含有量を小さくすることを特徴とする真空蒸着法。
In a vacuum deposition method of forming an alloy film made of at least two kinds of metals,
The vapor deposition source has an amount larger than the amount consumed in one batch, and the composition of the vapor deposition source is higher in the content of the metal having a lower vapor pressure than the composition of the alloy film, and after the vapor deposition treatment, The composition of the alloy to be replenished to the deposition source is a vacuum deposition method characterized in that the content of the metal having a lower vapor pressure is smaller than that of the alloy film.
前記補充する合金の量は、前記蒸着処理で消費した量と等量であることを特徴とする、請求項1に記載の真空蒸着法。   The vacuum deposition method according to claim 1, wherein an amount of the alloy to be supplemented is equal to an amount consumed in the deposition process. 前記真空蒸着法は、電子ビーム加熱式真空蒸着法であることを特徴とする、請求項1または2に記載の真空蒸着法。   The vacuum deposition method according to claim 1, wherein the vacuum deposition method is an electron beam heating vacuum deposition method.
JP2003324790A 2003-09-17 2003-09-17 Vacuum deposition method for alloy Pending JP2005089822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003324790A JP2005089822A (en) 2003-09-17 2003-09-17 Vacuum deposition method for alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003324790A JP2005089822A (en) 2003-09-17 2003-09-17 Vacuum deposition method for alloy

Publications (1)

Publication Number Publication Date
JP2005089822A true JP2005089822A (en) 2005-04-07

Family

ID=34455451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003324790A Pending JP2005089822A (en) 2003-09-17 2003-09-17 Vacuum deposition method for alloy

Country Status (1)

Country Link
JP (1) JP2005089822A (en)

Similar Documents

Publication Publication Date Title
Subramanian et al. Interfacial reaction issues for lead-free electronic solders
US5474809A (en) Evaporation method
JP2009149968A (en) Vacuum deposition system controllable of source amount
JP2005089822A (en) Vacuum deposition method for alloy
JP6697073B2 (en) Metal evaporation material
JP5188021B2 (en) Solder film and method for forming the same
JP2006175569A5 (en)
JP2006175569A (en) Cutting tool coated with hard coating film
TW593707B (en) Sputtering target
KR20210130178A (en) Method of manufacturing a target for physical vapor deposition
EP0969115B1 (en) Method of vacuum vaporization of metals
EP2636765A1 (en) Methods for vapor depositing high temperature coatings on gas turbine engine components utilizing pre-alloyed pucks
CN112183010B (en) Design method for reliability of reflow soldering process parameters based on IMC thickness control
US4377607A (en) Process for producing vacuum deposition films
TW200946692A (en) Sb-te alloy powder for sintering, process for production of the powder, and sintered target
JP2005088130A (en) Hard film coated tool and target for hard film formation
JPH0688214A (en) Vapor deposition plating method
JP3453190B2 (en) Vacuum evaporation method and vacuum evaporation apparatus
KR100770938B1 (en) Production device for multiple-system film and coating tool for multiple-system film
JP2525081B2 (en) Steam heating method
JPWO2008123575A1 (en) Vapor deposition material and optical thin film obtained therefrom
JP2008091764A (en) Electronic component, and film capacitor
JP2008114331A (en) High oxidation resistance hard film coated tool and hard film coating method
JP2001003157A (en) Film forming material of optical thin film and film forming method
WO1999049100A1 (en) Method for electron beam applying leader free coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090714