JP2005089633A - Curable composite material and circuit board using the same - Google Patents

Curable composite material and circuit board using the same Download PDF

Info

Publication number
JP2005089633A
JP2005089633A JP2003326047A JP2003326047A JP2005089633A JP 2005089633 A JP2005089633 A JP 2005089633A JP 2003326047 A JP2003326047 A JP 2003326047A JP 2003326047 A JP2003326047 A JP 2003326047A JP 2005089633 A JP2005089633 A JP 2005089633A
Authority
JP
Japan
Prior art keywords
circuit board
resin
curable
composite material
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003326047A
Other languages
Japanese (ja)
Inventor
Yasuo Miyashita
安男 宮下
Takemi Oguma
武美 小熊
Yuko Ino
優子 井野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2003326047A priority Critical patent/JP2005089633A/en
Publication of JP2005089633A publication Critical patent/JP2005089633A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a circuit board having heat resistance and moist resistance superior to the conventional ones. <P>SOLUTION: A curable resin composition comprises (1) an epoxy resin which is a diglycidol derivative having a naphthalene structure as a main skeleton, (2) a phenol-novolak resin, a cresol-novolak resin or a bisphenol A-novolak resin, (3) a bismaleimide resin and (4) 2,3-dihydro-1-H-pyrrolo[1,2-a]benzimidazole. The subject curable composite material comprises the curable resin composition and an inorganic filler. The circuit board is obtained by using the curable composite material. The circuit board is preferably a metal-based circuit board, and has 180-200°C maximum allowable working temperature. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は耐熱性、耐湿性に優れた硬化物を与える硬化性樹脂組成物に関するものであり、また当該硬化性樹脂組成物に無機充填材を含有させた、回路基板の絶縁材料として好適な硬化性複合材料に関する。加えて、前記硬化性複合材料を用いてなる回路基板に関する。 The present invention relates to a curable resin composition that gives a cured product excellent in heat resistance and moisture resistance, and also contains a inorganic filler in the curable resin composition and is suitable as an insulating material for circuit boards. Relates to a composite material. In addition, the present invention relates to a circuit board using the curable composite material.

エポキシ樹脂化合物は、耐熱性、電気特性等のよさから、電気部品用途において幅広く使用され、ビスマレイミド化合物が耐熱性の向上の観点から配合された例もある(特許文献1参照)。
特開平4−206676号公報。
Epoxy resin compounds are widely used in electrical component applications because of their good heat resistance and electrical characteristics, and there are examples in which bismaleimide compounds are blended from the viewpoint of improving heat resistance (see Patent Document 1).
JP-A-4-206676.

また、耐熱性を要求される分野ではポリイミド樹脂が一般的であるが、耐湿性が不十分であるという欠点がある。 Moreover, polyimide resin is common in the field where heat resistance is required, but has a drawback of insufficient moisture resistance.

樹脂基板が適用される用途として、いわゆる弱電関係から、自動車用途分野に目を向けた場合、耐熱性、耐湿性は最低限で必須の要件となっており、現在の樹脂基板(FR−4、FR−5)では不十分と言われている。 As a use to which the resin substrate is applied, when looking at the automotive application field from the so-called weak electricity relationship, heat resistance and moisture resistance are the minimum and indispensable requirements, and the current resin substrate (FR-4, FR-5) is said to be insufficient.

回路基板を担う樹脂は、近年、半導体のジャンクション温度(150℃)以上の耐熱性が要求され、最高使用温度(以下、MOTと略す。)も現状の130℃では性能不足と考えられ、更なる耐熱性が要求されている。 In recent years, the resin responsible for the circuit board is required to have a heat resistance higher than the junction temperature (150 ° C.) of the semiconductor, and the maximum operating temperature (hereinafter abbreviated as MOT) is considered to be insufficient at the current 130 ° C. Heat resistance is required.

また、半導体封止材の分野では、ビスマレイミドを配合し、耐熱性をカバーする例は散見されるものの、耐湿性評価において、kVレベルの高電圧をかけるバイアス試験に耐えられるような組成物は存在していない。 In the field of semiconductor encapsulants, there are some cases where bismaleimide is blended to cover heat resistance, but in the moisture resistance evaluation, a composition that can withstand a bias test applying a high voltage of kV is not available. Does not exist.

上記従来技術の事情に鑑み、本発明は、従来から回路基板用の絶縁材料に用いられてきた、エポキシ樹脂組成物に、一層の耐熱性と、一層の耐湿性を付与することを具体的課題とし、その結果として、従来よりも耐熱性と耐湿性に優れる回路基板を提供することを目的とする。 In view of the circumstances of the above-described prior art, the present invention provides a specific problem of imparting one layer of heat resistance and one layer of moisture resistance to an epoxy resin composition that has been conventionally used as an insulating material for circuit boards. As a result, an object of the present invention is to provide a circuit board that is more excellent in heat resistance and moisture resistance than conventional ones.

本発明は、(1)ナフタレン構造を主骨格とするジグリシドール誘導体であるエポキシ樹脂、(2)フェノールノボラッック樹脂、クレゾールノボラック樹脂又はビスフェノールAノボラック樹脂、(3)ビスマレイミド樹脂、及び(4)2,3−ジヒドロ−1−H−ピロロ[1,2−a]ベンズイミダゾール(以下TBZと略す。)からなることを特徴とする硬化性樹脂組成物である。 The present invention includes (1) an epoxy resin which is a diglycidol derivative having a naphthalene structure as a main skeleton, (2) a phenol novolac resin, a cresol novolac resin or a bisphenol A novolac resin, (3) a bismaleimide resin, and ( 4) A curable resin composition comprising 2,3-dihydro-1-H-pyrrolo [1,2-a] benzimidazole (hereinafter abbreviated as TBZ).

また、本発明は、前記の硬化性樹脂組成物に無機充填材を含有させたことを特徴とする硬化性複合材料である。 Moreover, this invention is a curable composite material characterized by including the inorganic filler in the said curable resin composition.

加えて、本発明は、前記の硬化性複合材料を用いてなることを特徴とする回路基板であり、好ましくは、金属ベース回路基板であることを特徴とする前記の回路基板であり、更に好ましくは、最高使用温度が180℃から200℃であることを特徴とする前記の回路基板である。 In addition, the present invention is a circuit board characterized by using the curable composite material, preferably the circuit board characterized by being a metal base circuit board, and more preferably The circuit board is characterized in that the maximum use temperature is 180 ° C. to 200 ° C.

本発明は、ナフタレン構造を主骨格とするジグリシドール誘導体であるエポキシ樹脂と、フェノールノボラッック樹脂、クレゾールノボラック樹脂又はビスフェノールAノボラック樹脂と、ビスマレイミド樹脂とをTBZを用いて硬化体を得るので、従来のエポキシ樹脂では得られなかった耐熱性と耐湿性とを併せ持つ樹脂硬化体を得ることができる。 The present invention provides a cured product using TBZ of an epoxy resin which is a diglycidol derivative having a naphthalene structure as a main skeleton, a phenol novolac resin, a cresol novolac resin or a bisphenol A novolac resin, and a bismaleimide resin. Therefore, it is possible to obtain a cured resin body having both heat resistance and moisture resistance that cannot be obtained with conventional epoxy resins.

本発明の硬化性複合材料は前記特徴を有する硬化性樹脂組成物を用い、その中に無機充填材を含有させているので、熱放散性にも優れる特徴を有し、回路基板の絶縁材料として好適である。 Since the curable composite material of the present invention uses the curable resin composition having the above-mentioned characteristics and contains an inorganic filler therein, the curable composite material has a characteristic of excellent heat dissipation and is used as an insulating material for circuit boards. Is preferred.

本発明の回路基板は、前記硬化性複合材料を用いているので、最高使用温度が180℃から200℃という耐熱性を有し、しかも耐湿性に優れると共に熱放散性にも優れる特徴を有しているので、いろいろな用途に適用可能であり、特に、自動車や車両等の車載用の回路基板として実用的に価値あるものである。 Since the circuit board of the present invention uses the curable composite material, the circuit board has heat resistance of a maximum use temperature of 180 ° C. to 200 ° C., and also has excellent characteristics of moisture resistance and heat dissipation. Therefore, it can be applied to various uses, and in particular, it is practically valuable as an in-vehicle circuit board for automobiles and vehicles.

本発明者は、従来技術のエポキシ樹脂の耐湿性や耐熱性を高めるべく、いろいろ実験的検討を行った結果、(1)ナフタレン構造を主骨格とするジグリシドール誘導体であるエポキシ樹脂、(2)フェノールノボラッック樹脂、クレゾールノボラック樹脂又はビスフェノールAノボラック樹脂、(3)ビスマレイミド樹脂、及び(4)2,3−ジヒドロ−1−H−ピロロ[1,2−a]ベンズイミダゾールからなる硬化性樹脂組成物が、耐熱性と耐湿性とに優れた硬化物を与えるという知見を得て、本発明に至ったものである。 As a result of various experimental studies to improve the moisture resistance and heat resistance of the conventional epoxy resin, the present inventor has (1) an epoxy resin that is a diglycidol derivative having a naphthalene structure as a main skeleton, and (2) Curing comprising phenol novolac resin, cresol novolac resin or bisphenol A novolac resin, (3) bismaleimide resin, and (4) 2,3-dihydro-1-H-pyrrolo [1,2-a] benzimidazole The present inventors have obtained the knowledge that a heat-resistant resin composition provides a cured product having excellent heat resistance and moisture resistance, and have reached the present invention.

従来からエポキシ樹脂としては、汎用のビスフェノールFジグリシジルエーテル(油化シェル社製、EP-807)、ビスフェノールAジグリシジルエーテル(大日本インキ社製、EXA−850CRP)、ナフタレン型ジグリシジルエーテル(大日本インキ社製、HP−4032)等が知られているが、本発明の硬化性樹脂組成物に於いては、ナフタレン構造を主骨格とするジグリシドール誘導体のエポキシ樹脂であれば良く、特に、ビスマレイミドに相溶し、グリシジル基を持ち硬化するものが好ましい。ただしビスフェノールFグリシジルエーテル等はガラス転移点が低くなり、耐熱性という観点から好ましいとは言えない。 Conventionally, as an epoxy resin, general-purpose bisphenol F diglycidyl ether (manufactured by Yuka Shell, EP-807), bisphenol A diglycidyl ether (manufactured by Dainippon Ink, EXA-850CRP), naphthalene type diglycidyl ether (large Nippon Ink Co., Ltd., HP-4032) and the like are known, but in the curable resin composition of the present invention, it may be an epoxy resin of a diglycidol derivative having a naphthalene structure as a main skeleton, Those which are compatible with bismaleimide and have a glycidyl group and are cured are preferred. However, bisphenol F glycidyl ether or the like has a low glass transition point and is not preferable from the viewpoint of heat resistance.

本発明の硬化性樹脂組成物に用いる、ナフタレン構造を主骨格とするジグリシドール誘導体の構造例を以下に示す。

Figure 2005089633
Examples of the structure of a diglycidol derivative having a naphthalene structure as the main skeleton used in the curable resin composition of the present invention are shown below.
Figure 2005089633

また、本発明の硬化性樹脂組成物に用いるフェノールノボラック樹脂、(オルト)クレゾールノボラックあるいはビスフェノールA型樹脂は、上記ビスマレイミド樹脂エポキシ樹脂混合物に相溶ものであれば、どのようなものであっても構わない。 The phenol novolak resin, (ortho) cresol novolak or bisphenol A type resin used in the curable resin composition of the present invention is any type as long as it is compatible with the bismaleimide resin epoxy resin mixture. It doesn't matter.

具体的には、フェノライトTD−2131(大日本インキ社製)、フェノライトKA−1160(大日本インキ社製)、フェノライトVH−4150(大日本インキ社製)、ベスモールCZ−256−A(大日本インキ社製)が挙げられる。 Specifically, Phenolite TD-2131 (Dainippon Ink Co., Ltd.), Phenolite KA-1160 (Dainippon Ink Co., Ltd.), Phenolite VH-4150 (Dainippon Ink Co., Ltd.), Besmol CZ-256-A (Dainippon Ink Co., Ltd.).

量的には、エポキシ等量比に対して、水酸基として、0.7等量比から1.0等量比が望ましい。少なすぎるとエポキシとの反応が進行しなくなり、多すぎると耐湿性が悪くなるからである。 Quantitatively, 0.7 equivalent ratio to 1.0 equivalent ratio as a hydroxyl group is desirable with respect to the epoxy equivalent ratio. This is because when the amount is too small, the reaction with the epoxy does not proceed, and when the amount is too large, the moisture resistance deteriorates.

本発明の硬化性樹脂組成物に用いることのできるフェノールノボラック樹脂、クレゾールノボラック樹脂あるいはビスフェノールAノボラック系樹脂の構造例を以下に示す。

Figure 2005089633
Figure 2005089633
Figure 2005089633
Figure 2005089633
Examples of the structure of a phenol novolak resin, cresol novolak resin or bisphenol A novolak resin that can be used in the curable resin composition of the present invention are shown below.
Figure 2005089633
Figure 2005089633
Figure 2005089633
Figure 2005089633

また、本発明の硬化性樹脂組成物で用いられるビスマレイミド化合物としては、2,2’−ビス[4−(4−マレイミドフェノキシ)フェニル]プロパン(ケーアイ化成製、以下、BMI−80と略す。)等が挙げられ、本発明の趣旨である耐熱性、耐湿性を満足するビスマレイミドとしては、BMI−70((化6)参照、ケーアイ化成製)、BMI((化7)参照、ケーアイ化成製)、BMI−S(三井化学製)等が挙げられる。

Figure 2005089633
Figure 2005089633
The bismaleimide compound used in the curable resin composition of the present invention is abbreviated as 2,2′-bis [4- (4-maleimidophenoxy) phenyl] propane (Kei Kasei Co., Ltd., hereinafter BMI-80). Examples of bismaleimides that satisfy the heat resistance and moisture resistance that are the gist of the present invention include BMI-70 (see (Chemical Formula 6), manufactured by KAI Kasei Co., Ltd.), BMI (See (Chemical Formula 7), KAI Chemicals). Manufactured), BMI-S (manufactured by Mitsui Chemicals) and the like.
Figure 2005089633
Figure 2005089633

量的には、エポキシ樹脂に対し10質量%から50質量%程度配合され、低すぎると耐熱性が落ち、多すぎると耐湿性が悪くなることがある。 Quantitatively, it is blended in an amount of about 10% to 50% by mass with respect to the epoxy resin.

本発明の硬化性樹脂組成物に於いて、硬化剤については、DSCによる解析によれば、350℃程度で無触媒反応が生じるので、硬化剤を用いなくても構わない。しかし、硬化温度を下げる目的で、工業的に許される操業温度を考慮して、硬化剤が一般的に使用される。 In the curable resin composition of the present invention, the curing agent does not need to be used because a non-catalytic reaction occurs at about 350 ° C. according to the analysis by DSC. However, for the purpose of lowering the curing temperature, a curing agent is generally used in consideration of an industrially allowable operating temperature.

硬化促進剤としては、イミダゾール類が一般的であるが、トリフェニルフォスフィン、ジアザジシクロウンデセンも使うことができる。尚、イミダゾールは一般的に耐熱性に富むが、耐湿性に欠点がある傾向がある。 As a curing accelerator, imidazoles are generally used, but triphenylphosphine and diazadicycloundecene can also be used. Although imidazole is generally rich in heat resistance, it tends to have a drawback in moisture resistance.

本発明の硬化性樹脂組成物に於いては、得られる硬化物の耐湿性向上を達成するためにTBZを用いることを特徴としており、TBZは、耐湿性の欠点の無い触媒と位置付けることができる。触媒量としては、樹脂量の0.1質量部程度が用いられ、少なすぎると硬化不良をひきおこしたり、硬化温度が高すぎたりして実用的でなくなるし、また、多すぎると硬化温度が低すぎたりして、やはり実用的でなくなる。 The curable resin composition of the present invention is characterized by using TBZ in order to achieve improvement in moisture resistance of the resulting cured product, and TBZ can be positioned as a catalyst having no defect in moisture resistance. . As the amount of the catalyst, about 0.1 parts by mass of the resin amount is used. If the amount is too small, a curing failure is caused or the curing temperature is too high, which is not practical, and if the amount is too large, the curing temperature is low. It is too impractical after all.

本発明の硬化性樹脂組成物に用いられる、2,3−ジヒドロ−1−H−ピロロ[1,2−a]ベンズイミダゾールの構造を(化8)に示す。

Figure 2005089633
The structure of 2,3-dihydro-1-H-pyrrolo [1,2-a] benzimidazole used in the curable resin composition of the present invention is shown in (Chemical Formula 8).
Figure 2005089633

本発明の硬化性樹脂組成物は、耐熱性が十分で、しかも耐湿性が良好である樹脂硬化体を提供でき、いろいろな用途の電子部品材料として好適である。 The curable resin composition of the present invention can provide a cured resin body having sufficient heat resistance and good moisture resistance, and is suitable as an electronic component material for various uses.

本発明の複合材料は、前記の硬化性樹脂組成物に無機充填剤を含有させたものである。本発の硬化性複合材料に用いる無機充填剤としては、アルミナ(酸化アルミニウム)、窒化アルミニウム、シリカ(酸化ケイ素)等が挙げられるが、得られる硬化体の熱伝導性を向上させることから、アルミナあるいは窒化アルミニウムが好ましく、また安定性からアルミナがさらに好ましい。本発明の複合材料においては、無機充填剤が66体積%程度使用され、高熱伝導性等を与える。 The composite material of the present invention is obtained by adding an inorganic filler to the curable resin composition. Examples of the inorganic filler used in the present curable composite material include alumina (aluminum oxide), aluminum nitride, silica (silicon oxide), etc., and alumina improves the thermal conductivity of the resulting cured product. Alternatively, aluminum nitride is preferable, and alumina is more preferable from the viewpoint of stability. In the composite material of the present invention, an inorganic filler is used in an amount of about 66% by volume, giving high thermal conductivity and the like.

前記無機充填剤の形状は、粉体であっても、繊維状であっても差し支えない。例えば、金属板の表面に絶縁層を形成して、前記絶縁層上に回路を設けた金属ベース回路基板の前記絶縁層を形成せしめる場合には、塗布特性を満足させるために粉体であることが好ましいし、また、例えば、樹脂基板の両面に回路を有する樹脂回路基板の基板材料を構成する場合には強度が高くなるように繊維状のものが好ましく選択される。つまり、得られる硬化体の用途に対応する特性に応じて、粉状のものや繊維状のものを適宜選択すればよい。 The shape of the inorganic filler may be a powder or a fiber. For example, when an insulating layer is formed on the surface of a metal plate and the insulating layer of a metal base circuit board provided with a circuit on the insulating layer is formed, it is a powder to satisfy the coating characteristics. In addition, for example, when a substrate material of a resin circuit board having circuits on both sides of the resin substrate is configured, a fibrous material is preferably selected so as to increase the strength. That is, a powdery or fibrous material may be appropriately selected according to the characteristics corresponding to the use of the obtained cured product.

本発明の硬化性複合材料においては、必要に応じて、シランカップリング剤、溶剤等を加えても構わない。 In the curable composite material of this invention, you may add a silane coupling agent, a solvent, etc. as needed.

本発明の硬化性複合材料は、前記硬化性樹脂組成物が耐熱性、耐湿性を備えていることを反映し、また無機充填剤を含有していることから、熱放散性にも優れているという特徴があるので、回路基板を初めとする電気用材料として好ましい材料である。 The curable composite material of the present invention reflects that the curable resin composition has heat resistance and moisture resistance, and also contains an inorganic filler, and thus has excellent heat dissipation. Therefore, it is a preferable material as an electrical material including a circuit board.

本発明の回路基板は、前記硬化性複合材料の特徴を反映して、熱放散性と耐熱性、耐湿性に優れるので、当該回路基板を用いて信頼性のある混成集積回路を容易に得ることができる。 Since the circuit board of the present invention reflects the characteristics of the curable composite material and is excellent in heat dissipation, heat resistance, and moisture resistance, it is possible to easily obtain a reliable hybrid integrated circuit using the circuit board. Can do.

特に、金属板の表面に絶縁層を形成して、前記絶縁層上に回路を設けた金属ベース回路基板の前記絶縁層に適用することにより、従来得ることのできなかった、180℃から200℃のMOTを有する金属ベース回路基板が確実に得ることができる特徴がある。尚、従来公知の金属ベース回路基板において、その最高温度は高々130℃である。 In particular, an insulating layer is formed on the surface of a metal plate and applied to the insulating layer of a metal base circuit board in which a circuit is provided on the insulating layer. There is a feature that a metal base circuit board having the MOT can be obtained reliably. In the conventionally known metal base circuit board, the maximum temperature is 130 ° C. at most.

本発明の金属ベース回路基板は、MOTが180から200℃であるので、例えば自動車や電鉄等の車載向け混成集積回路用基板として実用的なものであり、非常に有用である。 Since the metal base circuit board of the present invention has a MOT of 180 to 200 ° C., it is practical as a board for hybrid integrated circuits for vehicles such as automobiles and electric railways, and is very useful.

(実施例1)エポキシ樹脂(大日本インキ社製、HP-4032D)129gを120℃に加熱し、ビスマレイミド(ケーアイ化成社製、BMI−80)を55g投入し、同温度で1時間攪拌し、溶解を確認した。 (Example 1) 129 g of epoxy resin (manufactured by Dainippon Ink Co., Ltd., HP-4032D) is heated to 120 ° C., 55 g of bismaleimide (manufactured by KEI Kasei Co., Ltd., BMI-80) is added, and stirred at the same temperature for 1 hour. The dissolution was confirmed.

次に、塊状アルミナ(平均粒径12μm)1272g、球状アルミナ545g(平均粒径0.8μm)、TD−2131(大日本インキ社製、フェノール樹脂)75gおよびシランカップリング剤(日本ユニカー社製、A−187)20gを、前記溶解物に仕込み、万能混合攪拌機(90℃外温設定)にて50分攪拌した。さらにブチルセルソルブ80gを加え、容器から抜き出し、絶縁層組成物とした。 Next, 1272 g of massive alumina (average particle size 12 μm), 545 g of spherical alumina (average particle size 0.8 μm), TD-2131 (manufactured by Dainippon Ink, phenol resin) and silane coupling agent (manufactured by Nihon Unicar) A-187) 20 g was charged into the melt and stirred for 50 minutes with a universal mixing stirrer (90 ° C. external temperature setting). Further, 80 g of butyl cellosolve was added and extracted from the container to obtain an insulating layer composition.

次に、前記絶縁層組成物2000gに対して、TBZを1.0g、ブチルセルソルブ60gを加え、予め脱脂処理した、アルミニウム板2mm×500mm×500mmの表面に100μmの厚みとなるように、スクリーン印刷を行った。 Next, 1.0 g of TBZ and 60 g of butyl cellsolve are added to 2000 g of the insulating layer composition, and the surface of the aluminum plate 2 mm × 500 mm × 500 mm, which has been degreased in advance, has a thickness of 100 μm. Printing was done.

前記アルミニウム板を、100℃のオーブンで30分乾燥させ、前記絶縁層組成物からなる絶縁層上に、片側電解処理銅箔35μm×500mm×500mmをのせ、50kg/cmの加圧条件下で、90℃30分、更に200℃2時間の温度条件で真空プレス成型し、前記硬化性複合材料を硬化された。プレス終了後に金属箔上にパターニングし、試験回路をエッチングして、回路を形成して金属ベース回路基板を作成した。 The aluminum plate is dried in an oven at 100 ° C. for 30 minutes, and a one-side electrolytically treated copper foil 35 μm × 500 mm × 500 mm is placed on the insulating layer made of the insulating layer composition, and under a pressure of 50 kg / cm 2. The curable composite material was cured by vacuum press molding at a temperature of 90 ° C. for 30 minutes and 200 ° C. for 2 hours. After the pressing, patterning was performed on the metal foil, and the test circuit was etched to form a circuit to form a metal base circuit board.

前記操作で得た金属ベース回路基板について、以下に記す評価を行った。 The metal base circuit board obtained by the above operation was evaluated as follows.

Tgの評価方法:金属ベース回路基板から アルカリ溶液でアルミニウムを溶解し、次に硫酸過酸化水素混合液にて銅を溶解し、100μm厚みの絶縁層を取り出し、幅3mmの短冊状にして、レオメトリック社製RSA3を用いて、静荷重100g周波数11Hzの条件にて測定し、ターンδのピークをTg(℃)とした。 Evaluation method of Tg: Aluminum is dissolved from a metal base circuit board with an alkaline solution, then copper is dissolved with a sulfuric acid hydrogen peroxide mixed solution, an insulating layer having a thickness of 100 μm is taken out, formed into a strip shape having a width of 3 mm, Using RSA3 manufactured by Metric, measurement was performed under conditions of a static load of 100 g and a frequency of 11 Hz, and the peak of turn δ was defined as Tg (° C.).

回路基板としての耐熱性試験:前述の方法によりアルミニウムを溶解し、絶縁層に銅回路の付いた回路基板とし、ハンダ浴(270℃)に浮かべ、外観上の変化の有無について調べた。また、前記回路基板の試験片を裁断して10mgを精秤し、大気雰囲気下、熱天秤にて0.5質量%減少を示す温度を測定し、本硬化性樹脂組成物の熱分解温度とした。 Heat resistance test as a circuit board: Aluminum was dissolved by the above-described method to form a circuit board with a copper circuit in an insulating layer, floated in a solder bath (270 ° C.), and examined for changes in appearance. Further, the test piece of the circuit board was cut and 10 mg was precisely weighed, and the temperature showing a decrease of 0.5% by mass was measured in an air atmosphere with a thermobalance, and the thermal decomposition temperature of the curable resin composition was determined. did.

絶縁耐圧の評価方法:直径2cmの銅のパターンが1cm間隔で得られるようにエッチングし、試験パターンとし、パターン側とアルミニウム板との間について、菊水電子社製耐圧試験機を用いて、AC段階昇圧法で測定し、2mA流れた時を絶縁破壊電圧とした。 Evaluation method of withstand voltage: Etching so that a copper pattern having a diameter of 2 cm is obtained at 1 cm intervals to obtain a test pattern, and between the pattern side and the aluminum plate, using a pressure tester manufactured by Kikusui Electronics Co., Ltd., AC stage The voltage was measured by the boosting method, and the dielectric breakdown voltage was taken when 2 mA flowed.

PCTテスト:121℃2気圧にて100時間処理した後、アドバンテック社製の絶縁抵抗計にて、印加電圧100Vの条件で絶縁抵抗を測定した。 PCT test: After treatment at 121 ° C. and 2 atm for 100 hours, the insulation resistance was measured with an insulation resistance meter manufactured by Advantech under the condition of an applied voltage of 100V.

耐熱耐湿性その1:85℃85%RHの恒温恒湿層に、回路とアルミニウム板との間にDC1kVをかけ、絶縁破壊するまでの時間、および2000時間後の絶縁抵抗、耐電圧(前述の方法)で評価した。 Heat resistance and humidity resistance part 1: A constant temperature and humidity layer at 85 ° C. and 85% RH is subjected to DC 1 kV between the circuit and the aluminum plate, and the time until dielectric breakdown, and the insulation resistance and voltage resistance after 2000 hours (as described above) Method).

耐熱耐湿性その2:85℃70%RHの恒温恒湿層に、回路とアルミニウム板途の間にAC1kVに半波整流したDC1kvをかけ、絶縁破壊するまでの時間(Hr)で評価した。 Heat resistance and humidity resistance No. 2: A constant temperature and humidity layer at 85 ° C. and 70% RH was subjected to DC 1 kv half-wave rectified to AC 1 kV between the circuit and the aluminum plate, and evaluated by the time until dielectric breakdown (Hr).

MOT:280℃、260℃、240℃のそれぞれの温度において、耐電圧およびピール強度の性能半減時間(hr)を求め、両対数グラフに、温度(℃)と時間(Hr)をプロットして直線近似し、100000時間での性能半減時間を求めてMOTとした。 MOT: At each temperature of 280 ° C., 260 ° C., and 240 ° C., the half-life (hr) of withstand voltage and peel strength is obtained, and the temperature (° C.) and time (Hr) are plotted on a log-log graph. Approximation was performed, and the half-life time at 100,000 hours was determined to obtain MOT.

(実施例2)エポキシ樹脂(大日本インキ社製、HP−4032D)129gを120℃に加熱し、ビスマレイミド(ケーアイ化成社製、BMI−80)を55g投入し、同温度で1時間攪拌し、溶解を確認した。 (Example 2) 129 g of an epoxy resin (manufactured by Dainippon Ink Co., Ltd., HP-4032D) is heated to 120 ° C., 55 g of bismaleimide (manufactured by KEI Kasei Co., Ltd., BMI-80) is added, and stirred at the same temperature for 1 hour. The dissolution was confirmed.

次に、塊状アルミナ(平均粒径12μm)1272g、球状アルミナ545g(平均粒径0.8μm)、ビスフェノールA変性ノボラック樹脂(大日本インキ社製、CZ−256−A)117gおよびシランカップリング剤(日本ユニカー社製、A−187)20gを溶解物に仕込み、万能混合攪拌機(90℃外温設定)にて50分攪拌した。さらにブチルセルソルブ80gを加え、容器から抜き出し、絶縁層組成物とした。 Next, 1272 g of bulk alumina (average particle size 12 μm), 545 g of spherical alumina (average particle size 0.8 μm), 117 g of bisphenol A-modified novolak resin (manufactured by Dainippon Ink Co., Ltd., CZ-256-A) and a silane coupling agent ( Nihon Unicar Co., Ltd., A-187) 20 g was charged into the melt, and stirred with a universal mixing stirrer (90 ° C. external temperature setting) for 50 minutes. Further, 80 g of butyl cellosolve was added and extracted from the container to obtain an insulating layer composition.

次に、前記絶縁層組成物2000gに硬化剤1.0g、ブチルセルソルブ60gを加えた。以降は実施例1と同様に金属ベース回路基板を作成し、評価した。 Next, 1.0 g of a curing agent and 60 g of butyl cellosolve were added to 2000 g of the insulating layer composition. Thereafter, a metal base circuit board was prepared and evaluated in the same manner as in Example 1.

(比較例1)ビスフェノールAジグリシジルエーテル(大日本インキ社製、EXA−850CRP)に、塊状アルミナ(平均粒径12μm)63g、球状アルミナ27g(平均粒径0.8μm)を加え、ハイブリットミキサーで2分間攪拌した。次に、ジアミノジフェニルメタン(DDM)粉体を3.3g加え、さらに同ミキサーにて1分間攪拌し、1gのA−187(日本ユニカー社製)と1gのブチルセルソルブを加えて攪拌した。
以降は実施例1と同様に金属ベース回路基板を作成し、評価した。
(Comparative Example 1) 63 g of bulk alumina (average particle size 12 μm) and 27 g of spherical alumina (average particle size 0.8 μm) were added to bisphenol A diglycidyl ether (Dai Nippon Ink Co., Ltd., EXA-850CRP). Stir for 2 minutes. Next, 3.3 g of diaminodiphenylmethane (DDM) powder was added, and the mixture was further stirred for 1 minute, and 1 g of A-187 (manufactured by Nihon Unicar) and 1 g of butyl cellosolve were added and stirred.
Thereafter, a metal base circuit board was prepared and evaluated in the same manner as in Example 1.

(比較例2)フェノライト(大日本インキ社製、TD−2131)4.8gをEXA−850CRP(大日本インキ社製)10gに溶解し、塊状アルミナ(平均粒径12μm)63g、球状アルミナ27g(平均粒径0.8μm)を加え、ハイブリットミキサーで2分間攪拌した。次に、2E4MZ(四国化成社製)0.05gを加え、さらに同ミキサーにて1分間攪拌し、1gのA−187(日本ユニカー社製)と1gのブチルセルソルブを加え攪拌した。以降は実施例1と同様に金属ベース回路基板を作成し、評価した。

Figure 2005089633
Figure 2005089633
Figure 2005089633
(Comparative Example 2) 4.8 g of phenolite (TD-2131, manufactured by Dainippon Ink Co., Ltd.) was dissolved in 10 g of EXA-850CRP (manufactured by Dainippon Ink), 63 g of bulk alumina (average particle size 12 μm), and 27 g of spherical alumina. (Average particle size 0.8 μm) was added, and the mixture was stirred for 2 minutes with a hybrid mixer. Next, 0.05 g of 2E4MZ (manufactured by Shikoku Kasei Co., Ltd.) was added, and further stirred for 1 minute with the same mixer, and 1 g of A-187 (manufactured by Nihon Unicar) and 1 g of butyl cellosolve were added and stirred. Thereafter, a metal base circuit board was prepared and evaluated in the same manner as in Example 1.
Figure 2005089633
Figure 2005089633
Figure 2005089633

本発明の硬化性樹脂組成物は、ナフタレン構造を主骨格とするジグリシドール誘導体であるエポキシ樹脂と、フェノールノボラッック樹脂、クレゾールノボラック樹脂又はビスフェノールAノボラック樹脂と、ビスマレイミド樹脂とをTBZを用いて硬化体を得るので、従来のエポキシ樹脂では得られなかった耐熱性と耐湿性とを併せ持つ樹脂硬化体を得ることができる特徴を有しており、電子用途の材料として用いることができる。 The curable resin composition of the present invention comprises an epoxy resin which is a diglycidol derivative having a naphthalene structure as a main skeleton, a phenol novolac resin, a cresol novolac resin or a bisphenol A novolac resin, and a bismaleimide resin. Since the cured product is obtained by using the resin, it has a feature that a cured resin product having both heat resistance and moisture resistance that cannot be obtained by a conventional epoxy resin can be obtained, and can be used as a material for electronic applications.

本発明の硬化性複合材料は前記特徴を有する硬化性樹脂組成物を用い、その中に無機充填材を含有させているので、熱放散性にも優れる特徴を有し、回路基板の絶縁材料として好適である。 Since the curable composite material of the present invention uses the curable resin composition having the above-mentioned characteristics and contains an inorganic filler therein, the curable composite material has a characteristic of excellent heat dissipation and is used as an insulating material for circuit boards. Is preferred.

更に、本発明の回路基板は、前記硬化性複合材料を用いているので、耐熱性、耐湿性に優れると共に熱放散性にも優れる特徴を有していて、いろいろな用途に適用可能であり、特に、自動車や車両等の車載用の回路基板として実用的に価値あるものである。 Furthermore, since the circuit board of the present invention uses the curable composite material, the circuit board has characteristics of excellent heat resistance, moisture resistance and heat dissipation, and can be applied to various applications. In particular, it is practically valuable as an in-vehicle circuit board for automobiles and vehicles.

Claims (5)

(1)ナフタレン構造を主骨格とするジグリシドール誘導体であるエポキシ樹脂、(2)フェノールノボラッック樹脂、クレゾールノボラック樹脂又はビスフェノールAノボラック樹脂、(3)ビスマレイミド樹脂、及び(4)2,3−ジヒドロ−1−H−ピロロ[1,2−a]ベンズイミダゾールからなることを特徴とする硬化性樹脂組成物。 (1) an epoxy resin which is a diglycidol derivative having a naphthalene structure as a main skeleton, (2) a phenol novolac resin, a cresol novolac resin or a bisphenol A novolac resin, (3) a bismaleimide resin, and (4) 2, A curable resin composition comprising 3-dihydro-1-H-pyrrolo [1,2-a] benzimidazole. 請求項1記載の硬化性樹脂組成物に無機充填材を含有させたことを特徴とする硬化性複合材料。 A curable composite material comprising an inorganic filler in the curable resin composition according to claim 1. 請求項2記載の硬化性複合材料を用いてなることを特徴とする回路基板。 A circuit board comprising the curable composite material according to claim 2. 金属ベース回路基板であることを特徴とする請求項3記載の回路基板。 4. The circuit board according to claim 3, wherein the circuit board is a metal base circuit board. 最高使用温度が180℃から200℃であることを特徴とする請求項4記載の回路基板。 5. The circuit board according to claim 4, wherein the maximum use temperature is 180 ° C. to 200 ° C.
JP2003326047A 2003-09-18 2003-09-18 Curable composite material and circuit board using the same Pending JP2005089633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003326047A JP2005089633A (en) 2003-09-18 2003-09-18 Curable composite material and circuit board using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003326047A JP2005089633A (en) 2003-09-18 2003-09-18 Curable composite material and circuit board using the same

Publications (1)

Publication Number Publication Date
JP2005089633A true JP2005089633A (en) 2005-04-07

Family

ID=34456335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003326047A Pending JP2005089633A (en) 2003-09-18 2003-09-18 Curable composite material and circuit board using the same

Country Status (1)

Country Link
JP (1) JP2005089633A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090238A (en) * 2008-10-07 2010-04-22 Ajinomoto Co Inc Epoxy resin composition
JP2013234328A (en) * 2013-06-18 2013-11-21 Ajinomoto Co Inc Epoxy resin composition
JP2015207669A (en) * 2014-04-21 2015-11-19 住友ベークライト株式会社 Metal base board, metal base circuit board, and electronic device
JPWO2015056523A1 (en) * 2013-10-17 2017-03-09 住友ベークライト株式会社 Epoxy resin composition, carrier material with resin layer, metal base circuit board, and electronic device
JP2017071705A (en) * 2015-10-08 2017-04-13 日本化薬株式会社 Epoxy resin mixture, epoxy resin composition and cured product thereof
CN109054290A (en) * 2018-06-12 2018-12-21 苏州洛特兰新材料科技有限公司 A kind of preparation method and applications of epoxy resin-base composite material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090238A (en) * 2008-10-07 2010-04-22 Ajinomoto Co Inc Epoxy resin composition
JP2013234328A (en) * 2013-06-18 2013-11-21 Ajinomoto Co Inc Epoxy resin composition
JPWO2015056523A1 (en) * 2013-10-17 2017-03-09 住友ベークライト株式会社 Epoxy resin composition, carrier material with resin layer, metal base circuit board, and electronic device
JP2015207669A (en) * 2014-04-21 2015-11-19 住友ベークライト株式会社 Metal base board, metal base circuit board, and electronic device
JP2017071705A (en) * 2015-10-08 2017-04-13 日本化薬株式会社 Epoxy resin mixture, epoxy resin composition and cured product thereof
CN109054290A (en) * 2018-06-12 2018-12-21 苏州洛特兰新材料科技有限公司 A kind of preparation method and applications of epoxy resin-base composite material

Similar Documents

Publication Publication Date Title
JP5015591B2 (en) Epoxy resin composition
JP4890063B2 (en) Resin composition, varnish obtained using this resin composition, film adhesive and copper foil with film adhesive
CN101974205A (en) Resin composition for embedded capacitor, and dielectric layer and metal foil-clad plate manufactured by using same
JPH10242606A (en) Metal base board
CA2649841A1 (en) Resin composition, prepreg, laminate, and wiring board
JP2008280436A (en) Adhesive sheet for fixation for use in electrical parts and method of fixing electrical parts
WO2004102589A1 (en) Insulating material, film, circuit board and method for manufacture thereof
JP2002012653A (en) Curable resin composition and metal-base circuit board using the same
JP2019182932A (en) Curable resin composition and laminate
CN104341774B (en) Moulding compound for semiconductor packages and the semiconductor packages using the moulding compound
JP2002069270A (en) Flame-retardant halogen-free epoxy resin composition and use thereof
JP2017179035A (en) Resin composition, prepreg, metal clad laminate, printed wiring board and metal foil with resin
JP2003138241A (en) Heat-resistant adhesive and laminate using the same adhesive-applied heatsink and adhesive-applied metallic foil
JP2000239636A (en) Curable conductive paste
JP2005089633A (en) Curable composite material and circuit board using the same
JP3851749B2 (en) Metal foil with resin
JP4459691B2 (en) Curable composite material and circuit board using the same
JP2001081282A (en) Epoxy resin composition and flexible printed wiring board material containing the same
JP2005089641A (en) Curable composite material and circuit board using the same
JP2004256678A (en) Resin composition, coverlay and copper-clad laminate for flexible printed wiring board
JP4534802B2 (en) Thermosetting composition and cured product thereof
JP6767709B2 (en) Resin composition for printed wiring board, prepreg, metal-clad laminate and printed wiring board
JPH10298525A (en) Anisotropic conductive adhesive resin composition and anisotropic conductive adhesive film
JPH09227659A (en) Epoxy resin composition and laminate sheet using prepreg using this resin composition
JPH09235349A (en) Epoxy resin composition, prepreg using the same, and laminate using the prepreg

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060524

A131 Notification of reasons for refusal

Effective date: 20060530

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060710

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070131

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070221

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070323