JP2005087005A - Culture container with sensor, culture apparatus and culture method using the same - Google Patents

Culture container with sensor, culture apparatus and culture method using the same Download PDF

Info

Publication number
JP2005087005A
JP2005087005A JP2003320594A JP2003320594A JP2005087005A JP 2005087005 A JP2005087005 A JP 2005087005A JP 2003320594 A JP2003320594 A JP 2003320594A JP 2003320594 A JP2003320594 A JP 2003320594A JP 2005087005 A JP2005087005 A JP 2005087005A
Authority
JP
Japan
Prior art keywords
culture
sensor
cells
medium
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003320594A
Other languages
Japanese (ja)
Other versions
JP4146778B2 (en
Inventor
Osamu Ozawa
理 小澤
Isao Shindo
勲夫 新藤
Shigeo Watabe
成夫 渡部
Tsutomu Suzuki
力 鈴木
Yasushi Nomura
靖 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Ltd
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Medical Corp filed Critical Hitachi Ltd
Priority to JP2003320594A priority Critical patent/JP4146778B2/en
Publication of JP2005087005A publication Critical patent/JP2005087005A/en
Application granted granted Critical
Publication of JP4146778B2 publication Critical patent/JP4146778B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/06Plates; Walls; Drawers; Multilayer plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/08Flask, bottle or test tube
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/32Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of substances in solution

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biotechnology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Immunology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To actualize a monitoring of a culture medium component by simple and low-cost constitution and method in a culture apparatus for adhesion-dependent cells. <P>SOLUTION: Cells are pasted to the bottom of a platy culture container and cultured. Using a filmy optical sensor having merits of low cost, simplicity, small size, a small amount of a culture medium used, etc., carries out the monitoring of a culture medium. The sensor is installed on the ceiling surface of a recessed part formed at the bottom side part of the culture container and oppositely to the bottom of the culture container. Using the culture medium itself or a culture medium into which cells are dispersed calibrates the sensor. Hereby, the apparatus and the method, with which the pasted cells are excellently cultured, adverse effects of the sensor on cells are avoided and the calibration of the sensor is simply and accurately carried out, are provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は動物細胞の培養を行うための用具や方法に係り、特に再生医療に適用するための接着依存性の幹細胞などをディッシュやフラスコなどのプレート状の培養容器底面に接着させて培養する際における培養状態をモニタリングするためのセンサと、センサの使用方法に関する。   The present invention relates to tools and methods for culturing animal cells, and particularly when adhesion-dependent stem cells for application to regenerative medicine are adhered to the bottom of a plate-shaped culture container such as a dish or flask. The present invention relates to a sensor for monitoring a culture state and a method of using the sensor.

細胞などをプレート状の培養容器を用いて培養する際に細胞増殖や生存率を測定する方法としては、従来各種の構成からなる計測方法が使用されていた。例えば、非特許文献1には96ウェルU底オキシジェンバイオセンサープレートが記載されている。このウェル底部には蛍光性の酸素センサーを含むシリコンが埋設されており、培地中の細胞などが増殖して酸素を消費すると、シリコン中の酸素濃度が低下し、酸素センサーの蛍光強度が増加する。このプレートを蛍光計測装置と組み合わせることにより、酸素濃度のモニタリングが可能となる。   As a method for measuring cell proliferation and survival rate when culturing cells and the like using a plate-shaped culture container, measurement methods having various configurations have been conventionally used. For example, Non-Patent Document 1 describes a 96-well U-bottom oxygen biosensor plate. Silicon containing a fluorescent oxygen sensor is embedded in the bottom of this well. When cells in the medium grow and consume oxygen, the oxygen concentration in the silicon decreases and the fluorescence intensity of the oxygen sensor increases. . The oxygen concentration can be monitored by combining this plate with a fluorescence measuring device.

一方、タンク状の培養槽を用いて細胞などを培養する際に培地成分をモニタリングする方法としては、例えば特許文献1に記載の通り、pH電極などを培養槽の側面に設置し、培地のpHを連続的にモニタリングする方法が知られている。   On the other hand, as a method for monitoring medium components when culturing cells or the like using a tank-shaped culture tank, for example, as described in Patent Document 1, a pH electrode or the like is installed on the side of the culture tank, and the pH of the medium is set. A method for continuously monitoring the above is known.

また、非特許文献1と類似の光学的原理に基づくpHセンサの例としては、非特許文献2による光ファイバ型pHセンサなどが知られている。この製品システムは、透過型または反射型の指示薬色素フィルム(pH指示薬色素をセルロース担体に捕捉したもの)と、それを保持する光ファイバプローブ、光源、分光器などから構成される。プローブ形状はpH電極と類似であるが、検出原理はリトマス試験紙と同様であり、電線ではなく光ファイバを用いて信号を伝達する。   Further, as an example of a pH sensor based on an optical principle similar to Non-Patent Document 1, an optical fiber type pH sensor according to Non-Patent Document 2 is known. This product system includes a transmissive or reflective indicator dye film (a pH indicator dye captured on a cellulose carrier), an optical fiber probe holding the same, a light source, a spectroscope, and the like. The probe shape is similar to that of a pH electrode, but the detection principle is the same as that of a litmus paper, and a signal is transmitted using an optical fiber instead of an electric wire.

特許第2643314号Japanese Patent No.2643314

ベクトン・ディッキンソン バイオサイエンス社、バイオコートTM ファルコンTM カタログ、p.26−27Becton Dickinson Bioscience, Biocoat ™ Falcon ™ catalogue, p. 26-27 オーシャン オプティクス社、製品カタログ2003、p.45Ocean Optics, product catalog 2003, p. 45

非特許文献1の方法を用いて接着性細胞を培養する場合、細胞によってはウェル底面を形成するシリコン樹脂に対する接着性が不十分で、培養が良好に行えないという課題があった。例えシリコン樹脂への接着が十分な場合でも、特に再生医療応用を目的とした細胞を培養する場合、シリコン樹脂へ接着して培養された細胞の安全性を検証するのが煩雑である、という課題があった。   When culturing adherent cells using the method of Non-Patent Document 1, there is a problem that some cells have insufficient adhesion to the silicon resin forming the bottom of the well and cannot be cultured well. Even if the adhesion to the silicone resin is sufficient, especially when cultivating cells for the purpose of regenerative medicine application, it is complicated to verify the safety of the cells cultured by adhesion to the silicone resin was there.

一方、特許文献1や非特許文献2の方法をプレート状の培養容器内部の培地成分のモニタリングへ応用する場合、第1にセンサコストの課題がある。即ち、特許文献1の様にタンク状の培養槽を用いて細胞を培養する場合は、例えば百Lの容積のタンク1つにpHセンサ1つを設置しても、10^10個規模の大量の細胞を得られるため、単位細胞数当たりのセンサコストは低い。一方、プレート状の培養容器では例えばT−75フラスコでも約10^6個規模の細胞しか得られないため、単位細胞数当たりのセンサコストが高い、という課題がある。第2に、操作性やセンサのサイズの課題がある。即ち、センサを滅菌し、無菌性を確保しつつ確実に着脱したり、コスト低減のためにセンサを滅菌して再利用する操作が必要である。上記と類似の理由により、タンク状の培養槽では単位細胞数当たりのpHセンサ設置の手間は少ないが、プレート状の培養容器の場合は、単位細胞数当たりでは煩雑である。関連して、単位細胞数当たりのサイズの課題がある。上記同様、タンク状の培養槽ではセンサのサイズは相対的に小さい。一方、プレート状の培養容器の場合はセンサのサイズが相対的に大きいため、多数のプレートを同時に培養する場合など、インキュベータの内容積のかなりの部分をセンサに占有されてしまい利用効率が低い、という課題がある。第3に、培地コストの課題がある。即ちpH電極の安定動作のためには電極先端の感応膜部分と参照電極の液絡部分を培地中に完全に浸す必要がある。しかし両部分を小型かつ互いに近接して形成することは一般に困難なため、両部分を培地中に完全に浸すためにはcmオーダーの厚さの培地が必要となる。非特許文献2に記載の光ファイバ式pHセンサの場合も、試料導入孔がプローブ先端から離れているため、やはりcmオーダーの厚さの培地が必要である。大量の培地を使用するタンク状の培養槽ではこれは問題にならないが、プレート状の培養容器では通常培地の必要量は厚さ約数mmで十分であることから、pHセンサを設置するためだけに高価な培地を大量に使用するのは経済性が低いという課題がある。   On the other hand, when the methods of Patent Document 1 and Non-Patent Document 2 are applied to the monitoring of the medium components inside the plate-shaped culture container, there is a first problem of sensor cost. That is, when cells are cultured using a tank-shaped culture tank as in Patent Document 1, for example, even if one pH sensor is installed in one tank with a volume of 100 L, a large amount of 10 ^ 10 scales Sensor cost per unit cell is low. On the other hand, in a plate-shaped culture container, for example, only about 10 ^ 6 cells can be obtained even in a T-75 flask, so there is a problem that the sensor cost per unit cell number is high. Second, there are problems with operability and sensor size. In other words, it is necessary to sterilize the sensor and securely attach and detach it while ensuring sterility, or to sterilize and reuse the sensor for cost reduction. For the same reason as described above, the tank-shaped culture tank requires less labor to install a pH sensor per unit cell number, but in the case of a plate-shaped culture vessel, it is complicated per unit cell number. A related issue is the size per unit cell. As described above, the size of the sensor is relatively small in the tank-shaped culture tank. On the other hand, since the size of the sensor is relatively large in the case of a plate-shaped culture container, a large part of the internal volume of the incubator is occupied by the sensor, such as when culturing a large number of plates simultaneously, and the utilization efficiency is low. There is a problem. Third, there is a problem of medium cost. That is, for the stable operation of the pH electrode, it is necessary to completely immerse the sensitive membrane portion at the tip of the electrode and the liquid junction portion of the reference electrode in the medium. However, since it is generally difficult to form both parts small and close to each other, a medium with a thickness on the order of cm is required to completely immerse both parts in the medium. Also in the case of the optical fiber type pH sensor described in Non-Patent Document 2, since the sample introduction hole is separated from the probe tip, a culture medium having a thickness of cm order is also necessary. This is not a problem in a tank-shaped culture vessel that uses a large amount of medium, but in a plate-shaped culture vessel, the required amount of medium is usually sufficient with a thickness of about several millimeters, so it is only for installing a pH sensor. In addition, there is a problem that using a large amount of an expensive medium is not economical.

上記課題を回避する一つの方法としては、特許文献1のpH電極や非特許文献2における光ファイバ型pHセンサの代わりに、非特許文献1のごとく光学式のセンサ材料をプレート底面に設置して、外部に設けた光学的測定装置を用いて計測する方法が考えられる。同様の方式によりpH測定を行うには、例えば非特許文献2に記載の指示薬色素フィルムを転用し、このフィルム状の光学式センサをプレート底面に設置して使用する方法が考えられる。   One method for avoiding the above problem is to install an optical sensor material on the bottom of the plate as in Non-Patent Document 1, instead of the pH electrode in Patent Document 1 or the optical fiber type pH sensor in Non-Patent Document 2. A method of measuring using an optical measuring device provided outside is conceivable. In order to perform pH measurement by the same method, for example, a method of diverting the indicator dye film described in Non-Patent Document 2 and using this film-like optical sensor installed on the bottom surface of the plate can be considered.

しかしながら、フィルム状の光学式センサなどをプレート底面に設置して使用する場合、非特許文献1におけると同様の課題がある。即ちプレート底面におけるセンサ材料に対する細胞の接着性が不十分となり、培養が良好に行えない可能性がある。また例え接着が十分な場合でも、特に再生医療への応用を目的とした場合、センサ材料へ接触することによる細胞毒性は未解明であるため、センサ材料へ接着した状態で培養した細胞の安全性を検証するのが煩雑である、という課題があった。   However, when a film-like optical sensor or the like is installed on the bottom surface of the plate and used, there are the same problems as in Non-Patent Document 1. That is, the adhesion of the cells to the sensor material on the bottom of the plate becomes insufficient, and the culture may not be performed well. Even if the adhesion is sufficient, especially for the purpose of application to regenerative medicine, cytotoxicity due to contact with the sensor material has not been elucidated, so the safety of the cells cultured while adhered to the sensor material There is a problem that it is complicated to verify.

さらに、従来公知の方法に共通する別の課題として、センサの校正法がある。即ち、従来例においてはpHセンサ類の校正については特に配慮がなされていない。従来の一般的な方法によれば、培養開始前に、まず校正液を用いてセンサを校正した後、滅菌し、培養容器に無菌的に設置するか、あるいはまずセンサを滅菌、無菌的に容器に設置し、容器内に無菌校正液を導入して校正を行い、校正液を排出する、という事前準備が必要であった。前者の場合は滅菌中に校正がずれて正確性が低下する危険性があり、後者の場合は無菌校正液が大量に必要で手間もかかる、という課題が残されていた。   Furthermore, another problem common to the conventionally known methods is a sensor calibration method. That is, in the conventional example, no special consideration is given to calibration of pH sensors. According to the conventional general method, first calibrate the sensor using a calibration solution and then sterilize and place it in a culture container aseptically before culturing, or first sterilize the sensor and sterilize the sensor in a container. It was necessary to make preparations in advance such that the sterilization solution was introduced into the container, calibrated by introducing sterile calibration solution into the container, and the calibration solution was discharged. In the former case, there is a risk that the calibration is shifted during sterilization and the accuracy is lowered, and in the latter case, a large amount of aseptic calibration solution is required and takes time.

本発明の目的は、接着依存性の幹細胞などをディッシュやフラスコなどのプレート状の培養容器底面に接着させて培養し、フィルム状の光学式センサを使用して培地成分のモニタリングを行う際、細胞の培養容器底面への接着を妨げることなく培地成分をモニタリング可能とし、またセンサに対する細胞の接触による悪影響を回避することにある。   The purpose of the present invention is to adhere and cultivate adhesion-dependent stem cells to the bottom of a plate-shaped culture container such as a dish or flask, and to monitor the medium components using a film-shaped optical sensor. Therefore, it is possible to monitor the medium components without interfering with the adhesion to the bottom surface of the culture container, and to avoid the adverse effects of the contact of the cells with the sensor.

本発明のもう一つの目的は、培養容器に設置するセンサの校正を簡単かつ正確に遂行する方法を提供することである。   Another object of the present invention is to provide a method for easily and accurately performing calibration of a sensor installed in a culture vessel.

本発明は、接着依存性の幹細胞などをプレート状の培養容器底面に接着させて培養し、低コスト、簡便、小型、培地使用量の少ない等の特長を有するフィルム状の光学式センサを使用して培地成分のモニタリングを行う場合において、培養容器底の側に形成された凹部の天井面に、培地をはさんで、培養容器底面に対向してセンサを設置し、培養容器もしくは培養プレートの底面にはセンサを設置しない、という特有の構成を採用した。また、本発明においては、センサを校正する場合において、培地そのものや、細胞を分散させた培地のpHを予め検定しておき、それらの検定値を用いてセンサを校正するか、或いは、実施例3の変形例の改良方式の通り、細胞を分散させた培地のpHを別途検定し、その結果を用いてセンサの校正を行うという特有の方法を採用した。本発明は、以上の構成と方法により、上記目的を達成するものである。   The present invention uses a film-shaped optical sensor having features such as low cost, simpleness, small size, and a small amount of culture medium, which are cultured by adhering adhesion-dependent stem cells to the bottom of a plate-shaped culture container. When monitoring medium components, place a sensor on the ceiling surface of the recess formed on the bottom side of the culture vessel with the culture medium facing the bottom surface of the culture vessel, and the bottom surface of the culture vessel or culture plate. Has a unique configuration in which no sensor is installed. Further, in the present invention, when the sensor is calibrated, the pH of the medium itself or the medium in which the cells are dispersed is tested in advance, and the sensor is calibrated using these test values, or the embodiment As a modification of the third modification, a specific method was adopted in which the pH of the medium in which the cells were dispersed was separately tested and the sensor was calibrated using the result. The present invention achieves the above object by the above-described configuration and method.

本発明によれば、接着依存性の幹細胞などをプレート状の培養容器底面に接着させて培養し、低コスト、簡便、小型、培地使用量の少ない等の特長を有するフィルム状の光学式センサを使用して培地成分のモニタリングを行う場合において、細胞の培養容器底面への接着を妨げず、培養が良好に行える。またセンサに対する細胞の接触を防止できるため、両者の接触に基づく悪影響を回避可能である。さらに、培養容器に設置するセンサの校正を簡単かつ正確に遂行できる、という効果がある。   According to the present invention, an optical sensor in the form of a film having features such as low cost, simple, small size, and a small amount of medium used is cultured by adhering adhesion-dependent stem cells to the bottom of a plate-shaped culture container. When the medium components are monitored by using the cells, the cells can be cultured well without preventing the cells from adhering to the bottom of the culture container. Moreover, since the contact of the cell with a sensor can be prevented, the bad influence based on both contact can be avoided. Furthermore, there is an effect that calibration of the sensor installed in the culture vessel can be performed easily and accurately.

本発明の第1の実施例を以下に説明する。図1は、本発明第1の実施例に基づく培養容器1の全体略図、図2は本発明第1の実施例に基づくセンサユニット7の概略平面図、図3は本発明第1の実施例に基づくセンサユニット7の概略側面図、図4は本発明第1の実施例に基づく培養容器1の概略縦断面図、図5は本発明第1の実施例に基づく培養装置の概略図である。   A first embodiment of the present invention will be described below. 1 is an overall schematic view of a culture vessel 1 according to the first embodiment of the present invention, FIG. 2 is a schematic plan view of a sensor unit 7 according to the first embodiment of the present invention, and FIG. 3 is a first embodiment of the present invention. FIG. 4 is a schematic longitudinal sectional view of the culture vessel 1 based on the first embodiment of the present invention, and FIG. 5 is a schematic diagram of the culture apparatus based on the first embodiment of the present invention. .

1は培養容器、2は容器側底部、3は容器天部、4は容器蓋、5は培地、6は細胞、7はセンサユニット、8はpHセンサ、9はセンサホルダ、10は凹部、11は保持機構、12は培養装置、13は反射プローブ、14、15は光ファイバ、16は光ファイバ型分光光度計、17は固定棚である。本培養装置12にはこの他、温度調節機構、炭酸ガス濃度の計測制御機構が含まれる。またこの他に光ファイバ型分光光度計16や培養装置12など全体を統括制御する制御機構などを有するが、これら従来公知の構成要素は本発明の特徴事項ではないため、図示は省略した。   1 is a culture container, 2 is a container side bottom, 3 is a container top, 4 is a container lid, 5 is a culture medium, 6 is a cell, 7 is a sensor unit, 8 is a pH sensor, 9 is a sensor holder, 10 is a recess, 11 Is a holding mechanism, 12 is a culture apparatus, 13 is a reflection probe, 14 and 15 are optical fibers, 16 is an optical fiber type spectrophotometer, and 17 is a fixed shelf. In addition, the main culture apparatus 12 includes a temperature control mechanism and a measurement control mechanism for the concentration of carbon dioxide gas. In addition to this, there are a control mechanism for overall control of the optical fiber type spectrophotometer 16 and the culture apparatus 12, etc., but these conventionally known components are not characteristic features of the present invention and are not shown.

次に、本実施例を特徴づける要素である、培養容器1とそれに内蔵されるセンサユニット7の構造について図1〜4を用いて詳細に述べる。培養容器1は市販のT−75型フラスコと類似の構造であり、容器底部内面には細胞6を接着培養可能である。また容器蓋4には通気性の膜(図示省略)が設けられ、コンタミを起こすことなくガス交換が可能である。   Next, the structure of the culture vessel 1 and the sensor unit 7 incorporated therein, which is an element characterizing the present embodiment, will be described in detail with reference to FIGS. The culture vessel 1 has a structure similar to a commercially available T-75 type flask, and the cells 6 can be adhered and cultured on the inner surface of the bottom of the vessel. The container lid 4 is provided with a breathable membrane (not shown), and gas exchange is possible without causing contamination.

本実施例ではpHセンサ8として非特許文献2に記載の光ファイバ型 pH センサシステムにおける反射式指示薬色素フィルムFR-PR型(フェノールレッド)を製造元から購入して使用した。このpHセンサ8はpHに応じて変色するため、反射光を分光計測することによりpHを求めることが出来る、いわゆるフィルム状の光学式化学センサである。開口部を有するステンレス製のセンサホルダ9にpHセンサ8を挟み、かしめて固定することにより、センサユニット7を製作した。このセンサホルダ9の開口部を通して、センサを観察可能であり、その吸光スペクトル変化を測定可能である。   In this example, a reflective indicator dye film FR-PR type (phenol red) in the optical fiber type pH sensor system described in Non-Patent Document 2 was used as the pH sensor 8 purchased from the manufacturer. Since the pH sensor 8 changes color depending on the pH, it is a so-called film-like optical chemical sensor that can determine the pH by spectroscopically measuring the reflected light. The sensor unit 7 was manufactured by sandwiching and fixing the pH sensor 8 between the stainless steel sensor holder 9 having an opening. The sensor can be observed through the opening of the sensor holder 9 and the change in the absorption spectrum can be measured.

本実施例では、容器側底部2をポリスチレンのインジェクション成形により製作した。容器側底部2の一部は張り出し、その下に凹部10が形成されている。凹部10に設けられている保持機構11を用いて、センサユニット7を凹部10の天井、即ち鉛直上方部分に、容器底面に対向して保持した。容器側底部2の上に容器天部3を接着し、容器蓋4と組み合わせることにより培養容器1を組み立てた。製作の過程において適宜洗浄を行った。培養容器1をアルミラミネート包装に収納して真空脱気した後、アルミラミネート包装の開口部を熱熔着し、密封した。培養容器1を収納したアルミラミネート包装に約25キログレイのγ線を照射し、滅菌を行うことにより、センサユニット7ごと無菌化された培養容器1を製作した。   In this example, the container side bottom 2 was manufactured by polystyrene injection molding. A part of the container-side bottom portion 2 projects, and a recess 10 is formed thereunder. Using the holding mechanism 11 provided in the recess 10, the sensor unit 7 is held on the ceiling of the recess 10, that is, in the vertically upper portion, facing the container bottom surface. The culture vessel 1 was assembled by bonding the vessel top 3 on the vessel side bottom 2 and combining it with the vessel lid 4. Cleaning was performed as appropriate during the production process. After the culture vessel 1 was housed in an aluminum laminate package and vacuum degassed, the opening of the aluminum laminate package was heat-sealed and sealed. The aluminum laminate package containing the culture vessel 1 was irradiated with about 25 kg of γ-rays and sterilized to produce the culture vessel 1 sterilized together with the sensor unit 7.

次に、本実施例における培養装置12の構造について図5を用いて説明する(図5では装置前面の扉は省略した)。培養装置12は基本的に市販の炭酸ガスインキュベータと同様であるが、培養容器1を固定可能な固定棚17と、センサの分光計測を行うための反射プローブ13、光ファイバ14、15、光ファイバ型分光光度計16、等を備える点が本実施例の特徴事項である。光ファイバ型分光光度計16には、励起光源が内蔵され、光ファイバ14を通して反射プローブ13から励起光を放射し、フィルム状の光学式センサを照射する。フィルム状の光学式センサからの反射光は反射プローブ13、光ファイバ15を通して光ファイバ型分光光度計16に戻り、フィルム状の光学式センサのスペクトル計測が行われる。   Next, the structure of the culture apparatus 12 in the present embodiment will be described with reference to FIG. 5 (the door on the front side of the apparatus is omitted in FIG. 5). The culture apparatus 12 is basically the same as a commercially available carbon dioxide incubator, but a fixed shelf 17 on which the culture vessel 1 can be fixed, a reflection probe 13 for performing spectroscopic measurement of the sensor, optical fibers 14 and 15, and an optical fiber. A feature of the present embodiment is that a type spectrophotometer 16 and the like are provided. The optical fiber type spectrophotometer 16 incorporates an excitation light source, emits excitation light from the reflection probe 13 through the optical fiber 14, and irradiates a film-like optical sensor. Reflected light from the film-like optical sensor returns to the optical fiber type spectrophotometer 16 through the reflection probe 13 and the optical fiber 15, and spectrum measurement of the film-like optical sensor is performed.

次に、本実施例の動作の一例を図1〜4を用いて説明する。本実施例においては、準備、細胞の播種、培養、継代、回収の操作を行った。以下それぞれの操作について詳述する。なお全ての操作において、動物細胞の操作に必要な、無菌培養のための注意を払った。   Next, an example of the operation of this embodiment will be described with reference to FIGS. In this example, operations of preparation, seeding of cells, culture, passage, and recovery were performed. Each operation will be described in detail below. In all operations, attention was paid for aseptic culture required for the operation of animal cells.

準備の操作の詳細は以下の通り。予め培養装置12を37℃、炭酸ガス濃度5%、酸素濃度約20%に設定、維持した。必要な試薬、器具を用意し、作業場所(クリーンベンチ)の準備を行った。以下1.〜5.の手順でpHセンサの校正を行った。   The details of the preparation operation are as follows. The culture apparatus 12 was previously set and maintained at 37 ° C., a carbon dioxide concentration of 5%, and an oxygen concentration of about 20%. Necessary reagents and instruments were prepared and a work place (clean bench) was prepared. 1. ~ 5. The pH sensor was calibrated by the following procedure.

1.分光光度計の校正その1(100%校正試料による校正)。センサユニット7の代わりに、アルミ蒸着等により形成したミラーfを設置した100%校正用の培養容器1bを用意した(図示省略)。この100%校正用の培養容器1bを培養装置12の固定棚17へ設置し、反射スペクトルを計測した。   1. Calibration of spectrophotometer 1 (calibration with 100% calibration sample). Instead of the sensor unit 7, a 100% calibration culture vessel 1b provided with a mirror f formed by aluminum vapor deposition or the like was prepared (not shown). The culture vessel 1b for 100% calibration was placed on the fixed shelf 17 of the culture apparatus 12, and the reflection spectrum was measured.

反射スペクトルの計測法は以下の通り。即ち、光ファイバ型分光光度計16に内蔵されたハロゲンランプからの光源光を光ファイバ14を通して反射プローブ13に導き、培養容器1bの底面から入射した。培養容器1bの内部に設置したミラーfで反射された反射光を、反射プローブ13で捕集し、光ファイバ15を通して光ファイバ型分光光度計16に導き、光ファイバ型分光光度計16内蔵の分光光度計により可視領域のスペクトルを測定した。   The reflection spectrum is measured as follows. That is, the light source light from the halogen lamp built in the optical fiber type spectrophotometer 16 was guided to the reflection probe 13 through the optical fiber 14 and entered from the bottom surface of the culture vessel 1b. The reflected light reflected by the mirror f installed inside the culture vessel 1 b is collected by the reflection probe 13, guided to the optical fiber type spectrophotometer 16 through the optical fiber 15, and the spectroscopic built in the optical fiber type spectrophotometer 16. The spectrum in the visible region was measured with a photometer.

このミラーfによる100%反射スペクトルを、サンプルsについてのスペクトル、即ち波長λに対する関数
w(λ,s) 、ただしここでは s=f、 即ち w(λ,f)
として記憶した。
The 100% reflection spectrum by this mirror f is a function of the spectrum for the sample s, that is, the wavelength λ.
w (λ, s) where s = f, ie w (λ, f)
Remembered as.

2.分光光度計の校正その2(0%校正試料による校正)。センサユニット7の代わりに、アルミ表面に黒アルマイト加工などにより無反射層を形成した吸光板zを設置した0%校正用の培養容器1cを用意した(図示省略)。この0%校正用の培養容器1cを培養装置12の固定棚17へ設置し、反射スペクトルを上記同様の手順により計測した。   2. Calibration of spectrophotometer 2 (calibration with 0% calibration sample). Instead of the sensor unit 7, a 0% calibration culture vessel 1c was prepared (not shown) in which a light-absorbing plate z in which a nonreflective layer was formed on the aluminum surface by black anodizing or the like was installed. This 0% calibration culture vessel 1c was placed on the fixed shelf 17 of the culture apparatus 12, and the reflection spectrum was measured by the same procedure as described above.

この吸光板zによる0%反射スペクトルを、波長λに対する関数
w(λ,s) 、ただしここでは s=z、 即ち w(λ,z)
として記憶した。
The 0% reflection spectrum by the light absorbing plate z is a function with respect to the wavelength λ.
w (λ, s) where s = z, ie w (λ, z)
Remembered as.

3.pHセンサの校正。校正目的とするフィルム状の光学式センサであるpHセンサ8を保持したセンサユニット7を設置した培養容器1を用意し、滅菌した高pH標準液h(pH10に調製したホウ酸緩衝水溶液)を培養容器1に入れ、培養装置12の固定棚17へ設置し、反射スペクトルを上記同様の手順により計測した。計測後、高pH標準液hを純水を用いて培養容器1から洗脱した。   3. Calibration of pH sensor. Prepare a culture vessel 1 equipped with a sensor unit 7 holding a pH sensor 8, which is a film-like optical sensor for calibration purposes, and culture a sterilized high pH standard solution h (borate buffer aqueous solution adjusted to pH 10). It put into the container 1 and installed in the fixed shelf 17 of the culture apparatus 12, and the reflection spectrum was measured in the same procedure as the above. After the measurement, the high pH standard solution h was washed away from the culture vessel 1 using pure water.

この高pH標準液hに対するpHセンサの反射スペクトルを、波長λに対する関数
w(λ,s) 、ただしここでは s=h、 即ち w(λ,h)
として記憶した。
The reflection spectrum of the pH sensor with respect to the high pH standard solution h is a function with respect to the wavelength λ.
w (λ, s) where s = h, ie w (λ, h)
Remembered as.

4.透過率、吸光度、ベースライン補正ピーク吸光度の算出。上記高pH標準液hに対するpHセンサの透過率 T(λ,h) 、吸光度 A(λ,h) 、ベースライン補正ピーク吸光度 Ap(h) を、サンプルsに関する下記の一般式
T(λ,s) = ( w(λ,s) − w(λ,z) )/( w(λ,f) − w(λ,z) )、
A(λ,s) = - log T(λ,s)、
Ap(s) = A(p,s) − A(b,s)
において、 s=h を代入して下記の通り求めた。
T(λ,h) = ( w(λ,h) − w(λ,z) )/( w(λ,f) − w(λ,z) )、
A(λ,h) = - log T(λ,h)、
Ap(h) = A(p,h) − A(b,h)
ここでlogは常用対数を表す。また本実施例の場合、ベースライン波長bは780〜800nmとし、A(b,h)としてはλ=770〜800nmにおけるA(λ,h)の平均値を使用した。また、ピーク波長pは568〜572nmとし、A(p,h)としてはλ=568〜572nmにおけるA(λ,h)の平均値を使用した。(以下同様)
5.酸解離定数pKaの決定。本実施例では、センサの酸解離定数pKaとして、文献値である7.5を採用した。以上により、pHセンサの校正が完了した。
4). Calculation of transmittance, absorbance, and baseline corrected peak absorbance. The transmittance T (λ, h), absorbance A (λ, h), and baseline corrected peak absorbance Ap (h) of the pH sensor with respect to the high pH standard solution h are expressed by the following general formula for the sample s.
T (λ, s) = (w (λ, s) −w (λ, z)) / (w (λ, f) −w (λ, z)),
A (λ, s) =-log T (λ, s),
Ap (s) = A (p, s) −A (b, s)
Then, s = h was substituted and obtained as follows.
T (λ, h) = (w (λ, h) −w (λ, z)) / (w (λ, f) −w (λ, z)),
A (λ, h) =-log T (λ, h),
Ap (h) = A (p, h) −A (b, h)
Here, log represents a common logarithm. In this embodiment, the baseline wavelength b is 780 to 800 nm, and the average value of A (λ, h) at λ = 770 to 800 nm is used as A (b, h). The peak wavelength p was 568 to 572 nm, and the average value of A (λ, h) at λ = 568 to 572 nm was used as A (p, h). (The same applies hereinafter)
5). Determination of acid dissociation constant pKa. In this example, a reference value of 7.5 was adopted as the acid dissociation constant pKa of the sensor. This completes the calibration of the pH sensor.

播種の動作の詳細は以下の通り。凍結保存された細胞接着性細胞を解凍し、直ちに培地に加え、遠心分離、上清を除去、ペレット状の細胞に培地を加えて再分散した。あるいは、継代操作の途中で得られた分散状態の細胞を使用した。細胞を分散させた培地中の生細胞の濃度(単位体積あたりの数)を計測した。接着面積あたりの生細胞数(播種密度)が所定値となるように、培養に使用する所定量の培地の中の細胞数を調節した。本実施例では培養容器1としてT−75フラスコ相当のものを使用し、底面積は約75 cm^2であった。細胞播種密度は5000個/cm^2としたため、約3.8x10^5個の生細胞を30mLの培地に分散させた。この細胞を分散させた培地を培養容器1へ導入し、培養容器1の容器蓋4を閉め、撹拌した。培養容器1に設けられた凹部10に気泡がある場合、傾けて震動を与えるなどして、気泡を除去した。   Details of sowing operation are as follows. The cryoadhered cell-adherent cells were thawed, immediately added to the medium, centrifuged, the supernatant was removed, the medium was added to the pelleted cells and redispersed. Alternatively, dispersed cells obtained during the passage operation were used. The concentration (number per unit volume) of living cells in the medium in which the cells were dispersed was measured. The number of cells in a predetermined amount of medium used for culture was adjusted so that the number of living cells per seeding area (seeding density) was a predetermined value. In this example, a culture vessel 1 equivalent to a T-75 flask was used, and the bottom area was about 75 cm 2. Since the cell seeding density was 5000 cells / cm ^ 2, approximately 3.8 x 10 ^ 5 viable cells were dispersed in 30 mL of medium. The medium in which the cells were dispersed was introduced into the culture container 1, and the container lid 4 of the culture container 1 was closed and stirred. When there was a bubble in the recess 10 provided in the culture vessel 1, the bubble was removed by tilting and shaking.

培養の操作の詳細は以下の通り。細胞を播種した培養容器ごと培養装置12の固定棚17へ設置して、静置して培養を行った。   The details of the culture operation are as follows. The culture vessel in which the cells were seeded was placed on the fixed shelf 17 of the culture device 12 and allowed to stand for culturing.

ここで細胞の挙動を図4により説明する。培地30mLを底面積75cm^2の培養容器1に入れたため、培地5の厚さは約4mmとなった。本実施例における凹部10の高さは約2.5mmであったため、図4に図示した通り、培地は
凹部10の内部に完全に満たされ、凹部10の上の培地の厚さは約1.5mmであった。当初培地5中に分散されていた細胞6は、培地より比重が大きいため、次第に沈降し、最終的には培養容器1の底面に落下、接着して成長した。本実施例においてセンサユニット7は保持機構11により凹部10の天井、即ち鉛直上方部分に、培地をはさんで、保持されている。従って、センサユニット7はもちろん、その構成要素であるセンサホルダ9やpHセンサ8は細胞とは接触することなく、培養が行われた。
Here, the behavior of the cells will be described with reference to FIG. Since 30 mL of the medium was placed in the culture container 1 having a bottom area of 75 cm ^ 2, the thickness of the medium 5 was about 4 mm. Since the height of the recess 10 in this example was about 2.5 mm, as shown in FIG. 4, the medium was completely filled in the recess 10 and the thickness of the medium above the recess 10 was about 1.5 mm. there were. The cells 6 that were initially dispersed in the culture medium 5 had a larger specific gravity than the culture medium, and therefore gradually settled and eventually dropped and adhered to the bottom surface of the culture vessel 1 to grow. In the present embodiment, the sensor unit 7 is held by the holding mechanism 11 on the ceiling of the recess 10, that is, in the vertically upper part with the culture medium interposed therebetween. Therefore, the sensor holder 9 and the pH sensor 8 as well as the sensor unit 7 as well as its constituent elements were cultured without contacting the cells.

以降3〜4日に1回の割合で培地交換を行った。また細胞の増殖の様子を適宜観察し、コンフルエントになる前に、下に述べる継代の操作を行った。培地交換や観察、継代の操作を行わない間は、下記に述べる方法でpHの計測を間欠的に行い、即ちpHのモニタリングを行いながら、培養を継続した。   Thereafter, the medium was changed once every 3 to 4 days. In addition, the state of cell proliferation was appropriately observed, and the subculture operation described below was performed before confluence. While the medium was not exchanged, observed or passaged, the culture was continued while the pH was measured intermittently by the method described below, that is, the pH was monitored.

pHの計測の操作の詳細は以下の通り。   The details of the pH measurement operation are as follows.

6.上記3と同様の手順により、ただし試料としては高pH標準液bの代わりに未知試料sを使用して、pHセンサの反射スペクトルを計測し、波長λに対する関数
w(λ,s)
として記憶した。
6). According to the same procedure as 3 above, except that the unknown sample s is used instead of the high pH standard solution b as the sample, the reflection spectrum of the pH sensor is measured, and the function with respect to the wavelength λ
w (λ, s)
Remembered as.

7.透過率、吸光度、ベースライン補正ピーク吸光度の算出。上記4と同様の手順により、未知試料sに対するpHセンサの透過率 T(λ,s) 、吸光度 A(λ,s) 、ベースライン補正ピーク吸光度 Ap(s) を、サンプルsに関する下記の一般式
T(λ,s) = ( w(λ,s) − w(λ,z) )/( w(λ,f) − w(λ,z) )、
A(λ,s) = - log T(λ,s)、
Ap(s) = A(p,s) − A(b,s)
として求めた。ここで上記4同様、A(b,s)、A(p,s)としてはb、pに対応するλの範囲におけるA(λ,s)の平均値を使用した(以下同様)。
7). Calculation of transmittance, absorbance, and baseline corrected peak absorbance. According to the same procedure as in 4 above, the transmittance T (λ, s), absorbance A (λ, s), and baseline corrected peak absorbance Ap (s) of the pH sensor with respect to the unknown sample s are expressed by the following general formula for sample s.
T (λ, s) = (w (λ, s) −w (λ, z)) / (w (λ, f) −w (λ, z)),
A (λ, s) =-log T (λ, s),
Ap (s) = A (p, s) −A (b, s)
As sought. Here, as in 4 above, the average value of A (λ, s) in the range of λ corresponding to b and p was used as A (b, s) and A (p, s) (the same applies hereinafter).

8.pHの算出。下記の式により、解離度αと、pHを求めた。   8). Calculation of pH. The dissociation degree α and the pH were determined by the following formula.

α = Ap(s)/Ap(h)
pH = pKa + log ( α/(1−α) )
なお、pHの適正範囲は一般に7.0から7.4の範囲とされている。そこで、本実施例ではモニタリングの結果、pHが7.0以下や7.4以上になった場合、最適範囲を逸脱したと見なして、培地交換を行い、その事実と日時を記録した。培地交換を行ってもpHが適正範囲に収まらないか、あるいは直ぐにまた適正範囲から逸脱した場合、異常事態と見なして、操作者に警報を発して、異常事態の可能性があることを連絡すると共に、原因究明と対策を促した。
α = Ap (s) / Ap (h)
pH = pKa + log (α / (1−α))
The proper pH range is generally in the range of 7.0 to 7.4. Therefore, in this example, when the pH was 7.0 or less or 7.4 or more as a result of monitoring, the medium was replaced considering that it deviated from the optimum range, and the fact and date were recorded. If the pH does not fall within the proper range even after changing the medium, or if it immediately deviates from the proper range, it is regarded as an abnormal situation, and an alarm is issued to the operator to notify that there is a possibility of the abnormal situation. At the same time, the cause investigation and countermeasures were promoted.

継代の操作の詳細は以下の通り。培養容器1をクリーンベンチに移し、Trypsin-EDTAを加え、37℃で5分間加温した後、培養容器1に軽い震動を与えて細胞を剥離した。直ちに培地を加えて反応を停止し、遠心分離、上清除去し、ペレットに培地を加えて再分散した。再分散後の操作は、細胞播種の操作に準じた。   Details of the passaging operation are as follows. The culture vessel 1 was transferred to a clean bench, Trypsin-EDTA was added, and the mixture was heated at 37 ° C. for 5 minutes. Then, the culture vessel 1 was gently shaken to detach the cells. The medium was immediately added to stop the reaction, and the mixture was centrifuged and the supernatant was removed. The medium was added to the pellet and redispersed. The operation after redispersion was in accordance with the cell seeding operation.

回収の操作の詳細は以下の通り。上記継代操作の前半部分と同様の手順で細胞を剥離し、反応停止、培地に再分散させた。このまま、或いは必要に応じて培地をPBSなどに交換した後、細胞懸濁液として細胞を回収した。   Details of the collection operation are as follows. The cells were detached by the same procedure as in the first half of the above passage operation, and the reaction was stopped and redispersed in the medium. In this state or after replacement of the medium with PBS as necessary, the cells were collected as a cell suspension.

なお本実施例ではセンサとして、フィルム状の光学式センサの1種である反射式指示薬色素フィルムFR-PR型を用いたが、本発明の適用範囲はこのセンサの例に限定されない。本発明に好適に適用可能な他のセンサの例としては、非特許文献2に記載の他の反射式指示薬色素フィルムなどがあり、特に目的とするpH範囲が異なる場合に好適に使用可能である。また、本実施例では反射プローブ13を使用したため反射式センサを採用したが、入射光と透過光を導く光ファイバを独立させ、それぞれを培養容器の表裏に設置することにより、透過モードでセンサの吸光スペクトルを測定することも可能である。この場合、センサとしては非特許文献2に記載の透過式指示薬色素フィルムが好適に使用可能である。pHを測定可能な光学式センサは、非特許文献2に記載のフィルム以外にも各種使用可能であり、特に指示薬色素を担体に共有結合により固定化したセンサは、長期安定性が高いという特徴がある。また、pH以外の項目をフィルム状の光学式センサによりモニタリングすることも本発明の範疇である。この例としては、光学式の酸素、炭酸ガス、アンモニアセンサなど各種のガスセンサ、ナトリウムイオン、カリウムイオン、塩化物イオンなどの各種のイオンセンサ、グルコース、アルコール等の中性の生体物質に対するセンサが知られており、上記同様の方法により、本発明に好適に使用できる。   In this embodiment, a reflective indicator dye film FR-PR type, which is a kind of film-type optical sensor, is used as the sensor. However, the scope of application of the present invention is not limited to this sensor example. Examples of other sensors that can be suitably applied to the present invention include other reflective indicator dye films described in Non-Patent Document 2, and can be suitably used particularly when the target pH range is different. . In this embodiment, the reflection type sensor is used because the reflection probe 13 is used. However, by separating the optical fibers that guide the incident light and the transmitted light and placing them on the front and back of the culture vessel, the sensor can be operated in the transmission mode. It is also possible to measure the absorption spectrum. In this case, a transmissive indicator dye film described in Non-Patent Document 2 can be suitably used as the sensor. Various optical sensors capable of measuring pH can be used in addition to the film described in Non-Patent Document 2, and in particular, a sensor in which an indicator dye is covalently immobilized on a carrier is characterized by high long-term stability. is there. It is also within the scope of the present invention to monitor items other than pH with a film-like optical sensor. Examples of this include various gas sensors such as optical oxygen, carbon dioxide and ammonia sensors, various ion sensors such as sodium ion, potassium ion and chloride ion, and sensors for neutral biological substances such as glucose and alcohol. And can be suitably used in the present invention by the same method as described above.

本発明ではフィルム状の光学式センサユニット7を、培養容器1に設けられた凹部10の天井、即ち鉛直上方部分に、培地をはさんで保持するという特徴的な構成を採用することにより、細胞の培養容器底面への接着を妨げることなく培地のpHをモニタリング可能とし、またセンサに対する細胞の接触を防止し、細胞のセンサへの接触による悪影響の可能性を回避したが、本発明の精神は必ずしも上記構成に限定されない。同等の効果をもたらす他の構成の例としては、下記の変形例などがある。   In the present invention, by adopting a characteristic configuration in which the film-like optical sensor unit 7 is held on the ceiling of the concave portion 10 provided in the culture vessel 1, that is, in the vertically upper portion, with the culture medium interposed therebetween, Although it was possible to monitor the pH of the medium without interfering with the adhesion to the bottom of the culture vessel and to prevent contact of the cells with the sensor, avoiding the possibility of adverse effects due to contact of the cells with the sensor, the spirit of the present invention is It is not necessarily limited to the above configuration. Examples of other configurations that provide equivalent effects include the following modifications.

・センサユニットの突出。センサユニット7は、必ずしも培養容器1に設けられた凹部10の天井部分に完全に収納されている必要はない。センサユニット7の一部が凹部10から横方向に突出していても、容器底面に対向して保持されていれば、上記同様の効果が得られる。センサホルダ9の開口部が凹部10の外に露出する場合は、その当該部分(上面)を被覆するか、あるいは上面開口部を無くして下面開口部のみとすることにより、pHセンサ8への細胞の付着を回避できる。   ・ Projection of sensor unit. The sensor unit 7 does not necessarily have to be completely stored in the ceiling portion of the recess 10 provided in the culture vessel 1. Even if a part of the sensor unit 7 protrudes laterally from the recess 10, the same effect as described above can be obtained as long as the sensor unit 7 is held facing the bottom surface of the container. When the opening of the sensor holder 9 is exposed to the outside of the recess 10, the cell to the pH sensor 8 is covered by covering the portion (upper surface) or by removing the upper surface opening and making only the lower surface opening. Can be avoided.

・培養容器1における凹部10は必須の構成要素ではない。例えば上面に開口部を持たないセンサユニット7を培養容器1の側部に固定し、水平方向に保持することにより、pHセンサ8を容器底面に対向して保持することが可能である。また、センサユニット7を培養容器1底面に設けた柱に固定することにより、容器底面に対向して保持することも可能である。さらに、センサホルダ9として断面が図3に示す直線状でなく、段差又は屈曲を有する形状のものを使用し、鉛直下方向の面を培養容器1底面に固定し、鉛直上方向の面にpHセンサ8を固定することにより、pHセンサ8を容器底面に対向して保持することも可能である。   -The recessed part 10 in the culture container 1 is not an essential component. For example, the pH sensor 8 can be held facing the bottom of the container by fixing the sensor unit 7 having no opening on the upper surface to the side of the culture container 1 and holding it horizontally. Further, by fixing the sensor unit 7 to a column provided on the bottom surface of the culture vessel 1, it can be held facing the bottom surface of the vessel. Further, the sensor holder 9 has a cross-sectional shape that is not linear as shown in FIG. 3 but has a step or a bend, and the vertically downward surface is fixed to the bottom surface of the culture vessel 1 and the vertically upward surface is adjusted to pH. By fixing the sensor 8, it is also possible to hold the pH sensor 8 facing the bottom surface of the container.

・センサユニットの保持。上記実施例では培養容器1に設けられた凹部10の天井部分に保持機構11を設け、センサユニット7を保持機構11にはめることにより保持した。具体的には、保持機構11として溝を使用したが、センサユニット7の固定方法はこれに限定されない。保持機構11の他の例としては、接着材、ばねによる圧接、磁力、電磁力、ネジ、リベット、くさび、等、様々な方式がある。   -Holding the sensor unit. In the above embodiment, the holding mechanism 11 is provided on the ceiling portion of the recess 10 provided in the culture vessel 1, and the sensor unit 7 is held on the holding mechanism 11. Specifically, although a groove is used as the holding mechanism 11, the fixing method of the sensor unit 7 is not limited to this. As other examples of the holding mechanism 11, there are various methods such as an adhesive, a pressure contact with a spring, a magnetic force, an electromagnetic force, a screw, a rivet, and a wedge.

本実施例特有の効果は、接着依存性の幹細胞などをプレート状の培養容器底面に接着させて培養しながらpHをモニタリングする際、上記のごときフィルム状の光学式pHセンサを用いることにより、pH電極や市販の光ファイバ型pHプローブを用いる場合と比較して、センサのコストが低く、センサを容易に滅菌可能であり、またコストが低いためにセンサをディスポーザブルにでき再利用の手間が省け、サイズが小さく、さらに培地コストも低い、という特長がある。また、センサが培養容器1に設けられた凹部10の天井、即ち鉛直上方部分に、培地をはさんで保持されているるため、細胞の培養容器底面への接着を妨げることなく培地のpHをモニタリング可能であり、またセンサに対する細胞の接触を防止し、細胞のセンサへの接触による悪影響の可能性を回避できる、という特長がある。   The effect peculiar to this example is that when monitoring the pH while adhering adhesion-dependent stem cells or the like to the bottom of the plate-shaped culture container and culturing, the pH is obtained by using the film-shaped optical pH sensor as described above. Compared to the case of using an electrode or a commercially available optical fiber type pH probe, the cost of the sensor is low, the sensor can be easily sterilized, and since the cost is low, the sensor can be made disposable and the labor of reuse can be saved. It is characterized by its small size and low medium cost. In addition, since the sensor is held on the ceiling of the concave portion 10 provided in the culture vessel 1, that is, in the vertically upper part, with the culture medium interposed therebetween, the pH of the culture medium can be adjusted without hindering adhesion of cells to the bottom of the culture vessel. It has the feature that it can be monitored, and the cell can be prevented from coming into contact with the sensor, thereby avoiding the possibility of adverse effects caused by the contact of the cell with the sensor.

本発明の第2の実施例を以下に説明する。第2の実施例は上記第1の実施例と同様であるが、センサの校正方法が異なる。   A second embodiment of the present invention will be described below. The second embodiment is similar to the first embodiment, but the sensor calibration method is different.

即ち、第1の実施例ではセンサの校正手順のうち、手順1.から4.までを準備の操作の一環として、使用開始時に使用者が行い、Ap(h)を求めるとともに、手順5.においてpKaを文献値から求めた。   That is, in the first embodiment, among the sensor calibration procedures, the procedure 1. To 4. As a part of the preparation operation, the user performs Ap (h) at the start of use and obtains Ap (h). PKa was determined from literature values.

一方、第2の実施例では製造時に製造者が製造工程の一環として製造工程の途中(センサユニット7を凹部10の天井に保持した直後、容器側底部2の上に容器天部3を接着する前の状態)で、手順1.〜4.を行ってAp(h)を求めた。また、手順1.と2.は準備の操作の一環として、使用開始時に使用者が再度行い、w(λ,f)、w(λ,z)を求め、手順3.と4.は省略した。またpKaについては文献値では無く、使用時に使用者が中性のpH標準液nを測定し、その結果からpKaを推測した(手順5’)。以下、特に手順5’即ちpKaの推定手順について詳細に説明する。   On the other hand, in the second embodiment, the manufacturer attaches the container top 3 on the container-side bottom 2 immediately after the manufacturer is holding the sensor unit 7 on the ceiling of the recess 10 as part of the manufacturing process. In the previous state), the procedure 1. ~ 4. To determine Ap (h). Also, procedure 1. And 2. As part of the preparation operation, the user performs again at the start of use to obtain w (λ, f) and w (λ, z). And 4. Omitted. In addition, pKa is not a literature value, and the user measured a neutral pH standard solution n at the time of use, and pKa was estimated from the result (procedure 5 '). Hereinafter, the procedure 5 ', that is, the pKa estimation procedure will be described in detail.

5’.酸解離定数pKaの推定。手順3.と同様に、滅菌した中性のpH標準液n(pH7に調製したリン酸緩衝水溶液)を培養容器1に入れ、培養装置12の固定棚17へ設置し、反射スペクトルを計測した。   5 '. Estimation of acid dissociation constant pKa. Procedure 3. In the same manner as described above, a sterilized neutral pH standard solution n (an aqueous phosphate buffer solution adjusted to pH 7) was placed in the culture vessel 1 and placed on the fixed shelf 17 of the culture device 12, and the reflection spectrum was measured.

この中性のpH標準液nに対するpHセンサの反射スペクトルを、波長λに対する関数
w(λ,s) 、ただしここでは s=n、 即ち w(λ,n)
として記憶した。
The reflection spectrum of the pH sensor with respect to this neutral pH standard solution n is a function with respect to the wavelength λ.
w (λ, s) where s = n, ie w (λ, n)
Remembered as.

次に、上記4と同様の手順により、中性のpH標準液nに対するpHセンサの透過率 T(λ,n) 、吸光度 A(λ,n) 、ベースライン補正ピーク吸光度 Ap(n) を、下記の通り求めた
T(λ,n) = ( w(λ,n) − w(λ,z) )/( w(λ,f) − w(λ,z) )、
A(λ,n) = - log T(λ,n)、
Ap(n) = A(p,n) − A(b,n)
として求めた。ここでw(λ,f)、w(λ,z)としては準備の操作の一環として、使用開始時に使用者が再度行った手順1.と2.の結果を用いた。
Next, the pH sensor transmittance T (λ, n), absorbance A (λ, n), and baseline corrected peak absorbance Ap (n) with respect to the neutral pH standard solution n are obtained by the same procedure as above 4. Calculated as follows
T (λ, n) = (w (λ, n) −w (λ, z)) / (w (λ, f) −w (λ, z)),
A (λ, n) =-log T (λ, n),
Ap (n) = A (p, n) −A (b, n)
As sought. Here, w (λ, f) and w (λ, z) are procedures performed once again by the user at the start of use as part of the preparation operation. And 2. The results of were used.

最後に、pKaを下記により求めた。   Finally, pKa was determined as follows.

α = Ap(n)/Ap(h)
pKa = pH(n) − log ( α/(1−α) )
ここでAp(h)は前述の通り製造者が求めた値、またpH(n)は中性のpH標準液nの検定pH値、即ち本実施例では7.0である。
α = Ap (n) / Ap (h)
pKa = pH (n)-log (α / (1-α))
Here, Ap (h) is a value obtained by the manufacturer as described above, and pH (n) is an assay pH value of the neutral pH standard solution n, that is, 7.0 in this embodiment.

これ以外の点については、実施例2は実施例1と同様である。   In other respects, Example 2 is the same as Example 1.

本実施例では、pH校正の手順の一部、即ち高pH標準液hを用いてAp(h)を求める手順を製造工程の一環として、センサ製造時に製造者が行った。従って、使用者が高pH標準液を操作する工程と、それが終了した後に高pH標準液を培養容器1から洗脱する工程を省略でき、安全性が高く、簡便である、という特有の効果がある。また、pKaとして文献値ではなく、直前に中性のpH標準液を計測して得られた実験データから求めた推定値を使用するため、pH測定結果の精度が高く信頼性が高い、という特有の効果がある。   In this example, a part of the pH calibration procedure, that is, the procedure for obtaining Ap (h) using the high pH standard solution h was performed by the manufacturer at the time of sensor manufacture as part of the manufacturing process. Therefore, the process of operating the high pH standard solution by the user and the step of washing and removing the high pH standard solution from the culture vessel 1 after the completion of the process can be omitted, and the specific effect of being highly safe and simple. There is. In addition, since pKa is not a literature value but an estimated value obtained from experimental data obtained by measuring a neutral pH standard solution immediately before is used, the pH measurement result is highly accurate and reliable. There is an effect.

本発明の第3の実施例を以下に説明する。第3の実施例は上記第2の実施例と同様であるが、pHセンサの校正法の一部が異なる。   A third embodiment of the present invention will be described below. The third embodiment is the same as the second embodiment, but a part of the calibration method of the pH sensor is different.

即ち、第2の実施例では製造時に製造者が手順1.〜4.を行ってAp(h)を求めた。また使用開始時に使用者が準備の操作の一環として、手順1.と2.を行ってw(λ,f)、w(λ,z)を求め、さらに中性のpH標準液nを用いて手順5’.を行うことにより、pKaを求めた。   That is, in the second embodiment, the manufacturer performs the procedure 1. ~ 4. To determine Ap (h). In addition, as part of the preparation operation by the user at the start of use, the procedure 1. And 2. To obtain w (λ, f) and w (λ, z), and further using the neutral pH standard solution n, the procedure 5 '. PKa was calculated | required by performing.

一方、第3の実施例では製造時に製造者が手順1.〜4.を行ってAp(h)を求め、また使用開始時に使用者が準備の操作の一環として、手順1.と2.を行ってw(λ,f)、w(λ,z)を求めた点は第2の実施例と同様である。
その後、中性のpH標準液nではなく、培地を用い、その結果からpKaを推測した(手順5”)。以下、特に手順5”即ちpKaの推定手順について詳細に説明する。
On the other hand, in the third embodiment, the manufacturer performs the procedure 1. ~ 4. To obtain Ap (h), and at the start of use, as a part of the preparation operation, the user performs the procedure 1. And 2. Is the same as the second embodiment in that w (λ, f) and w (λ, z) are obtained.
Thereafter, the medium was used instead of the neutral pH standard solution n, and the pKa was estimated from the result (procedure 5 ″). Hereinafter, the procedure 5 ″, that is, the pKa estimation procedure will be described in detail.

5”.酸解離定数pKaの推定。手順5’.と同様に、培地mを培養容器1に入れ、培養装置12の固定棚17へ設置し、反射スペクトルが十分に安定するのを待った後、反射スペクトルを計測した。   5 ″. Estimation of acid dissociation constant pKa. In the same manner as in step 5 ′., Medium m is placed in culture vessel 1 and placed on fixed shelf 17 of culture apparatus 12, and after waiting for the reflection spectrum to stabilize sufficiently, The reflection spectrum was measured.

この培地mに対するpHセンサの反射スペクトルを、波長λに対する関数
w(λ,s) 、ただしここでは s=m、 即ち w(λ,m)
として記憶した。
The reflection spectrum of the pH sensor for this medium m is a function of wavelength λ.
w (λ, s) where s = m, ie w (λ, m)
Remembered as.

次に、上記4と同様の手順により、培地mに対するpHセンサの透過率 T(λ,m) 、吸光度 A(λ,m) 、ベースライン補正ピーク吸光度 Ap(m) を、下記の通り求めた
T(λ,m) = ( w(λ,m) − w(λ,z) )/( w(λ,f) − w(λ,z) )、
A(λ,m) = - log T(λ,m)、
Ap(m) = A(p,m) − A(b,m)
として求めた。ここでw(λ,f)、w(λ,z)としては準備の操作の一環として、使用開始時に使用者が再度行った手順1.と2.の結果を用いた。
Next, the pH sensor permeability T (λ, m), absorbance A (λ, m), and baseline corrected peak absorbance Ap (m) with respect to the medium m were determined as follows by the same procedure as described above.
T (λ, m) = (w (λ, m) −w (λ, z)) / (w (λ, f) −w (λ, z)),
A (λ, m) =-log T (λ, m),
Ap (m) = A (p, m) −A (b, m)
As sought. Here, w (λ, f) and w (λ, z) are procedures performed once again by the user at the start of use as part of the preparation operation. And 2. The results of were used.

最後に、pKaを下記により求めた。   Finally, pKa was determined as follows.

α = Ap(m)/Ap(h)
pKa = pH(m) − log ( α/(1−α) )
ここでAp(h)は前述の通り製造者が求めた値、またpH(m)は事前に求めておいた(安定化後の)培地のpH値、即ち本実施例では7.4である。
α = Ap (m) / Ap (h)
pKa = pH (m)-log (α / (1-α))
Here, Ap (h) is the value obtained by the manufacturer as described above, and pH (m) is the pH value of the medium (after stabilization) obtained in advance, that is, 7.4 in this example.

これ以外の点については、実施例2は実施例1と同様である。   In other respects, Example 2 is the same as Example 1.

なお、反射スペクトルの安定待ち時間を十分取ったのは、採用した培地が炭酸系緩衝溶液であるため、炭酸ガスインキュベータ中の炭酸ガスと十分なガス交換を行うまでは、pHが安定しないからである。   The reason why sufficient waiting time for stabilization of the reflection spectrum was taken is that the pH is not stable until sufficient gas exchange with carbon dioxide in the carbon dioxide incubator is performed because the medium used is a carbonated buffer solution. is there.

また、本実施例の変形例として、操作5”を準備の操作の一環として、使用開始時に行わう代わりに、培養の操作の初期に行う方法も採用できる。即ち、上記5”の操作を純粋な培地mを用いて準備の操作の一環として行う代わりに、細胞を培養容器1に播種して培養を開始した直後(モニタリング開始前)に、細胞を分散させた培地m’を用いて、上記5”同様の操作を行うことが出来る。事前検討の結果、培地m’の安定化後のpHはmと同じ7.4であったため、本変形例においても操作5”と同じ計算式でpKaを求めることが出来る。   Further, as a modification of the present embodiment, a method of performing the operation 5 ″ as part of the preparation operation at the beginning of the culture operation instead of being performed at the start of use can be employed. Instead of performing the preparation using the medium m as a part of the preparation operation, immediately after starting the culture after seeding the cells in the culture vessel 1 (before starting the monitoring), the medium m ′ in which the cells are dispersed is used. 5 "The same operation can be performed. As a result of the preliminary examination, the pH after stabilization of the medium m 'was 7.4, which is the same as m. Therefore, in this modified example, pKa is obtained by the same calculation formula as in operation 5". I can do it.

なおこの変形例の改良方式として、m’のpHとして事前検討結果でなく、その時点における実測値を採用することも可能である。例えばm’の一部を培養装置12内に設けた(培養容器1とは異なる別の)容器に分注して、標準pH電極などの一次標準法で計測し、その値を採用する。この変形例の改良方式によると、m’のpHを実測することにより常に真値を用いてpHセンサを校正可能なため、極めて高精度な結果が得られる、という特長がある。   As an improved method of this modification, it is also possible to adopt the actual measurement value at that time instead of the preliminary examination result as the pH of m ′. For example, a part of m ′ is dispensed into a container (different from the culture container 1) provided in the culture apparatus 12, measured by a primary standard method such as a standard pH electrode, and the value is adopted. According to the improved method of this modification, the pH sensor can always be calibrated using the true value by actually measuring the pH of m ', so that an extremely accurate result can be obtained.

本実施例特有の効果は、使用者が中性のpH標準液を計測する工程を省略でき、簡便迅速であることである。また中性のpH標準液等が培養容器1に残留する可能性を排除できるため、培養に用いる培地成分を厳密に制御可能である、という特有の効果がある。また、本実施例の変形例特有の効果は、使用者が培地mを計測する工程を一切省略できるため、さらに簡便迅速であることである。また、本実施例の変形例の改良方式特有の効果は、校正に用いる培地m’のpHを標準法により検定することにより、極めて高精度な結果が得られることである。   The effect peculiar to the present embodiment is that the user can omit the step of measuring the neutral pH standard solution and is simple and quick. Moreover, since the possibility that a neutral pH standard solution or the like remains in the culture vessel 1 can be excluded, there is a specific effect that the medium components used for the culture can be strictly controlled. Moreover, the effect peculiar to the modified example of the present embodiment is that the process of measuring the medium m by the user can be omitted at all times, so that it is simpler and quicker. Further, an effect specific to the improved system of the modification of the present embodiment is that an extremely accurate result can be obtained by examining the pH of the medium m ′ used for calibration by a standard method.

本発明の第4の実施例を以下に説明する。第4の実施例は上記第1の実施例と同様であるが、培養容器1としてT−75型類似のフラスコではなく、円盤状の培養プレートを用い、また前記培養プレートを自動的に操作して細胞を自動的に培養可能な自動培養装置を用いる点が異なる。   A fourth embodiment of the present invention will be described below. The fourth embodiment is the same as the first embodiment, except that a disc-shaped culture plate is used as the culture vessel 1 instead of a flask similar to the T-75 type, and the culture plate is automatically operated. The difference is that an automatic culture apparatus capable of automatically culturing cells is used.

図6はこの自動培養装置と円盤状の培養プレートの概略図、図7は円盤状の培養プレートの概略断面図である。18は円盤状の培養プレート、19は自動培養装置である。   FIG. 6 is a schematic view of the automatic culture apparatus and a disc-shaped culture plate, and FIG. 7 is a schematic cross-sectional view of the disc-shaped culture plate. Reference numeral 18 denotes a disk-shaped culture plate, and 19 denotes an automatic culture apparatus.

図6に示したとおり、円盤状の培養プレート18は自動培養装置19に内蔵される。自動培養装置19にはこの他、反射プローブ13、光ファイバ14、15だけでなく、光ファイバ型分光光度計16も内蔵される。また図示は省略したが、本自動培養装置19にはこの他、培養プレート18の保持回転機構、培地等の試薬の自動分注機構、自動排出機構、温度調節機構、炭酸ガス濃度の計測制御機構、全体の制御機構などを有するが、これらの構成要素は本発明の特徴事項ではないため、図示は省略した。   As shown in FIG. 6, the disc-shaped culture plate 18 is built in the automatic culture apparatus 19. In addition to this, the automatic culture apparatus 19 includes not only the reflection probe 13 and the optical fibers 14 and 15 but also the optical fiber type spectrophotometer 16. Although not shown in the drawings, the automatic culture apparatus 19 includes a holding rotation mechanism for the culture plate 18, an automatic dispensing mechanism for reagents such as a culture medium, an automatic discharge mechanism, a temperature control mechanism, and a carbon dioxide concentration measurement control mechanism. However, since these components are not characteristic features of the present invention, they are not shown.

図7に示したとおり、円盤状の培養プレート18の断面は概ね前記培養容器1と同等の構造を有する。最大の相違点は、培養容器1が単一の培養区画を有する容器であるのに対し、円盤状の培養プレート18は、中央部から外周部に向かって順次大きい区画が形成されていることである。中央部から外周部に向かう区画の間は流路で結合されており、不要な廃液を排出するための流路や、最外周部には細胞を回収する区画も形成されている(何れも図示省略)。また、継代数が同じ区画についても複数の区画に区分されており、それらの区画は互いにリブ状構造を有する容器側底部2’によって互いに分離されている。図7には、容器側底部2’により、2つの隣接する区画の間が区分されている様子を模式的に示した。以下簡単のため、主に個々の区画について説明するが、以下の説明は全ての区画に適用される。容器側底部2’の一部は張り出し、その下に凹部10が形成され、凹部10に設けられている保持機構11を用いて、センサユニット7を凹部10の天井、即ち鉛直上方部分に保持した点は、前記第1から第3の実施例同様である。容器側底部2’の上に容器天部3を接着することにより円盤状の培養プレート18を組み立てた。センサユニットを有する区画の割合は、全区画数の半分とした。なお、本実施例による円盤状の培養プレート18には、センサユニット7だけでなく、校正用のミラーfや、吸光板zなどを別途形成してある点も、第1から第3の実施例と異なる。ミラーfや、吸光板zは、センサユニット類似の形状とし、容器側底部2’の別の部分に上記同様に形成した凹部ならびに保持機構を用いて、凹部の天井に保持した。   As shown in FIG. 7, the cross section of the disc-shaped culture plate 18 has substantially the same structure as the culture vessel 1. The biggest difference is that the culture vessel 1 is a vessel having a single culture compartment, whereas the disc-shaped culture plate 18 has large compartments formed in order from the center to the outer periphery. is there. The sections from the central part to the outer peripheral part are connected by a flow path, and a flow path for discharging unnecessary waste liquid and a section for collecting cells are formed on the outermost peripheral part (both shown) (Omitted). Further, sections having the same passage number are also divided into a plurality of sections, and these sections are separated from each other by a container-side bottom 2 'having a rib-like structure. FIG. 7 schematically shows a state where two adjacent compartments are partitioned by the container-side bottom 2 '. Hereinafter, for the sake of simplicity, description will be made mainly on individual sections, but the following description applies to all sections. A part of the container-side bottom 2 'is overhanged, and a recess 10 is formed thereunder, and the holding unit 11 provided in the recess 10 is used to hold the sensor unit 7 on the ceiling of the recess 10, that is, in the vertical upper part. The point is the same as in the first to third embodiments. A disc-shaped culture plate 18 was assembled by adhering the container top 3 on the container-side bottom 2 '. The proportion of compartments having sensor units was half of the total number of compartments. Note that the disc-shaped culture plate 18 according to the present embodiment has not only the sensor unit 7 but also a calibration mirror f, a light absorption plate z and the like separately formed in the first to third embodiments. And different. The mirror f and the light-absorbing plate z were shaped similar to the sensor unit, and were held on the ceiling of the recess by using a recess and holding mechanism formed in the same manner as described above in another part of the container-side bottom 2 '.

本発明の動作は、前記第1ないし第3の実施例と基本的に類似であるが、最初の細胞播種の操作と、最後の細胞回収の操作を手作業により行う以外は、全ての操作を円盤状の培養プレート18を回転又は揺動させることにより生じる遠心力を用いて自動的に行った点が、前記第1から第3の実施例と異なる。特に、剥離した細胞と上清との分離や、廃液の廃棄や、培地に再分散した細胞の移送などは回転による遠心力を利用して行った。また、上清から分離した細胞の培地への再分散、細胞を播種する際の均一化などは円盤状の培養プレート18を揺動させることにより行った。試薬の分注などは自動分注機構を用いて行った。   The operation of the present invention is basically similar to the first to third embodiments, except that all operations are performed except that the initial cell seeding operation and the final cell recovery operation are performed manually. This is different from the first to third embodiments in that it is automatically performed using a centrifugal force generated by rotating or swinging the disc-shaped culture plate 18. In particular, separation of detached cells and supernatant, disposal of waste liquid, transfer of cells redispersed in the medium, and the like were performed using centrifugal force due to rotation. In addition, re-dispersion of the cells separated from the supernatant into the medium, and homogenization when seeding the cells were performed by rocking the disc-shaped culture plate 18. Reagent dispensing and the like were performed using an automatic dispensing mechanism.

センサによるモニタリングは、基本的には第3の実施例の変形例の改良方式と同様の手順で行ったが、準備の操作以降、全ての操作を自動化した点が異なる。   The monitoring by the sensor is basically performed in the same procedure as the modified method of the modified example of the third embodiment, except that all operations are automated after the preparation operation.

即ち、まず製造時に製造者が自動培養装置19と同等の機能を有する自動検査装置19’(図示省略)に円盤状の培養プレート18(ただしセンサユニット7を凹部10の天井に保持した直後、容器側底部2’の上に容器天部3を接着する前の状態)を設置した。自動検査装置19’は、自動的に手順1.〜4.を行い、Ap(h)を求めた。具体的には、手順1.において、センサユニット7と同一円周上に形成した校正用のミラーfに対して反射プローブ13が相対する様に円盤状の培養プレート18を回転させ、光ファイバ型分光光度計を用いて自動的に分光計測を行った。手順2.も同様に、吸光板zについて分光計測を行った。以上により、測光系の校正を完了した。手順3.は、自動分注機構を用いて高pH標準液hを円盤状の培養プレート18に導入し、全てのセンサユニット7について分光計測を行った。手順4.は、全てのセンサユニット7に関して自動的に計算を行い、それぞれについてのAp(h)を求めた。こうして求めた各々のAp(h)を、円盤状の培養プレート18に内蔵したメモリ(図示省略)に記録した。円盤状の培養プレート18を洗浄し、容器側底部2’の上に容器天部3を接着後、アルミラミネート包装に収納して真空脱気した後、アルミラミネート包装の開口部を熱熔着し、密封した。円盤状の培養プレート18を収納したアルミラミネート包装に約25キログレイのγ線を照射し、滅菌を行うことにより、センサユニット7ごと無菌化された円盤状の培養プレート18を製作した。   That is, first, at the time of manufacture, the container is placed in an automatic inspection device 19 ′ (not shown) having the same function as the automatic culture device 19 and immediately after the disc-shaped culture plate 18 (however, the sensor unit 7 is held on the ceiling of the recess 10. The state before the container top 3 was bonded on the side bottom 2 'was installed. The automatic inspection device 19 'automatically performs the procedure 1. ~ 4. And Ap (h) was determined. Specifically, the procedure 1. , The disc-shaped culture plate 18 is rotated so that the reflection probe 13 is opposed to the calibration mirror f formed on the same circumference as the sensor unit 7, and automatically using an optical fiber type spectrophotometer. Spectral measurements were performed. Procedure 2. Similarly, the spectroscopic measurement was performed on the light absorption plate z. This completes the calibration of the photometric system. Procedure 3. Introduced the high pH standard solution h into the disc-shaped culture plate 18 using an automatic dispensing mechanism, and performed spectroscopic measurement on all sensor units 7. Procedure 4. Automatically calculated for all sensor units 7 and determined Ap (h) for each. Each Ap (h) thus determined was recorded in a memory (not shown) built in the disc-shaped culture plate 18. The disc-shaped culture plate 18 is washed, the top 3 of the container is bonded onto the bottom 2 'of the container, and then stored in an aluminum laminate package and vacuum degassed. Then, the opening of the aluminum laminate package is heat-sealed. And sealed. A disc-shaped culture plate 18 sterilized together with the sensor unit 7 was manufactured by irradiating an aluminum laminate package containing the disc-shaped culture plate 18 with γ-rays of about 25 kilo gray.

円盤状の培養プレート18を受領した使用者は、使用開始時に準備の操作の一環として、円盤状の培養プレート18を自動培養装置19に設置した。以降、自動培養装置19は上記同様に自動的に手順1.と2.を行い、w(λ,f)、w(λ,z)を求め、即ち測光系の校正を完了した。   The user who has received the disc-shaped culture plate 18 installed the disc-shaped culture plate 18 in the automatic culture apparatus 19 as part of the preparation operation at the start of use. Thereafter, the automatic culture apparatus 19 automatically performs the procedure 1. And 2. To obtain w (λ, f) and w (λ, z), that is, calibration of the photometric system was completed.

次に、細胞の播種、培養の操作を自動的に開始した。播種、培養の動作は、前記第3の実施例の変形例と同様である。培養の初期の動作について詳細に説明すると、まず使用開始するセンサユニット7の全てについて、細胞を分散させた培地m’を用いて、操作5”の操作を行った。なおここでAp(h)としては製造者が製造時に自動検査装置19’を用いて上述の通り行った手順1.〜4.結果として得られた値を円盤状の培養プレート18のメモリから読み出して使用した。またw(λ,f)、w(λ,z)としては使用開始時に自動培養装置19が準備の操作の一環として、上述の通り行った手順1.と2.の結果として得られた値を用いた。また培地m’に関する事前検討の結果得られたpH値を用いて、センサユニット7の全てについて、pKaを求めた。   Next, cell seeding and culture operations were automatically started. The seeding and culturing operations are the same as in the modified example of the third embodiment. The initial operation of the culture will be described in detail. First, for all the sensor units 7 to be used, the operation 5 ″ was performed using the medium m ′ in which the cells were dispersed. Here, Ap (h) As described above, the manufacturer performed the steps 1 to 4 as described above using the automatic inspection device 19 ′ at the time of manufacture, and used the values obtained as a result from the memory of the disc-shaped culture plate 18. Also, w ( As λ, f) and w (λ, z), the values obtained as a result of the procedures 1 and 2 performed as described above as part of the preparation operation by the automatic culture apparatus 19 at the start of use were used. Moreover, pKa was calculated | required about all the sensor units 7 using the pH value obtained as a result of the preliminary examination regarding the culture medium m '.

以降3〜4日に1回の割合で培地交換を行った。また細胞の増殖の様子を適宜観察し、コンフルエントになる前に、第1の実施例に述べた継代の操作を行った。培地交換や観察、継代の操作を行わない間は、第1の実施例に述べた方法と同様のでpHの計測を間欠的に行い、即ちpHのモニタリングを行いながら、培養を継続した。またpHのモニタリング結果を自動的に判断し、許容範囲逸脱などの際は、自動的に培地交換や警報発令などの対処を行った。   Thereafter, the medium was changed once every 3 to 4 days. Further, the state of cell proliferation was appropriately observed, and the passage operation described in the first example was performed before becoming confluent. While the medium was not exchanged, observed, or passaged, the culture was continued while the pH was measured intermittently, that is, the pH was monitored as in the method described in the first example. In addition, the pH monitoring results were automatically judged, and in the event of deviation from the allowable range, measures such as medium replacement and warning were automatically taken.

なお、pHの計測の際のパラメータとしては、Ap(h)としては製造者が製造時に自動検査装置19’を用いて上述の通り行った手順1.〜4.結果得られた値を培養プレート18のメモリから読み出して使用した。またw(λ,f)、w(λ,z)としては使用開始時に自動培養装置19が準備の操作の一環として、上述の通り行った手順1.と2.の結果得られた値を用いた。またpKaとしては、培養開始時に自動培養装置19が上述の通り行った手順5”の結果得られた値を用いた点が、第1の実施例と異なる。
即ち、本実施例においてはpHセンサの校正やそれを用いた培地のpH測定など、操作は基本的に全て自動培養装置19等が自動的に執り行い、操作者は円盤状の培養プレート18を自動培養装置19に設置するだけでよい。なお本実施例においては円盤状の培養プレートと回転式の自動培養装置を用いたが、本発明の精神はこの特定の形状、方式の培養プレートや自動培養装置ばかりでなく、他の形状、方式の培養プレートや自動培養装置にも適用可能であることはいうまでもない。
As parameters for the measurement of pH, Ap (h) is the procedure performed by the manufacturer as described above using the automatic inspection device 19 ′ at the time of manufacture. ~ 4. The obtained value was read from the memory of the culture plate 18 and used. Further, w (λ, f) and w (λ, z) are the procedures performed by the automatic culture apparatus 19 as described above as part of the preparation operation at the start of use. And 2. The value obtained as a result of was used. The pKa is different from the first embodiment in that the value obtained as a result of the procedure 5 ″ performed by the automatic culture apparatus 19 as described above at the start of culture is used.
That is, in the present embodiment, the automatic culture apparatus 19 and the like are basically automatically operated, such as calibration of the pH sensor and pH measurement of the medium using the pH sensor, and the operator automatically operates the disc-shaped culture plate 18. It only needs to be installed in the culture device 19. In this example, a disc-shaped culture plate and a rotary automatic culture device were used. However, the spirit of the present invention is not limited to the culture plate and automatic culture device of this specific shape and method, but other shapes and methods. Needless to say, the present invention can also be applied to other culture plates and automatic culture apparatuses.

なお本実施例4の改良方式として、実施例3の変形例の改良方式と同様、m’のpHとして事前検討結果でなく、その時点における実測値を採用することも可能である。例えばm’の一部を自動培養装置19内に設けた(円盤状の培養プレート18とは異なる別の)容器に分注して、標準pH電極などの一次標準法で計測し、その値を採用する。この実施例4の改良方式によると、m’のpHを実測することにより常に真値を用いてpHセンサを校正可能なため、極めて高精度な結果が得られる、という特長がある。   As an improved method of the fourth embodiment, as in the modified method of the modified example of the third embodiment, it is also possible to adopt the actually measured value at that time instead of the preliminary examination result as the pH of m ′. For example, a part of m ′ is dispensed into a container (different from the disc-shaped culture plate 18) provided in the automatic culture apparatus 19 and measured by a primary standard method such as a standard pH electrode. adopt. According to the improved system of the fourth embodiment, the pH sensor can always be calibrated using the true value by actually measuring the pH of m ', so that an extremely accurate result can be obtained.

次に、本発明の効果について説明する。前述の通り、接着依存性の幹細胞などをディッシュやフラスコなどのプレート状の培養容器底面に接着させて培養し、低コスト、簡便、小型、培地使用量の少ない等の特長を有するフィルム状の光学式センサを使用して培地成分のモニタリングを行うする際、本発明は従来例と比較して以下の効果がある。
1.本発明は培養容器底の側に形成された凹部の天井面に、培地をはさんで、培養容器底面に対向してセンサを設置し、培養容器もしくは培養プレートの底面にはセンサを設置しない、という新規な構成を有する。従って、培養容器もしくは培養プレートの底面に対する細胞の接着性は良好で、培養が良好に行える、という特有の効果がある。
2.本発明は培養容器もしくは培養プレートの底面にはセンサを設置しないため、細胞はセンサ材料へ接触しない状態では培養される。従ってセンサへの接触による細胞毒性の心配が無く、細胞の安全性を容易に検証可能であり、再生医療などの用途へ好適に応用可能である、という特有の効果がある。
3.本発明の実施例3や、その変形例の通り、培地そのものや、細胞を分散させた培地のpHを予め検定しておき、それらの検定値を用いてセンサを校正するか、或いは、実施例3の変形例の改良方式の通り、細胞を分散させた培地のpHを別途検定し、その結果を用いてセンサの校正を行うことにより、校正液の導入、排出工程を省略可能であり、校正の正確性が高く、また校正のためだけの専用液を大量に必要としない、という特有の効果がある。
Next, the effect of the present invention will be described. As mentioned above, film-like optics with features such as adhesion-dependent stem cells adhered to the bottom of a plate-shaped culture container such as a dish or flask, and are characterized by low cost, simpleness, small size, and low use of medium. The present invention has the following effects as compared with the conventional example when monitoring the medium components using the type sensor.
1. In the present invention, a sensor is installed on the ceiling surface of the concave portion formed on the bottom side of the culture vessel, with the culture medium sandwiched therebetween and facing the bottom surface of the culture vessel, and no sensor is installed on the bottom surface of the culture vessel or culture plate. It has a novel configuration. Therefore, there is a specific effect that the adhesion of the cells to the bottom surface of the culture vessel or the culture plate is good and the culture can be performed well.
2. In the present invention, since no sensor is installed on the bottom surface of the culture vessel or culture plate, the cells are cultured without contacting the sensor material. Therefore, there is no concern about cytotoxicity due to contact with the sensor, the cell safety can be easily verified, and there is a specific effect that it can be suitably applied to uses such as regenerative medicine.
3. As in Example 3 of the present invention and its modifications, the pH of the medium itself or the medium in which the cells are dispersed is previously tested, and the sensor is calibrated using those test values. According to the modified method of the third modification, the pH of the medium in which the cells are dispersed is separately verified, and the result is used to calibrate the sensor, so that the calibration solution introduction and discharge steps can be omitted. There is a peculiar effect that the accuracy is high and a large amount of dedicated liquid only for calibration is not required.

本発明は、動物細胞の培養のために広く一般に利用可能であり、特に再生医療に適用するための接着依存性の幹細胞などをプレート状の培養容器底面に接着させて培養する際における培養状態をモニタリングする際に、極めて好適に利用可能である。   The present invention is widely available for culturing animal cells, and in particular, the culture state when culturing with adhesion-dependent stem cells and the like for application to regenerative medicine adhered to the bottom of a plate-shaped culture container. When monitoring, it can use very suitably.

第1の実施例に基づく培養容器1の全体略図。1 is an overall schematic view of a culture vessel 1 according to a first embodiment. 第1の実施例に基づくセンサユニット7の概略平面図。The schematic plan view of the sensor unit 7 based on a 1st Example. 第1の実施例に基づくセンサユニット7の概略側面図。The schematic side view of the sensor unit 7 based on a 1st Example. 第1の実施例に基づく培養容器1の概略縦断面図。The schematic longitudinal cross-sectional view of the culture container 1 based on a 1st Example. 第1の実施例に基づく培養装置の概略図。1 is a schematic diagram of a culture apparatus based on a first embodiment. FIG. 第4の実施例に基づく自動培養装置と円盤状の培養プレートの概略図。Schematic of the automatic culture apparatus and disc-shaped culture plate based on a 4th Example. 第4の実施例に基づく円盤状の培養プレートの概略断面図。The schematic sectional drawing of the disk shaped culture | cultivation plate based on a 4th Example.

符号の説明Explanation of symbols

1…培養容器、1b…100%校正用の培養容器、1c…0%校正用の培養容器、2…容器側底部、2’…リブ状構造を有する容器側底部、3…容器天部、4…容器蓋、5…培地、6…細胞、7…センサユニット、8…pHセンサ、9…センサホルダ、10…凹部、11…保持機構、12…培養装置、13…反射プローブ、14、15…光ファイバ、16…光ファイバ型分光光度計、17…固定棚、18…円盤状の培養プレート、19…自動培養装置。
f…ミラー、z…吸光板、h…高pH標準液、n…中性のpH標準液、b…ベースライン波長、p…ピーク波長、s…サンプル又は未知試料、m…培地、m’…細胞を分散させた培地。
DESCRIPTION OF SYMBOLS 1 ... Culture container, 1b ... 100% calibration culture container, 1c ... 0% calibration culture container, 2 ... Container side bottom part, 2 '... Container side bottom part having rib-like structure, 3 ... Container top part, 4 ... Container lid, 5 ... Medium, 6 ... Cell, 7 ... Sensor unit, 8 ... pH sensor, 9 ... Sensor holder, 10 ... Recess, 11 ... Holding mechanism, 12 ... Incubator, 13 ... Reflective probe, 14, 15 ... Optical fiber, 16 ... optical fiber type spectrophotometer, 17 ... fixed shelf, 18 ... disk-shaped culture plate, 19 ... automatic culture apparatus.
f ... mirror, z ... light absorption plate, h ... high pH standard solution, n ... neutral pH standard solution, b ... baseline wavelength, p ... peak wavelength, s ... sample or unknown sample, m ... medium, m '... Medium in which cells are dispersed.

Claims (6)

動物細胞の培養容器であって、底面に対向した面に、センサが設置されることを特徴とする培養容器。   A culture vessel for animal cells, wherein a sensor is installed on a surface facing the bottom surface. 動物細胞の培養容器であって、底の側に設けられた凹部の天井面に、センサが設置されることを特徴とする培養容器。   A culture vessel for animal cells, wherein a sensor is installed on a ceiling surface of a recess provided on the bottom side. 請求項1乃至2に記載のセンサが、フィルム状の光学式センサであり、培地の化学成分のモニタリングを行うことを特徴とする培養容器。   The culture container according to claim 1, wherein the sensor according to claim 1 is a film-like optical sensor and monitors a chemical component of a culture medium. 請求項3に記載のセンサは、前記培地を用いて校正されることを特徴とする培養容器。   The culture container according to claim 3, wherein the sensor is calibrated using the culture medium. 請求項1乃至2に記載のセンサが、細胞を含む前記培地の測定対象成分濃度を検定し、校正されることを特徴とする培養容器。   3. A culture container, wherein the sensor according to claim 1 is calibrated by examining the concentration of a measurement target component of the culture medium containing cells. 請求項3乃至5に記載の培養容器を有する培養装置。
A culture apparatus having the culture container according to claim 3.
JP2003320594A 2003-09-12 2003-09-12 Culturing vessel with sensor, culturing apparatus and culturing method using the same Expired - Fee Related JP4146778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003320594A JP4146778B2 (en) 2003-09-12 2003-09-12 Culturing vessel with sensor, culturing apparatus and culturing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003320594A JP4146778B2 (en) 2003-09-12 2003-09-12 Culturing vessel with sensor, culturing apparatus and culturing method using the same

Publications (2)

Publication Number Publication Date
JP2005087005A true JP2005087005A (en) 2005-04-07
JP4146778B2 JP4146778B2 (en) 2008-09-10

Family

ID=34452508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003320594A Expired - Fee Related JP4146778B2 (en) 2003-09-12 2003-09-12 Culturing vessel with sensor, culturing apparatus and culturing method using the same

Country Status (1)

Country Link
JP (1) JP4146778B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006320226A (en) * 2005-05-18 2006-11-30 Hitachi Medical Corp Cell culture apparatus
JP2008220235A (en) * 2007-03-12 2008-09-25 Sanyo Electric Co Ltd Culture apparatus
JP2008253150A (en) * 2007-03-30 2008-10-23 Hamamatsu Photonics Kk Photosynthesis sample measurement container and container holder
JP2009533053A (en) * 2006-04-11 2009-09-17 ウイリアム エー.クック オーストラリア ピティワイ、リミティド. Culture state monitoring device
JP2012170358A (en) * 2011-02-18 2012-09-10 Nippon Koden Corp Cell incubator and incubation condition monitoring system
WO2012141202A1 (en) * 2011-04-11 2012-10-18 学校法人東邦大学 Cell-adhering light-controllable substrate
JP2013514084A (en) * 2009-12-17 2013-04-25 ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ Sensor mounting device for flexible bag
WO2013069490A1 (en) * 2011-11-08 2013-05-16 大日本印刷株式会社 Method for producing cell culture vessel
JP2013128458A (en) * 2011-12-22 2013-07-04 Hitachi Ltd Packaging container
JP2014530621A (en) * 2011-10-21 2014-11-20 セラピューティック プロテインズ インターナショナル, エルエルシー Non-invasive bioreactor monitoring
JP2016212017A (en) * 2015-05-12 2016-12-15 横河電機株式会社 Dissolved oxygen sensor
JP2017514485A (en) * 2014-05-02 2017-06-08 ローズマウント インコーポレイテッド Single-use bioreactor sensor architecture
JP2021512636A (en) * 2018-02-12 2021-05-20 コーニング インコーポレイテッド Remote monitoring system for cell culture
WO2022186239A1 (en) * 2021-03-03 2022-09-09 テルモ株式会社 Sampling device and cell cultivation system

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006320226A (en) * 2005-05-18 2006-11-30 Hitachi Medical Corp Cell culture apparatus
JP2009533053A (en) * 2006-04-11 2009-09-17 ウイリアム エー.クック オーストラリア ピティワイ、リミティド. Culture state monitoring device
JP2008220235A (en) * 2007-03-12 2008-09-25 Sanyo Electric Co Ltd Culture apparatus
JP2008253150A (en) * 2007-03-30 2008-10-23 Hamamatsu Photonics Kk Photosynthesis sample measurement container and container holder
JP2013514084A (en) * 2009-12-17 2013-04-25 ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ Sensor mounting device for flexible bag
US9605239B2 (en) 2009-12-17 2017-03-28 Ge Healthcare Bio-Sciences Ab Sensor attachment arrangement for flexible bags
JP2012170358A (en) * 2011-02-18 2012-09-10 Nippon Koden Corp Cell incubator and incubation condition monitoring system
JPWO2012141202A1 (en) * 2011-04-11 2014-07-28 学校法人東邦大学 Cell adhesion light control substrate
WO2012141202A1 (en) * 2011-04-11 2012-10-18 学校法人東邦大学 Cell-adhering light-controllable substrate
JP2014530621A (en) * 2011-10-21 2014-11-20 セラピューティック プロテインズ インターナショナル, エルエルシー Non-invasive bioreactor monitoring
JP2013099278A (en) * 2011-11-08 2013-05-23 Dainippon Printing Co Ltd Method for manufacturing cell culture vessel
US9587219B2 (en) 2011-11-08 2017-03-07 Dai Nippon Printing Co., Ltd. Method for producing cell culture vessel
WO2013069490A1 (en) * 2011-11-08 2013-05-16 大日本印刷株式会社 Method for producing cell culture vessel
JP2013128458A (en) * 2011-12-22 2013-07-04 Hitachi Ltd Packaging container
JP2017514485A (en) * 2014-05-02 2017-06-08 ローズマウント インコーポレイテッド Single-use bioreactor sensor architecture
JP2016212017A (en) * 2015-05-12 2016-12-15 横河電機株式会社 Dissolved oxygen sensor
JP2021512636A (en) * 2018-02-12 2021-05-20 コーニング インコーポレイテッド Remote monitoring system for cell culture
JP7234244B2 (en) 2018-02-12 2023-03-07 コーニング インコーポレイテッド Remote monitoring system for cell culture
WO2022186239A1 (en) * 2021-03-03 2022-09-09 テルモ株式会社 Sampling device and cell cultivation system

Also Published As

Publication number Publication date
JP4146778B2 (en) 2008-09-10

Similar Documents

Publication Publication Date Title
JP4146778B2 (en) Culturing vessel with sensor, culturing apparatus and culturing method using the same
JP7496770B2 (en) SENSOR HOLDER FOR A BIOREACTOR, AS WELL AS A BIOREACTOR COMPRISING A SENSOR HOLDER AND METHOD FOR PROPAGATING OR CULTIVATING BIOLOGICAL MATERIAL - Patent application
TWI523950B (en) Nucleic acid analysis apparatus
US8696990B2 (en) Device for the photometric examination of samples
TWI486570B (en) Ensuring sample adequacy using turbidity light scattering techniques
US7812312B2 (en) Infrared measuring device, especially for the spectrometry of aqueous systems, preferably multiple component systems
JP5797911B2 (en) Solution pH measurement method and solution pH measurement device
US8373861B2 (en) System for rapid analysis of microbiological materials in liquid samples
CA2607086C (en) System for rapid analysis of microbiological materials in liquid samples
JP3187845B2 (en) Method and system for measuring at least one parameter in at least one physiological fluid sample, holder, and test device
US20080293091A1 (en) Apparatus and methods for automated diffusion filtration, culturing and photometric detection and enumeration of microbiological parameters in fluid samples
EP2394147B1 (en) Optical measurement arrangement
US11680240B2 (en) Container having wall protrusion and sensor region
JP6104262B2 (en) Non-invasive bioreactor monitoring
Glindkamp et al. Sensors in disposable bioreactors status and trends
JPH0549180B2 (en)
EP2887064B1 (en) Device for monitoring spatial coagulation of blood and of components thereof
US20150225688A1 (en) Device for measuring activity of cultured cells, microchamber and method of measuring activity of cultured cells
KR20150066722A (en) Test apparatus and test method of test apparatus
RU123166U1 (en) SPATIAL MONITORING OF SPATIAL BLOOD COAGING AND ITS COMPONENTS
NO179344B (en) Method for examining a blood sample and measuring polarized fluorescence radiation
JP7417619B2 (en) pH measurement method and pH measurement device
CN212364049U (en) Artificial lens spectral performance test fixing device
US20210115370A1 (en) Disposable bioreactor and use thereof
WO2024035754A1 (en) Apparatuses and methods for measuring dna/rna production in biochips

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050315

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051024

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060628

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4146778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140627

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees