JP2005086164A - Manufacturing method of multilayered circuit board - Google Patents

Manufacturing method of multilayered circuit board Download PDF

Info

Publication number
JP2005086164A
JP2005086164A JP2003319942A JP2003319942A JP2005086164A JP 2005086164 A JP2005086164 A JP 2005086164A JP 2003319942 A JP2003319942 A JP 2003319942A JP 2003319942 A JP2003319942 A JP 2003319942A JP 2005086164 A JP2005086164 A JP 2005086164A
Authority
JP
Japan
Prior art keywords
via hole
circuit board
hole
glass fiber
intermediate material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003319942A
Other languages
Japanese (ja)
Other versions
JP3948624B2 (en
Inventor
Shuichi Saito
秀一 斉藤
Teruyoshi Yusa
晃佳 遊佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiko Co Ltd
Original Assignee
Meiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiko Co Ltd filed Critical Meiko Co Ltd
Priority to JP2003319942A priority Critical patent/JP3948624B2/en
Publication of JP2005086164A publication Critical patent/JP2005086164A/en
Application granted granted Critical
Publication of JP3948624B2 publication Critical patent/JP3948624B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the manufacturing method of a multilayered circuit board excellent in resistance to a repeated thermal load. <P>SOLUTION: In the manufacturing method of the multilayered circuit board by a build-up process, if a via hole and a through hole are formed on a laminated glass fiber reinforced resin substrate on a lower layer circuit board, the manufacturing method of the multilayered circuit board including the processes sequentially performing a process for forming a large window 15 by the process technology of a circuit formation; a process for boring a via hole 16 by a laser radiation; a process for removing a resin residue 13B left inside the via hole 16; a process for removing the etchant of a glass fiber 13A which protrudes from the wall surface 16a of the via hole 16 and a process for boring the through hole is provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は多層回路基板の製造方法に関し、更に詳しくは、ビルドアップ工法で多層回路基板を製造する際に、レーザ照射で穿設されたビアホールの壁面に信頼性の高いめっき皮膜を形成することができ、同時にスルーホール間におけるマイグレーション現象の発生を防止することができる多層回路基板の製造方法に関する。   The present invention relates to a method for manufacturing a multilayer circuit board, and more particularly, when a multilayer circuit board is manufactured by a build-up method, a highly reliable plating film can be formed on the wall surface of a via hole drilled by laser irradiation. The present invention relates to a method for manufacturing a multilayer circuit board that can simultaneously prevent occurrence of a migration phenomenon between through holes.

多層回路基板の製造方法に関しては、現在、ビルドアップ工法が概ね中心になっている。
このビルドアップ工法においては、まず、ガラス繊維を補強材とし例えばエポキシ樹脂をマトリックスとするガラス繊維強化樹脂基板の表面に、通常は銅から成る導体回路の所定パターンが形成されている回路基板をコア基板として用意する。そして、このコア基板の上に、Bステージ状態のガラス繊維強化樹脂基板(PP材)と銅箔を重ね合わせて全体に熱圧プレスを行い、PP材を熱硬化させると同時にそれをコア基板に接合して一体化構造の中間材(1)を製造する。
As for the manufacturing method of the multilayer circuit board, the build-up method is mainly at present.
In this build-up method, first, a circuit board in which a predetermined pattern of a conductor circuit usually made of copper is formed on the surface of a glass fiber reinforced resin board using glass fiber as a reinforcing material, for example, an epoxy resin as a matrix is cored. Prepare as a substrate. Then, a glass fiber reinforced resin substrate (PP material) in a B-stage state and a copper foil are superimposed on this core substrate, and the whole is hot-pressed to thermally cure the PP material, and at the same time, use it as a core substrate. The intermediate material (1) having an integrated structure is manufactured by bonding.

ついで、この中間材(1)の表面におけるビアホール穿設予定箇所を、回路形成のプロセス技術を用いてラージウインドとして形成する。
そして、所定箇所に例えば炭酸ガスレーザを照射して、そこに、コア基板の導体回路の表面にまで至る微小口径のビアホールを穿設する。このビアホールの穿設が終了すると、続いて例えばNC施盤を用いて、中間材(1)の所定箇所にその表面から裏面にかけて厚み方向に貫通するスルーホールをドリル研削し、ビアホールとスルーホールが穿設されている中間材(2)を製造する。
Next, a via-hole-scheduled portion on the surface of the intermediate material (1) is formed as a large window by using a circuit forming process technique.
Then, for example, a carbon dioxide laser is irradiated to a predetermined location, and a via hole having a small diameter reaching the surface of the conductor circuit of the core substrate is formed there. When the drilling of the via hole is completed, a through hole penetrating in the thickness direction from the front surface to the rear surface is drilled at a predetermined position of the intermediate material (1) using, for example, an NC lathe to drill the via hole and the through hole. The intermediate material (2) is manufactured.

このようにして製造された中間材(2)に対しては、めっき処理を施して樹脂基板の表面、スルーホールの壁面、ビアホールの内面に一旦めっき皮膜を形成したのち、樹脂基板の表面に前記めっき皮膜から成る導体回路の所定パターンを形成してコア基板の上に2層目の回路基板が組み上げられる。
そして、この2層目の回路基板の上に、更に、3層目、4層目…の回路基板が順次組み上げられて、目的層数の多層回路基板が製造される。
For the intermediate material (2) manufactured in this way, the plating treatment is performed to form a plating film once on the surface of the resin substrate, the wall surface of the through hole, the inner surface of the via hole, and then the surface of the resin substrate. A predetermined pattern of a conductor circuit made of a plating film is formed, and a second-layer circuit board is assembled on the core board.
Then, a third layer, a fourth layer,... Are sequentially assembled on the second layer circuit board to produce a multilayer circuit board having the desired number of layers.

そのとき、各層の回路基板の製造に関しては、下層の回路基板の上に積層されたガラス繊維強化樹脂基板に対してレーザ照射によるビアホールの穿設、NC旋盤を用いたスルーホールのドリル研削がこの順序で行われるので、この過程で製造される中間材には、ビアホールとスルーホールが同時に形成されていることになる。
その場合、レーザ照射により形成されたビアホールの壁面のうち、主としてコア基板の導体回路の表面にはマトリックス樹脂またはその熱変質物が残存しているので、通常、当業者間にあっては、前記しためっき処理に先立ち、これら樹脂残渣の除去処理が行われている。
At that time, regarding the manufacture of the circuit board of each layer, drilling of a via hole by laser irradiation and drilling of a through hole using an NC lathe is performed on the glass fiber reinforced resin substrate laminated on the lower circuit board. Since the steps are performed in order, the via material and the through hole are simultaneously formed in the intermediate material manufactured in this process.
In that case, among the wall surfaces of the via holes formed by laser irradiation, the matrix resin or its thermally altered material remains mainly on the surface of the conductor circuit of the core substrate. Prior to the treatment, a removal treatment of these resin residues is performed.

このような樹脂残渣を除去しないでめっき処理を行うと、ビアホール内の導体回路の表面にはめっき皮膜が成膜されず、ビアホールは下層に位置するコア基板の導体回路との間で導通がとれず、得られた多層回路基板における層間接続が損なわれるからである。
このような樹脂残渣の除去処理に関しては、例えば、中間材(2)をエーテルやアルコールなどの溶剤と水酸化ナトリウム水溶液との混合溶液へ浸漬して樹脂残渣を膨潤させ、ついで過マンガン酸カリウムのアルカリ水溶液に浸漬して樹脂残渣をエッチング除去し、更にアミン類の還元性酸化水溶液で中和して、ビアホール内の導体回路表面を清浄にする方法が行われている(特許文献1を参照)。
If plating treatment is performed without removing such resin residue, no plating film is formed on the surface of the conductor circuit in the via hole, and the via hole is electrically connected to the conductor circuit of the core substrate located in the lower layer. This is because the interlayer connection in the obtained multilayer circuit board is impaired.
With regard to such a resin residue removal treatment, for example, the intermediate material (2) is immersed in a mixed solution of a solvent such as ether or alcohol and an aqueous sodium hydroxide solution to swell the resin residue, and then potassium permanganate. A method of cleaning the surface of a conductor circuit in a via hole by dipping in an aqueous alkali solution to remove the resin residue by etching and further neutralizing with a reducing oxidizing aqueous solution of amines has been performed (see Patent Document 1). .

なお、この樹脂残渣除去処理の過程で、ビアホールだけではなくスルーホールの壁面も上記した各種の薬液に晒されるのであるが、次工程のめっき処理時にスルーホールに不都合は生じない。
ところで、ビアホールそれ自体に関していえば、最近、ビアホールの細径化が進むなかで次のようなことが問題となっている。すなわち、レーザ照射でビアホールを穿設したときに、当該ビアホールの壁面に突出するガラス繊維の問題である。
In the process of removing the resin residue, not only the via holes but also the wall surfaces of the through holes are exposed to the various chemicals described above. However, there is no problem with the through holes during the plating process in the next step.
By the way, with regard to the via hole itself, the following has become a problem as the diameter of the via hole has recently been reduced. That is, there is a problem of glass fibers protruding on the wall surface of the via hole when the via hole is drilled by laser irradiation.

これを図8を用いて説明する。
樹脂基板3にレーザ照射してコア基板の導体回路1の表面1aにまで至るビアホール2を穿設すると、樹脂基板3の補強材であるガラス繊維3Bはマトリックス樹脂3Aに比べて熱分解しにくいので、形成されたビアホール2の壁面2aでは、ガラス繊維3Bの一部3bが壁面2aから突出した状態で残存する。
This will be described with reference to FIG.
When the resin substrate 3 is irradiated with laser and the via hole 2 extending to the surface 1a of the conductor circuit 1 of the core substrate is drilled, the glass fiber 3B as the reinforcing material of the resin substrate 3 is harder to be thermally decomposed than the matrix resin 3A. In the wall surface 2a of the formed via hole 2, a part 3b of the glass fiber 3B remains in a state of protruding from the wall surface 2a.

このような状態になっているビアホール2に無電解めっきと電気めっきを順次行うと、マトリックス樹脂3Aから成る壁面3aだけではなく、個々のガラス繊維3Bの突出部3bにもめっき皮膜が成膜されて、ビアホール2の断面は突出部3bの箇所で狭隘となる。そのため、ビアホール2の底部側にめっき液が充分に供給されなくなると同時に、突出部3bの陰の部分では極度にめっき液の供給状態が悪くなる。   When electroless plating and electroplating are sequentially performed on the via hole 2 in such a state, a plating film is formed not only on the wall surface 3a made of the matrix resin 3A but also on the protruding portions 3b of the individual glass fibers 3B. Thus, the cross section of the via hole 2 becomes narrow at the protruding portion 3b. Therefore, the plating solution is not sufficiently supplied to the bottom side of the via hole 2, and at the same time, the supply state of the plating solution is extremely deteriorated in the shaded portion of the protrusion 3b.

その結果、ビアホール2の壁面2aに成膜されためっき皮膜4は、図8で示したように、厚みは全体として不均一になり、かつ、ビアホール内において、導体回路の表面1aと樹脂基板3の境界部では非常に薄くなる。
ビアホールがこのような状態になっていると、最終的に製造した多層回路基板は、耐熱試験時や部品のはんだ付け表面実装時、すなわち反復する熱負荷がかかったとき、前記した境界部分でクラックが発生して断線が起こりやすくなり、製品としての信頼性が低下する。
As a result, as shown in FIG. 8, the plating film 4 formed on the wall surface 2a of the via hole 2 has an uneven thickness as a whole, and the surface 1a of the conductor circuit and the resin substrate 3 are formed in the via hole. It becomes very thin at the boundary.
If the via hole is in such a state, the finally manufactured multilayer circuit board will crack at the boundary portion described above during the heat resistance test or when the parts are soldered to the surface, that is, when a repeated thermal load is applied. Will occur and wire breakage will easily occur, reducing the reliability of the product.

上記した問題を解消するためには、ビアホール内におけるガラス繊維の突出部を除去してビアホールの壁面を面一状態にすればよいわけであるが、その方法としては、例えば、レーザ照射でビアホールを穿設したのち、直ちに当該ビアホールの壁面を例えばフッ化アンモニウム水溶液で処理し、壁面に突出しているガラス繊維をエッチング除去する方法が提案されている(特許文献2を参照)。
特許第3228914号 特開2002−100866号公報
In order to solve the above-mentioned problem, it is only necessary to remove the protruding portion of the glass fiber in the via hole and make the wall surface of the via hole flush with each other. For example, the via hole is formed by laser irradiation. A method has been proposed in which immediately after drilling, the wall surface of the via hole is treated with, for example, an aqueous ammonium fluoride solution, and the glass fibers protruding on the wall surface are removed by etching (see Patent Document 2).
Japanese Patent No. 3228914 Japanese Patent Laid-Open No. 2002-10086

ところで、上記した特許文献2の方法を、実際の多層回路基板の製造工程に組み込んだ場合には、次のような問題が生じてくる。
まず、ビアホールの壁面に突出しているガラス繊維が必ずしも有効にエッチング除去されないという問題である。
これは、レーザ照射によって溶融したマトリックス樹脂の一部が個々のガラス繊維の突出部に付着して当該ガラス繊維を被覆し、この樹脂被覆により、エッチャント(フッ化物)が直接ガラス繊維と接触しなくなるからである。
By the way, when the above-described method of Patent Document 2 is incorporated in an actual manufacturing process of a multilayer circuit board, the following problems arise.
First, there is a problem that glass fibers protruding from the wall surface of the via hole are not necessarily effectively removed by etching.
This is because part of the matrix resin melted by the laser irradiation adheres to the protrusions of the individual glass fibers to cover the glass fibers, and this resin coating prevents the etchant (fluoride) from coming into direct contact with the glass fibers. Because.

また、一連の多層回路基板の製造工程において、ビアホールとスルーホールが形成されている前記中間体(2)に、特許文献2の方法を適用すると、中間体(2)のビアホールでは上記した問題が発生することもあるが、そのことの外にスルーホールでは次のような問題が発生しやすくなる。
まず、スルーホールは比較的大径であり、その壁面には各層の補強材であるガラス繊維の切削端面が表出している。そして、大径であるため、特許文献2の方法を適用した場合にはスルーホール内におけるエッチャントの液回りはよい。
Further, when the method of Patent Document 2 is applied to the intermediate body (2) in which via holes and through holes are formed in a series of multilayer circuit board manufacturing processes, the above-described problems are caused in the via holes of the intermediate body (2). In some cases, the following problems are likely to occur in the through hole.
First, the through hole has a relatively large diameter, and a cut end surface of glass fiber, which is a reinforcing material of each layer, is exposed on the wall surface. And since it is a large diameter, when the method of patent document 2 is applied, the liquid around the etchant in the through hole is good.

そのため、切削端面からその長手方向におけるガラス繊維の表面溶解が進み、当該ガラス繊維とマトリックス樹脂との界面に微細なクリアランスが生じてきて、めっき処理時にはこのクリアランスにめっき液が滲透していき、ここにもめっき皮膜が生成するようになる。いわゆるウィッキング(wicking)現象が悪化する。
このような状態になると、本来は絶縁状態になければならないスルーホール間で擬似短絡が発生して、いわゆるマイグレーション(migration)が起こりやすくなり、製造された多層回路基板の動作信頼性が著しく低下する。
Therefore, the surface dissolution of the glass fiber in the longitudinal direction proceeds from the cutting end surface, and a fine clearance is generated at the interface between the glass fiber and the matrix resin, and the plating solution penetrates into this clearance during the plating process. In addition, a plating film is formed. The so-called wicking phenomenon gets worse.
In such a state, a pseudo short-circuit occurs between the through holes that should originally be in an insulating state, so that so-called migration is likely to occur, and the operational reliability of the manufactured multilayer circuit board is significantly reduced. .

本発明は、上記したような問題を解決し、ビアホール内に成膜されるめっき皮膜は反復する熱負荷に対する良好な耐性を備え、同時にスルーホール間におけるマイグレーションも発生しづらく、したがって使用時における高い信頼性を有する多層回路基板の製造方法の提供を目的とする。   The present invention solves the above-mentioned problems, and the plating film formed in the via hole has a good resistance to repeated heat loads, and at the same time, migration between through holes is difficult to occur, and therefore high in use. An object of the present invention is to provide a method for manufacturing a reliable multilayer circuit board.

上記した目的を達成するために、本発明においては、ビルドアップ工法による多層回路基板の製造方法において、下層の回路基板の上に積層されたガラス繊維強化樹脂基板にビアホールとスルーホールを形成する際に、
回路形成のプロセス技術によるラージウインドの形成処理;
レーザ照射によるビアホールの穿設処理;
前記ビアホール内に残存する樹脂残渣の除去処理;
前記ビアホールの壁面から突出するガラス繊維のエッチング除去処理;
スルーホールの穿設処理;および、
前記スルーホール内に残存する樹脂残渣の除去処理;
を順次行う工程を含むことを特徴とする多層回路基板の製造方法が提供される。
In order to achieve the above object, in the present invention, in the method of manufacturing a multilayer circuit board by a build-up method, when forming via holes and through holes in a glass fiber reinforced resin substrate laminated on a lower circuit board, In addition,
Large window formation processing by circuit formation process technology;
Via hole drilling by laser irradiation;
Removal treatment of resin residue remaining in the via hole;
Etching removal treatment of glass fiber protruding from the wall surface of the via hole;
Through-hole drilling process; and
Removal treatment of resin residue remaining in the through hole;
The manufacturing method of the multilayer circuit board characterized by including the process of performing sequentially is provided.

本発明によれば、ビアホール内のガラス繊維のエッチング除去処理時には、いまだスルーホールは穿設されていないので、その後形成されるスルーホール間では、ウィッキング現象に基づくマイグレーションは起こらない。したがって、製造された多層回路基板における擬似短絡を確実に防止することができる。
また、ビアホールの壁面から突出するガラス繊維のエッチング除去処理に関しては、その前段で、レーザ照射時にガラス繊維に付着したマトリックス樹脂を除去するので、壁面に突出しているガラス繊維のエッチング除去を確実に行うことができる。そのことによって、めっき処理時にビアホール内での液回りは良好になってその壁面には厚みが均一なめっき皮膜が成膜され、熱負荷を受けたときの当該めっき皮膜におけるクラックの発生などが有効に防止される。
According to the present invention, at the time of the etching removal processing of the glass fiber in the via hole, since the through hole is not yet drilled, the migration based on the wicking phenomenon does not occur between the through holes formed thereafter. Therefore, the pseudo short circuit in the manufactured multilayer circuit board can be reliably prevented.
In addition, regarding the etching removal processing of the glass fiber protruding from the wall surface of the via hole, the matrix resin attached to the glass fiber at the time of laser irradiation is removed in the preceding stage, so that the glass fiber protruding from the wall surface is reliably removed by etching. be able to. As a result, the liquid flow in the via hole is improved during the plating process, and a plating film with a uniform thickness is formed on the wall surface, and the occurrence of cracks in the plating film when subjected to a thermal load is effective. To be prevented.

このように、本発明によれば、総じて、使用時における信頼性の高い多層回路基板を製造することができる。   As described above, according to the present invention, it is possible to manufacture a multilayer circuit board having high reliability in use.

本発明方法は、ビルドアップ工法で多層回路基板を製造する一連の工程のうち、ビアホールとスルーホールを形成する工程が後述する処理を後述する順序で配置して構成されているところに最大の特徴を有していて、上記工程に続くめっき処理工程、導体回路の形成工程などは従来と変わることはない。
以下、図面に則して本発明におけるビアホールとスルーホールの形成を詳細に説明する。
The method of the present invention is characterized in that, among a series of steps for manufacturing a multilayer circuit board by a build-up method, the step of forming a via hole and a through hole is configured by arranging the processing described later in the order described later. The plating process following the above process, the process of forming the conductor circuit, etc. are not different from the conventional ones.
The formation of via holes and through holes in the present invention will be described below in detail with reference to the drawings.

まず、図1で示したように、ガラス繊維11Aを補強材とし、例えばエポキシ樹脂をマトリックス樹脂11Bとするガラス繊維強化樹脂基板A0の表面に、導体回路12が所定のパターンで配線されている回路基板がコア基板A0として用意される。
ついで、ガラス繊維13Aとマトリックス樹脂13Bから成り、Bステージ状態のガラス繊維強化樹脂基板13、銅箔14をこの順序でコア基板A0の上面と下面に重ね合わせて全体に熱圧プレスを行い、樹脂基板13を熱硬化させると同時にそれをコア基板A0に接合して、中間材A1を製造する(図2)。
First, as shown in FIG. 1, the conductor circuit 12 is wired in a predetermined pattern on the surface of the glass fiber reinforced resin substrate A 0 using the glass fiber 11A as a reinforcing material, for example, an epoxy resin as a matrix resin 11B. the circuit board is prepared as a core substrate A 0.
Then, made of glass fiber 13A and a matrix resin 13B, performs hot pressing glass fiber reinforced resin substrate 13 of the B-stage, the copper foil 14 over the entire superimposed on the upper and lower surfaces of the core substrate A 0 in this order, The resin substrate 13 is thermally cured and simultaneously bonded to the core substrate A 0 to produce the intermediate material A 1 (FIG. 2).

そして、この中間材A1に対して、以下の処理が順次施される。
(1)ラージウインドの形成処理
まず、中間材A1の銅箔表面14aに、フォトリソグラフィーとエッチングなど、通常の回路形成のプロセス技術を適用して、銅箔14にビアホールの穿設予定箇所を含むラージウインド15を開け、そこからガラス繊維強化樹脂基板13の表面13aが露出している中間材A2を製造する(図3)。
Then, with respect to the intermediate member A 1, the following processing is sequentially performed.
(1) Large window formation process, first, the copper foil surface 14a of the intermediate member A 1, such as photolithography and etching, by applying the process technology normal circuit formation, the drilling planned portion of the via hole in the copper foil 14 The large window 15 is opened, and the intermediate material A 2 from which the surface 13a of the glass fiber reinforced resin substrate 13 is exposed is produced (FIG. 3).

(2)ビアホールの穿設処理
中間材A2のラージウインド内の所定箇所に例えば炭酸ガスレーザを照射して、表面13aから導体回路12の表面12aにまで至る所定口径のビアホール16を穿設して、図4で示した中間材A3を製造する。
このビアホール16の場合、導体回路12の表面12aには樹脂残渣があり、また壁面16aにはガラス繊維13Aが突出し、しかもその突出部の表面の全部または一部をレーザ照射時に溶融したマトリックス樹脂13B’が被覆または付着している。
(2) Drilling process of via hole A predetermined hole in the large window of the intermediate material A 2 is irradiated with, for example, a carbon dioxide laser to drill a via hole 16 having a predetermined diameter from the surface 13a to the surface 12a of the conductor circuit 12. The intermediate material A 3 shown in FIG. 4 is manufactured.
In the case of this via hole 16, there is a resin residue on the surface 12a of the conductor circuit 12, the glass fiber 13A protrudes from the wall surface 16a, and the entire or part of the surface of the protruding portion is melted at the time of laser irradiation. 'Is covered or adhered.

(3)樹脂残渣の除去処理
この処理では、突出するガラス繊維13Aの表面を被覆または付着している樹脂残渣と、導体回路の表面12aに残存する樹脂残渣を除去し、壁面16aから突出するガラス繊維の表面および導体回路の表面12aと清浄化する。
具体的には、特許文献1の方法が適用される。
(3) Resin residue removal treatment In this treatment, the resin residue covering or adhering the surface of the protruding glass fiber 13A and the resin residue remaining on the surface 12a of the conductor circuit are removed, and the glass protruding from the wall surface 16a Clean with fiber surface and conductor circuit surface 12a.
Specifically, the method of Patent Document 1 is applied.

すなわち、最初に中間材A3を例えばアルコールと水酸化ナトリウム水溶液の熱混合溶液に浸漬して樹脂残渣を膨潤させ、ついで例えば過マンガン酸カリウムのアルカリ水溶液に浸漬して膨潤した樹脂残渣をエッチング除去し、更に例えばアミン化合物の硫酸溶液に浸漬して中和処理を行う。
このようにして、図5で示したように、ビアホール16内では、壁面16aから突出するガラス繊維13Aの表面と導体回路の表面12aに樹脂残渣が付着していない清浄な表面になっている中間材A4が製造される。
That is, first, the intermediate material A 3 is immersed in, for example, a hot mixed solution of alcohol and sodium hydroxide solution to swell the resin residue, and then immersed in an alkaline aqueous solution of potassium permanganate, for example, to remove the swollen resin residue by etching. Further, for example, it is immersed in a sulfuric acid solution of an amine compound and neutralized.
In this way, as shown in FIG. 5, in the via hole 16, the intermediate surface is a clean surface in which no resin residue adheres to the surface of the glass fiber 13A protruding from the wall surface 16a and the surface 12a of the conductor circuit. Material A 4 is manufactured.

(4)ガラス繊維のエッチング除去処理
この処理では、ビアホールの壁面から突出しているガラス繊維の突出部分が除去される。
具体的には、中間材A3を例えばフッ化水素酸溶液、ホウフッ化水素酸溶液などのフッ化物溶液に浸漬すればよい。このとき、用いるフッ化物溶液のフッ化物濃度が高すぎたり、また溶液温度が高すぎたり、更には浸漬処理の時間が長すぎたりすると、ガラス繊維のうち、ビアホールの壁面16aから突出している部分だけではなく、マトリックス樹脂内の部分までもエッチング除去されてしまうので、用いるフッ化物溶液の種類に対応して、濃度、温度、処理時間は適切に選択される。
(4) Etching removal processing of glass fiber In this processing, the protruding portion of the glass fiber protruding from the wall surface of the via hole is removed.
Specifically, the intermediate material A 3 may be immersed in a fluoride solution such as a hydrofluoric acid solution or a borohydrofluoric acid solution. At this time, if the fluoride concentration of the fluoride solution to be used is too high, the solution temperature is too high, or the immersion treatment time is too long, the portion of the glass fiber that protrudes from the wall surface 16a of the via hole In addition, not only the portion in the matrix resin is etched away, but the concentration, temperature, and treatment time are appropriately selected according to the type of fluoride solution used.

このようにして、図6で示したように、ガラス繊維13Aが壁面16aから突出していないスルーホール16を有する中間材A5が製造される。
(5)スルーホールの穿設処理
この処理では、以上の一連の処理を経て得られた中間材A5に対してはじめてスルーホールが穿設され、図7で示したような中間材A6が製造される。
In this way, as shown in FIG. 6, the intermediate material A 5 having the through hole 16 in which the glass fiber 13A does not protrude from the wall surface 16a is manufactured.
(5) Through-hole drilling process In this process, a through-hole is first drilled in the intermediate material A 5 obtained through the above-described series of processes, and the intermediate material A 6 as shown in FIG. Manufactured.

具体的には例えばNC旋盤を用いて、中間材A5の銅箔表面14aから当該中間材A5の裏面まで貫通するスルーホール17がドリル研削される。
(6)スルーホール内樹脂残渣の除去処理
中間材A6のスルーホール壁面17aには、ドリル研削時に発生するマトリックス樹脂やガラス繊維の切削屑が付着していることがあり、またドリル研削時の熱でマトリックス樹脂が壁面に溶着していることもある。そのため、これらを除去するために、樹脂残渣の除去処理が行われる。
Specifically, for example by using a NC lathe, the through-hole 17 penetrating from the copper foil surface 14a of the intermediate member A 5 to the back surface of the intermediate material A 5 is drilled ground.
(6) The through hole walls 17a of the removal process intermediate material A 6 of the through hole in the resin residue may shavings of the matrix resin and glass fibers generated during drill grinding is attached, also when the drill grinding The matrix resin may be welded to the wall surface by heat. Therefore, in order to remove these, a resin residue removal process is performed.

具体的には、中間材A6のスルーホールの壁面に対し、ビアホール内の樹脂残渣の除去処理と同じ処理が施される。このようにして中間材A7が得られる(図示しない)。
この中間材A7を、めっき処理工程、導体回路の形成工程に順次移送することにより、2層目の回路基板がコア基板の上に組み上げられ、2層回路基板が製造される。
そして、この2層回路基板をコア基板として、この上に積層されたガラス繊維強化樹脂基板に対し、上記操作を反復することにより、所望する層数の多層回路基板が製造される。
Specifically, the wall surface of the through hole in the intermediate material A 6 to the same processing is performed and removal treatment of the resin residue in the via hole. In this way, an intermediate material A 7 is obtained (not shown).
By sequentially transferring the intermediate material A 7 to the plating process and the conductor circuit forming process, the second-layer circuit board is assembled on the core substrate, and the two-layer circuit board is manufactured.
A multilayer circuit board having a desired number of layers is manufactured by repeating the above operation on the glass fiber reinforced resin board laminated on the two-layer circuit board as a core board.

その場合、一連の処理によって得られた中間材A7は、ビアホール内には樹脂残渣はなく、また壁面からガラス繊維も突出していない。そして、スルーホールの壁面に対してはガラス繊維のエッチング除去処理(フッ化物処理)が行われていないので、ウィッキング現象は悪化していない。
したがって、この中間材A7にめっき処理を行っても、ビアホールにおいては図8で示したような問題は発生しておらず、また、ウィッキング現象に基づくマイグレーションも起こらない。
In that case, the intermediate material A 7 obtained by a series of treatments has no resin residue in the via hole, and no glass fiber protrudes from the wall surface. And since the glass fiber etching removal treatment (fluoride treatment) is not performed on the wall surface of the through hole, the wicking phenomenon is not deteriorated.
Therefore, even if the intermediate material A 7 is plated, the problem as shown in FIG. 8 does not occur in the via hole, and migration based on the wicking phenomenon does not occur.

このようなことから、製造された多層回路基板は、反復する熱負荷に対する耐性が良好であり、高い使用信頼性を備えている。   For this reason, the manufactured multilayer circuit board has good resistance to repeated heat loads and has high use reliability.

1.2層回路基板の製造
図1で示したコア基板A0の上面と下面に、ガラスクロス13Aとエポキシ樹脂13Bから成る厚み0.06mmのPP材と厚み5mmの銅箔をこの順序で重ね、熱圧プレスして図2で示した中間材A1を製造した。
この中間材A1に対し、以下の条件で各処理を順次施した。
The upper and lower surfaces of the core substrate A 0 shown in 1.2-layer circuit manufacturing diagram 1 of the substrate, overlapping the copper foil PP material and thickness 5mm thickness 0.06mm comprising a glass cloth 13A and the epoxy resin 13B in this order The intermediate material A 1 shown in FIG. 2 was manufactured by hot-pressing.
Each treatment was sequentially performed on the intermediate material A 1 under the following conditions.

(1)ラージウインドの形成処理
中間材A1の銅箔表面14aに回路形成のプロセス技術を適用して、直径300μmのラージウインドを形成し、そこにガラス繊維強化樹脂基板13の表面を露出させ、図3で示した中間材A2を製造した。
(2)ビアホールの穿設処理
ラージウインド15の表面に炭酸ガスレーザを照射して、1.6×105個/m2の密度でビアホール16を穿設して図4で示した中間材A3を製造した。各ビアホール16の上部開口の径は100μm、底面(導体回路の表面12a)の径は80μmである。
(1) by applying the process technology of the circuit formed on the large window of the forming process the intermediate material A 1 of the copper foil surface 14a, forming a large window with a diameter of 300 [mu] m, there is exposed a surface of the glass fiber reinforced resin substrate 13 The intermediate material A 2 shown in FIG. 3 was manufactured.
(2) Drilling process of via hole The surface of the large window 15 is irradiated with a carbon dioxide laser to drill the via hole 16 at a density of 1.6 × 10 5 pieces / m 2 , and the intermediate material A 3 shown in FIG. Manufactured. The diameter of the upper opening of each via hole 16 is 100 μm, and the diameter of the bottom surface (surface 12a of the conductor circuit) is 80 μm.

(3)ビアホール内樹脂残渣の除去処理
中間材A3を、スウェリングディップセキュリガントP(商品名、アドテックジャパン(株)製、ジエチレングリコール50質量%以下、エチレングリコール10〜20質量%を含有)400〜500g/Lと濃度1〜3g/Lの水酸化ナトリウム水溶液との混合溶液に、温度73±5℃で5分間浸漬して膨潤処理を行ったのち引き上げた。
(3) Removal process of resin residue in via hole Intermediate material A 3 is treated with Swelling Dip Securigant P (trade name, manufactured by Adtech Japan Co., Ltd., containing 50% by mass or less of diethylene glycol and 10 to 20% by mass of ethylene glycol) 400 It swelled in a mixed solution of ˜500 g / L and a sodium hydroxide aqueous solution having a concentration of 1 to 3 g / L at a temperature of 73 ± 5 ° C. for 5 minutes and then pulled up.

水洗後、過マンガン酸カリウム(日本化学工業(株)製、純度99.5%)45〜60g/Lと濃度35〜55g/Lの水酸化ナトリウム水溶液との混合溶液に、温度73±5℃で5分間浸漬して樹脂残渣のエッチング除去処理を行った。
ついで、水洗し、マギュダイザー9279(商品名、日本マクダーミッド(株)製、アミン化合物の含有量5〜20質量%)と0.75±0.25Nの硫酸との混合溶液(マギュダイザー9279の濃度を10±2mL/Lに調整)に、温度43±3℃で5分間浸漬して中和処理を行い、図5で示した中間材A4を製造した。
After washing with water, a mixture of 45 to 60 g / L potassium permanganate (manufactured by Nippon Chemical Industry Co., Ltd., purity 99.5%) and an aqueous sodium hydroxide solution having a concentration of 35 to 55 g / L was added to a temperature of 73 ± 5 ° C. The resin residue was etched away by immersion for 5 minutes.
Next, it was washed with water and mixed solution of Magu dizer 9279 (trade name, manufactured by Nihon McDermid Co., Ltd., amine compound content 5-20% by mass) and sulfuric acid of 0.75 ± 0.25 N (Mug dither 9279 concentration 10 (Adjusted to ± 2 mL / L) and neutralized by immersion for 5 minutes at a temperature of 43 ± 3 ° C. to produce the intermediate material A 4 shown in FIG.

(4)ガラス繊維のエッチング除去処理
中間材A5を、ガラスエッチアディティブ(製品名、メルテックス(株)製、ホウフッ化水素酸47質量%を含有)の濃度30mL/L水溶液に、温度45±5℃で7.5分間浸漬した。
そして充分に水洗して図6で示した中間材A5を製造した。
(4) etching removal process intermediate material A 5 of glass fiber, glass etch additive concentration 30 mL / L aqueous solution of (product name, Meltex Co., fluoroboric acid 47 containing mass%), temperature 45 ± It was immersed for 7.5 minutes at 5 ° C.
Then, it was sufficiently washed with water to produce the intermediate material A 5 shown in FIG.

(5)スルーホールの穿設処理
中間材A5の所定箇所にNC旋盤で口径0.3mmのスルーホール17を穿設して、図7で示した中間材A6を製造した。
(6)スルーホール内樹脂残渣の除去処理
中間材A6を、エッチング処理時の浸漬時間が5分間であったことを除いてはビアホール内の樹脂残渣の除去処理と同じ条件で処理して中間材A7(図示しない)を製造した。
(5) Through hole drilling process A through hole 17 having a diameter of 0.3 mm was drilled at a predetermined position of the intermediate material A 5 with an NC lathe to produce the intermediate material A 6 shown in FIG.
(6) Removal process of resin residue in through hole Intermediate material A 6 was processed under the same conditions as the removal process of resin residue in the via hole except that the immersion time during the etching process was 5 minutes. Material A 7 (not shown) was produced.

ついで、この中間材A7に、常用の無電解銅めっき、電気銅めっきを順次行い、更に導体回路を形成して2層回路基板を製造した。
比較のために、中間材A2のラージウインドにレーザ照射してビアホールを穿設し、ついでNC旋盤を用いてスルーホールを穿設し、ついで、実施例と同じ条件で、ガラス繊維のエッチング除去処理、樹脂残渣の除去処理をこの順序で行ってから2層回路基板を製造した。これを比較例1とする。
Then, this intermediate member A 7, electroless copper plating conventional, sequentially performs a copper electroplating to produce two-layer circuit board to form a further conductor circuit.
For comparison, laser irradiation is performed on the large window of the intermediate material A 2 to form a via hole, and then a through hole is formed using an NC lathe, and then the glass fiber is etched and removed under the same conditions as in the example. The two-layer circuit board was manufactured after performing the processing and the resin residue removal processing in this order. This is referred to as Comparative Example 1.

また、中間材A2にビアホールとスルーホールを穿設し、実施例と同じ条件で、樹脂残渣の除去処理、ガラス繊維のエッチング除去処理をこの順序で行ってから2層回路基板を製造した。これを比較例2とする。
2.2層回路基板の評価試験
これら3種類の2層回路基板をそれぞれ10枚製造し、それぞれから無作為に5枚取り出した。ついで、各基板につき、あるスルーホールの中心とそれに隣接するスルーホールの中心とを結ぶ線で厚み方向に切断して断面を表出させ、またあるビアホールにつきその中心で厚み方向に切断して断面を表出させ、それぞれの断面をレーザ顕微鏡で観察した。観察結果を表1に示す。
Further, bored a hole and a through hole in the intermediate material A 2, under the same conditions as in Example, the removal treatment of the resin residue to produce two-layer circuit board after performing etching removal process of the glass fiber in this order. This is referred to as Comparative Example 2.
2.2 Evaluation Test of Layered Circuit Board Ten of each of these three types of two-layer circuit boards were manufactured, and five sheets were randomly taken from each. Next, for each substrate, cut the cross section in the thickness direction by a line connecting the center of a through hole and the center of the adjacent through hole, and expose the cross section of the via hole in the thickness direction at the center. And each cross section was observed with a laser microscope. The observation results are shown in Table 1.

Figure 2005086164
Figure 2005086164

このように、比較例1、比較例2の場合は、スルーホールに対してガラス繊維のエッチング除去処理が施されるので、ウィッキング現象に基づくマイグレーションが発生する確率が大である。また、比較例2の場合は、ガラス繊維のエッチング除去処理に先立って樹脂残渣の除去処理が行われているので、ビアホールでは成膜されるめっき皮膜の厚みが均一になっている。   Thus, in the case of the comparative example 1 and the comparative example 2, since the glass fiber etching removal process is performed with respect to a through hole, the probability that the migration based on a wicking phenomenon will generate | occur | produce is large. Moreover, in the case of the comparative example 2, since the resin residue removal process is performed prior to the glass fiber etching removal process, the thickness of the plating film formed in the via hole is uniform.

次に、実施例、比較例1、および比較例2で得られた2層回路基板について、以下のようにして熱負荷に対する耐性を調べた。
上記した回路基板につき、定温下で、ビアホール部の導通に関する抵抗値を測定しておき、その後、回路基板に、温度260℃で10秒の加熱−15秒かけて移送−温度20℃で20秒の冷却を1サイクルとする熱負荷を100サイクル与え、そのときのビアホール部の導通に関する抵抗値を測定した。測定枚数は5枚であった。
Next, with respect to the two-layer circuit boards obtained in the example, the comparative example 1, and the comparative example 2, the resistance to the thermal load was examined as follows.
With respect to the circuit board described above, the resistance value related to the conduction of the via hole portion was measured at a constant temperature, and then transferred to the circuit board at a temperature of 260 ° C. for 10 seconds—transferd over 15 seconds—at a temperature of 20 ° C. for 20 seconds. A thermal load with one cycle of cooling was applied for 100 cycles, and the resistance value related to conduction in the via hole portion at that time was measured. The number of sheets measured was 5.

この抵抗値が増加する回路基板は、上記した熱負荷サイクルの過程で回路の断線などが発生していることを意味する。逆に、この抵抗値が変わらない回路基板は、熱負荷を受けても断線などを起こさず、信頼性が高いことを意味する。結果を表2に示す。   The circuit board having an increased resistance value means that a circuit disconnection or the like has occurred in the process of the thermal load cycle described above. Conversely, a circuit board whose resistance value does not change does not cause disconnection or the like even when subjected to a thermal load, meaning that it has high reliability. The results are shown in Table 2.

Figure 2005086164
Figure 2005086164

表2から次のことが明らかである。
(1)比較例1は、ガラス繊維に付着している樹脂残渣のためガラス繊維のエッチング除去が効率よく進まないので、ビアホールの内部は図8で示したような状態になっていて、ビアホールの底部の薄いめっき部分の断線が起こり、試験後の抵抗値が増加しているものと考えられる。
From Table 2, the following is clear.
(1) In Comparative Example 1, etching removal of the glass fiber does not proceed efficiently due to the resin residue adhering to the glass fiber. Therefore, the inside of the via hole is in a state as shown in FIG. It is considered that the thin plated portion at the bottom breaks and the resistance value after the test increases.

(2)実施例と比較例2は、ガラス繊維に付着した樹脂残渣を除去してからガラス繊維のエッチング除去を行っているので、ビアホール内のめっき厚は均一化して、熱負荷に耐えている。
しかし、比較例2の場合は、表1で示したようにマイグレーション発生の確率が大きいので、比較例2の製造工程は採用するわけにはいかない。
(2) In Example and Comparative Example 2, since the glass fiber is etched away after removing the resin residue adhering to the glass fiber, the plating thickness in the via hole is made uniform to withstand the heat load. .
However, in the case of the comparative example 2, since the probability of occurrence of migration is large as shown in Table 1, the manufacturing process of the comparative example 2 cannot be adopted.

本発明方法で製造された多層回路基板は、ビアホールの壁面は均一な厚みでめっきされているので、熱負荷が加わっても断線することがなく、またスルーホール間ではマイグレーションが起こらないので、例えば部品のはんだ付け実装時においても断線事故を起こすことがなく、使用上、信頼性が高い。   In the multilayer circuit board manufactured by the method of the present invention, the wall surface of the via hole is plated with a uniform thickness, so there is no disconnection even when a thermal load is applied, and no migration occurs between through holes. There is no disconnection accident when soldering and mounting parts, and it is highly reliable in use.

本発明で用いるコア基板の例を示す断面図である。It is sectional drawing which shows the example of the core board | substrate used by this invention. 中間材A1を示す断面図である。Is a sectional view showing an intermediate material A 1. 中間材A2を示す断面図である。Is a sectional view showing an intermediate material A 2. 中間材A3を示す断面図である。Is a sectional view showing an intermediate material A 3. 中間材A4を示す断面図である。It is a cross-sectional view showing the intermediate member A 4. 中間材A5を示す断面図である。It is a sectional view showing an intermediate member A 5. 中間材A6を示す断面図である。It is a sectional view showing an intermediate member A 6. レーザ照射によるビアホールに形成された従来のめっき皮膜の例を示す断面図である。It is sectional drawing which shows the example of the conventional plating film formed in the via hole by laser irradiation.

符号の説明Explanation of symbols

1 導体回路
1a 導体回路1の表面
2 ビアホール
2a ビアホール2の壁面
3 ガラス繊維強化樹脂基板
3A マトリックス樹脂
3B ガラス繊維
3b 突出部
11,13 ガラス繊維強化樹脂基板
11A,13A ガラス繊維
11B,13B マトリックス樹脂
12 導体回路
12a 導体回路12の表面
13a ガラス繊維強化樹脂基板13の表面
14 銅箔
14a 銅箔表面
15 ラージウインド
16 ビアホール
16a ビアホール16の壁面
17 スルーホール
17a スルーホール17の壁面
DESCRIPTION OF SYMBOLS 1 Conductor circuit 1a Surface of conductor circuit 1 2 Via hole 2a Wall surface of via hole 2 3 Glass fiber reinforced resin substrate 3A Matrix resin 3B Glass fiber 3b Protruding part 11, 13 Glass fiber reinforced resin substrate 11A, 13A Glass fiber 11B, 13B Matrix resin 12 Conductor circuit 12a Conductor circuit 12 surface 13a Glass fiber reinforced resin substrate 13 surface 14 Copper foil 14a Copper foil surface 15 Large window 16 Via hole 16a Wall surface of via hole 16 Through hole 17a Wall surface of through hole 17

Claims (1)

ビルドアップ工法による多層回路基板の製造方法において、下層の回路基板の上に積層されたガラス繊維強化樹脂基板にビアホールとスルーホールを形成する際に、
回路形成のプロセス技術によるラージウインドの形成処理;
レーザ照射によるビアホールの穿設処理;
前記ビアホール内に残存する樹脂残渣の除去処理;
前記ビアホールの壁面から突出するガラス繊維のエッチング除去処理;
スルーホールの穿設処理;および、
前記スルーホール内に残存する樹脂残渣の除去処理;
を順次行う工程を含むことを特徴とする多層回路基板の製造方法。
In the manufacturing method of the multilayer circuit board by the build-up method, when forming the via hole and the through hole in the glass fiber reinforced resin substrate laminated on the lower circuit board,
Large window formation processing by circuit formation process technology;
Via hole drilling by laser irradiation;
Removal treatment of resin residue remaining in the via hole;
Etching removal treatment of glass fiber protruding from the wall surface of the via hole;
Through-hole drilling process; and
Removal treatment of resin residue remaining in the through hole;
A process for producing a multilayer circuit board comprising the steps of sequentially performing the steps.
JP2003319942A 2003-09-11 2003-09-11 Multilayer circuit board manufacturing method Expired - Fee Related JP3948624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003319942A JP3948624B2 (en) 2003-09-11 2003-09-11 Multilayer circuit board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003319942A JP3948624B2 (en) 2003-09-11 2003-09-11 Multilayer circuit board manufacturing method

Publications (2)

Publication Number Publication Date
JP2005086164A true JP2005086164A (en) 2005-03-31
JP3948624B2 JP3948624B2 (en) 2007-07-25

Family

ID=34418736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003319942A Expired - Fee Related JP3948624B2 (en) 2003-09-11 2003-09-11 Multilayer circuit board manufacturing method

Country Status (1)

Country Link
JP (1) JP3948624B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007096187A (en) * 2005-09-30 2007-04-12 Sanyo Electric Co Ltd Circuit board and its production process
JP2009014693A (en) * 2007-07-09 2009-01-22 Nagoya Electric Works Co Ltd Radiation inspecting method and radiation inspecting apparatus for multilayer wiring board, and radiation inspecting program for realizing radiation inspecting method
US20090133910A1 (en) * 2007-11-22 2009-05-28 Ajinomoto Co., Inc Production method of multilayer printed wiring board and multilayer printed wiring board
JP2009246357A (en) * 2008-03-13 2009-10-22 Ngk Spark Plug Co Ltd Multilayer wiring board and its production process
US7737368B2 (en) 2005-09-30 2010-06-15 Sanyo Electric Co., Ltd. Circuit board and method of manufacturing circuit board
US7800917B2 (en) 2005-07-29 2010-09-21 Meiko Electronics Co., Ltd. Printed wiring board
CN102265709A (en) * 2008-12-29 2011-11-30 揖斐电株式会社 Printed wiring board and method for manufacturing same
WO2013042582A1 (en) * 2011-09-22 2013-03-28 上村工業株式会社 Desmear solution and desmear method
US8446734B2 (en) 2006-03-30 2013-05-21 Kyocera Corporation Circuit board and mounting structure
JP2013153233A (en) * 2013-05-15 2013-08-08 C Uyemura & Co Ltd Surface treatment method for forming printed wiring board and etching treatment liquid used in the same
KR20140027633A (en) * 2012-08-23 2014-03-07 삼성테크윈 주식회사 Method for manufactuing a circuit board
WO2014181923A1 (en) * 2013-05-07 2014-11-13 주식회사 엠디에스 Method for forming substrate hole and apparatus for forming substrate hole

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7800917B2 (en) 2005-07-29 2010-09-21 Meiko Electronics Co., Ltd. Printed wiring board
JP2007096187A (en) * 2005-09-30 2007-04-12 Sanyo Electric Co Ltd Circuit board and its production process
JP4562632B2 (en) * 2005-09-30 2010-10-13 三洋電機株式会社 Circuit board and circuit board manufacturing method
US7737368B2 (en) 2005-09-30 2010-06-15 Sanyo Electric Co., Ltd. Circuit board and method of manufacturing circuit board
US8446734B2 (en) 2006-03-30 2013-05-21 Kyocera Corporation Circuit board and mounting structure
JP2009014693A (en) * 2007-07-09 2009-01-22 Nagoya Electric Works Co Ltd Radiation inspecting method and radiation inspecting apparatus for multilayer wiring board, and radiation inspecting program for realizing radiation inspecting method
US8533942B2 (en) 2007-11-22 2013-09-17 Ajinomoto Co., Inc. Production method of multilayer printed wiring board and multilayer printed wiring board
JP2015035635A (en) * 2007-11-22 2015-02-19 味の素株式会社 Method of manufacturing multilayer wiring board and multilayer wiring board
US9060456B2 (en) 2007-11-22 2015-06-16 Ajinomoto Co., Inc. Production method of multilayer printed wiring board and multilayer printed wiring board
KR101514726B1 (en) 2007-11-22 2015-04-23 아지노모토 가부시키가이샤 Production method of multilayer printed wiring board and multilayer printed wiring board
TWI450666B (en) * 2007-11-22 2014-08-21 Ajinomoto Kk Production method of multilayer printed wiring board and multilayer printed wiring board
US20090133910A1 (en) * 2007-11-22 2009-05-28 Ajinomoto Co., Inc Production method of multilayer printed wiring board and multilayer printed wiring board
JP2009147323A (en) * 2007-11-22 2009-07-02 Ajinomoto Co Inc Method of manufacturing multilayer printed wiring board, and multilayer printed wiring board
JP2009246357A (en) * 2008-03-13 2009-10-22 Ngk Spark Plug Co Ltd Multilayer wiring board and its production process
US8153909B2 (en) * 2008-03-13 2012-04-10 Ngk Spark Plug Co., Ltd. Multilayer wiring board and method of manufacturing the same
US8431833B2 (en) 2008-12-29 2013-04-30 Ibiden Co., Ltd. Printed wiring board and method for manufacturing the same
CN102265709A (en) * 2008-12-29 2011-11-30 揖斐电株式会社 Printed wiring board and method for manufacturing same
JP2013069836A (en) * 2011-09-22 2013-04-18 C Uyemura & Co Ltd Desmear liquid and desmear treatment method
WO2013042582A1 (en) * 2011-09-22 2013-03-28 上村工業株式会社 Desmear solution and desmear method
KR20140027633A (en) * 2012-08-23 2014-03-07 삼성테크윈 주식회사 Method for manufactuing a circuit board
KR101933991B1 (en) * 2012-08-23 2019-03-25 해성디에스 주식회사 Method for manufactuing a circuit board
WO2014181923A1 (en) * 2013-05-07 2014-11-13 주식회사 엠디에스 Method for forming substrate hole and apparatus for forming substrate hole
JP2013153233A (en) * 2013-05-15 2013-08-08 C Uyemura & Co Ltd Surface treatment method for forming printed wiring board and etching treatment liquid used in the same

Also Published As

Publication number Publication date
JP3948624B2 (en) 2007-07-25

Similar Documents

Publication Publication Date Title
JP3948624B2 (en) Multilayer circuit board manufacturing method
JP4133560B2 (en) Printed wiring board manufacturing method and printed wiring board
WO2010076875A1 (en) Printed wiring board and method for manufacturing same
JP2007523263A (en) Electroplating method to aluminum
TW467969B (en) Process for treating metal surfaces
KR100484573B1 (en) Method of removing smear from via holes
JP5097979B2 (en) Method for manufacturing printed wiring board
KR101548421B1 (en) Method for Manufacturing Multi-Layered Printed Circuit Board
JPH1187931A (en) Manufacture of printed circuit board
KR100688755B1 (en) Method for forming solder ball pad in BGA printed circuit board and BGA printed circuit board manufactured therefrom
JP4082776B2 (en) Method for manufacturing printed wiring board
JPS59215793A (en) Method of reproducing copper conductor with defect on outer surface of outer layer circuit
JP2000036659A (en) Manufacture of build-up multilayer interconnection board
US20110260299A1 (en) Method for via plating in electronic packages containing fluoropolymer dielectric layers
JP3716613B2 (en) Printed wiring board and manufacturing method thereof
JPH1187886A (en) Production of printed wiring board
TW202114486A (en) Printed wiring board and method for manufacturing printed wiring board for allowing an electronic component in a cavity and a circuit outside of the cavity to be connected to each other at the bottom of the cavity
JP3223814B2 (en) Manufacturing method of multilayer printed wiring board
US5264049A (en) Method of manufacturing a multi-layered wiring board
JP4006078B2 (en) Method for manufacturing printed wiring board
WO2021200538A1 (en) Printed wiring board and method for manufacturing printed wiring board
WO2024084994A1 (en) Printed wiring board
JP2006237241A (en) Printed circuit board and manufacturing method thereof
JP2015177018A (en) Method of manufacturing wiring board
JP2012019232A (en) Manufacturing method of printed circuit board

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070328

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20070412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070412

R150 Certificate of patent or registration of utility model

Ref document number: 3948624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160427

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees