JP2005083271A - 真空ポンプ - Google Patents

真空ポンプ Download PDF

Info

Publication number
JP2005083271A
JP2005083271A JP2003317102A JP2003317102A JP2005083271A JP 2005083271 A JP2005083271 A JP 2005083271A JP 2003317102 A JP2003317102 A JP 2003317102A JP 2003317102 A JP2003317102 A JP 2003317102A JP 2005083271 A JP2005083271 A JP 2005083271A
Authority
JP
Japan
Prior art keywords
cooling pipe
cooling
coolant
valve
molecular pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003317102A
Other languages
English (en)
Other versions
JP2005083271A5 (ja
Inventor
Yuko Sakaguchi
祐幸 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Edwards Japan Ltd
Original Assignee
BOC Edwards Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOC Edwards Japan Ltd filed Critical BOC Edwards Japan Ltd
Priority to JP2003317102A priority Critical patent/JP2005083271A/ja
Publication of JP2005083271A publication Critical patent/JP2005083271A/ja
Publication of JP2005083271A5 publication Critical patent/JP2005083271A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/584Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

【課題】 冷却材の移送経路が変化した場合においても、冷却管を流れる冷却材の流量を安定させることができる真空ポンプを提供すること。
【解決手段】 冷却管33と冷却管34を、分岐ポート36を介して直列に接続し、さらに継ぎ管43を、バルブ37を介して冷却管33と並列に接続する。バルブ37のOFF時には、注入ターミナル38からバルブ37のB接続端を介して、ポート361側へ冷却材が流れる。バルブ37のON時には、注入ターミナル38からバルブ37のA接続端を介して、ポート331側へ冷却材が流れる。バルブ37のON時およびOFF時に関係なく、冷却材の移送経路は、ひと続きの1本の移送路で構成される。従って、冷却管33と冷却管34の両方に冷却材を流す場合であっても、冷却管34にのみ冷却材を流す場合であっても、移送される冷却材の流量は一定となる。
【選択図】 図3

Description

本発明は、例えば、半導体製造装置のプロセスガスの吸引排気に用いられる真空ポンプにおいて過熱保護を行うための冷却材を移送する冷却管を備えた真空ポンプに関する。
例えば、半導体装置の製造工程で用いられる高真空状態の真空チャンバ内の排気処理には、一般にターボ分子ポンプが多用されている。また、半導体装置の製造工程では、さまざまなプロセスガスを半導体の基板に作用させる工程が多々あり、ターボ分子ポンプは真空チャンバ内を真空にするのみならず、これらのプロセスガスを真空チャンバ内から排気するのにも使用される。
これらのプロセスガスは、反応性を高めるため高温の状態でチャンバに導入される場合がある。そして、これらのプロセスガスは、排気される際に冷却されてある温度になると固体となり排気系に生成物を析出する場合がある。
そして、この種のプロセスガスがターボ分子ポンプ内で低温となって固体状となり、ターボ分子ポンプ内部に付着して堆積する場合がある。
ターボ分子ポンプ内部にプロセスガスの析出物が堆積すると、この堆積物がポンプ流路を狭め、ターボ分子ポンプの性能を低下させる原因となる。
また、ターボ分子ポンプ内部では、多数のロータ翼が配設されたロータが毎分数万回転の高速回転を行っている。これらの回転体に析出物が堆積すると、回転対のバランスの不釣合いが発生し、ロータ翼がターボ分子ポンプのケーシングの内周面に配設されたステータ翼に接触するなど不都合が生じる場合がある。
そのため、従来からターボ分子ポンプの内部でプロセスガスが冷却されて固体化するのを防止するためにターボ分子ポンプの低温部を加熱するなどの手段がとられている。
例えば、半導体製造装置に使用されるターボ分子ポンプには、吸気口側に分子ポンプ部が形成され、排気口側にねじ溝ポンプ部が形成されたものがある。
ターボ分子ポンプ部は、ロータに放射状かつ多段に配設されたロータ翼と、ターボ分子ポンプのケーシングの内周面に、ロータ翼と互い違いに配設された多段のステータ翼により構成されている。
ねじ溝ポンプ部は、外周面が円筒面状のロータと、その周囲に、内周面に複数の螺旋状の溝を供えたスペーサ、即ちねじ溝スペーサが配設されて構成されている。ねじ溝スペーサに形成された螺旋状の溝の方向は、排気ガスがロータの回転方向に運動した時に、排気口側に移送される方向である。
なお、ねじ溝ポンプ部は、外周面に複数の螺旋状の溝を供えたロータと、その周囲に配設された内周面が円筒面状のスペーサによって構成される場合もある。
このような分子ポンプ部とねじ溝ポンプ部を備えたターボ分子ポンプでは、ねじ溝ポンプ部でプロセスガスの温度が下がり、固体物が析出しやすくなる。
このようなプロセスガスの固体物の析出を防止するために、ねじ溝ポンプ部の外周部にヒータを配設し、該ヒータの熱によりねじ溝ポンプ部でのプロセスガスの析出を防止している。
ところで、ねじ溝ポンプ部を構成するねじ溝スペーサやロータの部材は、アルミニウムなどの素材により構成されている。これらの部材は、高温の状態で高速回転するとクリープが発生したり、金属疲労が促進して寿命が短くなるおそれがある。
そのため、過熱時にねじ溝ポンプ部を冷却するための冷却管が、ねじ溝ポンプ部の外周部に設けられている。
また、ターボ分子ポンプ部においても、ロータ翼及びステータ翼がアルミニウムなどの素材により構成されている。これらの部材においてもクリープが発生したり、金属疲労が促進して寿命が短くなるおそれがある。
そのため、ターボ分子ポンプ部を冷却するための冷却管が、ターボ分子ポンプ部の外周部に配設されている。
従来、ターボ分子ポンプには、2箇所に冷却管が設けられていた。そして、これらの冷却管に冷却水を流すため、2系統の水冷系統を設ける必要があった。
このように2系統の水冷系統を用いて行っていたターボ分子ポンプの内部温度制御を1系統の水冷系統のみで行う技術が下記の特許文献に開示されている。
特開2003−148379公報
特許文献1には、常時ターボ分子ポンプ部の冷却を行うための冷却管と並列に、開閉弁を介してねじ溝ポンプ部の冷却を行うための冷却管を接続したターボ分子ポンプが開示されている。このように、2つの冷却管を並列に接続することにより、必要に応じて開閉弁を切り換えて、両方の冷却管に冷却水を流すことが可能になる。
しかしながら、特許文献1に開示されているターボ分子ポンプでは、一方の冷却管に冷却水を流した場合と、両方の冷却管に冷却水を流した場合とでは、冷却水の流量が変化してしまう。従って、流量が安定しないために冷却性能を安定させることが困難であった。
そこで、本発明は、第2冷却管とバイパス管の流路が切り換えられた場合においても、冷却管を流れる冷却材の流量を安定させることができる真空ポンプを提供することを目的とする。
請求項1記載の発明は、吸気口と排気口が形成された外装体と、前記外装体の内部に設けられた、前記吸気口から前記排気口へ気体を移送する気体移送機構と、前記外装体の内部の第1領域を冷却する第1冷却管と、前記外装体の内部の第2領域を加熱する加熱装置と、前記第1冷却管の上流側及び下流側の少なくとも一方に接続され、前記第2領域を冷却する第2冷却管と、前記第2冷却管をバイパスするバイパス管と、前記第2領域の温度を検出する温度センサと、前記温度センサの検出温度に基づいて、前記第2冷却管と前記バイパス管の流路を切り換える流路切り換え手段と、を具備するにより前記目的を達成する。
請求項2記載の発明は、請求項1記載の発明において、ステータと、前記ステータに対して回転自在に軸支されたロータと、前記ロータを回転させるモータと、前記ロータ及び前記ステータの、前記吸気口側に形成されたロータ翼とステータ翼を有する分子ポンプ部と、前記ロータ及び前記ステータの、前記排気口側に形成されたねじ溝ポンプ部と、所定の制御回路が形成された内部基板と、を前記外装体の内部に具備し、前記第1冷却管は、前記分子ポンプ部および前記内部基板の少なくとも一方を前記第1領域として冷却し、前記第2冷却管は、前記ねじ溝ポンプ部を前記第2領域として冷却することにより前記目的を達成する。
請求項3記載の発明は、請求項1又は請求項2記載の発明において、前記第2冷却管を、前記第1冷却管の上流側に配置することにより前記目的を達成する。
請求項4記載の発明は、請求項1又は請求項2記載の発明において、前記第2冷却管を、前記第1冷却管の下流側に配置することにより前記目的を達成する。
請求項5記載の発明は、請求項2記載の発明において、前記内部基板を冷却する前記第1冷却管を、最も上流側に配設することにより前記目的を達成する。
本発明によれば、冷却材の移送経路を1系統にすることにより、第2冷却管とバイパス管の流路が切り換えられた場合においても、冷却管を流れる冷却材の流量を安定させることができる。
以下、本発明の真空ポンプにおける好適な実施の形態について、図1から図4を参照して詳細に説明する。
図1は、本実施形態のターボ分子ポンプ1の軸線方向の断面図を示した図である。
本実施形態では、分子ポンプの一例としてターボ分子ポンプ部とねじ溝式ポンプ部を備えた、いわゆる複合翼タイプの分子ポンプを例にとり説明する。
また、ターボ分子ポンプ1には、高速回転するロータ部と、固定したステータ部との排気作用により、排気機能を発揮する真空ポンプであって、ターボ分子ポンプ、ねじ溝式ポンプ、あるいはこれら両方の構造を合わせ持ったポンプなどがある。
ターボ分子ポンプ1の外装体を形成するケーシング16は、円筒状の形状をしており、ケーシング16の底部に設けられたベース27と共にターボ分子ポンプ1の外装体を構成している。そして、ターボ分子ポンプ1の外装体の内部には、ターボ分子ポンプ1に排気機能を発揮させる構造物つまり気体移送機構が収納されている。
これら排気機能を発揮する構造物は、大きく分けて回転自在に軸支されたロータ部24とケーシング16に対して固定されたステータ部から構成されている。
また、吸気口6側がターボ分子ポンプ部Tにより構成され、排気口19側がねじ溝式ポンプ部Sから構成されている。
ロータ部24には、シャフト11の軸線に垂直な平面から所定の角度だけ傾斜してシャフト11から放射状に伸びたブレードからなるロータ翼21が吸気口6側(ターボ分子ポンプ部T)に設けられている。なお、ロータ部24は、ステンレスやアルミニウム合金などの金属を用いて構成されている。
さらに、ロータ部24には、外周面が円筒形状をした部材からなる円筒部材29が排気口19側(ねじ溝式ポンプ部S)に設けられている。
また、ターボ分子ポンプ1には、ロータ翼21が軸線方向に複数段形成されている。
シャフト11は、円柱部材の回転軸(ロータ軸)である。シャフト11の上端にはロータ部24が複数のボルト25により取り付けられている。
シャフト11の軸線方向中程には、シャフト11を回転させるモータ部10が配設されている。
また、モータ部10の吸気口6側及び排気口19側には、シャフト11をラジアル方向に軸支するための磁気軸受部8及び磁気軸受部12が設けられている。
さらに、シャフト11の下端には、シャフト11を軸線方向(スラスト方向)に軸支するための磁気軸受部20が設けられている。
なお、シャフト11は、磁気軸受部8、12、20から構成される5軸制御型の磁気軸受によって非接触で支持されている。
また、磁気軸受部8、12の近傍には、それぞれ変位センサ9、13が形成されており、シャフト11のラジアル方向の変位が検出できるようになっている。さらに、シャフト11の下端には変位センサ17が形成されており、シャフト11の軸線方向の変位が検出できるようになっている。
ケーシング16の内周側には、ステータ部が形成されている。このステータ部は、吸気口6側(ターボ分子ポンプ部T)に設けられたステータ翼22と、排気口19側(ねじ溝式ポンプ部S)に設けられたねじ溝スペーサ5などから構成されている。
ステータ翼22は、シャフト11の軸線に垂直な平面から所定の角度だけ傾斜してケーシング16の内周面からシャフト11に向かって伸びたブレードから構成されている。ターボ分子ポンプ部Tでは、これらステータ翼22が軸線方向に、ロータ翼21と互い違いに複数段形成されている。各段のステータ翼22は、円筒形状をしたスペーサ23により互いに隔てられている。
ねじ溝スペーサ5は、内周面にらせん溝7が形成された円柱部材である。ねじ溝スペーサの内周面は、所定のクリアランス(間隙)を隔てて円筒部材29の外周面に対面するようになっている。ねじ溝スペーサ5に形成されたらせん溝7の方向は、らせん溝7内をロータ部24の回転方向にガスが輸送された場合、排気口19に向かう方向である。らせん溝7の深さは排気口19に近づくにつれ浅くなるようになっている。そして、らせん溝7を輸送されるガスは排気口19に近づくにつれて圧縮されるようになっている。
これらステータ部はステンレスやアルミニウム合金などの金属を用いて構成されている。
ベース27は、ケーシング16と共にターボ分子ポンプ1の外装体を構成している。ベース27のラジアル方向中央には、ロータの回転軸線と同心に円筒形状を有するステータコラム18が、吸気口6方向に取り付けられている。
また、磁気軸受部20の排気口19側端には、ターボ分子ポンプ1における制御回路が搭載されたポンプ内部基板30が配設されている。このポンプ内部基板30には、ポンプの運転時間、エラーの履歴、温度制御の設定温度等が記憶された回路が形成され、これらの回路には多数の半導体部品が使用されている。これらの半導体部品は、信頼性を考慮した設計限界温度が設定されているため、ターボ分子ポンプ1の動作時において設計限界温度の設定値範囲内で使用しなければならないようになっている。なお、設計限界温度は、概ね60℃程度となっている。
なお、ポンプ内部基板30を配設する場所は、これに限られるものではなく、後述する裏蓋35の内側、つまり裏蓋35における磁気軸受部20と対向する面に配設するようにしてもよい。
ベース27の底部の開口部に裏蓋35が取り付けられている。裏蓋35は、ポンプ内部基板30と対向するように設けられている。裏蓋35は、ターボ分子ポンプ1の外装体を構成している。
裏蓋35と、ベース27との接合面に略円環状の溝が設けられており、この溝に冷却管31が配設されている。
冷却管31は、チューブ状(管状)の部材からなる。冷却管31は、内部に熱媒体である冷却材を流し、この冷却材に熱を吸収させるようにして冷却管31周辺の冷却を行うための部材である。
冷却管31に冷却材を流すことによって、裏蓋35をはじめとする冷却管31の周辺部が強制的に冷却される。この冷却効果によって、裏蓋35の近傍に配置されているポンプ内部基板30の温度を下げることができるようになっている。
ポンプ内部基板30は、上述したように設計限界温度の設定値範囲内で使用しなければならない。従って、冷却管31には、常時冷却材が流れるようになっている。
冷却管31は、裏蓋35におけるベース27との接合面に配設されるようになっているが、これに限られるものではなく、ベース27における裏蓋35との接合面に配設するようにしてもよい。また、ターボ分子ポンプ1内の気密性を十分に保持することが可能であれば、ベース27の内部におけるポンプ内部基板30の近辺に配設するようにしてもよい。冷却管31の配設をより容易にする場合には、裏蓋35と外接するように冷却管31を配設するようにしてもよい。
また、冷却管31の取付部に半田や熱伝導用のペーストなどを付設し、冷却管31における熱交換の効率をさらに向上させるようにしてもよい。
また、ターボ分子ポンプ部Tのケーシング16を介した外周部には、ケーシング16を周方向に囲むように冷却管ジャケット341が設けられている。冷却管ジャケット341の内部には、ケーシング16が内接するように冷却管34が配設されている。
冷却管34は、チューブ状(管状)の部材からなる。冷却管34は、内部に熱媒体である冷却材を流し、この冷却材に熱を吸収させるようにしてターボ分子ポンプ部Tの冷却を行うための部材である。
ターボ分子ポンプ1の稼働中は、ロータ部24が高速回転し、ロータ翼21やステータ翼22のブレードが、圧縮熱等によって高温になったプロセスガスを、図1の矢印Aで示される吸気口6方向から受ける。そして、これらの圧縮熱等を受けて、ロータ翼21やステータ翼22のブレードの温度が上昇してしまう。このような状況下では、ロータ翼21やステータ翼22のブレードの材料にクリープ現象等が生じ、部材の変形や破壊などの不具合が発生する可能性がある。
従って、冷却管34は、ロータ翼21やステータ翼22が許容温度以上に上昇することを抑制するための冷却機構を構成している。
ロータ翼21やステータ翼22は、ターボ分子ポンプ1の稼働中において、圧縮熱等によって高温になったガスの熱による影響を受ける。そのため、ターボ分子ポンプ1の稼働中は、常時ロータ翼21やステータ翼22のブレードを冷却する必要がある。従って、冷却管34には、常時冷却材が流れるようになっている。
ターボ分子ポンプ部Tの外周部に冷却管34を配設して冷却を図ることにより、冷却管34とケーシング16との接触部からケーシング16の熱が吸収されて、ケーシング16が冷却される。そして、ケーシング16の内周壁と接するスペーサ23、さらにスペーサ23に固定されているステータ翼22が冷却される。そして、ステータ翼22及びスペーサ23と、非接触状態で回転しているロータ翼21の輻射熱は、ステータ翼22及びスペーサ23において冷却される。
このようにして、冷却管34を用いてロータ翼21及びステータ翼22を冷却することにより、ロータ翼21及びステータ翼22の温度上昇を抑制することができる。これにより、クリープ現象等の不具合の発生を適切に抑制することができるため、ロータ翼21及びステータ翼22における金属疲労を低減させることができる。
冷却管34は、ターボ分子ポンプ部Tの外周部の吸気口6付近に配設されるようになっているが、これに限られるものではない。冷却管34は、ケーシング16の外周部におけるターボ分子ポンプ部Tが内包されている任意の領域に配設するようにしてもよい。また、冷却管34をケーシング16の外周部に複数回巻回すように配設するようにしてもよい。さらに、冷却管34は、ターボ分子ポンプ1内の気密性を十分に保持することが可能であれば、ケーシング16の内周部、例えば、ケーシング16とスペーサ23の接触部やスペーサ23の内部に配設するようにしてもよい。
また、冷却管ジャケット341と冷却管34との空隙や、冷却管34とケーシング16との接触部に半田や熱伝導用のペーストなどを付設し、冷却管34における熱交換の効率をさらに向上させるようにしてもよい。
ねじ溝式ポンプ部Sのケーシング16を介した外周部には、ケーシング16を周方向に囲むようにベーキングヒータ32が装着されている。
ベーキングヒータ32は、ニクロム線などの電熱部材によって構成され、温度コントローラ321によって電力を供給される。ベーキングヒータ32は、電力を供給されると発熱し、ねじ溝式ポンプ部Sを加熱するようになっている。
また、ベース27におけるねじ溝スペーサ5との接触部分には、温度センサ46が設けられている。この温度センサ46は、ねじ溝式ポンプ部Sの温度のモニターを行っている。なお、温度センサ46を配設する位置は、これに限られるものではない。例えば、ねじ溝式ポンプ部Sの温度を検出することが可能であれば、ケーシング16やベース27の外周部に配設するようにしても、また直接ねじ溝スペーサ5の内部に配設するようにしてもよい。
吸気口6から吸入されたガスは、ターボ分子ポンプ部Tを移送する間に冷却されるため、ねじ溝式ポンプ部Sに移送される時には、ガスの温度は下がってしまう。一方、ガスの圧力は、ねじ溝式ポンプ部Sに移送される時には、高くなっている。つまり、ねじ溝式ポンプ部Sに移送されるガスは、低温かつ高圧力状態となっている。従って、ねじ溝式ポンプ部Sは、移送されるガスによる固体生成物が析出しやすい状態となっている。
ターボ分子ポンプ1内に堆積する固体生成物ついて簡単に説明する。ここでは、ターボ分子ポンプ1に、例えば、Al(アルミニウム)エッチング装置で用いられるプロセスガス(塩化ケイ素(SiCl4))が吸気口6から吸入される場合を例にとり説明する。
塩化ケイ素(SiCl4)は、水分の含有量の多い760[torr]〜10-2[torr]の低真空領域では、塩化ケイ素の化学反応が促進されて塩化アルミニウム(ALCl3)が析出する。この塩化アルミニウム(ALCl3)が固体生成物としてターボ分子ポンプ1内に付着して堆積する。さらに、20℃程度の低温領域においては、塩化ケイ素の化学反応が促進される。
つまり、固体生成物は、低温かつ低真空領域において析出しやすい状態となっている。
このため、ねじ溝スペーサ5で移相されるガスによる固体生成物の析出を抑制するために、ベーキングヒータ32を用いてねじ溝式ポンプ部Sを高温に保つようにしている。
しかしながら、ねじ溝式ポンプ部Sを構成する部材に関しても、信頼性を考慮した使用限界温度が設定されている。そのため、この使用限界温度を超えない程度にねじ溝式ポンプ部Sを高温に保つようにする。
ベーキングヒータ32は、ねじ溝式ポンプ部Sが予め設定された温度になるように温度コントローラ321によって温度制御されている。
また、ねじ溝式ポンプ部Sのケーシング16を介した外周部には、ケーシング16を周方向に囲むように冷却管33が設けられている。冷却管33は、ベーキングヒータ32と隣接するように配設されている。
冷却管33は、チューブ状(管状)の部材からなる。冷却管33は、内部に熱媒体である冷却材を流し、この冷却材に熱を吸収させるようにしてねじ溝式ポンプ部Sの冷却を行うための部材である。冷却管33は、ベーキングヒータ32の誤動作による過加熱時や、ガスの流量の急変などによる内部温度上昇等が発生した際における過熱保護機構として用いられる。従って、冷却管33には、過熱保護機構を機能させる場合にのみ、冷却材が流れるようになっている。
また、ねじ溝式ポンプ部Sの温度制御のレスポンス(応答性)を向上させる場合に用いるようにしてもよい。
ベーキングヒータ32及び冷却管33は、温度コントローラ321からの制御信号に基づいて、ねじ溝式ポンプ部Sの温度制御を行う温度制御装置として機能している。
上述した冷却管31、冷却管32及び冷却管33は、熱抵抗の低い部材つまり熱伝導率の高い部材、例えば、銅やステンレス鋼などによって構成されている。
また、冷却管31、冷却管32及び冷却管33に流す冷却材、つまり物体を冷却するための流体は、液体であっても気体であってもよい。液体の冷却材としては、例えば、水、塩化カルシウム水溶液やエチレングリコール水溶液などを用いることができる。気体の冷却材としては、例えば、アンモニア、メタン、エタン、ハロゲン、ヘリウムガスや炭酸ガス、空気などを用いることができる。
図2は、ターボ分子ポンプ1の外観を示した図である。
図2に示すように、裏蓋35の外部における冷却管31の両端には、それぞれ他の管と接続するためのポート311、312が取り付けられている。
また、冷却管34の両端には、ポート342、343が取り付けられている。
冷却管33の一端には、ポート331が取り付けられ、他端は、3方向の分岐路を有する分岐ポート36の一端に接続されている。
分岐ポート36の他端には、ポート361が取り付けられている。そして、残りの一端は、継ぎ管44の一端に接続されている。継ぎ管44の他端は、ポート343に接続されている。
図3(a)は、ターボ分子ポンプ1における冷却系統の構成を模式的に示した図である。
なお、ここでは、1系統の冷却系統を用いて冷却管33、34に冷却材を流すことができる冷却系統の構成について説明する。
ターボ分子ポンプ1の外部には、ポンプやファンなどによる強制力によって冷却管を流れる冷却材を循環させる強制循環装置が設けられている。この強制循環装置には、循環させる冷却材を冷却管33、34に注入する注入ターミナル38が設けられている。また、この強制循環装置には、冷却材を冷却管33、34を移送された冷却材を強制循環装置に排出する排出ターミナル39が設けられている。
この強制循環装置では、排出ターミナル39から強制循環装置内に戻された冷却材の温度を熱交換器などを用いて下げた後、注入ターミナル38から再び冷却材を注入するようになっている。
本実施形態では、強制循環装置を用いて冷却材を冷却管へ注入するようにしているが、これに限られるものではない。例えば、冷却材として水を用いる場合には、常時水道から注入ターミナル38へ水道水を導き、この水道水を冷却管へ流して冷却を行うようにしてもよい。この場合、排出ターミナル39から排出された水道水は廃棄されるようになっている。
図3(a)に示すように、注入ターミナル38は、継ぎ管41を介してバルブ37に接続されている。バルブ37は、流体(冷却材)の出入り口を3つ有する三方弁である。バルブ37は、温度コントローラ321から遠隔操作可能な電動弁であり、例えば電磁石の吸引作用によって弁の開閉を行う電磁バルブによって構成されている。
バルブ37は、継ぎ管41を介して注入ターミナル38に接続された接続端の他に、A側及びB側の2つ接続端(以下、A接続端、B接続端とする)を有している。
バルブ37のA接続端は、継ぎ管40を介してポート331に接続されている。なお、ポート331は、図2で説明したように、冷却管33に取り付けられている。
また、バルブ37のB接続端は、継ぎ管43を介してポート361に接続されている。なお、ポート361は、図2で説明したように、分岐ポート36に接続されている。
排出ターミナル39は、継ぎ管42を介してポート342に接続されている。なお、ポート342は、図2で説明したように、冷却管34に接続されている。
次に、このように構成されたターボ分子ポンプ1の冷却系統における冷却材の移送経路について説明する。
図3(b)は、バルブ37のOFF時における冷却材の移送経路を示した図である。
バルブ37のOFF時には、注入ターミナル38からバルブ37のB接続端を介して、ポート361側へ冷却材が流れるようになっている。この場合、注入ターミナル38からバルブ37のA接続端を介してポート331側へ冷却材が流れる経路は遮断されるようになっている。
そして、バルブ37のOFF時には、冷却管34に冷却材が流れ、冷却管33には冷却材が流れないようになっている。
詳しくは、バルブ37のOFF時には、注入ターミナル38から注入された冷却材は、継ぎ管41を介してバルブ37に移送され、バルブ37のB接続端を通って継ぎ管43へ移送される。そして、ポート361を介して、分岐ポート36に達する。
バルブ37のOFF時には、バルブ37のA接続端は遮断されている。そのため、冷却管33を冷却材が流れることができないようになっている。従って冷却材は、分岐ポート36から継ぎ管44を介してポート343に至る。そして、冷却管34を通ってポート342に達し、さらに継ぎ管42を介して排出ターミナル39に至る。
このようにバルブ37のOFF時には、冷却管33及び冷却管34のうちの冷却管34に冷却材を流すようにすることができる。
図3(c)は、バルブ37のON時における冷却材の移送経路を示した図である。
バルブ37のON時には、注入ターミナル38からバルブ37のA接続端を介して、ポート331側へ冷却材が流れるようになっている。この場合、注入ターミナル38からバルブ37のB接続端を介してポート361側へ冷却材が流れる経路は遮断されるようになっている。
そして、バルブ37のON時には、冷却管33及び冷却管34の両方に冷却材が流れるようになっている。
詳しくは、バルブ37のON時には、注入ターミナル38から注入された冷却材は、継ぎ管41を介してバルブ37に移送され、バルブ37のA接続端を通って継ぎ管40へ移送される。そして、ポート331を介して冷却管33を流れた後、分岐ポート36に達する。
バルブ37のON時には、バルブ37のB接続端は遮断されている。そのため、継ぎ管43を冷却材が流れることができないようになっている。従って冷却材は、分岐ポート36から継ぎ管44を介してポート343に至る。そして、冷却管34を通ってポート342に達し、さらに継ぎ管42を介して排出ターミナル39に至る。
このようにバルブ37のON時には、冷却管33及び冷却管34の両方に冷却材を流すようにすることができる。
なお、冷却管34は分子ポンプ部に配設された第1冷却管として機能し、冷却管33は第2冷却管として機能する。また、バルブ37は流路切り換え手段として機能し、継ぎ管43はバイパス管として機能する。
ここでバルブ37におけるON/OFF制御の概要について説明する。
ねじ溝式ポンプ部Sの温度制御を行う温度コントローラ321には、予め、ねじ溝式ポンプ部Sの設定温度が設定されている。
定常時、温度コントローラ321は、バルブ37の駆動を行わない。つまり、バルブ37はOFF状態を保持している。
温度センサ46(図1に示す)がねじ溝式ポンプ部Sの設定温度よりも高い温度を検出した場合に、温度コントローラ321は、バルブ37をONさせるようになっている。そして、温度センサ46がねじ溝式ポンプ部Sの設定温度よりも低い温度にまで低下した場合に、温度コントローラ321は、バルブ37をOFFさせるようになっている。つまり、バルブ37におけるON/OFF制御は、温度コントローラ321に設定されている設定温度と、ねじ溝式ポンプ部Sの内部温度との比較結果に基づいて行われている。
このように本実施形態では、冷却管33と冷却管34は、分岐ポート36を介して直列に接続され、さらに継ぎ管43は、バルブ37を介して冷却管33と並列に接続されている。これにより、バルブ37のON時及びOFF時に関係なく、冷却材の移送経路をひと続きの1本の移送路とすることができる。つまり、冷却管33と冷却管34の両方に冷却材を流す場合であっても、冷却管34にのみ冷却材を流す場合であっても、移送される冷却材の流量は一定となる。従って、冷却管を流れる冷却材による冷却性能を安定させることができる。
また、冷却材は、設けられた冷却管や継ぎ管を通過しながら移送経路を辿るにしたがって、順次外部の熱を吸収していく。そのため、移送経路においては、下流側に向かうほど冷却材の温度が上昇していくようになっている。
本実施形態では、図3(c)に示すように、バルブ37のON時の冷却材の移送経路において、冷却管33は、冷却管34の上流側に配置されている。つまり、ねじ溝式ポンプ部S(図1に示す)を冷却するための冷却材は、ターボ分子ポンプ部T(図1に示す)から熱を吸収する前に、ねじ溝式ポンプ部Sから熱を吸収することができる。
従って、冷却管33を流れる比較的低温である冷却材によって、ねじ溝式ポンプ部Sを冷却することができる。そのため、ねじ溝式ポンプ部Sの温度制御におけるレスポンス(応答性)を向上させることができる。
なお、ねじ溝式ポンプ部Sの設定温度は、ターボ分子ポンプ部Tの温度と比較して、十分に低い値である。そのため、冷却管34を流れる冷却材によるターボ分子ポンプ部Tの冷却効果を十分に得ることができる。
また、図3(a)に示した冷却系統の構成において、冷却管33及び冷却管34における接続を互いに置き換えて配置するようにしてもよい。
詳しくは、冷却管33の一端をポート342に接続し、他端をポート343に接続する。そして、冷却管34の一端をポート331に接続し、他端を分岐ポート36に接続する。
このように冷却管33と冷却管34の接続位置を置き換えることにより、バルブ37のON時の冷却材の移送経路において、冷却管34は、冷却管33の上流側に配置されるようになる。
これにより、ターボ分子ポンプ部T(図1に示す)を冷却するための冷却材は、ねじ溝式ポンプ部S(図1に示す)から熱を吸収する前に、ターボ分子ポンプ部Tから熱を吸収することができる。従って、冷却管34を流れる比較的低温である冷却材によって、ターボ分子ポンプ部Tを冷却することができる。そのため、ターボ分子ポンプ部Tの冷却効率を向上させることができる。
なお、このように冷却管33及び冷却管34互いにを置き換え場合には、ねじ溝式ポンプ部Sの温度制御におけるレスポンス(応答性)が低下するおそれがある。そのため、ねじ溝式ポンプ部Sの設定温度を低く設定するようにすることが好ましい。
次に、図3に示したターボ分子ポンプ1における冷却系統の変形例について説明する。
図4(a)は、ターボ分子ポンプ1における冷却系統の変形例の構成を模式的に示した図である。
ここでは、図3に示した実施形態における冷却系統に、冷却管31を追加配置した変形例について説明する。なお、上述した実施形態と重複する箇所には、同一の符号を用いて詳細な説明は省略する。
図4(a)に示すように、注入ターミナル38は、継ぎ管44を介してポート311に接続されている。ポート311は、図2で説明したように、冷却管31に取り付けられている。そして、冷却管31の他端に取り付けられたポート312は、継ぎ管45を介してバルブ37に接続されている。
なお、バルブ37以降の構成は、図3に示す冷却系統と同一の構成となっている。
次に、このように構成されたターボ分子ポンプ1の冷却系統の変形例における冷却材の移送経路について説明する。
図4(b)は、バルブ37のOFF時における冷却材の移送経路を示した図である(変形例)。
バルブ37のOFF時には、冷却管31及び冷却管34に冷却材が流れ、冷却管33には冷却材が流れないようになっている。
詳しくは、バルブ37のOFF時には、注入ターミナル38から注入された冷却材は、継ぎ管44を介してポート311に移送される。そして冷却材は、冷却管31を流れポート312へ移送された後、継ぎ管45を介してバルブ37へ至る。
なお、バルブ37以降の冷却材は、図3(b)に示す冷却材の移送経路と同一の移送経路を辿るようになっている。
このようにバルブ37のOFF時には、冷却管31、冷却管33及び冷却管34のうちの冷却管31と冷却管34に冷却材を流すようにすることができる。
図4(c)は、バルブ37のON時における冷却材の移送経路を示した図である(変形例)。
バルブ37のON時には、冷却管31、冷却管33及び冷却管34の全てに冷却材が流れるようになっている。
詳しくは、バルブ37のON時には、注入ターミナル38から注入された冷却材は、継ぎ管44を介してポート311に移送される。そして冷却材は、冷却管31を流れポート312へ移送された後、継ぎ管45を介してバルブ37へ至る。
なお、バルブ37以降の冷却材は、図3(c)に示す冷却材の移送経路と同一の移送経路を辿るようになっている。
このようにバルブ37のON時には、冷却管31、冷却管33及び冷却管34の全てに冷却材を流すようにすることができる。
なお、上述した変形例において、冷却管31は内部基板を冷却する第1冷却管として機能する。
上述した変形例においては、図4(b)及び(c)に示すように、バルブ37のON時及びOFF時に関係なく冷却材の移送経路において、冷却管31は、最も上流側に配置されている。つまり、ポンプ内部基板30(図1に示す)を冷却するための冷却材は、ターボ分子ポンプ部T(図1に示す)及びねじ溝式ポンプ部S(図1に示す)から熱を吸収する前に、裏蓋35(図1に示す)から熱を吸収することができる。
従って、冷却管31を流れる比較的低温である冷却材によって、裏蓋35を冷却することができる。そのため、裏蓋35周辺つまりポンプ内部基板30の冷却効率を向上させることができる。
なお、この場合において、裏蓋35は高温部材から離れ、さらに外気とも接触しているため、ねじ溝式ポンプ部Sの設定温度及びターボ分子ポンプ部Tの温度と比較して、十分に低い値である。そのため、冷却管31を流れる冷却材の温度上昇は、下流側におけるねじ溝式ポンプ部S及びターボ分子ポンプ部Tの冷却に影響を与える程ではない。従って、冷却管33及び冷却管34を流れる冷却材による冷却効果を、図3に示した実施形態と同様に得ることができる。
また、図4に示した変形例においても図3に示した実施形態と同様に、冷却管33及び冷却管34における接続を互いに置き換えて配置するようにしてもよい。この場合においても、冷却管34を流れる比較的低温である冷却材によって、ターボ分子ポンプ部Tを冷却することができる。そのため、ターボ分子ポンプ部Tの冷却効率を向上させることができる。
本実施形態のターボ分子ポンプの軸線方向の断面図を示した図である。 ターボ分子ポンプの外観を示した図である。 (a)は、ターボ分子ポンプにおける冷却系統の構成を模式的に示した図であり、(b)は、バルブのOFF時における冷却材の移送経路を示した図であり、(c)は、バルブのON時における冷却材の移送経路を示した図である。 (a)は、ターボ分子ポンプにおける冷却系統の構成を模式的に示した図であり、(b)は、バルブのOFF時における冷却材の移送経路を示した図であり、(c)は、バルブのON時における冷却材の移送経路を示した図である(変形例)。
符号の説明
1 ターボ分子ポンプ
5 ねじ溝スペーサ
6 吸気口
11 シャフト
16 ケーシング
19 排気口
21 ロータ翼
22 ステータ翼
24 ロータ部
27 ベース
30 ポンプ内部基板
31、33、34 冷却管
32 ベーキングヒータ
35 裏蓋
36 分岐ポート
37 バルブ
38 注水ターミナル
39 排出ターミナル
321 温度コントローラ
341 冷却管ジャケット
46 温度センサ

Claims (5)

  1. 吸気口と排気口が形成された外装体と、
    前記外装体の内部に設けられた、前記吸気口から前記排気口へ気体を移送する気体移送機構と、
    前記外装体の内部の第1領域を冷却する第1冷却管と、
    前記外装体の内部の第2領域を加熱する加熱装置と、
    前記第1冷却管の上流側及び下流側の少なくとも一方に接続され、前記第2領域を冷却する第2冷却管と、
    前記第2冷却管をバイパスするバイパス管と、
    前記第2領域の温度を検出する温度センサと、
    前記温度センサの検出温度に基づいて、前記第2冷却管と前記バイパス管の流路を切り換える流路切り換え手段と、
    を具備することを特徴とする真空ポンプ。
  2. ステータと、
    前記ステータに対して回転自在に軸支されたロータと、
    前記ロータを回転させるモータと、
    前記ロータ及び前記ステータの、前記吸気口側に形成されたロータ翼とステータ翼を有する分子ポンプ部と、
    前記ロータ及び前記ステータの、前記排気口側に形成されたねじ溝ポンプ部と、
    所定の制御回路が形成された内部基板と、
    を前記外装体の内部に具備し、
    前記第1冷却管は、前記分子ポンプ部および前記内部基板の少なくとも一方を前記第1領域として冷却し、
    前記第2冷却管は、前記ねじ溝ポンプ部を前記第2領域として冷却することを特徴とする請求項1に記載の真空ポンプ。
  3. 前記第2冷却管は、前記第1冷却管の上流側に配置されていることを特徴とする請求項1又は請求項2記載の真空ポンプ。
  4. 前記第2冷却管は、前記第1冷却管の下流側に配置されていることを特徴とする請求項1又は請求項2記載の真空ポンプ。
  5. 前記内部基板を冷却する前記第1冷却管は、最も上流側に配設されていることを特徴とする請求項2記載の真空ポンプ。
JP2003317102A 2003-09-09 2003-09-09 真空ポンプ Pending JP2005083271A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003317102A JP2005083271A (ja) 2003-09-09 2003-09-09 真空ポンプ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003317102A JP2005083271A (ja) 2003-09-09 2003-09-09 真空ポンプ

Publications (2)

Publication Number Publication Date
JP2005083271A true JP2005083271A (ja) 2005-03-31
JP2005083271A5 JP2005083271A5 (ja) 2006-10-12

Family

ID=34416794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003317102A Pending JP2005083271A (ja) 2003-09-09 2003-09-09 真空ポンプ

Country Status (1)

Country Link
JP (1) JP2005083271A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019164A (ja) * 2008-07-10 2010-01-28 Univ Of Tokyo ポンプ装置
WO2014045438A1 (ja) * 2012-09-24 2014-03-27 株式会社島津製作所 ターボ分子ポンプ
CN104019041A (zh) * 2013-02-28 2014-09-03 普发真空有限公司 真空泵
CN104819158A (zh) * 2014-02-05 2015-08-05 株式会社岛津制作所 涡轮分子泵
WO2019229863A1 (ja) * 2018-05-30 2019-12-05 エドワーズ株式会社 真空ポンプとその冷却部品
WO2020031927A1 (ja) * 2018-08-08 2020-02-13 エドワーズ株式会社 真空ポンプ、及びこの真空ポンプに用いられる円筒部、並びにベース部
CN113508231A (zh) * 2019-03-26 2021-10-15 埃地沃兹日本有限公司 真空泵及真空泵结构零件
WO2022091054A1 (en) * 2020-11-02 2022-05-05 Edwards Korea Limited Thermal management system

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019164A (ja) * 2008-07-10 2010-01-28 Univ Of Tokyo ポンプ装置
US9745989B2 (en) 2012-09-24 2017-08-29 Shimadzu Corporation Turbo-molecular pump
WO2014045438A1 (ja) * 2012-09-24 2014-03-27 株式会社島津製作所 ターボ分子ポンプ
CN104350283A (zh) * 2012-09-24 2015-02-11 株式会社岛津制作所 涡轮分子泵
JP5924414B2 (ja) * 2012-09-24 2016-05-25 株式会社島津製作所 ターボ分子ポンプ
JPWO2014045438A1 (ja) * 2012-09-24 2016-08-18 株式会社島津製作所 ターボ分子ポンプ
CN104019041A (zh) * 2013-02-28 2014-09-03 普发真空有限公司 真空泵
JP2014169697A (ja) * 2013-02-28 2014-09-18 Pfeiffer Vacuum Gmbh 真空ポンプ
US9964121B2 (en) 2013-02-28 2018-05-08 Pfeiffer Vacuum Gmbh Vacuum pump
CN104819158A (zh) * 2014-02-05 2015-08-05 株式会社岛津制作所 涡轮分子泵
JP2015148162A (ja) * 2014-02-05 2015-08-20 株式会社島津製作所 ターボ分子ポンプ
CN104819158B (zh) * 2014-02-05 2017-04-12 株式会社岛津制作所 涡轮分子泵
US11204042B2 (en) 2018-05-30 2021-12-21 Edwards Japan Limited Vacuum pump and cooling component thereof
WO2019229863A1 (ja) * 2018-05-30 2019-12-05 エドワーズ株式会社 真空ポンプとその冷却部品
CN112088251B (zh) * 2018-05-30 2022-11-11 埃地沃兹日本有限公司 真空泵及其冷却部件
CN112088251A (zh) * 2018-05-30 2020-12-15 埃地沃兹日本有限公司 真空泵及其冷却部件
EP3805567A4 (en) * 2018-05-30 2021-12-22 Edwards Japan Limited VACUUM PUMP AND COOLING COMPONENT THEREFOR
WO2020031927A1 (ja) * 2018-08-08 2020-02-13 エドワーズ株式会社 真空ポンプ、及びこの真空ポンプに用いられる円筒部、並びにベース部
CN112469902A (zh) * 2018-08-08 2021-03-09 埃地沃兹日本有限公司 真空泵、以及在该真空泵中使用的圆筒部及底座部
US11480182B2 (en) 2018-08-08 2022-10-25 Edwards Japan Limited Vacuum pump, cylindrical portion used in vacuum pump, and base portion
JP2020023949A (ja) * 2018-08-08 2020-02-13 エドワーズ株式会社 真空ポンプ、及びこの真空ポンプに用いられる円筒部、並びにベース部
CN113508231A (zh) * 2019-03-26 2021-10-15 埃地沃兹日本有限公司 真空泵及真空泵结构零件
WO2022091054A1 (en) * 2020-11-02 2022-05-05 Edwards Korea Limited Thermal management system

Similar Documents

Publication Publication Date Title
CN111836968B (zh) 真空泵
JP6287475B2 (ja) 真空ポンプ
JP5924414B2 (ja) ターボ分子ポンプ
JP6484919B2 (ja) ターボ分子ポンプ
JP7356869B2 (ja) 真空ポンプ
US6991439B2 (en) Vacuum pump
KR20020040603A (ko) 진공펌프
JP4594689B2 (ja) 真空ポンプ
JP2017089582A (ja) 真空ポンプ
JPH10205486A (ja) 真空ポンプ
JP6077804B2 (ja) 固定側部材及び真空ポンプ
JP2002227765A (ja) 真空ポンプ
JP2005083271A (ja) 真空ポンプ
JP2002180988A (ja) 真空ポンプ
US20030175131A1 (en) Vacuum pump
JP2002303293A (ja) ターボ分子ポンプ
JP2002021775A (ja) ターボ分子ポンプ
JP4899598B2 (ja) ターボ分子ポンプ
JP2011127483A (ja) ターボ分子ポンプ
KR20160140576A (ko) 배기구 부품, 및 진공 펌프
JP3656532B2 (ja) ターボ分子ポンプの温度制御回路
TWI780855B (zh) 真空泵
KR102676150B1 (ko) 진공 펌프
JPH10169594A (ja) ターボ分子ポンプ
JP2023180545A (ja) 真空ポンプ、及び真空排気システム

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060829

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060829

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090630