JP2005082882A - Method for measuring stuck quantity of coal ash onto preheated pellet - Google Patents

Method for measuring stuck quantity of coal ash onto preheated pellet Download PDF

Info

Publication number
JP2005082882A
JP2005082882A JP2003319901A JP2003319901A JP2005082882A JP 2005082882 A JP2005082882 A JP 2005082882A JP 2003319901 A JP2003319901 A JP 2003319901A JP 2003319901 A JP2003319901 A JP 2003319901A JP 2005082882 A JP2005082882 A JP 2005082882A
Authority
JP
Japan
Prior art keywords
pellet
coal ash
pellets
preheated
coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003319901A
Other languages
Japanese (ja)
Inventor
Mitsuru Sakamoto
充 坂本
Takayuki Yamamoto
貴之 山本
Nobuyuki Iwasaki
伸之 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003319901A priority Critical patent/JP2005082882A/en
Publication of JP2005082882A publication Critical patent/JP2005082882A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method by which in a grate kiln system using a pulverized fine coal burner as a heat source, quantity of coal ash stuck on the surface of preheated pellet brought into the kiln can accurately be measured. <P>SOLUTION: A metal-made basket filling up a part of green pellet (GP) is laid on a shifting pellet 2 at the upstream side to the shifting direction of the green pellet from the charging position of the green pellet GP into a grate furnace 1, and the above basket is collected near the outlet of a preheating furnace 5. The preheated pellet in the collected basket is pulverized in a rotation strength tester and the surface part is shaven off, and in each of the shaven-off surface part and the whole preheated pellet before shaving off the surface, SiO<SB>2</SB>concentration and/or Al<SB>2</SB>O<SB>3</SB>concentration are measured with a chemical analysis, and the stuck quantity of the coal ash onto the preheated pellet is obtained based on the difference of the SiO<SB>2</SB>concentration and/or the Al<SB>2</SB>O<SB>3</SB>concentration in the above surface part and the whole preheated pellet. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、鉄鉱石ペレット焼成用のグレートキルンシステムにおける操業技術に関し、詳しくは、焼成用および/または予熱用熱源として微粉炭を用いた場合に問題とされる予熱ペレットへの石炭灰付着量の測定技術に関する。   The present invention relates to an operation technique in a great kiln system for firing iron ore pellets, and more specifically, the amount of coal ash adhered to preheated pellets, which is a problem when pulverized coal is used as a heat source for firing and / or preheating. Related to measurement technology.

鉄鉱石ペレット焼成用のグレートキルンシステムは、生ペレットの乾燥および予熱をトラベリング・グレート炉(以下、単に「グレート炉」ともいう。)で行わせ、ロータリキルン(以下、単に「キルン」ともいう。)で焼成した後、アニュラクーラで冷却を行う形式のものである。システム全体の加熱は、キルン出口端に配設したバーナを用い、キルンからの排ガス顕熱をグレート炉での熱源として有効利用するものである。バーナの燃料としては、過去においては重油が用いられていたが、近年では安価な微粉炭が用いられている。微粉炭には石炭に由来する灰分が多く含まれているため、微粉炭を燃焼した後の排ガス中には石炭灰が多量に含まれることになる。その結果、キルン内におけるキルンリング(ペレット粉化物がキルン内壁レンガ表面に岩状に付着したもの)の発生がさらに顕著になる傾向がある。このため、キルンリングの発生を抑制すべく、石炭灰がキルン内壁に付着しにくい炭種を選択して用いることが行われている。そして、炭種の変更に際して、グレート炉(予備焼成炉)の出口部近傍に耐熱性金属棒(付着棒)を一定時間挿入し、この付着棒の表面に付着した石炭灰等の付着量、成分組成等を測定することにより、間接的に石炭灰のキルン内壁への付着状況を把握する方法が採用されている(特許文献1参照)。   In the great kiln system for firing iron ore pellets, raw pellets are dried and preheated in a traveling great furnace (hereinafter also simply referred to as “grate furnace”), and are also referred to as a rotary kiln (hereinafter simply referred to as “kiln”). ), Followed by cooling with an annula. The entire system is heated by using a burner disposed at the exit end of the kiln and effectively utilizing the sensible heat of the exhaust gas from the kiln as a heat source in the great furnace. As burner fuel, heavy oil has been used in the past, but cheap pulverized coal has been used in recent years. Since the pulverized coal contains a large amount of ash derived from coal, the exhaust gas after burning the pulverized coal contains a large amount of coal ash. As a result, the occurrence of kiln rings in the kiln (the pelletized material adhered to the brick wall surface of the kiln in the form of rocks) tends to become more prominent. For this reason, in order to suppress generation | occurrence | production of a kiln ring, selecting and using the coal type which coal ash does not adhere to a kiln inner wall is performed. When changing the coal type, a heat-resistant metal rod (adhesion rod) is inserted in the vicinity of the outlet of the great furnace (pre-firing furnace) for a certain period of time, and the amount and components of coal ash and the like adhering to the surface of this adhesion rod The method of grasping | ascertaining the adhesion condition to the kiln inner wall of coal ash indirectly by measuring a composition etc. is employ | adopted (refer patent document 1).

一方、最近では、主熱源としての上記キルンの微粉炭バーナに加え、補助熱源としてグレート炉の予熱室にバーナ列を配設し、キルン排ガス温度を上昇させることによって、予熱ペレットの強度を高めてキルン内での粉化を防止してキルンリングの発生をさらに抑制する改良技術が実用化されている(特許文献2参照)。   On the other hand, recently, in addition to the kiln pulverized coal burner as the main heat source, a burner row is arranged in the preheating chamber of the great furnace as an auxiliary heat source to increase the kiln exhaust gas temperature, thereby increasing the strength of the preheating pellet. An improved technique for preventing powdering in the kiln and further suppressing the generation of kiln rings has been put into practical use (see Patent Document 2).

この予熱室のバーナ列の燃料としては従来、コークス炉ガスが用いられていたが、さらなる燃料コストの低減を図るため、このバーナ列にも微粉炭バーナを用いることが検討されている。そうすると、キルンからの排ガス中に含まれる石炭灰だけでなく、予熱室の微粉炭バーナ列からも石炭灰が加わり、石炭灰を高濃度に含有する予熱用ガスが移動パレット上のペレット層を通過することになる。この際、予熱用ガスに含まれる石炭灰の一部はペレット表面に付着し、予熱ペレットとともにキルン内に装入されることになる。なお、石炭灰の残部はペレット表面に付着することなくペレット層を通過した後、移動パレット下方に設置された集塵機で回収される。したがって、従来のように、予熱室の出口部近傍に付着棒を挿入しても、キルン排ガス中の石炭灰のみの挙動を把握できるだけであり、予熱室のバーナ列から発生した石炭灰の挙動については把握できない。また、仮に複数の付着棒を予熱室の全体に挿入して予熱ガス中の石炭灰の挙動を把握できたとしても、実際にペレット表面に付着する石炭灰の量は特定できず、予熱ペレットとともにキルン内に持ち込まれる石炭灰の量を精度良く測定することは不可能である。
特公昭60−53276号公報 特開平11−325740号公報
Conventionally, coke oven gas has been used as the fuel for the burner row in the preheating chamber, but in order to further reduce the fuel cost, the use of a pulverized coal burner for this burner row is also being studied. Then, not only coal ash contained in the exhaust gas from the kiln but also coal ash is added from the pulverized coal burner row in the preheating chamber, and the preheating gas containing coal ash at a high concentration passes through the pellet layer on the moving pallet. Will do. At this time, part of the coal ash contained in the preheating gas adheres to the pellet surface and is charged into the kiln together with the preheating pellet. The remainder of the coal ash passes through the pellet layer without adhering to the pellet surface, and is then collected by a dust collector installed below the moving pallet. Therefore, even if the stick is inserted near the exit of the preheating chamber as in the past, only the behavior of the coal ash in the kiln exhaust gas can be grasped, and the behavior of the coal ash generated from the burner row in the preheating chamber Can not grasp. Even if a number of sticks are inserted into the entire preheating chamber to understand the behavior of coal ash in the preheating gas, the amount of coal ash that actually adheres to the pellet surface cannot be specified. It is impossible to accurately measure the amount of coal ash brought into the kiln.
Japanese Patent Publication No. 60-53276 JP-A-11-325740

そこで本発明は、微粉炭バーナを熱源として用いるグレートキルンシステムにおいて、予熱ペレットの表面に付着してキルンに持ち込まれる石炭灰の量を精度良く測定できる方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a method capable of accurately measuring the amount of coal ash adhering to the surface of a preheated pellet and brought into the kiln in a great kiln system using a pulverized coal burner as a heat source.

請求項1に記載の発明は、生ペレットをトラベリング・グレート炉に装入して炉内を通過させる間に後記ロータリキルンの排ガス顕熱を用いて乾燥および予熱することにより予熱ペレットとなし、この予熱ペレットを、その出口端に設けられた微粉炭バーナからの火炎を熱源とするロータリキルンに投入して焼成することにより焼成ペレットを製造するにあたり、前記トラベリング・グレート炉の出口付近から前記予熱ペレットの試料を採取し、この試料の、石炭灰が付着した表面部を削り取り、この削り取った表面部と、生ペレット、予熱ペレットおよび焼成ペレットよりなる群から選ばれた一のペレットとのそれぞれについて、石炭灰の主要成分から選ばれた少なくとも一つの代表成分の濃度を化学分析により測定し、前記表面部と前記一のペレットとの前記代表成分の濃度の差異に基づいて前記予熱ペレットへの石炭灰の付着量を求めることを特徴とする予熱ペレットへの石炭灰付着量の測定方法である。   The invention according to claim 1 is a preheated pellet obtained by drying and preheating the raw pellets using a rotary kiln exhaust gas sensible heat while charging the raw pellets into a traveling / grating furnace and passing through the furnace. In producing a calcined pellet by putting the preheated pellet into a rotary kiln using a flame from a pulverized coal burner provided at the outlet end as a heat source, and calcining the preheated pellet from the vicinity of the outlet of the traveling great furnace. The sample of the sample was collected, and the surface portion to which the coal ash adhered was scraped, and each of the scraped surface portion and one pellet selected from the group consisting of raw pellets, preheated pellets and calcined pellets, The concentration of at least one representative component selected from the main components of coal ash is measured by chemical analysis, and the surface portion and the It is a method for measurement of coal ash deposition amount of the above pellet on the basis of the difference between the concentration of representative components into the preheating pellets and obtains the deposition of coal ash to the preheating pellets.

請求項2に記載の発明は、前記ロータリキルンの排ガス顕熱が、予熱室に設けられた微粉炭バーナから吹き込まれた微粉炭を燃焼させることにより調節されるものである請求項1に記載の予熱ペレットへの石炭灰付着量の測定方法である。   According to a second aspect of the present invention, the exhaust gas sensible heat of the rotary kiln is adjusted by burning pulverized coal blown from a pulverized coal burner provided in a preheating chamber. This is a method for measuring the amount of coal ash deposited on preheated pellets.

請求項3に記載の発明は、前記表面部を削り取る手段が、前記試料を回転ドラム内に装入し、この回転ドラムを所定の回転速度で所定時間回転して前記試料の表面近傍の部分を粉化させた後、所定の篩目の篩で篩い分けして篩下を前記表面部とするものである請求項1または2に記載の予熱ペレットへの石炭灰付着量の測定方法である。   According to a third aspect of the present invention, the means for scraping the surface portion inserts the sample into a rotating drum, rotates the rotating drum for a predetermined time at a predetermined rotational speed, and removes a portion near the surface of the sample. 3. The method for measuring the amount of coal ash deposited on preheated pellets according to claim 1 or 2, wherein after pulverization, sieving is carried out with a sieve having a predetermined mesh to make the surface under the sieve.

請求項4に記載の発明は、前記石炭灰の主要成分が、SiO2およびAl23である請求項1〜3のいずれか1項に記載の予熱ペレットへの石炭灰付着量の測定方法である。 Invention of claim 4, the main component of the coal ash, SiO 2 and Al 2 O 3 is a method of measuring coal ash deposition amount to preheat the pellets according to any one of claims 1 to 3 It is.

請求項5に記載の発明は、前記予熱ペレットの試料を採取する手段が、生ペレットの一部を充填した金属製カゴを、前記トラベリング・グレート炉への生ペレットの装入位置より生ペレット移動方向に対して上流側で移動パレット上に載置し、前記トラベリング・グレート炉の出口付近で前記カゴを回収するものである請求項1〜4のいずれか1項に記載の予熱ペレットへの石炭灰付着量の測定方法である。   According to a fifth aspect of the present invention, the means for taking a sample of the preheated pellet moves the metal basket filled with a part of the raw pellet from the raw pellet loading position into the traveling / grating furnace. The coal to the preheating pellet according to any one of claims 1 to 4, wherein the coal is placed on a moving pallet upstream with respect to a direction and the basket is recovered in the vicinity of an outlet of the traveling great furnace. This is a method for measuring the amount of ash adhesion.

請求項6に記載の発明は、前記回収されたカゴ内のペレット充填層の上表面から所定の深さまでの部分のみを前記予熱ペレットの試料とする請求項5に記載の予熱ペレットへの石炭灰付着量の測定方法である。   The invention according to claim 6 is the coal ash to the preheated pellet according to claim 5, wherein only the portion from the upper surface to the predetermined depth of the pellet packed bed in the recovered basket is used as the sample of the preheated pellet. This is a method for measuring the amount of adhesion.

本発明は以上のように構成されており、予熱ペレットの表面に付着した石炭灰を含む部分(表面部)とペレットとの代表成分の濃度の差異から予熱ペレットの表面に付着した石炭灰の量を算出できるので、予熱ペレットに付着してキルンに持ち込まれる石炭灰の量を精度良く求めることができる。   This invention is comprised as mentioned above, The quantity of the coal ash adhering to the surface of a preheating pellet from the difference in the density | concentration of the representative component of the part (surface part) containing the coal ash adhering to the surface of a preheating pellet, and a pellet Therefore, the amount of coal ash that adheres to the preheated pellets and is brought into the kiln can be obtained with high accuracy.

以下、本発明の実施の形態について図を参照しつつ詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の実施に用いるグレートキルンシステムのペレット焼成装置の概略の設備構成を示す縦断面図である。   FIG. 1 is a longitudinal sectional view showing a schematic equipment configuration of a pellet baking apparatus of a great kiln system used in the practice of the present invention.

トラベリング・グレート炉(以下、単に「グレート炉」ともいう。)1は、エンドレスに回転する移動パレット2上に敷かれた生ペレットGPを、乾燥室3、離水室4、予熱室5の順に移動させつつ、後述する予熱用ガスの下向通風によって乾燥および予熱を行うものである。なお、離水室4は鉱石中に結晶水を含む場合に設置される。   Traveling Great Furnace (hereinafter, also simply referred to as “Great Furnace”) 1 moves raw pellet GP laid on a moving pallet 2 that rotates endlessly in the order of a drying chamber 3, a water separation chamber 4, and a preheating chamber 5. In addition, drying and preheating are performed by downward ventilation of the preheating gas described later. The water separation chamber 4 is installed when the ore contains crystal water.

上記予熱用ガスは、ロータリキルン(以下、単に「キルン」ともいう。)9に設置された微粉炭バーナ10の排ガス(キルン排ガス)が予熱室用吸引ファン7により予熱室5内に導入され、これに微粉炭バーナ列21から微粉炭を吹き込んで燃焼することによりガス温度が調節されたものであり、移動パレット2上のペレット層、風箱群6の順に下向きに通過する。   As the preheating gas, the exhaust gas (kiln exhaust gas) of the pulverized coal burner 10 installed in a rotary kiln (hereinafter also simply referred to as “kiln”) 9 is introduced into the preheating chamber 5 by the preheating chamber suction fan 7, The gas temperature is adjusted by blowing pulverized coal from the pulverized coal burner row 21 and burning it. The pellet layer on the moving pallet 2 and the wind box group 6 pass downward in this order.

したがって、微粉炭バーナ10で燃焼された微粉炭由来の石炭灰の一部がキルン排ガスとともに予熱室5内に導入され、これに、予熱室5に設置された微粉炭バーナ列21で燃焼された微粉炭由来の石炭灰が加わり、石炭灰を高濃度に含有する加熱用ガスがペレット層を通過する。加熱用ガスがペレット層を通過する間にペレット表面に石炭灰の一部が付着し、残部は加熱用ガスとともに予熱室用風箱群6に導入され、図示しない集塵機により捕集される。   Therefore, a part of the coal ash derived from the pulverized coal burned in the pulverized coal burner 10 is introduced into the preheating chamber 5 together with the kiln exhaust gas, and is burned in the pulverized coal burner row 21 installed in the preheating chamber 5. Coal ash derived from pulverized coal is added, and heating gas containing coal ash in a high concentration passes through the pellet layer. While the heating gas passes through the pellet layer, a part of the coal ash adheres to the pellet surface, and the remainder is introduced into the preheating chamber wind box group 6 together with the heating gas and collected by a dust collector (not shown).

表面に石炭灰が付着した予熱ペレットはキルン9に投入され、キルン9内で転動を受けて表面に付着した石炭灰が剥離し、キルンリング生成を助長する可能性がある。   Preheated pellets with coal ash adhering to the surface are put into the kiln 9, and the coal ash adhering to the surface peels off in the kiln 9 and may promote kiln ring generation.

そこで、本実施の形態では、グレート炉1の出口付近(すなわち、予熱室5の出口付近)から予熱ペレットの試料を採取する。ここで、微粉炭バーナ列21は、予熱ガス温度を均一にするとともに隣接するバーナを熱で溶損させないために、予熱室5の長手方向に所定間隔で複数本設置されるので、予熱ペレットに付着してキルン9に持ち込まれる石炭灰の量を精度良く定量するためには、できるだけ予熱室5の出口に近い場所から予熱ペレットの試料を採取することが望ましい。   Therefore, in the present embodiment, a sample of preheated pellets is collected from the vicinity of the outlet of the great furnace 1 (that is, the vicinity of the outlet of the preheating chamber 5). Here, a plurality of pulverized coal burner rows 21 are installed at predetermined intervals in the longitudinal direction of the preheating chamber 5 in order to make the preheating gas temperature uniform and prevent the adjacent burners from being melted by heat. In order to accurately quantify the amount of coal ash that adheres and is brought into the kiln 9, it is desirable to collect a sample of preheated pellets from a location as close to the outlet of the preheating chamber 5 as possible.

予熱ペレットの試料の採取の手段としては以下の手段が推奨される。すなわち、生ペレットGPの一部を充填した金属製カゴを、グレート炉1への生ペレットGPの装入位置より生ペレット移動方向に対して上流側で移動パレット2上に載置する。カゴが載置された後に残りの生ペレットGPが移動パレット2上に装入されるので、カゴの周りに残りの生ペレットGPが充填されて、カゴ内の生ペレットとともに移動パレット2上にペレット層を形成する。そして、移動パレット2の移動とともにグレート炉1内を移動したカゴを予熱室5の出口付近で回収して炉外に取り出す。回収を容易にするために予めカゴに取っ手を取り付けておき、予熱室5出口付近の側壁に設けたマンホールから先端を鉤形にした金属棒で取っ手に引っかけて取り出すことができる。また、測定の精度を高めるため、移動パレット2の幅方向に複数個のカゴを載置してもよく、また、一定時間ごとに1個ずつまたは複数個ずつカゴを載置してもよい。   The following means are recommended as means for collecting the preheated pellet samples. That is, the metal basket filled with a part of the raw pellet GP is placed on the moving pallet 2 on the upstream side of the raw pellet moving direction from the loading position of the raw pellet GP into the great furnace 1. After the basket is placed, the remaining raw pellet GP is loaded onto the moving pallet 2, so that the remaining raw pellet GP is filled around the basket and the pellet is placed on the moving pallet 2 together with the raw pellet in the basket. Form a layer. And the basket which moved the inside of the great furnace 1 with the movement of the moving pallet 2 is collected near the outlet of the preheating chamber 5 and taken out of the furnace. In order to facilitate recovery, a handle is attached to the basket in advance, and it can be taken out from a manhole provided on the side wall in the vicinity of the outlet of the preheating chamber 5 by hooking the handle with a metal rod having a tip shape. Further, in order to increase the accuracy of measurement, a plurality of baskets may be placed in the width direction of the moving pallet 2, and one or more baskets may be placed at regular intervals.

なお、予熱ペレットの試料の採取の手段として、上記カゴを用いる手段に代えて、上記マンホールから金属製の柄杓で予熱室5からキルン9に流下する予熱ペレットを採取する手段を用いても良い。   As a means for collecting the preheated pellet sample, a means for collecting preheated pellets flowing from the preheating chamber 5 to the kiln 9 with a metal handle from the manhole may be used instead of the means using the basket.

このようにして採取した予熱ペレットの試料を、表面に付着した石炭灰を含む表面部を削り取る。表面部を削り取る手段としては以下の手段が推奨される。すなわち、予熱ペレットの試料を回転ドラム内に装入し、この回転ドラムを所定の回転速度で所定時間回転して試料の表面近傍の部分を粉化させた後、所定の篩目の篩で篩い分けして篩下を表面部とする。回転ドラムとしては、例えばJIS M 8712に規定される回転強度試験機を用いることができる。そして、回転ドラムの所定の回転速度、回転時間および篩目の大きさは、以下のようにして決定することができる。例えば、JIS M 8712に規定される回転強度試験の条件のうち、回転ドラムの回転速度、篩目の大きさはJIS M 8712の規定どおりとし、回転時間だけを順次延長して、得られた各篩下の後記代表成分の濃度を測定し、この濃度が実質的に変化しなくなる回転時間を所定の回転時間とすればよい。   The surface portion containing the coal ash adhering to the surface of the sample of the preheated pellets collected in this way is scraped off. The following means are recommended as means for scraping the surface portion. That is, a sample of preheated pellets is charged into a rotating drum, and the rotating drum is rotated at a predetermined rotation speed for a predetermined time to pulverize a portion near the surface of the sample, and then sieved with a predetermined sieve mesh. Divide it into a surface part. As the rotating drum, for example, a rotational strength tester defined in JIS M 8712 can be used. The predetermined rotation speed, rotation time, and sieve size of the rotating drum can be determined as follows. For example, among the rotational strength test conditions defined in JIS M 8712, the rotational speed of the rotating drum and the size of the sieve mesh are as defined in JIS M 8712, and each of the obtained results is obtained by sequentially extending only the rotation time. The concentration of the following representative component under the sieve is measured, and the rotation time during which the concentration does not substantially change may be set as the predetermined rotation time.

このようにして削り取った表面部と、表面部を削り取る前の予熱ペレット(以下、「予熱ペレット全部」ともいう。)のそれぞれについて、石炭灰の主要成分から選択した少なくとも一つの代表成分の濃度を化学分析により測定する。なお、石炭灰の主要成分と共通するペレットの脈石成分の組成は、乾燥から焼成の間で実質的に変化しないので、表面部を削り取る前の予熱ペレット(予熱ペレット全部)に代えて、生ペレットまたは焼成ペレットを用いてもよい。ここで、石炭灰の主要成分とは、石炭灰(微粉炭の灰分)の成分のうち、石炭灰中の濃度がペレット中の濃度よりも十分に高い成分をいい、通常の炭種ではSiO2、Al23がこれに相当する。微粉炭バーナ10と微粉炭バーナ列21とで同じ微粉炭を使用する場合において、例えば、代表成分をSiO2とし、石炭灰(微粉炭の灰分)中のSiO2濃度がa質量%のときに、予熱ペレットの試料に対する上記削り取った表面部の質量割合がb%で、当該表面部と予熱ペレット全部のSiO2濃度がそれぞれc質量%、d質量%であったとすると、予熱ペレットに付着した石炭灰の質量割合w質量%は、SiO2バランスより下記式(1)で計算できる。 The concentration of at least one representative component selected from the main components of coal ash for each of the surface portion thus scraped and the preheat pellets before scraping the surface portion (hereinafter also referred to as “preheat pellets”) is set. Measure by chemical analysis. In addition, since the composition of the gangue component of the pellet common with the main component of coal ash does not substantially change between drying and firing, it is replaced with preheated pellets (all preheated pellets) before scraping the surface portion. Pellets or fired pellets may be used. Here, the main component of coal ash, among the components of coal ash (pulverized coal ash), the concentration in the coal ash called a sufficiently high component than the concentration in the pellets, in a normal coal type SiO 2 Al 2 O 3 corresponds to this. When the same pulverized coal is used in the pulverized coal burner 10 and the pulverized coal burner row 21, for example, when the representative component is SiO 2 and the SiO 2 concentration in the coal ash (the ash content of the pulverized coal) is a mass%. , a mass ratio b% of the scraped surface portion with respect to the sample of preheating pellets, the SiO 2 concentration of the surface portion and the preheating pellets entirely c wt%, respectively, and was d by mass%, adhered to the preheated pellets coal The mass ratio w mass% of ash can be calculated by the following formula (1) from the SiO 2 balance.

w=b・(c−d)/(a−d) …式(1)     w = b · (cd) / (ad) (1)

この式(1)の分母の構成から明らかなように、石炭灰中の濃度aがペレット中の濃度dに比べて高いほど予熱ペレットに付着した石炭灰の質量割合wを精度良く計算できることがわかる。もちろん代表成分はSiO2に代えてAl23を用いてもよい。 As is clear from the structure of the denominator of the equation (1), it is understood that the mass ratio w of coal ash adhering to the preheated pellet can be calculated more accurately as the concentration a in the coal ash is higher than the concentration d in the pellet. . Of course, Al 2 O 3 may be used as a representative component instead of SiO 2 .

また、微粉炭バーナ10と微粉炭バーナ列21とで異なる炭種の微粉炭を用いる場合(すなわち、各炭種由来の石炭灰の成分組成が異なる場合)には、SiO2およびAl23の両成分を代表成分とし、SiO2バランスとAl23バランスとからなる連立方程式を解くことにより予熱ペレットに付着した石炭灰を各炭種由来の石炭灰に分けてそれぞれの質量割合を求めることもできる。 When pulverized coal of different coal types is used in the pulverized coal burner 10 and the pulverized coal burner row 21 (that is, when the component composition of coal ash derived from each coal type is different), SiO 2 and Al 2 O 3 Using the two components as representative components, the coal ash adhering to the preheated pellets is divided into coal ash derived from each coal type by solving simultaneous equations consisting of SiO 2 balance and Al 2 O 3 balance, and the respective mass ratios are obtained. You can also.

予熱用ガスはペレット層内を下方に向かって流通するので、予熱用ガスに含まれる石炭灰はペレット層の最上層に最も多く付着し、下層に向かうにしたがって付着量は少なくなる。したがって、前記回収されたカゴ内のペレット充填層の上表面から所定の深さまでの部分のみを予熱ペレットの試料としてもよい。これにより、削り取られた表面部に石炭灰が高濃度に含まれるため代表成分の分析精度が高くなるからである。なお所定の深さは、浅すぎると試料の量が過少となり却って分析精度を低下させる一方、深すぎると削り取られた表面部に含まれる石炭灰の濃度が薄まり分析精度が低下するので、ペレット充填層厚さの1/4〜1/2の範囲とすることが望ましい。   Since the preheating gas flows downward in the pellet layer, the coal ash contained in the preheating gas adheres most to the uppermost layer of the pellet layer, and the adhesion amount decreases toward the lower layer. Therefore, only the portion from the upper surface of the pellet-packed layer in the recovered basket to a predetermined depth may be used as the preheated pellet sample. Thereby, since the coal ash is contained at a high concentration in the scraped surface portion, the analysis accuracy of the representative component is increased. If the depth is too shallow, the amount of sample will be too small and the analysis accuracy will be reduced.If the depth is too deep, the concentration of coal ash contained in the scraped surface will be reduced and the analysis accuracy will be reduced. It is desirable to make it into the range of 1/4 to 1/2 of layer thickness.

図1に示すペレット焼成装置において、本発明に係る予熱ペレットへの石炭灰付着量の測定方法を実施した。   In the pellet baking apparatus shown in FIG. 1, the measuring method of the coal ash adhesion amount to the preheating pellet which concerns on this invention was implemented.

キルン9に設置された微粉炭バーナ10および予熱室5に設置された微粉炭バーナ列21に用いた微粉炭は、ともに表1に示す成分組成を有する石炭を−75μm、80質量%に粉砕したものである。

Figure 2005082882
The pulverized coal used in the pulverized coal burner 10 installed in the kiln 9 and the pulverized coal burner row 21 installed in the preheating chamber 5 were both pulverized to -75 μm and 80% by mass of coal having the component composition shown in Table 1. Is.
Figure 2005082882

試験期間中の焼成ペレットの生産速度は11400t/日、微粉炭バーナ10での微粉炭使用量は17.4kg/t−P、微粉炭バーナ列21での微粉炭使用量は5.2kg/t−Pであった。   The production rate of the calcined pellets during the test period is 11400 t / day, the amount of pulverized coal used in the pulverized coal burner 10 is 17.4 kg / t-P, and the amount of pulverized coal used in the pulverized coal burner row 21 is 5.2 kg / t. -P.

生ペレットGPの一部を取っ手付きのステンレス鋼製カゴに充填したものを複数個用意し、この生ペレット入りのカゴを一定時間ごとにグレート炉1への生ペレットGPの装入位置より生ペレット移動方向に対して上流側で移動パレット2上に載置した。そして、予熱室5出口付近の側壁に設けたマンホールから先端を鉤形にした鉄棒で取っ手に引っかけてカゴを順次炉外に取り出し、予熱ペレットを採取した。   A plurality of raw pellets GP filled with a stainless steel basket with a handle are prepared, and the baskets containing the raw pellets are obtained from the loading position of the raw pellets GP into the great furnace 1 at regular intervals. It was placed on the moving pallet 2 upstream of the moving direction. Then, the basket was sequentially taken out of the furnace from a manhole provided on the side wall in the vicinity of the exit of the preheating chamber 5 with a steel bar having a hook-shaped tip, and the preheated pellets were collected.

回収したカゴ内のペレット充填層を高さ方向で2分割または3分割して各層の試料ごとに、回転強度試験装置の回転ドラムに装入し、JIS M 8712に規定された回転速度24rpmで、回転時間を10,20,30,40分へと順次延長して回転ドラムを回転することにより表面部を粉化処理しつつ、各回転時間ごとに試料を取り出してJIS M 8712に規定された篩目1mmの篩で篩い分けして篩下を除去し、残部の篩上は回転ドラムに戻して粉化処理を継続した。このようにして回転時間10分ごとに除去した篩下を化学分析してSiO2濃度およびAl23濃度を求めた。また、上記粉化処理を行わない予熱ペレット(予熱ペレット全部)を別途化学分析してSiO2濃度およびAl23濃度を求めた。そして、SiO2バランスおよびAl23バランスから、各篩下に含まれる石炭灰由来のSiO2量およびAl23量を計算により求めた。 The pellet-packed layer in the collected basket is divided into two or three in the height direction, and each layer sample is loaded into a rotating drum of a rotational strength test apparatus, and at a rotational speed of 24 rpm defined in JIS M 8712. The sample was taken out at each rotation time while the surface portion was pulverized by rotating the rotation drum by sequentially extending the rotation time to 10, 20, 30, 40 minutes, and the sieve specified in JIS M 8712 Sieving was carried out with a sieve having a mesh size of 1 mm to remove the bottom of the sieve, and the remaining sieve was returned to the rotating drum to continue the pulverization treatment. Thus, the sieve under which the rotation time was removed every 10 minutes was chemically analyzed to determine the SiO 2 concentration and the Al 2 O 3 concentration. Further, the preheated pellets (all preheated pellets) that were not subjected to the above powdering treatment were separately chemically analyzed to determine the SiO 2 concentration and the Al 2 O 3 concentration. Then, from the SiO 2 balance and the Al 2 O 3 balance, the amount of SiO 2 derived from coal ash and the amount of Al 2 O 3 contained under each sieve were determined by calculation.

その結果を表2および表3に示す。

Figure 2005082882
Figure 2005082882
The results are shown in Tables 2 and 3.
Figure 2005082882
Figure 2005082882

表2および表3に示すように、回転時間の延長とともに各篩下に含まれる石炭灰由来のSiO2量およびAl23量は急速に減少する。したがって、本実施例の条件では回転時間は10分以上、さらには20分以上、特に30分以上とすることが好ましい。また、表2および表3より明らかなように、ペレット充填層の上層は中層、下層に比べて各篩下に含まれる石炭灰由来のSiO2量およびAl23量は顕著に高く、上表面から所定深さ(本実施例ではペレット充填層厚さの1/3〜1/2)までのペレットのみを試料として用いることにより代表成分の分析精度を高められることがわかる。 As shown in Tables 2 and 3, the amount of SiO 2 and Al 2 O 3 derived from coal ash contained under each sieve rapidly decreases with the extension of the rotation time. Therefore, the rotation time is preferably 10 minutes or more, more preferably 20 minutes or more, and particularly preferably 30 minutes or more under the conditions of this embodiment. Further, as is clear from Tables 2 and 3, the upper layer of the pellet-packed bed is significantly higher in the amount of SiO 2 and Al 2 O 3 derived from coal ash contained under each sieve than in the middle layer and the lower layer. It can be seen that the analysis accuracy of the representative component can be improved by using only the pellets from the surface to a predetermined depth (in the present embodiment, 1/3 to 1/2 of the thickness of the pellet filling layer) as samples.

上記実施例1に示すペレット焼成装置において、予熱室5の微粉炭バーナ列21に代えて、予熱室5にコークス炉ガスバーナ列を設置して操業した場合について、本発明に係る予熱ペレットへの石炭灰付着量の測定方法を実施した。キルン9に設置した微粉炭バーナ10に用いた微粉炭は実施例1と同じものとし、予熱室5に設置したコークス炉ガスバーナ列からはカロリー約20000kJ/m3(標準状態)のコークス炉ガスを吹き込んだ。 In the pellet baking apparatus shown in Example 1 above, in place of the pulverized coal burner row 21 of the preheating chamber 5, when the coke oven gas burner row is installed in the preheating chamber 5 and operated, the coal to the preheating pellet according to the present invention is used. The measurement method of the amount of ash adhesion was implemented. The pulverized coal used in the pulverized coal burner 10 installed in the kiln 9 is the same as that in Example 1. From the coke oven gas burner row installed in the preheating chamber 5, a coke oven gas having a calorie of about 20000 kJ / m 3 (standard state) is supplied. Infused.

試験期間中の焼成ペレットの生産速度は11400t/日、微粉炭バーナ10での微粉炭使用量は17.4kg/t−P、コークス炉ガスバーナ列21でのコークス炉ガス使用量は7.8m3(標準状態)/Pであった。 The production rate of the calcined pellets during the test period is 11400 t / day, the amount of pulverized coal used in the pulverized coal burner 10 is 17.4 kg / t-P, and the amount of coke oven gas used in the coke oven gas burner row 21 is 7.8 m 3. (Standard state) / P.

そして、上記実施例1と同様の手段および手順で各篩下に含まれる石炭灰由来のSiO2濃度およびAl23濃度を求めた。ただし、回収したカゴ内のペレット充填層の分割は2分割のみ実施した。 Then, to determine the SiO 2 concentration and the concentration of Al 2 O 3 derived from coal ash included under each sieve by the same means and procedures as in Example 1. However, the pellet packed bed in the collected basket was divided into only two parts.

図2および図3に各回転時間ごとに回収した篩下に含まれる石炭灰由来のSiO2量およびAl23量を示す。なお、これらの図には、上記実施例1の2分割のデータを併記した。図2および図3から明らかなように、本実施例においても、上記実施例1と同様の傾向により、回転時間の延長とともに各篩下に含まれる石炭灰由来のSiO2量およびAl23量は急速に減少する。また、予熱室5にコークス炉ガスに代えて微粉炭を吹き込むことにより、篩下(すなわちペレット表面部)に含まれる石炭灰由来のSiO2量およびAl23量が大幅に増加しており、予熱ペレットへの石炭灰の付着量が大幅に増加していることがわかる。このように、本発明に係る予熱ペレットへの石炭灰付着量の測定方法を適用することにより、予熱室に微粉炭バーナ列を設置した場合でも、予熱ペレットへの石炭灰の付着量の増加の度合いを定量的に把握できるようになった。 FIG. 2 and FIG. 3 show the amount of SiO 2 and Al 2 O 3 derived from coal ash contained in the sieves collected at each rotation time. In these figures, the two-part data of Example 1 is also shown. As is apparent from FIGS. 2 and 3, in this example as well, due to the same tendency as in Example 1 above, the amount of SiO 2 derived from coal ash and Al 2 O 3 contained under each sieve as the rotation time increases. The amount decreases rapidly. In addition, by blowing pulverized coal into the preheating chamber 5 instead of coke oven gas, the amount of SiO 2 and Al 2 O 3 derived from coal ash contained under the sieve (that is, the pellet surface) has increased significantly. It can be seen that the amount of coal ash adhering to the preheated pellets is greatly increased. In this way, by applying the method for measuring the amount of coal ash adhered to the preheated pellet according to the present invention, even when a pulverized coal burner row is installed in the preheating chamber, the amount of coal ash adhered to the preheated pellet is increased. The degree can be grasped quantitatively.

本発明の実施に用いるグレートキルンシステムのペレット焼成装置の概略の設備構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the rough equipment structure of the pellet baking apparatus of the great kiln system used for implementation of this invention. 回転ドラムの回転時間と篩下に含まれる石炭灰由来のSiO2量との関係を示すグラフ図であり、(a)は上層、(b)は下層を示す。Is a graph showing a relationship between the rotation time and the SiO 2 content derived from coal ash contained under sieve of the rotary drum, (a) shows the shows the upper layer, the (b) the lower layer. 回転ドラムの回転時間と篩下に含まれる石炭灰由来のAl23量との関係を示すグラフ図であり、(a)は上層、(b)は下層を示す。Is a graph showing a relationship between the rotation time and the amount of Al 2 O 3 derived from coal ash contained under sieve of the rotary drum, (a) shows the shows the upper layer, the (b) the lower layer.

符号の説明Explanation of symbols

1…トラベリング・グレート炉
2…移動パレット
3…乾燥室
4…離水室
5…予熱室
6…予熱室用風箱群
7…予熱室用吸引ファン
9…ロータリキルン
10…微粉炭バーナ
21…微粉炭バーナ列
GP…生ペレット

DESCRIPTION OF SYMBOLS 1 ... Traveling / Great furnace 2 ... Moving pallet 3 ... Drying chamber 4 ... Dewatering chamber 5 ... Preheating chamber 6 ... Preheating chamber wind box group 7 ... Preheating chamber suction fan 9 ... Rotary kiln 10 ... Pulverized coal burner 21 ... Pulverized coal Burner train GP ... Raw pellets

Claims (6)

生ペレットをトラベリング・グレート炉に装入して炉内を通過させる間に後記ロータリキルンの排ガス顕熱を用いて乾燥および予熱することにより予熱ペレットとなし、この予熱ペレットを、その出口端に設けられた微粉炭バーナからの火炎を熱源とするロータリキルンに投入して焼成することにより焼成ペレットを製造するにあたり、前記トラベリング・グレート炉の出口付近から前記予熱ペレットの試料を採取し、この試料の、石炭灰が付着した表面部を削り取り、この削り取った表面部と、生ペレット、予熱ペレットおよび焼成ペレットよりなる群から選ばれた一のペレットとのそれぞれについて、石炭灰の主要成分から選ばれた少なくとも一つの代表成分の濃度を化学分析により測定し、前記表面部と前記一のペレットとの前記代表成分の濃度の差異に基づいて前記予熱ペレットへの石炭灰の付着量を求めることを特徴とする予熱ペレットへの石炭灰付着量の測定方法。 The raw pellets are dried and preheated by using the rotary kiln exhaust gas sensible heat while the raw pellets are charged into the traveling / grating furnace and passed through the furnace, and the preheated pellets are provided at the outlet end. In producing a calcined pellet by putting it in a rotary kiln using a flame from the pulverized coal burner as a heat source and calcining it, a sample of the preheated pellet is collected from the vicinity of the outlet of the traveling great furnace. The surface portion to which the coal ash adhered was scraped, and each of the scraped surface portion and one pellet selected from the group consisting of raw pellets, preheated pellets and calcined pellets was selected from the main components of coal ash. The concentration of at least one representative component is measured by chemical analysis, and the representative of the surface portion and the one pellet Measurement methods based on the difference of the partial concentration coal ash deposition amount to preheat pellets and obtains the deposition of coal ash to the preheating pellets. 前記ロータリキルンの排ガス顕熱が、予熱室に設けられた微粉炭バーナから吹き込まれた微粉炭を燃焼させることにより調節されるものである請求項1に記載の予熱ペレットへの石炭灰付着量の測定方法。 The sensible heat of the exhaust gas of the rotary kiln is adjusted by burning pulverized coal blown from a pulverized coal burner provided in a preheating chamber. Measuring method. 前記表面部を削り取る手段が、前記試料を回転ドラム内に装入し、この回転ドラムを所定の回転速度で所定時間回転して前記試料の表面近傍の部分を粉化させた後、所定の篩目の篩で篩い分けして篩下を前記表面部とするものである請求項1または2に記載の予熱ペレットへの石炭灰付着量の測定方法。 The means for scraping the surface portion inserts the sample into a rotating drum, rotates the rotating drum for a predetermined time at a predetermined rotation speed, and powders a portion in the vicinity of the surface of the sample. The method for measuring the amount of coal ash adhered to the preheated pellets according to claim 1 or 2, wherein sieving is carried out with a sieve of the eyes, and the sieve is used as the surface portion. 前記石炭灰の主要成分が、SiO2およびAl23である請求項1〜3のいずれか1項に記載の予熱ペレットへの石炭灰付着量の測定方法。 The major component of the coal ash, SiO 2 and Al 2 O 3 coal ash deposition amount measuring method to preheat the pellets according to any one of claims 1 to 3. 前記予熱ペレットの試料を採取する手段が、生ペレットの一部を充填した金属製カゴを、前記トラベリング・グレート炉への生ペレットの装入位置より生ペレット移動方向に対して上流側で移動パレット上に載置し、前記トラベリング・グレート炉の出口付近で前記カゴを回収するものである請求項1〜4のいずれか1項に記載の予熱ペレットへの石炭灰付着量の測定方法。 The means for collecting the sample of the preheated pellet is a pallet that moves the metal basket filled with a part of the raw pellet upstream of the raw pellet moving direction from the raw pellet loading position into the traveling / grating furnace. The method for measuring the amount of coal ash attached to the preheated pellet according to any one of claims 1 to 4, wherein the basket is collected near the exit of the traveling / great furnace. 前記回収されたカゴ内のペレット充填層の上表面から所定の深さまでの部分のみを前記予熱ペレットの試料とする請求項5に記載の予熱ペレットへの石炭灰付着量の測定方法。

The method for measuring the amount of coal ash attached to the preheated pellets according to claim 5, wherein only the portion from the upper surface of the pellet packed bed in the recovered basket to a predetermined depth is used as a sample of the preheated pellets.

JP2003319901A 2003-09-11 2003-09-11 Method for measuring stuck quantity of coal ash onto preheated pellet Pending JP2005082882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003319901A JP2005082882A (en) 2003-09-11 2003-09-11 Method for measuring stuck quantity of coal ash onto preheated pellet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003319901A JP2005082882A (en) 2003-09-11 2003-09-11 Method for measuring stuck quantity of coal ash onto preheated pellet

Publications (1)

Publication Number Publication Date
JP2005082882A true JP2005082882A (en) 2005-03-31

Family

ID=34418707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003319901A Pending JP2005082882A (en) 2003-09-11 2003-09-11 Method for measuring stuck quantity of coal ash onto preheated pellet

Country Status (1)

Country Link
JP (1) JP2005082882A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110004288A (en) * 2019-03-26 2019-07-12 太原钢铁(集团)有限公司 Throw cage experimental rig and method
JP2019218614A (en) * 2018-06-21 2019-12-26 Jfeスチール株式会社 Manufacturing method of sintered ore

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019218614A (en) * 2018-06-21 2019-12-26 Jfeスチール株式会社 Manufacturing method of sintered ore
CN110004288A (en) * 2019-03-26 2019-07-12 太原钢铁(集团)有限公司 Throw cage experimental rig and method

Similar Documents

Publication Publication Date Title
CN105874085B (en) The method for operating melting cyclone
CN110461486A (en) The manufacturing method of modified flying dust
Gupta Fuels, furnaces and refractories
CN108700289B (en) Bed management cycle for a fluidized bed boiler and corresponding device
JP2005082882A (en) Method for measuring stuck quantity of coal ash onto preheated pellet
US8690986B2 (en) Method for simultaneously producing iron, coke, and power
JP6954255B2 (en) Calculation method of mixing ratio of ferro-coke and blast furnace operation method
Loo et al. Fundamental factors determining laboratory sintering results
Girbal Experimenting with the bowl furnace
Venkataramana et al. Mathematical modelling and simulation of the iron ore sintering process
Zymla et al. Coke oven carbon deposits growth and their burning off
JPS591983A (en) Method of diagnosing inside of rotary kiln
BR112012023439B1 (en) METHOD FOR MANUFACTURING SOLID FUEL FOR SINTERING
JP5855786B1 (en) Operation method of waste gasification melting furnace
TWI300803B (en) Method for reducing sulfur compunds in the gas in coke dry quenching equipment
CN108291714A (en) Method for running fluidized-bed combustion boiler
JP6521259B2 (en) Method of producing sintering material for producing sintered ore
JP5277739B2 (en) Blast furnace operation method
JP7436831B2 (en) Blast furnace operating method, pulverized coal injection control device, pulverized coal injection control program
Olofsson Alkali Control in the Blast Furnace–Influence of Modified Ash Composition and Charging Practice
US1216109A (en) Process of treating iron ores.
SU929731A1 (en) Method for recovering mercury from dust
JP6562218B2 (en) Coke oven coal charging method
JP4815841B2 (en) Sintering method
Broggi et al. Empirical analysis of clogging of SiC charges: effect of condensation of SiO and CO