JP2005079415A - Plasma processing apparatus - Google Patents

Plasma processing apparatus Download PDF

Info

Publication number
JP2005079415A
JP2005079415A JP2003309577A JP2003309577A JP2005079415A JP 2005079415 A JP2005079415 A JP 2005079415A JP 2003309577 A JP2003309577 A JP 2003309577A JP 2003309577 A JP2003309577 A JP 2003309577A JP 2005079415 A JP2005079415 A JP 2005079415A
Authority
JP
Japan
Prior art keywords
sample
temperature
heat transfer
region
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003309577A
Other languages
Japanese (ja)
Inventor
Toru Aramaki
徹 荒巻
Tsunehiko Tsubone
恒彦 坪根
Ryujiro Udo
竜二郎 有働
Motohiko Yoshioka
元彦 吉岡
Takashi Fujii
敬 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2003309577A priority Critical patent/JP2005079415A/en
Publication of JP2005079415A publication Critical patent/JP2005079415A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma processing apparatus capable of accurately processing a sample to be processed by adjusting the temperature of a wafer over a wide range. <P>SOLUTION: The plasma processing apparatus comprises a processing chamber wherein an internal pressure is reduced, a sample tray that is disposed within the processing chamber and a sample to be processed is placed thereon, and a plurality of openings disposed above the sample tray to lead gases into the processing chamber, and processes the sample using plasma produced by using the gases. The plasma processing apparatus further comprises ring-like projections which are concentrically disposed on the surface of the same tray to place the sample thereon and divides a gap between the surface of the sample and the surface of the sample tray into a plurality of areas while contacting their surfaces with the surface of the sample, a first opening that is disposed within an outer-most peripheral first area in the plurality of areas to lead in gases for heat transmission, and a second opening disposed in a second area inside the outer-most peripheral area to make gases flow out of this area. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、処理容器内の試料台に載置された半導体基板等の処理対象の試料を前記容器内に生成されたプラズマを用いて処理するプラズマ処理装置に関し、特に、試料の温度を調節しつつ試料を処理する試料台を備えたプラズマ処理装置に関する。   The present invention relates to a plasma processing apparatus for processing a sample to be processed, such as a semiconductor substrate mounted on a sample stage in a processing container, using plasma generated in the container, and in particular, adjusting the temperature of the sample. The present invention relates to a plasma processing apparatus provided with a sample stage for processing a sample.

上記のように、処理用の容器内に形成したプラズマを用いて試料の処理を行う場合においては、試料が載置され処理中にこの試料を支持する試料台の温度分布やプラズマの密度分布及び反応生成物の分布等の要因によって生じる試料表面の面内方向における処理の均一性の低下が問題となっている。この問題を解決するための一つの手段として試料面内の温度分布を制御することにより試料表面の温度を上記処理がほぼ均一となるような分布に調節する技術が提案されている。   As described above, when a sample is processed using plasma formed in a processing container, the temperature distribution of the sample stage on which the sample is placed and supporting the sample during processing, the density distribution of the plasma, and The problem is a decrease in the uniformity of processing in the in-plane direction of the sample surface caused by factors such as the distribution of reaction products. As one means for solving this problem, there has been proposed a technique for adjusting the temperature of the sample surface to a distribution in which the above-described processing becomes substantially uniform by controlling the temperature distribution in the sample surface.

このような従来の技術としては、例えば、特許文献1に記載のように、試料台内部に複数系統の冷媒流路を設け、試料台の温度分布を不均一化することで、試料の温度をほぼ均一化するようにしたものがある。(従来技術1)
また、特許文献2に記載のように、試料裏面のガス圧力を局所的に変化させることで試料の温度をほぼ均一化するようにしたものが知られている。(従来技術2)
As such a conventional technique, for example, as described in Patent Document 1, a plurality of refrigerant flow paths are provided inside the sample table, and the temperature distribution of the sample table is made non-uniform so that the temperature of the sample is adjusted. Some are made to be almost uniform. (Prior art 1)
In addition, as described in Patent Document 2, it is known that the temperature of the sample is substantially uniformed by locally changing the gas pressure on the back surface of the sample. (Prior art 2)

特開平9−17770号公報Japanese Patent Laid-Open No. 9-17770 特許第2680338号公報Japanese Patent No. 2680338

上記従来技術では、試料面内の温度分布を制御するための構造が検討されているが、次のような問題があった。   In the above prior art, a structure for controlling the temperature distribution in the sample surface has been studied, but there are the following problems.

上記従来技術1は、冷媒温度を変化させてから試料の温度が変化し安定するまで長い時間がかかるため、1つのウエハに対して1つの試料台で複数の異なる処理をステップ毎に行う場合には、問題があった。すなわち、温度が安定するまで処理を開始しない場合には、処理をしていない時間が増大して全体的な処理の効率が低下する。さらに、温度が安定しないうちに処理を開始すると処理を高精度に行うことができないという問題点があった。   In the above prior art 1, since it takes a long time for the temperature of the sample to change and stabilize after changing the coolant temperature, a plurality of different processes are performed for each step on one sample stage for one wafer. Had a problem. That is, when the process is not started until the temperature is stabilized, the time during which the process is not performed increases, and the overall efficiency of the process decreases. Furthermore, there is a problem that if the processing is started before the temperature is stabilized, the processing cannot be performed with high accuracy.

また、この従来技術1では、試料中心側と外周側との間で温度の値を大きく異ならせる分布にすることが必要な処理の場合でも、中心側と外周側との間の相互の熱の影響を考慮しておらず、なだらかに温度が変化してしまい求められる温度の分布を実現することができなかった。   Further, in this prior art 1, even in the case of processing that requires a distribution in which the temperature value is greatly different between the sample center side and the outer periphery side, the mutual heat between the center side and the outer periphery side is reduced. The influence was not taken into consideration, and the required temperature distribution could not be realized due to the gentle temperature change.

第二の従来技術は、試料処理中に試料の裏面へ供給される熱伝達用のガスの圧力を所望の試料裏側の箇所で変化させて試料と試料台との間の熱伝達を調節することで、より短時間で試料面内の温度の変動を抑制する技術ではあるが、ウエハへのプラズマからの入熱があるときにのみ温度を調節することができないので、プラズマが安定に形成されプラズマ及びこれから影響を受ける処理容器内の部材から供給される熱が定常になるまでのが熱の変化が大きいと、処理時間が短い時は所定の温度分布を得ることができない。また、試料中心側と外周側との間で温度の値を大きく異ならせる分布にすることが必要な処理の場合では、上記のようにプラズマからの熱量が小さい場合には、実現できる温度分布には限界があり、大きな温度差を生成することが困難であった。   The second conventional technique is to adjust the heat transfer between the sample and the sample stage by changing the pressure of the gas for heat transfer supplied to the back surface of the sample during sample processing at the desired location on the back side of the sample. Although it is a technology that suppresses temperature fluctuations in the sample surface in a shorter time, since the temperature cannot be adjusted only when there is heat input from the plasma to the wafer, the plasma is formed stably. And if the change in heat is large until the heat supplied from the member in the processing container affected by this becomes steady, a predetermined temperature distribution cannot be obtained when the processing time is short. In the case of processing that requires a distribution in which the temperature value varies greatly between the sample center side and the outer peripheral side, the temperature distribution can be realized when the amount of heat from the plasma is small as described above. Has a limit and it is difficult to generate a large temperature difference.

本発明の目的は、ウエハの温度を広い範囲で調節して制度良く処理対象の試料を処理できるプラズマ処理装置を提供することにある。
本発明の別の目的は、求められるウエハの温度の分布をより短時間で実現して処理の効率を向上させたプラズマ処理装置を提供することにある。
An object of the present invention is to provide a plasma processing apparatus capable of systematically processing a sample to be processed by adjusting the temperature of a wafer in a wide range.
Another object of the present invention is to provide a plasma processing apparatus that improves the processing efficiency by realizing the required temperature distribution of the wafer in a shorter time.

上記目的は、内部が減圧される処理室と、この処理室内に配置され処理対象の試料が載置される試料台と、この試料台の上方に配置されガスが前記処理室内に導入される複数の開口とを備え、前記ガスを用いて生成されたプラズマにより前記試料を処理するプラズマ処理装置であって、前記試料が載置される前記試料台の表面にそれぞれが同心円状に配置されその表面が前記試料の表面と接してこの試料の表面と前記試料台の表面との間を複数の領域に区画するリング状の凸部と、前記複数の領域のうち最も外周側の第1の領域内に配置され熱伝達用のガスが導入される第1の開口と、前記最も外周側の領域の内側の第2の領域に配置されこの領域内のガスが流出する第2の開口とを備えたプラズマ処理装置により達成される。   The object is to provide a processing chamber in which the inside is depressurized, a sample table placed in the processing chamber on which a sample to be processed is placed, and a plurality of gas chambers arranged above the sample table and introduced into the processing chamber. A plasma processing apparatus for processing the sample with plasma generated using the gas, each of which is arranged concentrically on the surface of the sample stage on which the sample is placed. A ring-shaped convex portion that is in contact with the surface of the sample and divides the surface of the sample and the surface of the sample table into a plurality of regions, and a first region on the outermost peripheral side of the plurality of regions. The first opening into which the gas for heat transfer is introduced and the second opening through which the gas in this region flows out is disposed in the second region inside the outermost region. This is achieved by a plasma processing apparatus.

また、内部が減圧される処理室と、この処理室内に配置され処理対象の試料が載置される試料台と、この試料台の上方に配置されガスが前記処理室内に導入される複数の開口とを備え、前記ガスを用いて生成されたプラズマにより前記試料を処理するプラズマ処理装置であって、前記試料が載置される試料台の表面に略同心状に配置され前記試料がその上に載置される複数のリング状の凹み部と、この複数のリング状の凹み部のうち最も外周側の第1の凹み部に配置され熱伝達用のガスが導入される第1の開口と、前記最も外周側の凹み部の内側の第2の凹み部に配置されこの凹み部内のガスが流出する第2の開口とを備えたプラズマ処理装置により達成される。   In addition, a processing chamber whose inside is decompressed, a sample table disposed in the processing chamber on which a sample to be processed is placed, and a plurality of openings disposed above the sample table and through which gas is introduced into the processing chamber A plasma processing apparatus for processing the sample with plasma generated using the gas, the plasma processing apparatus being disposed substantially concentrically on a surface of a sample stage on which the sample is placed, A plurality of ring-shaped recesses to be placed, and a first opening into which a gas for heat transfer is introduced and disposed in the first outermost recess portion among the plurality of ring-shaped recesses; This is achieved by a plasma processing apparatus provided with a second opening that is disposed in the second recess inside the outermost recess, and from which the gas in the recess flows out.

さらには、前記区画される領域の数が3以上あることにより達成される。さらには、前記第2の領域が略真空にされることにより達成される。
さらにまた、凹み部が2つ以上あることにより達成される。さらにまた、前記第2の領域が略真空にされることにより達成される。
さらにまた、前記試料台の内部であってこの試料台の中央部側と外周部側とに配置されその内側を異なる温度に調節された冷媒が流れる複数の通路を備えたプラズマ処理装置により達成される。
Furthermore, this is achieved by having three or more divided areas. Furthermore, this is achieved by making the second region substantially vacuum.
Furthermore, this is achieved by having two or more recesses. Furthermore, this is achieved by making the second region substantially vacuum.
Furthermore, the invention is achieved by a plasma processing apparatus provided with a plurality of passages inside the sample stage, which are arranged on the central side and the outer peripheral side of the sample stage and through which the refrigerant adjusted to different temperatures flows. The

本発明によれば、ウエハの温度を広い範囲で調節して制度良く処理対象の試料を処理できるプラズマ処理装置を提供することができる。
また、本発明によれば、求められるウエハの温度の分布をより短時間で実現して処理の効率を向上させたプラズマ処理装置を提供することができる。
According to the present invention, it is possible to provide a plasma processing apparatus capable of systematically processing a sample to be processed by adjusting the temperature of a wafer in a wide range.
In addition, according to the present invention, it is possible to provide a plasma processing apparatus in which the required wafer temperature distribution is realized in a shorter time and the processing efficiency is improved.

本発明の第1の実施例を図1、2及び図5、6に示す。
図6は、本発明の第一の実施例に係るプラズマ処理装置の処理室の構成の概略を示す縦断面図である。図5は、図6に示すプラズマ処理装置に用いられる試料台の構成の概略を拡大して示す縦断面図である。図1は、図5に示す試料台に供給されるガス及び冷媒の循環路の概略の構成の示す摸式図である。図2は、図5に示す試料台の試料がその上に載置される面の形状を示す上面図である。
A first embodiment of the present invention is shown in FIGS.
FIG. 6 is a longitudinal sectional view showing the outline of the configuration of the processing chamber of the plasma processing apparatus according to the first embodiment of the present invention. FIG. 5 is an enlarged longitudinal sectional view showing a schematic configuration of a sample stage used in the plasma processing apparatus shown in FIG. FIG. 1 is a schematic diagram showing a schematic configuration of a circulation path of gas and refrigerant supplied to the sample stage shown in FIG. FIG. 2 is a top view showing the shape of the surface on which the sample of the sample table shown in FIG. 5 is placed.

図6において、処理室全体200は、処理室50の内側に、処理対象である試料8がその上に載置される試料台100を含むステージ51を備えている。この処理室50の内側では、処理用ガスが、この処理室50の壁に配置された処理ガス導入口55から処理室50内上部で試料8の上方に配置された平板形状の部材57の上方に供給され、この平板状の部材(以下分散プレート)57に配置された複数の貫通孔58の開口から分散されて処理室50内に試料8上方から供給される。   In FIG. 6, the entire processing chamber 200 includes a stage 51 including a sample table 100 on which a sample 8 to be processed is placed on the inside of the processing chamber 50. Inside the processing chamber 50, the processing gas passes from the processing gas inlet 55 disposed on the wall of the processing chamber 50 to above the flat plate-shaped member 57 disposed above the sample 8 inside the processing chamber 50. And is distributed from the openings of the plurality of through holes 58 arranged in the flat plate member (hereinafter referred to as a dispersion plate) 57 and is supplied into the processing chamber 50 from above the sample 8.

52は処理室50内に供給された前記ガスに電磁波を放射してプラズマ53を生成するための電磁波源であり、この電磁波源52からの電磁波は導波管を伝播して処理室内に放射される。この図の実施例では、電磁波減52はマイクロ波あるいはUHF帯の電磁波となっている。プラズマ53が形成される試料台100の上方の処理室50内の空間の周囲には、3つのコイル56が配置されており、これらコイル56から前記空間に供給される磁場によって処理室内のプラズマ密度の分布を調節する。   Reference numeral 52 denotes an electromagnetic wave source for emitting an electromagnetic wave to the gas supplied into the processing chamber 50 to generate a plasma 53. The electromagnetic wave from the electromagnetic wave source 52 propagates through the waveguide and is radiated into the processing chamber. The In the embodiment of this figure, the electromagnetic wave reduction 52 is a microwave or UHF band electromagnetic wave. Three coils 56 are arranged around a space in the processing chamber 50 above the sample stage 100 where the plasma 53 is formed, and a plasma density in the processing chamber is generated by a magnetic field supplied from the coils 56 to the space. Adjust the distribution.

このような電磁波放射手段と磁場供給手段とにより、処理室50内に供給された処理ガスが高いエネルギー状態となってプラズマ53が処理対象の試料8の上方の処理室50内の空間に形成されて分散プレート57、処理室50の側壁で囲まれた処理室50内に拡散する。このように形成されたプラズマ53内の、イオンや高エネルギー粒子が試料8の表面と反応することにより試料8の処理が行われる。この試料8の処理の際に試料8や分散プレート57、処理室50の側壁の部材とプラズマ53中の粒子とが反応して形成された生成物は、こうした反応や試料8の処理に寄与しなかったプラズマ53中の粒子とともに、ステージ51あるいは試料台100の下方に配置された排気口54から、これに連結された真空ポンプ(図示省略)の動作によって、排気される。   By such electromagnetic wave radiation means and magnetic field supply means, the processing gas supplied into the processing chamber 50 becomes a high energy state, and the plasma 53 is formed in the space inside the processing chamber 50 above the sample 8 to be processed. The dispersion plate 57 diffuses into the processing chamber 50 surrounded by the side wall of the processing chamber 50. The sample 8 is processed by ions and high-energy particles in the plasma 53 thus formed reacting with the surface of the sample 8. The product formed by the reaction of the sample 8, the dispersion plate 57, the member on the side wall of the processing chamber 50 and the particles in the plasma 53 during the processing of the sample 8 contributes to the reaction and the processing of the sample 8. The particles in the plasma 53 that have not been exhausted are exhausted from the exhaust port 54 disposed below the stage 51 or the sample stage 100 by the operation of a vacuum pump (not shown) connected thereto.

また、試料台100は、その内側にこの試料台100の温度を調節するための冷媒が流れる通路が複数配置されており、さらに試料8の裏側の面、つまり試料台100と接する面と試料台100の表面との間の熱伝達をさせるためのガスが供給される複数の開口とこの開口に連通して熱伝達用のガスが流れる複数のガスの通路が配置されている。   Further, the sample table 100 has a plurality of passages through which a refrigerant for adjusting the temperature of the sample table 100 flows inside, and a surface on the back side of the sample 8, that is, a surface in contact with the sample table 100 and the sample table. A plurality of openings to which a gas for transferring heat to and from the surface of the 100 is supplied, and a plurality of gas passages through which the heat transfer gas flows are connected to the openings.

図6に係る処理室50を備えるプラズマ処理装置の実施例を図4に示す。この実施例に示すプラズマ処理装置400は、大きく2つに分けられ、図中上方には上述した処理室50を備えて処理が行われる処理ブロックが、図中下方には試料を略大気圧の状態で処理ブロックとの間でやり取りする大気ブロックが配置されている。   FIG. 4 shows an embodiment of a plasma processing apparatus including the processing chamber 50 according to FIG. The plasma processing apparatus 400 shown in this embodiment is roughly divided into two, and a processing block in which the processing chamber 50 described above is provided in the upper part of the drawing and the processing is performed in the lower part of the drawing. An atmospheric block that communicates with the processing block in a state is arranged.

大気ブロックは、処理対象である試料8やクリーニング等に用いられるダミーウエハを収納したカセット27の複数が装着され、図示していない搬送用のロボットアームにより、カセット27と後述する処理ブロックとの間で試料8やダミーウエハを搬送する。   A plurality of cassettes 27 containing the sample 8 to be processed and dummy wafers used for cleaning are mounted on the atmospheric block, and a transfer robot arm (not shown) is used between the cassette 27 and the processing block described later. The sample 8 and the dummy wafer are transferred.

処理ブロックには、処理用のユニット23、25と内部が密封可能で減圧された状態で試料8が搬送される搬送用のユニット24と、処理前あるいは処理後の試料8が収納されて搬送用のユニット24と同等の圧力まで減圧され、あるいは略大気圧まで昇圧され試料8が大気ブロックから納入/取出しされるロック室26、28とが配置されている。本実施例では、ロック室26、28は、一方が処理ブロックへの搬入用(ロード用)に他方が処理ブロックからの搬出用(アンロード用)に限定しても、両者が適宜両方を行うようにしても良い。   In the processing block, processing units 23 and 25, a transport unit 24 for transporting the sample 8 in a state where the inside is sealed and decompressed, and a sample 8 before or after the processing are stored and transported. There are arranged lock chambers 26 and 28 in which the pressure is reduced to a pressure equivalent to that of the unit 24 of FIG. In this embodiment, even if one of the lock chambers 26 and 28 is limited for loading into the processing block (for loading) and the other for loading out from the processing block (for unloading), both perform both appropriately. You may do it.

また、上記処理室50を備える処理のユニット23、25が複数備えられており、特に、ユニット23が備える処理室はエッチング処理を行うものであり、ユニット25が備える処理室はアッシング処理を行うものである。処理のユニット23、25は大きく分けて上下2つに分けられ、処理室50を含む処理室部とその下方に配置されて処理室部に必要な電源、冷媒やガスの貯留部、ポンプ等のユーティリティが収納されたベッド部401、402、403、404とを備えている。これら処理のユニットは、処理室部が搬送用のユニット24に着脱可能に取り付けられており、またベッド部401〜404も装置本体400から着脱可能に取り付けられており、求められる仕様に応じて、ユニットの配置や種類を変更可能となっているとともに、取り付けや取り外しの作業が容易で従来よりも時間が短縮でき、これら作業による装置の非稼働時間を低減して装置の稼働効率を向上することができる。   Further, a plurality of processing units 23 and 25 including the processing chamber 50 are provided. In particular, the processing chamber provided in the unit 23 performs an etching process, and the processing chamber provided in the unit 25 performs an ashing process. It is. The processing units 23 and 25 are roughly divided into two parts, an upper part and a lower part. A processing chamber part including the processing chamber 50 and a power source, a refrigerant and gas storage part, a pump, etc. Bed sections 401, 402, 403, and 404 in which utilities are stored. These processing units are detachably attached to the transport unit 24 in the processing chamber, and bed parts 401 to 404 are also detachably attached from the apparatus main body 400. According to the required specifications, It is possible to change the arrangement and type of units, and the installation and removal work is easy and the time can be shortened compared to the past, and the equipment non-operating time due to these work is reduced and the equipment operating efficiency is improved. Can do.

また、上記処理のユニットには、それぞれの処理の動作を調節するためのユニット制御装置405、406、407、408が配置されている。これらユニット制御装置の典型的なものは、マイクロコンピュータを有して処理ユニットとの間でセンサの出力や動作の指令のための信号を授受する。さらに、装置本体400の全体の動作を監視、調節する主制御装置409がユニット制御装置405〜408と有線あるいは無線で接続されて、同様にセンサ出力や動作の指令の信号を授受すると共に、主制御装置409がユニット制御装置405〜408を介して処理ユニットの動作を監視、調節できるように構成されている。もちろん、大気ブロックや、搬送用ユニット24、ロック室26、28の動作を調節する制御装置を設けても良く、これらも上記と同様主制御装置409と接続されて監視、調節されるようにしても良い。   In addition, unit controllers 405, 406, 407, and 408 for adjusting the operations of the respective processes are arranged in the processing units. A typical one of these unit control devices has a microcomputer and exchanges signals for sensor output and operation commands with the processing unit. Furthermore, a main controller 409 that monitors and adjusts the overall operation of the apparatus main body 400 is connected to the unit controllers 405 to 408 by wire or wirelessly, and similarly receives and outputs sensor output and operation command signals. The control device 409 is configured to be able to monitor and adjust the operation of the processing unit via the unit control devices 405 to 408. Of course, a control device for adjusting the operation of the atmospheric block, the transfer unit 24, and the lock chambers 26 and 28 may be provided, and these are also connected to the main control device 409 and monitored and adjusted as described above. Also good.

図5は、図6に示す試料台100の構成をより詳細に示す縦断面図である。この図において、試料台100の中心側には第1の冷媒流路1が、外周側に第2の冷媒流路2が配置されている。これら冷媒流路1、2は、略円筒形の試料台100の試料8が載置される表面の温度を、試料8の表面の温度分布を適切なものとなるように、調節するために配置されている。本実施の例では、試料8は略円板形状を有する半導体基板であり、試料8の表面に施した処理の結果の表面の形状や程度の表面上での差異を抑制するため、前記冷媒流路1、2は、試料8または試料台100の半径方向について、所望の複数の温度に設定可能なように、また円周方向について、ほぼ同一の温度に設定できるように、円弧状の形状で配置されており、例えば、螺旋形状、あるいは円周形状を有している。   FIG. 5 is a longitudinal sectional view showing the configuration of the sample table 100 shown in FIG. 6 in more detail. In this figure, a first refrigerant flow path 1 is disposed on the center side of the sample stage 100, and a second refrigerant flow path 2 is disposed on the outer peripheral side. These refrigerant flow paths 1 and 2 are arranged to adjust the temperature of the surface on which the sample 8 of the substantially cylindrical sample stage 100 is placed so that the temperature distribution on the surface of the sample 8 becomes appropriate. Has been. In this example, the sample 8 is a semiconductor substrate having a substantially disk shape, and the refrigerant flow is suppressed in order to suppress the difference in the shape and degree of the surface as a result of the treatment applied to the surface of the sample 8. The paths 1 and 2 have an arc shape so that the sample 8 or the sample stage 100 can be set to a plurality of desired temperatures in the radial direction and can be set to substantially the same temperature in the circumferential direction. For example, it has a spiral shape or a circumferential shape.

この実施例では、第1の冷媒流路1には、冷凍サイクルや熱交換器等を利用した温度調節器4の供給側から所定の通路を流れてきた冷媒が流入する開口が設けられ、試料台100の中心を挟んだ反対側の他端にはこの冷媒流路1を流れた冷媒が流出する出口用の開口が設けられ、この開口から冷媒が戻り用の通路を通って温度調節器4の回収側に流れる。同様に第2の冷媒流路2には、温度調節器5の供給側から所定の供給用の通路を通って流れてきた冷媒が冷媒流路1内に流入する開口が設けられ、他端には冷媒流路2を流れた冷媒が流出する開口が設けられ、この開口から冷媒が戻り用の通路を介して温度調節器5の回収側に流れる。このように、試料台100の内部に流れる冷媒は、それぞれ冷媒流路1、2及び温度調節器4、5を備えた流路を通って循環する。   In this embodiment, the first refrigerant flow path 1 is provided with an opening through which a refrigerant flowing in a predetermined passage from the supply side of the temperature controller 4 using a refrigeration cycle, a heat exchanger, or the like flows. The other end on the opposite side across the center of the base 100 is provided with an outlet opening through which the refrigerant flowing through the refrigerant flow path 1 flows out, and the temperature regulator 4 passes through the return passage from the opening. Flows to the collection side. Similarly, the second refrigerant flow path 2 is provided with an opening through which the refrigerant flowing through the predetermined supply path from the supply side of the temperature controller 5 flows into the refrigerant flow path 1 and is provided at the other end. Is provided with an opening through which the refrigerant flowing through the refrigerant flow path 2 flows out, and the refrigerant flows from the opening to the recovery side of the temperature regulator 5 through a return passage. As described above, the refrigerant flowing inside the sample stage 100 circulates through the flow paths including the refrigerant flow paths 1 and 2 and the temperature controllers 4 and 5, respectively.

さらに、第1の冷媒流路1と第2の冷媒流路2の間に、これら及びこれらによって温度が調節される試料台100内の部分同士の間の温度交換を低減して温度調節器4、温度調節器5への負担を少なくする目的で大気断熱層3が設けられている。本実施例では、冷媒流路1は試料台100の中心から半径方向0〜115mmの位置に、冷媒流路2は半径方向130mm〜150mmの位置に設けられている。また、大気断熱層3の位置は115mm〜130mmの位置に設けられている。   Furthermore, between the first refrigerant flow path 1 and the second refrigerant flow path 2, the temperature controller 4 reduces the temperature exchange between these and the parts in the sample stage 100 where the temperature is adjusted by these. The atmospheric heat insulating layer 3 is provided for the purpose of reducing the burden on the temperature controller 5. In this embodiment, the refrigerant flow path 1 is provided at a position in the radial direction of 0 to 115 mm from the center of the sample table 100, and the refrigerant flow path 2 is provided at a position in the radial direction of 130 mm to 150 mm. The position of the atmospheric heat insulating layer 3 is provided at a position of 115 mm to 130 mm.

温度調節器4において温度調節された第1の冷媒流路用の冷媒は、流路から第1の冷媒流路1に配置された開口から冷媒流路1へ導入されてここを流れて、試料台100の中心側の部材と熱交換してこれを第1の設定温度に調節する。第1の冷媒流路1を出口用開口から出た冷媒は、流路を通って温度調節器4に戻り、温度調節器4によって所定の温度に調節されて後、再び流路を介して第1の冷媒流路1に導入される。また、温度調節器5内で温度調節された第2の冷媒流路用の冷媒は、流路から第2の冷媒流路2に配置された開口から第2の冷媒流路2導入されてここを流れ、試料台100の外周側の部材と熱交換してこれを第2の設定温度に調節する。第2の冷媒流路2を出口用開口から出た冷媒は、流路を通って温度調節器5に戻り、温度調節器5によって所定の温度に調節されて後、再び流路を介して第2の冷媒流路2に導入される。   The refrigerant for the first refrigerant flow path whose temperature is adjusted in the temperature controller 4 is introduced from the opening disposed in the first refrigerant flow path 1 to the refrigerant flow path 1 through the flow path, and flows therethrough. Heat is exchanged with a member on the center side of the table 100 to adjust it to the first set temperature. The refrigerant that has exited the first refrigerant channel 1 from the outlet opening returns to the temperature regulator 4 through the channel, is adjusted to a predetermined temperature by the temperature regulator 4, and then passes through the channel again. 1 refrigerant flow path 1 is introduced. In addition, the refrigerant for the second refrigerant flow path whose temperature is adjusted in the temperature controller 5 is introduced from the opening disposed in the second refrigerant flow path 2 through the second refrigerant flow path 2. , And heat exchange with the member on the outer peripheral side of the sample stage 100 to adjust it to the second set temperature. The refrigerant that has exited the second refrigerant flow path 2 from the outlet opening returns to the temperature adjuster 5 through the flow path, is adjusted to a predetermined temperature by the temperature adjuster 5, and then passes through the flow path again. 2 is introduced into the refrigerant flow path 2.

このように、試料台100に導入された冷媒は、一定区間を通り温度調節器4、5により温度変更されて再度、試料台100に導入されるという、流路を循環する。このときの2つの冷媒間の温度差によって試料8の表面に温度分布が形成される。   In this way, the refrigerant introduced into the sample stage 100 circulates through the flow path in which the temperature is changed by the temperature regulators 4 and 5 through a certain section and is introduced into the sample stage 100 again. A temperature distribution is formed on the surface of the sample 8 due to the temperature difference between the two refrigerants at this time.

また、試料台100の表面には、試料8と試料台100との間の熱伝達を行うガス、例えば、Heが供給される領域として3つの領域が配置されており、本実施例では、それぞれガス供給路41、42、43より供給される。このうち第1の熱伝達用ガス領域17には、流路41を介して熱伝達ガスの貯留部であるガスボンベ6から熱伝達ガスが供給される。また、第2の熱伝達用ガス領域18には、流路42を介して熱伝達ガスの貯留部であるボンベ7から熱伝達ガスが供給される。第3の熱伝達用ガス領域19には、流路43を介して熱伝達ガスボンベ6から熱伝達ガスが供給される。   In addition, on the surface of the sample table 100, three regions are arranged as regions for supplying a gas for transferring heat between the sample 8 and the sample table 100, for example, He. It is supplied from gas supply paths 41, 42, 43. Among these, the heat transfer gas is supplied to the first heat transfer gas region 17 from the gas cylinder 6 serving as a heat transfer gas reservoir through the flow path 41. In addition, the heat transfer gas is supplied to the second heat transfer gas region 18 from the cylinder 7 which is a heat transfer gas reservoir through the flow path 42. The third heat transfer gas region 19 is supplied with heat transfer gas from the heat transfer gas cylinder 6 through the flow path 43.

試料台100の上方から見て、第1の熱伝達用ガス領域は略円形状を有しており、第2、第3の熱伝達用ガス領域は、略円周状あるいはリング状の形状を有しており、両者は一方が他方の内側に配置されて、略同心円状に配置されている。実施例の熱伝達用ガス通路の位置として、第1の熱伝達用ガス領域17は試料台100の中心から半径方向に0〜75mmの範囲に、第2の熱伝達用ガス通路18は半径75〜135mmの範囲に、第3の熱伝達用ガス領域19は半径135mm〜150mmの範囲に配置されている。   When viewed from above the sample stage 100, the first heat transfer gas region has a substantially circular shape, and the second and third heat transfer gas regions have a substantially circular or ring shape. The two are arranged substantially concentrically with one being arranged inside the other. As the position of the heat transfer gas passage in the embodiment, the first heat transfer gas region 17 is in the range of 0 to 75 mm in the radial direction from the center of the sample stage 100, and the second heat transfer gas passage 18 is the radius 75. The third heat transfer gas region 19 is arranged in a radius of 135 mm to 150 mm in a range of ˜135 mm.

このような熱伝達ガスが供給される試料台100の表面の形状を図2に示す。この図において、試料台100の表面には3つの円周形状の凸部14、15、16がそれぞれ略同心円状に配置されている。これらの凸部の上面は微小な幅で形成されており、その表面には、塗付、吹付等によって形成された誘電体の膜が配置されており、後述するように試料台100内に配置された電極に印加された電圧によりこの誘電体を帯電させ、試料8を凸部に接触させて吸着するよう押しつける力を生起している。   The shape of the surface of the sample table 100 to which such a heat transfer gas is supplied is shown in FIG. In this figure, on the surface of the sample stage 100, three circumferential convex portions 14, 15, and 16 are arranged substantially concentrically. The upper surfaces of these convex portions are formed with a very small width, and a dielectric film formed by coating, spraying, or the like is disposed on the surface, and is disposed in the sample table 100 as will be described later. The dielectric is charged by the voltage applied to the applied electrode, and a force is generated that presses the sample 8 into contact with the convex portion and attracts it.

つまり、温度設定されている試料台100あるいはステージ51上には、載置された試料8が静電気によって吸着されて保持される。このようにして凸部14、15、16の上面と試料台100の上方に載置される試料8とが接して、上記3つの熱伝達ガスが供給される領域がそれぞれ区画されて、試料8と試料台100表面に形成された凹みとの間の空間により、前記熱伝達用ガス領域が形成される。つまり、上記凸部14、15、16は、それぞれ熱伝達領域17、18、19を略密封(シール)する部分であり、試料台100表面は略密封する部材となっている。つまり、試料8は、その外周部からHeガスの漏洩を抑制するように外周部が静電気により吸着(以下、静電吸着)されるとともに、試料8の中央部は伝熱ガスの圧力によるその浮き上りを抑制するように部分的に吸着される。   That is, the placed sample 8 is attracted and held by static electricity on the sample table 100 or the stage 51 where the temperature is set. In this way, the upper surfaces of the protrusions 14, 15, 16 and the sample 8 placed above the sample table 100 are in contact with each other, and the regions to which the three heat transfer gases are supplied are partitioned, and the sample 8 is divided. The heat transfer gas region is formed by a space between the surface and the dent formed on the surface of the sample table 100. That is, the convex portions 14, 15, and 16 are portions that substantially seal (seal) the heat transfer regions 17, 18, and 19, respectively, and the surface of the sample stage 100 is a member that substantially seals. In other words, the outer periphery of the sample 8 is adsorbed by static electricity (hereinafter referred to as electrostatic adsorption) so as to suppress He gas leakage from the outer periphery, and the center of the sample 8 is floated by the pressure of the heat transfer gas. Partially adsorbed so as to suppress the ascent.

また、上記凸部14、15、16の間の試料台100の表面には、図示していないが微小な突起が多数形成されて、これらの突起が試料8の裏面と微小な面積で接することで試料8を試料台100表面上に支持している。特に、凸部14、15、16も含め微小な面積で試料8と接していることにより、試料8の裏側との間でゴミ、反応生成物、等処理の不具合を生起する異物がやり取りされる量を抑制して、装置が停止して非稼働状態となるまでの間隔を長くし、或いは非稼働な状態の時間を低減して、装置の稼働効率を向上し、処理の歩留まりを向上するものである。   In addition, a large number of minute projections (not shown) are formed on the surface of the sample table 100 between the convex portions 14, 15, and 16, and these projections are in contact with the back surface of the sample 8 with a minute area. The sample 8 is supported on the surface of the sample table 100. In particular, because the sample 8 is in contact with the sample 8 in a very small area including the convex portions 14, 15, and 16, foreign matters that cause processing defects such as dust and reaction products are exchanged with the back side of the sample 8. Reduce the amount, increase the interval until the device stops and becomes non-operational, or reduce the time of non-operational state, improve the operation efficiency of the device and improve the processing yield It is.

本実施例における静電吸着を行う構成の概略を図3に示す。この図において、導電性板20と導電性板21のそれぞれには異符号の電位を与えられる。このことで、試料8内には、試料台100の表面と吸着される面方向について異符号の電荷が誘起されて帯電し、静電気による吸着力が発生し試料台100の表面に試料8を押しつける方向に吸着力が生成され、試料8が試料台100表面に保持される。静電気を生起する静電気を除く(除電する)には、導電性板20及び導電性板21に先に印加した電位とは逆の符号の電位を付加する。   FIG. 3 shows an outline of a configuration for performing electrostatic adsorption in the present embodiment. In this figure, different potentials are applied to each of the conductive plate 20 and the conductive plate 21. As a result, charges of different signs are induced in the sample 8 in the direction of the surface to be adsorbed with the surface of the sample table 100, and the sample 8 is charged by an electrostatic force and is pressed against the surface of the sample table 100. An adsorption force is generated in the direction, and the sample 8 is held on the surface of the sample table 100. In order to remove (eliminate) static electricity that causes static electricity, a potential having a sign opposite to the potential previously applied to the conductive plate 20 and the conductive plate 21 is applied.

これにより、吸着時に誘起されて帯電している電荷とは逆の電荷が移動してきて両者が中和するようにして、帯電を除くことができる。こうして、図2の9に示す試料押し上げ機構のピンが上方に動作することにより試料8が試料台100の上方に持ち上げられ、搬送用ユニット24内に配置されたロボットアームにより処理室50内から搬出される。上記の構成は、この際に試料8に電荷が残り依然帯電した状態となって試料8を試料台100から取り除こうとする際に、試料8への吸着力が残って長時間ウエハを取り除けなかったり、試料の変形を生じて損傷したりしてしまうということを抑制し、容易に短時間で試料8を試料台100から取り除いて他の試料の処理を行うことができ、装置の稼働効率が向上する。   As a result, the charge opposite to the charged charge induced during the adsorption moves and neutralizes the two so that the charge can be removed. In this way, when the pin of the sample push-up mechanism shown in 9 of FIG. 2 moves upward, the sample 8 is lifted above the sample stage 100 and carried out of the processing chamber 50 by the robot arm arranged in the transfer unit 24. Is done. In the above configuration, when the sample 8 remains charged and the sample 8 is removed from the sample stage 100 at this time, the adsorption force remains on the sample 8 and the wafer cannot be removed for a long time. This prevents the sample from being deformed and damaged, and allows the sample 8 to be easily removed from the sample stage 100 in a short time to process another sample, improving the operating efficiency of the apparatus. To do.

これら3つの領域に熱伝達用ガスを供給する構成を、図1に示す。この図において、ガスボンベ6から出た熱伝達用ガスはこのガスボンベ6と第1の熱伝達ガス領域との間に配置されこれらを連通する流路41に導入され、この流路41上の箇所に配置された圧力調節弁37によって圧力を調節された後、第1の熱伝達用ガス領域17に面する試料台100上の位置に配置された開口12からこの領域へ流入する。   A configuration for supplying the heat transfer gas to these three regions is shown in FIG. In this figure, the heat transfer gas emitted from the gas cylinder 6 is introduced between the gas cylinder 6 and the first heat transfer gas region and introduced into a flow path 41 communicating with the gas cylinder 6. After the pressure is adjusted by the arranged pressure regulating valve 37, the pressure flows into this region from the opening 12 disposed at the position on the sample table 100 facing the first heat transfer gas region 17.

熱伝達ガスは、第1の熱伝達領域17内に充填され試料台100の中心側の部分とその上方に載せられた試料の中心側の部分との間で熱を伝達する。その後、熱伝達用ガス通路に導入された第1の熱伝達用ガスの一部は、試料台表面に配置された凸部14から漏れて第2の熱伝達用の領域18に流入する。この凸部14には熱伝達用ガスが領域18へ流入しやすいように第1、2熱伝達領域17、18をつなぐ所定の連通路を設けても良い。このため、第1の熱伝達ガス領域17内の熱伝達ガスの圧力はこの領域とガスボンベ6とを連通する流路の途中に取り付けられた圧力検出器を含む調節弁37によりガス導入しながら予め定めた値となるように調節される。   The heat transfer gas is filled in the first heat transfer region 17 and transfers heat between the central portion of the sample stage 100 and the central portion of the sample placed thereon. Thereafter, a part of the first heat transfer gas introduced into the heat transfer gas passage leaks from the convex portion 14 arranged on the surface of the sample table and flows into the second heat transfer region 18. The convex portion 14 may be provided with a predetermined communication path that connects the first and second heat transfer regions 17 and 18 so that the heat transfer gas easily flows into the region 18. For this reason, the pressure of the heat transfer gas in the first heat transfer gas region 17 is preliminarily introduced while the gas is introduced by the control valve 37 including a pressure detector attached in the middle of the flow path connecting the region and the gas cylinder 6. It is adjusted so that it becomes a predetermined value.

すなわち、第1の熱伝達ガス領域17に面するか、あるいは近傍の試料台100の内部にこの領域の温度を検出する温度センサ29が備えられ、温度センサ29からの出力を受ける圧力調節器32が、温度センサ29からの出力に応じて圧力調節弁37へ指令を発信してこれを駆動する。マイクロコンピュータ等の演算器を有する圧力調節器32は、温度センサ29により検出されて得られた出力が予め定められた値よりも所定の値以上異なる場合には、必要な圧力変動の量を演算し、圧力調節弁37に指令を発してこの弁の動作を調節する。このように、温度センサ29により検出された温度の出力が圧力調節弁37の動作の調節にフィードバックされる。   That is, a temperature sensor 29 that detects the temperature in this region facing the first heat transfer gas region 17 or in the vicinity of the sample stage 100 is provided, and a pressure regulator 32 that receives an output from the temperature sensor 29. However, in response to an output from the temperature sensor 29, a command is transmitted to the pressure control valve 37 to drive it. The pressure regulator 32 having a computing unit such as a microcomputer computes the amount of required pressure fluctuation when the output obtained by detection by the temperature sensor 29 differs from the predetermined value by a predetermined value or more. Then, a command is issued to the pressure control valve 37 to adjust the operation of this valve. As described above, the output of the temperature detected by the temperature sensor 29 is fed back to the adjustment of the operation of the pressure control valve 37.

同様に、ガスボンベ6から出た熱伝達用ガスはガスボンベ6と第3の熱伝達ガス領域19との間に配置されてこれらを連通する流路43に導入され、この流路43上の箇所に配置された圧力調節弁38によって圧力を調節された後、第3の熱伝達用ガス領域19に面する試料台100上の位置に配置された開口13からこの領域へ流入する。   Similarly, the heat transfer gas from the gas cylinder 6 is disposed between the gas cylinder 6 and the third heat transfer gas region 19 and introduced into the flow path 43 that communicates with the gas cylinder 6. After the pressure is adjusted by the arranged pressure regulating valve 38, the pressure flows into this region from the opening 13 disposed at a position on the sample table 100 facing the third heat transfer gas region 19.

熱伝達ガスは、第3の熱伝達領域19内に充填され試料台100の外周側の部分とその上方に配置された試料8の外周側の部分との間で熱を伝達する。その後、第3の熱伝達用ガス領域19に導入された熱伝達用ガスの一部は、試料台の表面に配置された凸部16から試料台100の外周側から外部へ漏れる。また、第3の熱伝達用ガス領域19に導入された熱伝達用ガスの別の一部は、試料台の表面に配置された凸部15から第2の熱伝達領域18へ洩れて流入する。この凸部15には熱伝達用ガスが領域18へ流入しやすいように第2、3の熱伝達領域18、19をつなぐ所定の連通路を設けても良い。このため、第3の熱伝達ガス領域19内の熱伝達ガスの圧力はこの領域とガスボンベ6とを連通する流路の途中に取り付けられた圧力検出器を含む調節弁38によりガス導入しながら予め定めた値となるように調節される。   The heat transfer gas is filled in the third heat transfer region 19 and transfers heat between the outer peripheral side portion of the sample stage 100 and the outer peripheral side portion of the sample 8 disposed thereabove. After that, a part of the heat transfer gas introduced into the third heat transfer gas region 19 leaks from the outer peripheral side of the sample table 100 to the outside from the convex portion 16 arranged on the surface of the sample table. Further, another part of the heat transfer gas introduced into the third heat transfer gas region 19 leaks and flows into the second heat transfer region 18 from the convex portion 15 arranged on the surface of the sample stage. . A predetermined communication path connecting the second and third heat transfer regions 18 and 19 may be provided in the convex portion 15 so that the heat transfer gas easily flows into the region 18. For this reason, the pressure of the heat transfer gas in the third heat transfer gas region 19 is preliminarily introduced while the gas is introduced by the control valve 38 including a pressure detector attached in the middle of the flow path connecting this region and the gas cylinder 6. It is adjusted so that it becomes a predetermined value.

すなわち、第3の熱伝達ガス領域19に面するか、あるいは近傍の試料台100の内部にこの領域の温度を検出する温度センサ31が備えられ、温度センサ31からの出力を受ける圧力調節器34が、温度センサ31からの出力に応じて圧力調節弁38へ指令を発信してこれを駆動する。マイクロコンピュータ等の演算器を有する圧力調節器34は、温度センサ31により検出されて得られた出力が予め定められた値よりも所定の値以上異なる場合には、必要なだけの圧力を変動させる量を演算し、圧力調節弁38に指令を発してこの弁の動作を調節する。このように、温度センサ31により検出された温度の出力が圧力調節弁38の動作の調節にフィードバックされる。   In other words, a temperature sensor 31 that detects the temperature of this region is provided in the sample stage 100 that faces the third heat transfer gas region 19 or in the vicinity thereof, and a pressure regulator 34 that receives an output from the temperature sensor 31. However, in response to the output from the temperature sensor 31, a command is sent to the pressure control valve 38 to drive it. The pressure regulator 34 having a computing unit such as a microcomputer varies the pressure as necessary when the output obtained by detection by the temperature sensor 31 differs by a predetermined value or more from a predetermined value. The amount is calculated and a command is issued to the pressure control valve 38 to adjust the operation of this valve. In this way, the output of the temperature detected by the temperature sensor 31 is fed back to the adjustment of the operation of the pressure control valve 38.

また、第2の熱伝達領域18に対して、ガスボンベ7から出た熱伝達用ガスは流路42に導入され、流路上の箇所に配置された圧力調節弁39により圧力調節された後、第2の熱伝達用ガス領域18に面する試料台100上の位置に配置された開口11からこの領域に流入する。熱伝達ガスは、第2の熱伝達領域18内に充填され、試料台100の第1の熱伝達領域17と第3の熱伝達領域19との間の部分とその上方に配置された試料8の外周側の部分との間で熱を伝達する。さらに、第2の熱伝達領域18内にはこの領域に面する試料台100上の位置に開口10が配置され、この領域内のガスは、熱伝達ガス用の排気ポンプ150の動作により開口10と排気調節弁151を介して熱伝達ガス用の排気ポンプ150と接続された流路44内を通って排出される。   In addition, after the heat transfer gas from the gas cylinder 7 is introduced into the flow path 42 with respect to the second heat transfer region 18 and the pressure is adjusted by the pressure control valve 39 disposed at a location on the flow path, It flows into this area | region from the opening 11 arrange | positioned in the position on the sample stand 100 facing the gas area | region 18 of 2 heat transfer. The heat transfer gas is filled in the second heat transfer region 18, and the portion of the sample stage 100 between the first heat transfer region 17 and the third heat transfer region 19 and the sample 8 disposed above the portion. Heat is transferred to the outer peripheral side of the. Furthermore, an opening 10 is disposed in the second heat transfer region 18 at a position on the sample table 100 facing this region, and the gas in this region is opened 10 by the operation of the exhaust pump 150 for heat transfer gas. Then, the gas is discharged through the flow path 44 connected to the heat transfer gas exhaust pump 150 via the exhaust control valve 151.

また、第1及び第3の熱伝達領域の場合と同様に、第2の熱伝達ガス領域18内の熱伝達ガスの圧力は、この領域とガスボンベ7とを連通する流路の途中に取り付けられた圧力検出器を含む調節弁39及び排気調節弁151の動作により、熱伝達ガスを第2の熱伝達領域18に導入しながら予め定めた値となるように調節される。本実施の例では、第2の熱伝達ガス領域18に面するか、あるいは近傍の試料台100の内部に配置され、この領域の温度を検出する温度センサ30からの出力がマイクロコンピュータ等の演算器を有する圧力調節器34に受信され、この受信した出力に応じて発信された指令に基づいて圧力調節弁38が調節される。その調節は、前記圧力調節器32、33と同様に、温度センサ30により検出された温度の出力が圧力調節弁39の動作の調節にフィードバックされて行われる。また、圧力調節弁39と同様に、温度センサ30からの出力に基づいて排気調節弁151の動作を調節しても良い。   As in the case of the first and third heat transfer regions, the pressure of the heat transfer gas in the second heat transfer gas region 18 is attached in the middle of the flow path connecting the region and the gas cylinder 7. The operation of the control valve 39 including the pressure detector and the exhaust control valve 151 is adjusted to a predetermined value while introducing the heat transfer gas into the second heat transfer region 18. In the present embodiment, the output from the temperature sensor 30 that faces the second heat transfer gas region 18 or is disposed in the vicinity of the sample stage 100 and detects the temperature of this region is calculated by a microcomputer or the like. The pressure regulator 38 is adjusted based on a command received in response to the received output and received in response to the received output. The adjustment is performed by feeding back the output of the temperature detected by the temperature sensor 30 to the adjustment of the operation of the pressure control valve 39, as in the pressure regulators 32 and 33. Similarly to the pressure control valve 39, the operation of the exhaust control valve 151 may be adjusted based on the output from the temperature sensor 30.

また、上記実施例では、第1、第3の熱伝達領域17、19では熱伝達用のガスが供給される開口12、13が配置されているのみであるが、第2の熱伝達領域18と同様に、排気ポンプまたは排気調節弁とがその途中の箇所に配置された流路とこれに連通された排気用の開口を備えて領域内のガスがその排気の大きさや速度を調節されつつ流出して排気されるように構成しても良い。   In the above-described embodiment, the first and third heat transfer regions 17 and 19 are only provided with the openings 12 and 13 to which the gas for heat transfer is supplied, but the second heat transfer region 18 is provided. Similarly, an exhaust pump or an exhaust control valve is provided with a flow path disposed in the middle of the exhaust pump and an exhaust opening communicated therewith, while the gas in the region is adjusted in size and speed of the exhaust. You may comprise so that it may flow out and exhaust.

本実施例では、上記のような構成により、部材の体積、質量の大きく熱容量の大きな試料台100の温度の分布が試料8に伝達されるので、試料台100の温度分布を調節することにより試料8に温度の分布を所望に実現することができる。さらに、試料8の表面の温度は、試料8または試料台100の中央側の領域、外周側の領域とその間の領域という3つ以上の領域で、熱伝達量や伝達量速度の大きさを異ならせて伝達させることで、より精密に装置使用者の所望の温度の分布を実現できる。   In the present embodiment, the temperature distribution of the sample stage 100 having a large volume and mass of the member and a large heat capacity is transmitted to the sample 8 by the configuration as described above. Therefore, by adjusting the temperature distribution of the sample stage 100, the sample is adjusted. 8 can achieve a desired temperature distribution. Further, the temperature of the surface of the sample 8 is different in the amount of heat transfer and the amount of transfer rate in three or more regions of the region of the sample 8 or the sample base 100, the region on the outer peripheral side, and the region between them. Therefore, the temperature distribution desired by the user can be realized more precisely.

また、試料台100に導入された熱伝達用ガスは、圧力調節弁37、38、39により圧力変更されて試料台100に導入される。3つの熱伝達用ガスの圧力を調節することにより、試料台100あるいは試料8の表面の温度分布を所望の温度分布に近づけて実現することができる。本実施の例では、第2の熱伝達用ガス領域18におけるガスの圧力を第1、第3の熱伝達領域17、19のガスの圧力よりも小さくして、試料8上の半径75mm〜135mmの範囲の部分での試料8と試料台100との間で熱が伝達しにくくする、つまり他の熱伝達用ガス領域に比べ熱伝達を抑制することで、その範囲の温度が他の領域に比べて高くすることができ、装置使用者の所望の温度分布を実現することができる。   Further, the heat transfer gas introduced into the sample stage 100 is changed in pressure by the pressure control valves 37, 38, 39 and introduced into the sample stage 100. By adjusting the pressures of the three heat transfer gases, the temperature distribution on the surface of the sample table 100 or the sample 8 can be realized close to a desired temperature distribution. In this example, the gas pressure in the second heat transfer gas region 18 is made smaller than the gas pressures in the first and third heat transfer regions 17 and 19 so that the radius on the sample 8 is 75 mm to 135 mm. By making the heat transfer difficult between the sample 8 and the sample stage 100 in the range of the range, that is, by suppressing the heat transfer as compared with other gas regions for heat transfer, the temperature in the range is transferred to the other range. It can be made higher than the above, and a desired temperature distribution of the apparatus user can be realized.

さらに、圧力調節器32、33、34は、各々が上記ユニット用の制御装置405と有線あるいは無線により接続され、センサの出力や動作の指令のための信号を授受しており、制御装置405によりこの試料台100の動作が監視、調節されている。   Further, each of the pressure regulators 32, 33, and 34 is connected to the control device 405 for the unit by wire or wirelessly, and sends and receives signals for sensor output and operation commands. The operation of the sample stage 100 is monitored and adjusted.

本実施例においては、試料8の表面の温度分布は、図7に示すような処理後の試料の形状の分布と、処理後の試料の形状と冷媒温度あるいは試料台の温度との関係から導かれる。本実施例で実現しようとする目標の(所望の)温度分布は図8に示されている。この図において、試料8の表面の温度は、試料8の中心からある半径上の位置まではほぼ一定温度で、ある半径上の位置を鋭角の変曲点として、それ以上の半径上の位置では半径の大きさに比例して温度は下がる分布となっている。   In this embodiment, the temperature distribution on the surface of the sample 8 is derived from the distribution of the shape of the sample after the treatment as shown in FIG. 7 and the relationship between the shape of the sample after the treatment and the refrigerant temperature or the temperature of the sample stage. It is burned. FIG. 8 shows a target (desired) temperature distribution to be realized in this embodiment. In this figure, the temperature of the surface of the sample 8 is substantially constant from the center of the sample 8 to a position on a radius, and the position on the radius is an inflection point with an acute angle, and at a position on a radius beyond that, The temperature decreases in proportion to the radius.

このような試料8の表面温度の分布は、例えば、試料8表面におけるプラズマ処理時における反応生成物の発生分布に合わせて、装置の使用者等により、その温度の値が定められる。このような関係を図8に示されるグラフを用いて説明する。   The surface temperature distribution of the sample 8 is determined by the user of the apparatus or the like in accordance with, for example, the generation distribution of the reaction product during the plasma treatment on the surface of the sample 8. Such a relationship will be described with reference to the graph shown in FIG.

例えば、試料8をエッチングする処理室50内において、反応生成物の発生は試料8の中央側で多く試料8の外周側に向かうに従い徐々に反応生成物の発生が少なくなる場合には、エッチングされる試料8表面の形状はこれらの反応生成物の発生量や密度により影響される。例えば、表面のCDシフト量の試料面内変化は、プラズマの発生によるプラズマ密度の分布や真空排気流れ等の要因によって、面内均一な分布とはならない。この場合には、CDシフト量の試料面内変化に合わせて以下のように冷媒温度及び熱伝達用ガス圧力を設定すれば良い。CDシフト量が小さい部分は試料温度が高く、反応生成物が再付着しにくくなっていると考えられるため、試料温度を低くするために冷媒温度及び熱伝達用ガス圧力を調節することで、試料面内でのCDシフト差を小さくし、改善することができる。   For example, in the processing chamber 50 in which the sample 8 is etched, the reaction product is generated mostly at the center side of the sample 8, and when the generation of the reaction product gradually decreases toward the outer peripheral side of the sample 8, the reaction product is etched. The surface shape of the sample 8 is affected by the amount and density of these reaction products. For example, the in-plane change of the CD shift amount on the surface does not become a uniform distribution in the plane due to factors such as the plasma density distribution due to the generation of plasma and the vacuum exhaust flow. In this case, the refrigerant temperature and the heat transfer gas pressure may be set as follows according to the in-plane change of the CD shift amount. Since the sample temperature is high in the portion where the CD shift amount is small and it is considered that the reaction product is difficult to reattach, the sample is adjusted by adjusting the refrigerant temperature and the heat transfer gas pressure in order to lower the sample temperature. In-plane CD shift difference can be reduced and improved.

すなわち、処理室50内において反応生成物の密度が高い(反応生成物が多い)領域では、その下方の試料台100の温度を高くすることで試料8の表面の温度を高くして、反応生成物の試料8の表面への再付着を抑制し、反応生成物の密度が低い(反応生成物が少ない)領域では、その下方の試料台100の温度を低くして反応生成物の試料8表面への付着の量を調節して、試料全体での処理速度がより均一に近くなるようにする。   That is, in the region where the density of reaction products is high (there are many reaction products) in the processing chamber 50, the temperature of the surface of the sample 8 is raised by raising the temperature of the sample stage 100 below the reaction product. In the region where the reattachment of the product to the surface of the sample 8 is suppressed and the density of the reaction product is low (the reaction product is low), the temperature of the sample stage 100 below it is lowered to reduce the surface of the sample 8 of the reaction product. The amount of adhesion to the substrate is adjusted so that the processing speed throughout the sample is more uniform.

つまり、このような反応生成物の密度の分布に合わせて試料8の温度の値の分布とこれを調節するための試料台100の温度の値の分布を設定する。つまり、試料台100の温度分布を中央部で温度を高くし、外周部に向かうに従い徐々に温度が下がる分布とする。図8に示す温度の分布は、その一例である。   That is, the distribution of the temperature value of the sample 8 and the distribution of the temperature value of the sample stage 100 for adjusting this are set in accordance with the density distribution of the reaction product. That is, the temperature distribution of the sample stage 100 is a distribution in which the temperature is increased at the center and gradually decreases toward the outer periphery. The temperature distribution shown in FIG. 8 is an example.

反応生成物が生成されて試料への付着が試料の処理に影響する他の処理における温度の分布も、図8と同じ傾向に有ると考えられる。例えば、温度変曲点は、処理室からの反応生成物の排気速度が図8の時より大きい時にはもっと内側になり、中心部と最外周部の温度差が大きくなるので、その温度の分布の特性に応じて熱伝達用ガスを供給する複数の熱伝達領域の試料または試料台の半径方向の配置位置を変える。もちろん、試料の種類、反応生成物排気速度等によっては温度分布は変化することも考えられ、本願発明が図8に示す分布の値やグラフの形状に限定されるものではない。   It is considered that the temperature distribution in other processes in which reaction products are generated and adhesion to the sample affects the sample process also has the same tendency as in FIG. For example, the temperature inflection point becomes more inside when the exhaust velocity of the reaction product from the processing chamber is larger than that in FIG. 8, and the temperature difference between the central portion and the outermost peripheral portion becomes large. The arrangement positions in the radial direction of the sample or sample stage in the plurality of heat transfer regions for supplying the heat transfer gas are changed according to the characteristics. Of course, the temperature distribution may vary depending on the type of sample, the reaction product exhaust speed, etc., and the present invention is not limited to the distribution values and graph shapes shown in FIG.

上記の構成により実現される温度の分布について図10を用いて説明する。図10では、第1の熱伝達用ガス領域17と第3の熱伝達用ガス領域19の圧力は、例えば、1.5kPaに調節しており、さらに第2の熱伝達用ガス領域18では排気の強さが大きく排気量速度が第1、第3の熱伝達領域17、19からこの第2の熱伝達領域18に流入してくるガス及びこの熱伝達領域に供給されるガスの量速度よりも十分大きいか供給していないため、この熱伝達領域内のガスの圧力は、ほぼ0kPaである。   The temperature distribution realized by the above configuration will be described with reference to FIG. In FIG. 10, the pressures in the first heat transfer gas region 17 and the third heat transfer gas region 19 are adjusted to, for example, 1.5 kPa, and the second heat transfer gas region 18 is exhausted. The exhaust rate is greater than the rate at which the gas flowing into the second heat transfer region 18 from the first and third heat transfer regions 17 and 19 and the amount of gas supplied to the heat transfer region Is sufficiently large or not supplied, the pressure of the gas in this heat transfer region is approximately 0 kPa.

ただし、第2の熱伝達用ガス領域18の圧力は、この領域の上方の試料8の領域に対して供給される熱(入熱)の 量に応じて変化させることが必要であり、入熱が高い時と入熱の低い時では前者の方が比較的高い圧力となり、後者は比較的低い圧力に調節される。試料8が半導体ウエハであってこのウエハに対して半導体エッチング処理のゲート加工を行う場合は、絶縁膜加工等入熱の高い工程に比べるとかなり小さく、50W〜100W程度の入熱となる。このような時には第2の熱伝達用ガス領域18の圧力は0〜0.5kPa程度で良いと考えられる。   However, the pressure in the second heat transfer gas region 18 needs to be changed according to the amount of heat (heat input) supplied to the region of the sample 8 above this region. When the temperature is high and when the heat input is low, the former has a relatively high pressure, and the latter is adjusted to a relatively low pressure. When the sample 8 is a semiconductor wafer and gate processing of semiconductor etching processing is performed on this wafer, the heat input is considerably smaller than that of a process with high heat input such as insulating film processing, and the heat input is about 50 to 100 W. In such a case, it is considered that the pressure in the second heat transfer gas region 18 may be about 0 to 0.5 kPa.

このように、試料台100に導入された熱伝達用ガスは、圧力調節弁37、38、39により圧力変更されて再度、試料台100に導入される。このときの3つの熱伝達用ガス間の圧力によって試料台100の表面の温度分布を所定の温度分布に近づける。特に第2の熱伝達用ガス領域18の圧力を外側の領域である第3のガス領域19より低く調節することで、試料上半径75mm〜135mmの範囲において試料へ供給される熱を試料台100に伝達しにくくする。つまり他の熱伝達用ガス領域に比べ断熱効果を出すことで、その範囲の温度が他の領域に比べて高くなり、目標の理想的な温度分布である101に近づく。   As described above, the heat transfer gas introduced into the sample stage 100 is changed in pressure by the pressure control valves 37, 38, and 39 and is introduced into the sample stage 100 again. At this time, the temperature distribution on the surface of the sample stage 100 is brought close to a predetermined temperature distribution by the pressure between the three heat transfer gases. In particular, by adjusting the pressure of the second heat transfer gas region 18 to be lower than that of the third gas region 19 which is the outer region, the heat supplied to the sample in the range of 75 mm to 135 mm on the sample is changed to the sample table 100. Make it difficult to communicate. That is, by providing a heat insulating effect as compared with other heat transfer gas regions, the temperature in that range becomes higher than in other regions, and approaches the target ideal temperature distribution 101.

2つの熱伝達領域を備える従来技術による温度の分布103では、外周側の熱伝達領域での熱伝達用ガスの圧力をより高く、内周側の領域での圧力をより低く設定し内側の領域の試料の温度を高く調節しようとしている。外側の領域での中間位置での温度は熱伝達ガスの圧力とこの領域への供給される熱量とに影響を受けて定まる。特に、試料8の中央から140mmの位置において、最低の温度となる。同様に中央側の領域での中間位置(試料8中央部)での温度も供給される熱伝達ガスの圧力とこの試料中央側の領域へ供給される熱量により定まる。   In the temperature distribution 103 according to the prior art comprising two heat transfer regions, the pressure of the heat transfer gas in the outer heat transfer region is set higher and the pressure in the inner heat region is set lower and the inner region I am trying to adjust the temperature of the sample high. The temperature at the intermediate position in the outer region is determined by the influence of the pressure of the heat transfer gas and the amount of heat supplied to this region. In particular, the lowest temperature is obtained at a position 140 mm from the center of the sample 8. Similarly, the temperature at the intermediate position (center of the sample 8) in the central region is determined by the pressure of the heat transfer gas supplied and the amount of heat supplied to the central region of the sample.

しかし、この従来技術では、中央側の熱伝達領域上のウエハの領域と外周側の熱伝達領域上のウエハの領域との間での熱の移動が起こるため、両者の温度の変化は試料8中央から外周側の最低の温度となる位置までなだらかに変化をしており、目標の温度変化100とくらべ、試料8の中央からの距離100mmの前後で大きい差異が生じてしまい目標よりも低い温度となってしまう。   However, in this prior art, heat transfer occurs between the wafer region on the central heat transfer region and the wafer region on the outer peripheral heat transfer region. The temperature gradually changes from the center to the lowest temperature position on the outer peripheral side. Compared with the target temperature change 100, a large difference occurs around a distance of 100 mm from the center of the sample 8, and the temperature is lower than the target. End up.

一方、本実施例では、上記の通り中央側及び外周側の熱伝達領域よりもガス圧力を低く調節される第2の熱伝達領域を備え、従来技術と比べこの第2の領域での温度を高い温度に調節する。このため、本実施例による試料8上の温度変化102は、第2の熱伝達領域18及び第3の熱伝達領域の温度を目標の温度分布100に近づけることができ、試料8上の処理がより均一になる。   On the other hand, in the present embodiment, as described above, the second heat transfer region in which the gas pressure is adjusted to be lower than the heat transfer regions on the center side and the outer periphery side is provided, and the temperature in the second region is set as compared with the conventional technology. Adjust to high temperature. For this reason, the temperature change 102 on the sample 8 according to the present embodiment can bring the temperatures of the second heat transfer region 18 and the third heat transfer region closer to the target temperature distribution 100, and the processing on the sample 8 is performed. It becomes more uniform.

特に、温度センサで測定した各熱伝達領域の温度を各領域の圧力調節器にフィードバックして、試料8と試料台100との間の熱伝達の量を調節することで試料8の表面の所定の位置の温度が所望の温度なるように圧力調節弁で熱伝達ガスの圧力及び流量が調節される。   In particular, the temperature of each heat transfer region measured by the temperature sensor is fed back to the pressure regulator in each region, and the amount of heat transfer between the sample 8 and the sample table 100 is adjusted to thereby determine the predetermined surface of the sample 8. The pressure and flow rate of the heat transfer gas are adjusted by the pressure control valve so that the temperature at the position becomes the desired temperature.

図11乃至図13を用いて、本実施例の試料の処理の動作を説明する。図11、12は、図6に示す実施例による試料の処理における温度と熱伝達ガスの圧力の変化を説明するグラフである。図13は、図11に示す本実施例の処理の動作の流れを示すフローチャートである。   The sample processing operation of this embodiment will be described with reference to FIGS. 11 and 12 are graphs for explaining changes in temperature and heat transfer gas pressure in the processing of the sample according to the embodiment shown in FIG. FIG. 13 is a flowchart showing the flow of processing of the present embodiment shown in FIG.

本実施例では、試料台100内部に各々異なる温度に調節可能な複数の冷媒通路1、2を備えている。処理を開始する前に、これら冷媒通路1、2の温度を調節し、試料8を載置する試料台100表面の温度の分布が所望の試料8表面の温度の分布になるように冷媒を通流し試料台100の温度を調節される。
この試料台100の温度の値は、プラズマが形成されて熱が供給された場合に試料8の温度が適正な温度の値となるように、考慮され設定される。この際、試料8の裏面と試料台100の試料載置表面との間の3つの熱伝達用ガス領域の圧力は試料8に試料台100の温度がより正確に反映されるように選択される。本実施の例では、3つの熱伝達領域17、18、19ともに1.5kPaに設定されている。
In this embodiment, a plurality of refrigerant passages 1 and 2 that can be adjusted to different temperatures are provided inside the sample stage 100. Before starting the processing, the temperature of the refrigerant passages 1 and 2 is adjusted, and the refrigerant is passed so that the temperature distribution on the sample table 100 on which the sample 8 is placed becomes the desired temperature distribution on the sample 8 surface. The temperature of the sink sample stage 100 is adjusted.
The temperature value of the sample stage 100 is set in consideration so that the temperature of the sample 8 becomes an appropriate temperature value when plasma is formed and heat is supplied. At this time, the pressures of the three heat transfer gas regions between the back surface of the sample 8 and the sample mounting surface of the sample table 100 are selected so that the temperature of the sample table 100 is more accurately reflected on the sample 8. . In this example, the three heat transfer regions 17, 18, and 19 are all set to 1.5 kPa.

試料処理前つまり、入熱が無い時に第2の熱伝達用ガス領域18の圧力が低圧であれば、それが断熱部となり第1の熱伝達用ガス領域17の終端である半径75mm辺りが温度変曲点となり、所定の温度分布から離れるが、第2の熱伝達ガス領域18の圧力が高圧であれば、試料台100の温度分布を反映するため、半径100mm辺りが変曲点となり所定の温度分布に近づく。   If the pressure of the second heat transfer gas region 18 is low before sample processing, that is, when there is no heat input, it becomes a heat insulating part, and the temperature around the radius of 75 mm, which is the end of the first heat transfer gas region 17, is the temperature. Although it becomes an inflection point and deviates from a predetermined temperature distribution, if the pressure in the second heat transfer gas region 18 is high, the temperature distribution of the sample stage 100 is reflected, so that the radius around 100 mm becomes an inflection point. It approaches the temperature distribution.

試料台100上に試料8を載置後、処理室50内に処理用のガスが導入されるとともに電磁波が放射されて処理室50内にプラズマ53が形成される。このプラズマ53により試料8の表面の処理が行われる。プラズマ53の形成とともに試料8へプラズマ53からの熱が供給され始める。本実施例では、プラズマの形成あるいは試料の処理が開始されると、第2の熱伝達用ガス領域18内の排気を行う。特に、この領域18内で急速に減圧させてより高い真空度を得るよう、排気ポンプ150により高い排気量速度で排気孔10から領域内のガスを排出する。このように試料8の処理の初期において第2の熱伝達領域を高い真空状態にすることで、断熱効果を最大限にし、第2の熱伝達領域の上方に位置する試料8の半径100mm近傍の位置の温度を上昇させ目標の温度分布にできるだけ短時間で近づける。   After placing the sample 8 on the sample stage 100, a processing gas is introduced into the processing chamber 50 and an electromagnetic wave is emitted to form a plasma 53 in the processing chamber 50. The surface of the sample 8 is processed by the plasma 53. As the plasma 53 is formed, heat from the plasma 53 starts to be supplied to the sample 8. In the present embodiment, when plasma formation or sample processing is started, the second heat transfer gas region 18 is evacuated. In particular, the gas in the region is discharged from the exhaust hole 10 at a high displacement rate by the exhaust pump 150 so as to obtain a higher degree of vacuum by rapidly depressurizing the region 18. Thus, by making the second heat transfer region in a high vacuum state at the initial stage of the processing of the sample 8, the heat insulating effect is maximized, and the radius of the sample 8 located above the second heat transfer region is around 100 mm. Raise the temperature of the position and bring it closer to the target temperature distribution as quickly as possible.

第2の熱伝達領域18における温度が所定の温度に到達すると、この圧力を所定の温度分布になる程度の圧力に調節し、第2の熱伝達用領域18内の圧力を定常状態にし所定の温度分布を保持する。具体的には、ガスの圧力を今度はより高い圧力に調節し、プラズマ53から供給される熱によりこれ以上温度が上昇することを抑えるとともに必要以上に低い温度になることがないようにする。   When the temperature in the second heat transfer region 18 reaches a predetermined temperature, this pressure is adjusted to a pressure that provides a predetermined temperature distribution, and the pressure in the second heat transfer region 18 is brought into a steady state to reach a predetermined level. Maintains temperature distribution. Specifically, the pressure of the gas is adjusted to a higher pressure this time to prevent the temperature from further rising due to the heat supplied from the plasma 53 and to prevent the temperature from becoming lower than necessary.

第2の熱伝達領域18がこのような温度となる熱伝達ガスの圧力は、典型的には、両側にある第1、第3の熱伝達領域における熱伝達ガスよりも低い圧力となる。すなわち、図10に示す温度分布を実現する上では、第3の熱伝達領域19では、高い熱伝達率を得るため熱伝達ガスの圧力は高く調節される。また第1の熱伝達領域17では、第3の熱伝達領域と比べ試料8表面の温度を高くするため、熱伝達率は相対的に低くされ熱伝達ガスの圧力は低く設定される。   The pressure of the heat transfer gas at which the second heat transfer region 18 reaches such a temperature is typically lower than the heat transfer gas in the first and third heat transfer regions on both sides. That is, in realizing the temperature distribution shown in FIG. 10, in the third heat transfer region 19, the pressure of the heat transfer gas is adjusted to be high in order to obtain a high heat transfer coefficient. Further, in the first heat transfer region 17, the temperature of the surface of the sample 8 is made higher than that in the third heat transfer region, so that the heat transfer rate is relatively low and the pressure of the heat transfer gas is set low.

一方、第2の熱伝達領域18では、第1、第3の熱伝達領域17、19のいずれよりも低い熱伝達ガスの圧力に調節されるので熱伝達率がより小さくなる。このため、この第2の熱伝達領域18の上方の試料8の領域では、試料の温度はより高い温度に調節され、試料8の温度の分布を、所望の温度分布、例えば、図10におけるグラフ100に近づけることができる。   On the other hand, in the second heat transfer region 18, the heat transfer rate is lower because the pressure of the heat transfer gas is adjusted to be lower than that in any of the first and third heat transfer regions 17 and 19. For this reason, in the region of the sample 8 above the second heat transfer region 18, the temperature of the sample is adjusted to a higher temperature, and the temperature distribution of the sample 8 is changed to a desired temperature distribution, for example, the graph in FIG. Close to 100.

このような第2の熱伝達用ガス領域18の圧力の調節の動作の流れを図13に、試料の温度分布の結果は図11、12に示す。   The flow of the operation of adjusting the pressure in the second heat transfer gas region 18 is shown in FIG. 13, and the results of the sample temperature distribution are shown in FIGS.

まず、試料台100内の冷媒の温度を所定の温度に調節する(ステップ1301)。次に、試料台100の特定の位置における温度を検知して冷媒の温度を検出し(ステップ1302)、所定の値と比較する(ステップ1303)。第1の所定の値と比較して、温度が高い場合には、冷媒流量の増大あるいは供給する冷媒の温度を低くする。第2の所定の値と比較して、温度が低い場合には、冷媒流量を低減あるいは供給する冷媒の温度を高くする(ステップ1304)。こうして、試料台100表面の試料8が載置される表面の温度が所望の温度分布となるように調節される。   First, the temperature of the refrigerant in the sample stage 100 is adjusted to a predetermined temperature (step 1301). Next, the temperature at a specific position of the sample stage 100 is detected to detect the temperature of the refrigerant (step 1302) and compared with a predetermined value (step 1303). When the temperature is higher than the first predetermined value, the refrigerant flow rate is increased or the temperature of the supplied refrigerant is lowered. If the temperature is low compared to the second predetermined value, the refrigerant flow rate is reduced or the temperature of the supplied refrigerant is increased (step 1304). Thus, the temperature of the surface on which the sample 8 on the surface of the sample table 100 is placed is adjusted so as to have a desired temperature distribution.

なお、この試料台100の冷媒による温度の調節は、試料8を載せる前でも載せた後のいずれでも可能である。   The temperature of the sample stage 100 can be adjusted with the refrigerant either before or after the sample 8 is placed.

さらに、ステップ1301から1304と同様にして、第1、第2、第3の熱伝達領域17、18、19に熱伝達用ガスを供給し、各領域での温度センサ29、30、31からの出力と圧力調節弁37、38、39とを用いて、圧力調節器32、33、34が各領域内の熱伝達ガスの圧力になるように調節する(ステップ 1305)。   Further, in the same manner as in steps 1301 to 1304, heat transfer gas is supplied to the first, second, and third heat transfer regions 17, 18, 19, and the temperature sensors 29, 30, 31 in each region are supplied. Using the output and the pressure regulating valves 37, 38, 39, the pressure regulators 32, 33, 34 are adjusted to the pressure of the heat transfer gas in each region (step 1305).

温度センサ29、30、31からの出力により、処理前の試料8が所望の温度の分布となっていることが確認されると、試料8の上方の処理室500内にガスと電磁波を導入してプラズマを形成する(ステップ1306)。このプラズマが形成されたことが確認されると(ステップ1307)、第1の熱伝達領域17の圧力を低くするように圧力調節器32が圧力調節弁37に指令を発信してこの弁の開度を小さくする(ステップ1311)。 また、第2の熱伝達領域18の圧力をさらに低くするように圧力調節器33が圧力調節弁39、151及び排気ポンプ150へ司令を発信して、これらの動作を調節する(ステップ1308)。例えば、圧力調節弁39の開度を小さくする、または、排気ポンプ150の出力を大きくし圧力調節弁151の開度を大きくして排気孔10からの排気量速度が大きくされる。   When the output from the temperature sensors 29, 30, 31 confirms that the sample 8 before processing has a desired temperature distribution, gas and electromagnetic waves are introduced into the processing chamber 500 above the sample 8. Then, plasma is formed (step 1306). When it is confirmed that this plasma has been formed (step 1307), the pressure regulator 32 sends a command to the pressure regulating valve 37 so as to lower the pressure in the first heat transfer region 17, and the valve is opened. The degree is decreased (step 1311). Further, the pressure regulator 33 sends a command to the pressure regulating valves 39 and 151 and the exhaust pump 150 so as to further lower the pressure in the second heat transfer region 18 to regulate these operations (step 1308). For example, the opening degree of the pressure control valve 39 is reduced, or the output of the exhaust pump 150 is increased to increase the opening degree of the pressure control valve 151, thereby increasing the exhaust rate from the exhaust hole 10.

このような動作により、第2の熱伝達領域18内の圧力は、第1の熱伝達領域17内の圧力よりも低くされ、また、第3の熱伝達領域19内の圧力よりも低くされ、高度に減圧されることになり、この第2の熱伝達領域18内の熱伝達率を極めて低くすることでこの領域上方の試料8の領域の温度が急速に高くなる。   By such an operation, the pressure in the second heat transfer region 18 is made lower than the pressure in the first heat transfer region 17, and is made lower than the pressure in the third heat transfer region 19, The pressure is reduced to a high degree, and the temperature of the region of the sample 8 above this region is rapidly increased by making the heat transfer coefficient in the second heat transfer region 18 extremely low.

次に、圧力調節器33は、温度センサ30からの出力を受けて第2の熱伝達領域18の温度を検出し、予め定められた値よりもこの温度が高くなったことを検知すると、圧力調節弁39、151、排気ポンプ150に司令を発信して第2の熱伝達領域18内の圧力を調節し、この領域の温度を所望の目標となる温度に近くなるように調節する(ステップ1309)。例えば、圧力調節弁39の開度を大きくする、または圧力調節弁151の開度を小さくする、あるいは排気ポンプ150の出力を小さくして、排気孔10からの排気量速度を小さくすることで、第2の熱伝達領域18内の圧力を高くする。この場合でも、第2の熱伝達領域18内のガスの圧力は、第1、第3の熱伝達領域17、19内のガスの圧力よりも低く設定される(ステップ1310)。   Next, the pressure regulator 33 receives the output from the temperature sensor 30, detects the temperature of the second heat transfer region 18, and detects that the temperature is higher than a predetermined value. A command is sent to the control valves 39 and 151 and the exhaust pump 150 to adjust the pressure in the second heat transfer region 18, and the temperature in this region is adjusted to be close to the desired target temperature (step 1309). ). For example, by increasing the opening degree of the pressure control valve 39, decreasing the opening degree of the pressure control valve 151, or reducing the output of the exhaust pump 150, the exhaust rate from the exhaust hole 10 is reduced. The pressure in the second heat transfer region 18 is increased. Even in this case, the pressure of the gas in the second heat transfer region 18 is set lower than the pressure of the gas in the first and third heat transfer regions 17 and 19 (step 1310).

この間、第3の熱伝達領域19内のガスの圧力はほぼ同一となるように調節される。すなわち、第3の熱伝達領域19の上方の試料8の領域では、3つの領域のうち最も外周側であって温度が最も低く調節される領域であり、試料8の温度の分布を定める一端となる領域である。図8に示すように試料8の温度は外周端において最も低くなるように、グラフに示す下向きの温度分布の傾きを有することが望ましい。この温度を実現するため、第3の熱伝達領域は試料台100または試料8の半径方向について、もっとも小さな長さの領域となっている。また、本実施例において、試料8の温度の分布の定めるもう一方の端部となる領域は第1の熱伝達領域17である。本実施例における試料台100または試料8の温度の分布はこれら2つの領域における温度の調節によって、基本的に定まる。   During this time, the pressure of the gas in the third heat transfer region 19 is adjusted to be substantially the same. That is, the region of the sample 8 above the third heat transfer region 19 is a region that is the outermost peripheral side of the three regions and the temperature is adjusted to be the lowest, and one end that determines the temperature distribution of the sample 8; It is an area. As shown in FIG. 8, it is desirable that the temperature of the sample 8 has a downward gradient of temperature distribution shown in the graph so that the temperature is lowest at the outer peripheral edge. In order to realize this temperature, the third heat transfer region is a region having the smallest length in the radial direction of the sample table 100 or the sample 8. In the present embodiment, the region serving as the other end of the temperature distribution of the sample 8 is the first heat transfer region 17. The temperature distribution of the sample stage 100 or the sample 8 in this embodiment is basically determined by adjusting the temperature in these two regions.

これらの領域の間に配置される第2の熱伝達領域18は、その上方に位置する試料8の領域の温度とその外周側に位置し隣接する第3の熱伝達領域19の上方の試料8の領域において定められる最低の温度との間と、その内周側に位置し隣接する第1の熱伝達領域17の上方の試料の領域における試料8の中央側の温度との間との各々で温度の変化の傾きを定める箇所である。すなわち、この第2の熱伝達領域18における温度の調節により、図8、図10に示す試料8の温度変化の変曲点を持たせ、試料8の中央部側のある半径方向の距離の位置までは試料表面の温度が略同一であり、その位置より外周部側では外周に近づくにつれて温度が減少し続けるという、理想的な温度分布により近い温度分布を試料8上に実現するものである。   The second heat transfer area 18 disposed between these areas is the temperature of the area of the sample 8 located above the area and the sample 8 above the adjacent third heat transfer area 19 located on the outer peripheral side. Between the lowest temperature determined in the region of the sample 8 and the temperature on the center side of the sample 8 in the sample region above the adjacent first heat transfer region 17 located on the inner peripheral side. This is the place that determines the slope of the temperature change. That is, by adjusting the temperature in the second heat transfer region 18, the inflection point of the temperature change of the sample 8 shown in FIG. 8 and FIG. Up to this point, the temperature of the sample surface is substantially the same, and a temperature distribution closer to the ideal temperature distribution is realized on the sample 8 such that the temperature continues to decrease toward the outer periphery on the outer peripheral side from that position.

なお、上記した実施例では、試料8の処理を行っている間に第2の熱伝達領域18の温度があらかじめ定めた目標の温度の値よりも高くなってしまう程度の熱のプラズマから供給される例を示している。プラズマを行う処理の条件によっては、プラズマから熱が相対的に小さく処理を開始して第2の熱伝達領域18内の圧力を高い真空度に維持してもこの領域18内とこの上方の試料8の領域の温度が目標の温度の値に、処理を行っている間に、達しない場合もある。この場合の温度の変化を示したのが図12である。   In the above-described embodiment, the temperature of the second heat transfer region 18 is supplied from heat plasma that is higher than a predetermined target temperature value while the sample 8 is being processed. An example is shown. Depending on the processing conditions for performing plasma, even if the heat is relatively small from the plasma and the processing is started and the pressure in the second heat transfer region 18 is maintained at a high degree of vacuum, the sample in and above this region 18 In some cases, the temperature in the region 8 does not reach the target temperature value while the process is being performed. FIG. 12 shows the temperature change in this case.

この場合には、第2の熱伝達領域18の圧力を処理開始後ほぼ0KPaにしても、この第2の熱伝達領域18の上方の位置、試料8の中心から100mmの位置において、処理の間に試料8の温度は目標となる温度に達していない。しかし、このような場合でも、温度の変化の傾き(温度増加の時間変化)は、供給される熱伝達用ガスの圧力を変化させていない熱伝達領域である19と比べ、時間の変化に対する温度の変化の割合が大きく、理想的な試料の温度分布により近い温度の分布を実現できることを示している。   In this case, even if the pressure of the second heat transfer area 18 is set to approximately 0 KPa after the start of the process, the process is performed at the position above the second heat transfer area 18 and at a position 100 mm from the center of the sample 8 during the process. In addition, the temperature of the sample 8 does not reach the target temperature. However, even in such a case, the gradient of temperature change (temperature change with time) is higher than the temperature with respect to time change, compared with 19 which is a heat transfer region where the pressure of the supplied heat transfer gas is not changed. The ratio of the change of is large, indicating that a temperature distribution closer to the ideal sample temperature distribution can be realized.

本実施例では、処理の最初期では試料の温度は所定の温度分布より低いため、まず、より高い真空度の状態にし熱伝達率を極めて低くして、第2の熱伝達領域18上の試料8の領域内の位置の温度が所定の温度を超えるまで上昇させる。このようにして、最初期に所定の温度より低い状態、つまり反応生成物がつきやすい状態で試料の加工形状が太くなった分を逆に細らせることで、初期状態から所定温度を得られる場合と同程度の試料の最終加工形状を得ることができる。
この構成により、処理時間の短い時でも所定の温度分布に近い分布が得られ、所定の温度分布になるまでの温度変化量も小さくすることができる。
In the present embodiment, since the temperature of the sample is lower than a predetermined temperature distribution in the initial stage of processing, first, the sample on the second heat transfer region 18 is set to a higher vacuum state and the heat transfer coefficient is extremely low. The temperature at the position in the region 8 is increased until it exceeds a predetermined temperature. In this way, the predetermined temperature can be obtained from the initial state by conversely thinning the portion where the processed shape of the sample becomes thicker in a state lower than the predetermined temperature in the initial stage, that is, in a state where the reaction product is easily attached. The final processed shape of the sample can be obtained to the same extent as the case.
With this configuration, a distribution close to a predetermined temperature distribution can be obtained even when the processing time is short, and the amount of temperature change until the predetermined temperature distribution is reached can be reduced.

以上の通り、本実施例によれば、試料台に温度勾配を形成することができるので、必要に応じて試料面内の温度分布を形成することができる。
また、熱伝達用ガスの循環系が3つで一部高速排気手段を設けることで、試料面内で高精度な温度制御ができる。
As described above, according to the present embodiment, since a temperature gradient can be formed on the sample stage, a temperature distribution in the sample surface can be formed as necessary.
Further, by providing three heat transfer gas circulation systems and partially providing high-speed exhaust means, temperature control can be performed with high accuracy within the sample surface.

さらに、3つの圧力調節器で3つの冷媒流路を独立に制御できるため、温度制御、流量制御、冷媒の種類を自由に組み合わせることが可能で、例えば流量制御のみだと冷媒の種類、冷媒温度固定のため、試料面内で温度差をつけるのに限界があり、使用可能な処理の種類もかぎられてくるが、本実施例によれば試料面内温度差を高くすることができる。   Furthermore, since the three refrigerant flow paths can be controlled independently by the three pressure regulators, it is possible to freely combine temperature control, flow rate control, and refrigerant type. For example, with only flow rate control, refrigerant type, refrigerant temperature Due to the fixation, there is a limit to creating a temperature difference within the sample surface, and the types of treatments that can be used are limited, but according to this embodiment, the temperature difference within the sample surface can be increased.

このような構成は、複数の試料8を連続して処理を行う場合に、試料台100の温度が定常状態になるまで時間がかかってしまい、図9に示すように1〜2枚目の試料がそれ以降の試料に比べ温度が低いために、この問題をなくすのに有効である。エージング等の手法を用いて、試料処理前に入熱を加えて試料台の温度を定常状態にしておくことが多用されているが、熱伝達用ガス圧力を試料1〜2枚目のみ低く設定することで対応できる。   In such a configuration, when processing a plurality of samples 8 continuously, it takes time until the temperature of the sample stage 100 reaches a steady state, and as shown in FIG. However, since the temperature is lower than that of the samples after that, it is effective in eliminating this problem. Using a technique such as aging, it is often used to apply heat before sample processing to keep the temperature of the sample stage in a steady state, but the heat transfer gas pressure is set low only for the first and second samples. It can respond by doing.

ただし、本実施例では3つの温度調節器を用いたものを示したが、3以上であっても、本実施例の考えをそのまま適用でき、温度調節器の数を増やせば増やすほど本実施例の目的である温度プロファイルをフィードバックする精度が良くなる。   However, in the present embodiment, three temperature controllers are used. However, even if the number is three or more, the idea of the present embodiment can be applied as it is, and this embodiment increases as the number of temperature controllers increases. The accuracy of feeding back the temperature profile, which is the purpose of, is improved.

また、試料台の温度分布は冷媒の溝形状や配置・本数、処理ガスの種類、処理圧力、排気系の位置等により影響を受けて形成される反応生成物の分布に応じて決める必要があり、上述の冷媒流路配置に限定されるものではない。   The temperature distribution on the sample stage must be determined according to the distribution of reaction products formed by the influence of the groove shape and arrangement / number of refrigerants, the type of processing gas, the processing pressure, the position of the exhaust system, etc. The refrigerant channel arrangement is not limited to the above.

上述の実施例では、プラズマエッチング装置を例に説明したが、減圧雰囲気内で試料等の被処理物が加熱されながら処理される処理装置に広く適用することができる。例えば、プラズマを利用した処理装置としては、プラズマエッチング装置、プラズマCVD装置、スパッタリング装置等が挙げられる。また、プラズマを利用しない処理装置としては、イオン注入、MBE、蒸着、減圧CVD等が挙げられる。   In the above-described embodiments, the plasma etching apparatus has been described as an example. However, the present invention can be widely applied to a processing apparatus in which an object to be processed such as a sample is heated in a reduced pressure atmosphere. For example, examples of the processing apparatus using plasma include a plasma etching apparatus, a plasma CVD apparatus, and a sputtering apparatus. Examples of the processing apparatus that does not use plasma include ion implantation, MBE, vapor deposition, and low pressure CVD.

本発明の第1の実施例を示すものであり、図5に示す試料台に供給されるガス及び冷媒の循環路の概略構成を示す模式図である。FIG. 6 is a schematic diagram showing a first embodiment of the present invention and showing a schematic configuration of a circulation path of a gas and a refrigerant supplied to the sample stage shown in FIG. 5. 図5に示す試料台の試料がその上に載置される面の形状を示す上面図である。It is a top view which shows the shape of the surface where the sample of the sample stand shown in FIG. 5 is mounted on it. 図5に示す試料台における静電吸着を行う構成の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of the structure which performs electrostatic adsorption in the sample stand shown in FIG. 図6に係る処理室50を備えるプラズマ処理装置の構成の概略を示す上面図である。It is a top view which shows the outline of a structure of a plasma processing apparatus provided with the process chamber 50 which concerns on FIG. 図6に示すプラズマ処理装置に用いられる試料台の構成の概略を拡大して示す縦断面図である。It is a longitudinal cross-sectional view which expands and shows the outline of a structure of the sample stand used for the plasma processing apparatus shown in FIG. 本発明の第一の実施例に係るプラズマ処理装置の処理室の構成の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of a structure of the process chamber of the plasma processing apparatus which concerns on the 1st Example of this invention. 本発明の実施例において、処理後の試料における形状の分布を示すグラフである。In the Example of this invention, it is a graph which shows distribution of the shape in the sample after a process. 本発明の実施例における、処理による試料の形状と、試料台の所望の温度分布、及び試料の中心からの位置の関係を示すグラフである。It is a graph which shows the relationship between the shape of the sample by a process, the desired temperature distribution of a sample stand, and the position from the center of a sample in the Example of this invention. 複数の試料の処理を連続的に行った場合の試料の温度の推移を示すグラフである。It is a graph which shows transition of the temperature of a sample at the time of processing a plurality of samples continuously. 図5に示す本発明の実施例による試料の温度の分布と、従来技術による温度の分布とを示すグラフである。6 is a graph showing the temperature distribution of the sample according to the embodiment of the present invention shown in FIG. 5 and the temperature distribution according to the prior art. 図5に示す実施例による処理における、熱伝達ガスの圧力と試料の温度の時間変化を示すグラフである。It is a graph which shows the time change of the pressure of heat transfer gas and the temperature of a sample in the process by the Example shown in FIG. 図5に示す実施例による処理における、熱伝達ガスの圧力と試料の温度の時間変化を示すグラフである。It is a graph which shows the time change of the pressure of heat transfer gas and the temperature of a sample in the process by the Example shown in FIG. 図11に示す処理の流れを示す流れ図である。It is a flowchart which shows the flow of the process shown in FIG.

符号の説明Explanation of symbols

1・・・第1の冷媒流路、2・・・第2の冷媒流路、3・・・大気断熱層、4、5・・・温度調節器、6、7・・・熱伝達用ガス圧力貯留部、100・・・試料台、8・・・試料、9・・・試料押し上げ機構、10・・・排気孔、11、12、13・・・熱伝達用ガス導入孔、14、15、16・・・凸部(熱伝達用ガス分割シール)、17・・・熱伝達用ガス領域1、18・・・熱伝達用ガス領域2、19・・・熱伝達用ガス領域3、20、21・・・試料吸着用導電性板、22・・・吸着膜、26・・・ロック室、23・・・エッチング処理ユニット、25・・・アッシング処理ユニット、24・・・搬送用ユニット、28・・・ロック室、27・・・カセット、29・・・温度センサ、30・・・温度センサ、31・・・温度センサ、32、33、34・・・圧力調節器、37・・・圧力調節弁、38・・・圧力調節弁、39・・・圧力調節弁、50・・・処理室、51・・・ステージ、52・・・電磁波源、53・・・プラズマ、54・・・排気口、55・・・処理ガス導入口、56・・・コイル、57・・・プレート、58・・・貫通孔。
DESCRIPTION OF SYMBOLS 1 ... 1st refrigerant | coolant flow path, 2 ... 2nd refrigerant | coolant flow path, 3 ... Atmospheric heat insulation layer, 4, 5 ... Temperature regulator, 6, 7 ... Gas for heat transfer Pressure storage unit, 100 ... Sample stand, 8 ... Sample, 9 ... Sample push-up mechanism, 10 ... Exhaust hole, 11, 12, 13 ... Gas introduction hole for heat transfer, 14,15 , 16 ... convex portion (gas split seal for heat transfer), 17 ... gas area for heat transfer 1, 18 ... gas area for heat transfer 2, 19 ... gas area for heat transfer 3, 20 , 21 ... conductive plate for sample adsorption, 22 ... adsorption film, 26 ... lock chamber, 23 ... etching unit, 25 ... ashing unit, 24 ... transport unit, 28 ... Lock chamber, 27 ... Cassette, 29 ... Temperature sensor, 30 ... Temperature sensor, 31 ... Temperature sensor, 2, 33, 34 ... pressure regulator, 37 ... pressure regulation valve, 38 ... pressure regulation valve, 39 ... pressure regulation valve, 50 ... treatment chamber, 51 ... stage, 52 ... Electromagnetic wave source, 53 ... Plasma, 54 ... Exhaust port, 55 ... Process gas introduction port, 56 ... Coil, 57 ... Plate, 58 ... Through-hole.

Claims (7)

内部が減圧される処理室と、この処理室内に配置され処理対象の試料が載置される試料台と、この試料台の上方に配置されガスが前記処理室内に導入される複数の開口とを備え、前記ガスを用いて生成されたプラズマにより前記試料を処理するプラズマ処理装置であって、
前記試料が載置される前記試料台の表面にそれぞれが同心円状に配置されその表面が前記試料の表面と接してこの試料の表面と前記試料台の表面との間を複数の領域に区画するリング状の凸部と、前記複数の領域のうち最も外周側の第1の領域内に配置され熱伝達用のガスが導入される第1の開口と、前記最も外周側の領域の内側の第2の領域に配置されこの領域内のガスが流出する第2の開口とを備えたプラズマ処理装置。
A processing chamber in which the inside is decompressed, a sample table disposed in the processing chamber on which a sample to be processed is placed, and a plurality of openings disposed above the sample table and through which gas is introduced into the processing chamber. A plasma processing apparatus for processing the sample with plasma generated using the gas,
Each of the samples is placed concentrically on the surface of the sample table on which the sample is placed, and the surface is in contact with the surface of the sample to divide the surface of the sample and the surface of the sample table into a plurality of regions. A ring-shaped convex portion; a first opening disposed in a first outermost region of the plurality of regions; and a first opening into which heat transfer gas is introduced; and an inner first of the outermost region. And a second opening through which the gas in the region flows out.
請求項1に記載のプラズマ処理装置であって、前記区画される領域の数が3以上あるプラズマ処理装置。   The plasma processing apparatus according to claim 1, wherein the number of divided regions is three or more. 請求項1または2に記載のプラズマ処理装置であって、前記第2の領域が略真空にされるプラズマ処理装置。   3. The plasma processing apparatus according to claim 1, wherein the second region is substantially evacuated. 4. 内部が減圧される処理室と、この処理室内に配置され処理対象の試料が載置される試料台と、この試料台の上方に配置されガスが前記処理室内に導入される複数の開口とを備え、前記ガスを用いて生成されたプラズマにより前記試料を処理するプラズマ処理装置であって、
前記試料が載置される試料台の表面に略同心状に配置され前記試料がその上に載置される複数のリング状の凹み部と、この複数のリング状の凹み部のうち最も外周側の第1の凹み部に配置され熱伝達用のガスが導入される第1の開口と、前記最も外周側の凹み部の内側の第2の凹み部に配置されこの凹み部内のガスが流出する第2の開口とを備えたプラズマ処理装置。
A processing chamber in which the inside is decompressed, a sample table disposed in the processing chamber on which a sample to be processed is placed, and a plurality of openings disposed above the sample table and through which gas is introduced into the processing chamber. A plasma processing apparatus for processing the sample with plasma generated using the gas,
A plurality of ring-shaped recesses arranged substantially concentrically on the surface of the sample stage on which the sample is placed and the sample is placed thereon, and the outermost peripheral side of the plurality of ring-like recesses 1st opening which is arrange | positioned in the 1st dent part of this, and is arrange | positioned in the 2nd dent part inside the said outermost dent part, and the gas in this dent part flows out A plasma processing apparatus comprising a second opening.
請求項4に記載のプラズマ処理装置であって、前記凹み部が2以上あるプラズマ処理装置。  The plasma processing apparatus according to claim 4, wherein there are two or more of the recesses. 請求項4または5に記載のプラズマ処理装置であって、前記第2の領域が略真空にされるプラズマ処理装置。   6. The plasma processing apparatus according to claim 4 or 5, wherein the second region is substantially evacuated. 請求項1乃至6のいずれかに記載のプラズマ処理装置において、前記試料台の内部であってこの試料台の中央部側と外周部側とに配置されその内側を異なる温度に調節された冷媒が流れる複数の通路を備えたプラズマ処理装置。
The plasma processing apparatus according to any one of claims 1 to 6, wherein a refrigerant that is disposed inside the sample stage and on a central part side and an outer peripheral part side of the sample stage and whose inside is adjusted to different temperatures. A plasma processing apparatus having a plurality of flowing passages.
JP2003309577A 2003-09-02 2003-09-02 Plasma processing apparatus Pending JP2005079415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003309577A JP2005079415A (en) 2003-09-02 2003-09-02 Plasma processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003309577A JP2005079415A (en) 2003-09-02 2003-09-02 Plasma processing apparatus

Publications (1)

Publication Number Publication Date
JP2005079415A true JP2005079415A (en) 2005-03-24

Family

ID=34411672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003309577A Pending JP2005079415A (en) 2003-09-02 2003-09-02 Plasma processing apparatus

Country Status (1)

Country Link
JP (1) JP2005079415A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010521820A (en) * 2007-03-12 2010-06-24 東京エレクトロン株式会社 Dynamic temperature backside gas control to improve process uniformity within the substrate
KR101115659B1 (en) * 2008-02-06 2012-03-14 도쿄엘렉트론가부시키가이샤 Substrate mounting table, substrate processing apparatus and substrate temperature control method
KR101336487B1 (en) * 2011-02-16 2013-12-03 도쿄엘렉트론가부시키가이샤 Cooling unit, processing chamber, part in the processing chamber, and cooling method
US8916793B2 (en) 2010-06-08 2014-12-23 Applied Materials, Inc. Temperature control in plasma processing apparatus using pulsed heat transfer fluid flow
KR101476727B1 (en) * 2010-05-27 2014-12-26 어플라이드 머티어리얼스, 인코포레이티드 Component temperature control by coolant flow control and heater duty cycle control
KR20150003229A (en) * 2012-03-30 2015-01-08 어플라이드 머티어리얼스, 인코포레이티드 Substrate support with feedthrough structure
US9338871B2 (en) 2010-01-29 2016-05-10 Applied Materials, Inc. Feedforward temperature control for plasma processing apparatus
CN107112258A (en) * 2014-11-19 2017-08-29 瓦里安半导体设备公司 Workpiece temperature is controlled by backside gas flow
US10274270B2 (en) 2011-10-27 2019-04-30 Applied Materials, Inc. Dual zone common catch heat exchanger/chiller
KR20190117475A (en) * 2018-04-05 2019-10-16 램 리써치 코포레이션 Electrostatic chucks with coolant gas zones and corresponding grooves and unipolar electrostatic clamping electrode patterns
JP2021502696A (en) * 2017-11-10 2021-01-28 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Patterned chuck for double-sided processing
JP2021514545A (en) * 2018-02-20 2021-06-10 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Patterned vacuum chuck for double-sided processing
WO2021186976A1 (en) * 2020-03-18 2021-09-23 株式会社Kelk Temperature control system
WO2021240945A1 (en) * 2020-05-25 2021-12-02 日本碍子株式会社 Electrostatic chuck
JP7402037B2 (en) 2019-12-23 2023-12-20 日本特殊陶業株式会社 electrostatic chuck

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010521820A (en) * 2007-03-12 2010-06-24 東京エレクトロン株式会社 Dynamic temperature backside gas control to improve process uniformity within the substrate
KR101526615B1 (en) * 2007-03-12 2015-06-05 도쿄엘렉트론가부시키가이샤 Method of controlling process uniformity, plasma processing apparatus and method of locally deforming a substrate
KR101115659B1 (en) * 2008-02-06 2012-03-14 도쿄엘렉트론가부시키가이샤 Substrate mounting table, substrate processing apparatus and substrate temperature control method
US8696862B2 (en) 2008-02-06 2014-04-15 Tokyo Electron Limited Substrate mounting table, substrate processing apparatus and substrate temperature control method
US9338871B2 (en) 2010-01-29 2016-05-10 Applied Materials, Inc. Feedforward temperature control for plasma processing apparatus
US10854425B2 (en) 2010-01-29 2020-12-01 Applied Materials, Inc. Feedforward temperature control for plasma processing apparatus
US9214315B2 (en) 2010-01-29 2015-12-15 Applied Materials, Inc. Temperature control in plasma processing apparatus using pulsed heat transfer fluid flow
KR101476727B1 (en) * 2010-05-27 2014-12-26 어플라이드 머티어리얼스, 인코포레이티드 Component temperature control by coolant flow control and heater duty cycle control
US9639097B2 (en) 2010-05-27 2017-05-02 Applied Materials, Inc. Component temperature control by coolant flow control and heater duty cycle control
US8916793B2 (en) 2010-06-08 2014-12-23 Applied Materials, Inc. Temperature control in plasma processing apparatus using pulsed heat transfer fluid flow
KR101336487B1 (en) * 2011-02-16 2013-12-03 도쿄엘렉트론가부시키가이샤 Cooling unit, processing chamber, part in the processing chamber, and cooling method
US10274270B2 (en) 2011-10-27 2019-04-30 Applied Materials, Inc. Dual zone common catch heat exchanger/chiller
US10928145B2 (en) 2011-10-27 2021-02-23 Applied Materials, Inc. Dual zone common catch heat exchanger/chiller
KR20150003229A (en) * 2012-03-30 2015-01-08 어플라이드 머티어리얼스, 인코포레이티드 Substrate support with feedthrough structure
KR102123366B1 (en) * 2012-03-30 2020-06-16 어플라이드 머티어리얼스, 인코포레이티드 Substrate support with feedthrough structure
CN107112258A (en) * 2014-11-19 2017-08-29 瓦里安半导体设备公司 Workpiece temperature is controlled by backside gas flow
JP2018503969A (en) * 2014-11-19 2018-02-08 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド Workpiece temperature control by backside gas flow
US11289361B2 (en) 2017-11-10 2022-03-29 Applied Materials, Inc. Patterned chuck for double-sided processing
US11764099B2 (en) 2017-11-10 2023-09-19 Applied Materials, Inc. Patterned chuck for double-sided processing
JP2021502696A (en) * 2017-11-10 2021-01-28 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Patterned chuck for double-sided processing
JP7145212B2 (en) 2017-11-10 2022-09-30 アプライド マテリアルズ インコーポレイテッド Patterned chuck for double-sided processing
JP7105900B2 (en) 2018-02-20 2022-07-25 アプライド マテリアルズ インコーポレイテッド Patterned vacuum chuck for double-sided processing
JP2021514545A (en) * 2018-02-20 2021-06-10 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Patterned vacuum chuck for double-sided processing
US11664262B2 (en) 2018-04-05 2023-05-30 Lam Research Corporation Electrostatic chucks with coolant gas zones and corresponding groove and monopolar electrostatic clamping electrode patterns
KR102103680B1 (en) * 2018-04-05 2020-04-23 램 리써치 코포레이션 Coolant gas zones and electrostatic chucks with corresponding groove and unipolar electrostatic clamping electrode patterns
US11942351B2 (en) 2018-04-05 2024-03-26 Lam Research Corporation Electrostatic chucks with coolant gas zones and corresponding groove and monopolar electrostatic clamping electrode patterns
KR102345663B1 (en) * 2018-04-05 2021-12-29 램 리써치 코포레이션 Electrostatic chucks with coolant gas zones and corresponding groove and monopolar electrostatic clamping electrode patterns
KR20190117475A (en) * 2018-04-05 2019-10-16 램 리써치 코포레이션 Electrostatic chucks with coolant gas zones and corresponding grooves and unipolar electrostatic clamping electrode patterns
JP2020518125A (en) * 2018-04-05 2020-06-18 ラム リサーチ コーポレーションLam Research Corporation Electrostatic chuck with cooling gas compartment and corresponding groove and unipolar electrostatic clamping electrode pattern
KR20200130230A (en) * 2018-04-05 2020-11-18 램 리써치 코포레이션 Electrostatic chucks with coolant gas zones and corresponding groove and monopolar electrostatic clamping electrode patterns
JP2021153202A (en) * 2018-04-05 2021-09-30 ラム リサーチ コーポレーションLam Research Corporation Electrostatic chuck including cooling gas section, corresponding groove and unipolar electrostatic clamp electrode pattern
JP7231669B2 (en) 2018-04-05 2023-03-01 ラム リサーチ コーポレーション Electrostatic chuck with cooling gas compartments and corresponding grooves and monopolar electrostatic clamping electrode pattern
JP7402037B2 (en) 2019-12-23 2023-12-20 日本特殊陶業株式会社 electrostatic chuck
TWI776424B (en) * 2020-03-18 2022-09-01 日商科理克股份有限公司 temperature control system
WO2021186976A1 (en) * 2020-03-18 2021-09-23 株式会社Kelk Temperature control system
KR20220142491A (en) * 2020-05-25 2022-10-21 엔지케이 인슐레이터 엘티디 electrostatic chuck
WO2021240945A1 (en) * 2020-05-25 2021-12-02 日本碍子株式会社 Electrostatic chuck
KR102654628B1 (en) 2020-05-25 2024-04-03 엔지케이 인슐레이터 엘티디 electrostatic chuck

Similar Documents

Publication Publication Date Title
US20090078563A1 (en) Plasma Processing Apparatus And Method Capable of Adjusting Temperature Within Sample Table
US20080121344A1 (en) Plasma processing apparatus
US8696862B2 (en) Substrate mounting table, substrate processing apparatus and substrate temperature control method
KR100839148B1 (en) Plasma processing apparatus and plasma processing method
US20080053958A1 (en) Plasma processing apparatus
TWI694750B (en) Plasma treatment device
JP2005079415A (en) Plasma processing apparatus
KR20060133485A (en) Upper electrode, plasma processing apparatus and method, and recording medium having a control program recorded therein
US10964513B2 (en) Plasma processing apparatus
KR20210122209A (en) Substrate processing apparatus and substrate processing method
JP2006303144A (en) Vacuum processing device and vacuum processing method of sample
US11538669B2 (en) Plasma processing apparatus
US9263313B2 (en) Plasma processing apparatus and plasma processing method
US20210118648A1 (en) Substrate processing system and method for replacing edge ring
TWI718674B (en) Plasma processing device
US20200203194A1 (en) Inner Wall and substrate Processing Apparatus
JP7200438B1 (en) Plasma processing apparatus and plasma processing method
JP7321026B2 (en) EDGE RING, PLACE, SUBSTRATE PROCESSING APPARATUS, AND SUBSTRATE PROCESSING METHOD
US20210005503A1 (en) Etching method and plasma processing apparatus
KR102334531B1 (en) Substrate processing apparatus and substrate processing method
JP2004259826A (en) Plasma processing system
JP7116249B2 (en) Plasma processing apparatus and plasma processing method
US20230335381A1 (en) Substrate processing apparatus
TW202333192A (en) Substrate processing apparatus and substrate processing method
KR20230063746A (en) Substrate processing apparatus and substrate processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060831

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091124