JP2005075836A - Composite material - Google Patents

Composite material Download PDF

Info

Publication number
JP2005075836A
JP2005075836A JP2003209484A JP2003209484A JP2005075836A JP 2005075836 A JP2005075836 A JP 2005075836A JP 2003209484 A JP2003209484 A JP 2003209484A JP 2003209484 A JP2003209484 A JP 2003209484A JP 2005075836 A JP2005075836 A JP 2005075836A
Authority
JP
Japan
Prior art keywords
composite material
properties
resin
bamboo
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003209484A
Other languages
Japanese (ja)
Inventor
Hirotoshi Matsui
宏敏 松井
Yasumochi Hamada
泰以 濱田
Kazuo Kitagawa
和男 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUEHIRO SANGYO KK
Original Assignee
SUEHIRO SANGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUEHIRO SANGYO KK filed Critical SUEHIRO SANGYO KK
Priority to JP2003209484A priority Critical patent/JP2005075836A/en
Publication of JP2005075836A publication Critical patent/JP2005075836A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Inorganic Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite material further improving mechanical characteristics of the composite material, improving other physical properties and suitable for practical uses. <P>SOLUTION: The composite material is obtained by mixing a carbonized material of bamboo fibers prepared by carbonizing the fibers obtained by chemically or mechanically treating bamboo in a resin. The fibers are divided into parts by carbonization to improve the dispersibility in the resin as compared with that of raw bamboo fibers. Thereby, the following effects are obtained. The tensile modulus is improved and the lowering of tensile strength is reduced. The chemical resistance is improved and electroconductivity and antistatic properties, antimicrobial properties, mildewproofing properties, deodorizing properties, etc., are imparted. The moldability is improved, etc. The composite material adapted to various kinds of uses can be obtained by selecting the yield of the carbonized material of the bamboo fibers according to the purposes of uses. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、樹脂を天然繊維で補強した複合材料の改良に関する。
【0002】
【従来の技術】
樹脂を天然繊維で補強した複合材料が知られており、近年は環境負荷を低減するために、母材樹脂として生分解性樹脂を使用したものが注目され始めている。この種の複合材料は、母材である樹脂の機械的強度を補うために植物性や動物性の天然繊維を混合したものであるが、機械的強度、耐薬品性、電気特性、コスト、成形性等が必ずしも両立せず、実用化を妨げる一因となっている。
【0003】
【特許文献1】
特開平9−302235号公報
【特許文献2】
特開2000−160034号公報
【0004】
これらの従来技術において植物性天然繊維が使用される場合には、一般に竹、ジュート、ケナフ等の繊維が用いられるが、従来は通常の方法で得られた植物繊維をそのまま生の繊維の状態で利用している。
【0005】
【発明が解決しようとする課題】
この発明は、上記のような複合材料の機械的特性を更に向上すると共に、他の物性も改善して実用化に適した複合材料を得ることを課題としてなされたものである。
【0006】
【課題を解決するための手段】
上記の課題を達成するために、この発明の複合材料は、竹を化学的にあるいは機械的に処理して得られた繊維を炭化させた竹繊維炭化物を樹脂に混入したことを特徴としている。上記竹繊維炭化物は、15%乃至99%の収率となる条件において生の竹繊維を不活性雰囲気中で加熱処理して得られた完全炭化状態または不完全炭化状態のものである。上記における収率とは、生の竹繊維を加熱して炭化させた後の重量を炭化前の重量で除した割合(百分率)をいう。また、上記の不活性雰囲気中の処理とは、例えば酸素が供給されない蒸し焼き状態や窒素雰囲気中での処理など、脱酸素状態での処理を意味している。
【0007】
このような構成により、この発明によれば、竹繊維が炭化されて繊維が分断された状態となるため、生の竹繊維と比較して樹脂中への分散性が良好となる。その結果、引張り弾性の向上、引張り強度低下の減少、炭化することによる耐アルカリ性や耐薬品性の向上、導電性や静電気防止性の付与、等が見られ、しかも不完全炭化状態の場合には生の竹繊維の性質である抗菌性、防カビ性、防臭性等も残るため、用途の広い複合材料を得ることができる。なお、原料である竹は我が国を含めアジア地区には無尽蔵にあると考えることができ、生産性もよいため、材料を安価に入手することが容易であり、しかも炭化させることによって、竹の種類による差の影響が少なくなるという利点もある。
【0008】
竹繊維に対するTG曲線によると、収率が27%の場合に完全な炭化状態になると認められるので、25%の収率のものは炭素だけの完全炭化状態と考えられる。また炭化の進み具合は温度や時間などによって変化するし、TG曲線の条件よりもかなり高い温度で処理すると炭素分子の結合状態が変わって硬度が高くなり、例えば1000℃乃至2000℃で加熱処理すると、銀色に輝く硬い竹繊維炭化物が得られる。従って、完全炭化状態と言っても、その収率は炭化条件によって25乃至15%程度のバラツキが認められる。一方、収率が99%のものではまだ炭化がほとんど進んでいない。しかし、上記の各種の特徴のいずれを狙うかによって収率が小さい竹繊維炭化物、あるいは収率が大きい竹繊維炭化物を適宜選択して使用すればよいのであり、例えば28%あるいは99%という収率の下限や上限に近い材料でも使用可能である。なお、不完全炭化状態の竹繊維炭化物を使用したことの特徴を充分に発揮させるには、30乃至95%の収率のものを用いるのが好ましいようである。
【0009】
また、上記樹脂として生分解性樹脂を用いれば、プラスチックの廃棄物による汚染を防止し、環境負荷を低減することの可能な生分解性の複合材料を得ることができる。上記の生分解性樹脂としては、例えばポリ乳酸系、PBS(ポリブチレンサクシネート)系、セルロース系、でんぷん系等の樹脂が使用可能である。
【0010】
【発明の実施の形態】
以下、この発明の実施の形態を説明する。
【0011】
まず、原料の竹を周知の適宜の方法により化学的または機械的に粉砕して平均長さが1mm以下の生の竹繊維を得た。この繊維を次の条件により不活性雰囲気中で加熱処理して3種類のサンプル2、3及び4を作り、これらと加熱処理してないサンプル1を用意した。この加熱処理は、雰囲気温度を5℃/分の昇温速度で室温から所定の炭化温度まで昇温した後、所定の保持時間だけその温度に保ち、以後自然冷却するという炭化条件で行った。なお、サンプル1は生の竹繊維であり、以後サンプル番号が増すにつれて収率が小さく炭化が進んだものとなっている。

Figure 2005075836
【0012】
次にこれらのサンプルを用い、母材のPBS樹脂への混入率を5,10及び20(wt%)として成形したプラスチック試験片を作成し、引張り試験を行った。図1及び図2は、試験によって得られた各試験片(サンプルと同じ番号で示す)の混入率に対する引張り弾性率及び引張り強度を示したものである。
【0013】
図1では、混入率が高くなると引張り弾性率が高くなる傾向を示しており、また、収率の大きいサンプル2はサンプル1より高く、サンプル3はサンプル1とほぼ同一、サンプル4はすべてのサンプルより低くなっている。すなわち、混入率が高くなるにつれて引張り弾性率は全般に高くなるが、その上昇率は炭化があまり進んでいないサンプルでは生繊維のものよりも大きく、炭化が進むにつれてその上昇率は小さくなって生繊維より小さくなる。
【0014】
図2では、混入率が高くなると引張り強度は全般に低くなるが、その低下率は生繊維よりは小さく、しかも、炭化があまり進んでいないサンプルの方が低下率が大きく、炭化が進むにつれて小さくなっている。
【0015】
これらの結果から一般的に言える傾向は、生の竹繊維を使用したものに対して引張り弾性が高まり、引張り強度の低下が少ない、ということであるが、炭化の程度によって複合材料としての特性は変化する。また前述したように耐薬品性の向上、導電性や静電気防止性、抗菌性、防カビ性、防臭性なども得られるので、実用に際しては、用途に応じて必要な特性を得られるような収率の竹繊維炭化物を使用すればよい。例えば、強度が若干落ちても吸熱や耐薬品性、静電気防止特性等が要求される場合には、完全炭化に近い収率27%以下のものを、強度が要求され、色は生の竹色に近くてもよい場合には、セルロース繊維が残っていて強度の高い収率90%以上のものをそれぞれ使用する、と言った具合である。収率が高い場合にはそれだけ必要量を確保しやすいので、コスト的にも有利となる。
【0016】
なお、上記のサンプルは上述した炭化条件で加熱処理したものであるが、収率は炭化温度と保持時間及び昇温速度などの組み合わせで決まり、高温短時間でも低温長時間でも同じ収率の竹繊維炭化物を得ることができる。しかし、同じ収率であっても炭化条件が異なれば物性には若干の差が生じ、有機物の一般論としては低温長時間で処理したものの方が強度は高くなると考えられる。従って、実用に際してはこの点を考慮し、充分な事前検討を行うことが望ましい。
【0017】
一般に、生の竹そのものを炭化させた後に粉砕して樹脂に混練すること、特に収率が28%〜99%の不完全炭化状態の竹を粉砕して混練することは非常に困難であり、生の竹では均一に不完全炭化させたものを得ることも困難である。また、生の竹を処理して得た竹繊維は綿状であるため、これを樹脂に大量且つ一様に混練することは困難であり、通常は混入率25%が限界と考えられている。これに対して、竹繊維を加熱処理して得られた竹繊維炭化物であれば、均一な完全または不完全炭化が容易であり、また粉砕しやすく樹脂中での分散状態がよいので樹脂に一様に混練することも容易である。従って、生の竹繊維の場合よりも高い混入率とすることができ、混入率が51%を超えて法律的には樹脂と認められない複合材料の実現も可能となる。
【0018】
また、上記の例のように母材樹脂としてPBS樹脂などの生分解性樹脂を使用したものでは、土中に埋めることにより自然に分解してプラスチック廃棄物による汚染が防止されるので、例えば農業用のマルチシートや育苗用トレー、使い捨て食器など、広範囲な用途に使用することができる。
【0019】
【発明の効果】
以上の説明から明らかなように、この発明の複合材料は、竹を化学的にあるいは機械的に処理して得られた繊維を炭化させた竹繊維炭化物を樹脂に混入したものである。従って、繊維は炭化により分断されたものとなって生の竹繊維と比較して樹脂中への分散性が良好となり、引張り弾性率の向上、引張り強度低下の減少、耐薬品性の向上、導電性や静電気防止性、抗菌性、防カビ性、防臭性等の付与、成形性の向上などの効果が得られ、用途に応じて竹繊維炭化物の収率を選択することにより、各種の用途に適合した複合材料を得ることができる。
【0020】
また、母材樹脂としてポリ乳酸系、PBS系、セルロース系、でんぷん系等の生分解性樹脂を用いれば、プラスチックの廃棄物による汚染を防止し、環境負荷を低減することの可能な生分解性の複合材料を得ることができる。
【図面の簡単な説明】
【図1】この発明の一実施形態における成形品の引張り弾性率を示す図である。
【図2】同じく成形品の引張り強度を示す図である。
【符号の説明】
1 生の竹繊維を用いた試験片
2 収率75%のサンプルを用いた試験片
3 収率55%のサンプルを用いた試験片
4 収率28%のサンプルを用いた試験片[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement of a composite material in which a resin is reinforced with natural fibers.
[0002]
[Prior art]
A composite material in which a resin is reinforced with natural fibers is known, and in recent years, in order to reduce environmental burden, a material using a biodegradable resin as a base material resin has begun to attract attention. This type of composite material is a mixture of plant and animal natural fibers to supplement the mechanical strength of the resin that is the base material, but mechanical strength, chemical resistance, electrical properties, cost, molding The properties are not always compatible, which is one factor that hinders practical application.
[0003]
[Patent Document 1]
JP-A-9-302235 [Patent Document 2]
Japanese Patent Laid-Open No. 2000-160034
When vegetable natural fibers are used in these conventional techniques, fibers such as bamboo, jute, and kenaf are generally used. Conventionally, plant fibers obtained by ordinary methods are used as raw fibers. We are using.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to further improve the mechanical properties of the composite material as described above and improve other physical properties to obtain a composite material suitable for practical use.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the composite material of the present invention is characterized in that bamboo fiber carbide obtained by carbonizing fibers obtained by chemically or mechanically treating bamboo is mixed into a resin. The bamboo fiber carbide is in a completely carbonized state or incompletely carbonized state obtained by heat-treating raw bamboo fiber in an inert atmosphere under conditions that yield 15% to 99%. The yield in the above refers to a ratio (percentage) obtained by dividing the weight after heating and carbonizing raw bamboo fiber by the weight before carbonization. Further, the treatment in the inert atmosphere means a treatment in a deoxygenated state such as a steamed state in which oxygen is not supplied or a treatment in a nitrogen atmosphere.
[0007]
With such a configuration, according to the present invention, the bamboo fiber is carbonized and the fiber is divided, so that the dispersibility in the resin is better than that of the raw bamboo fiber. As a result, improvement in tensile elasticity, reduction in decrease in tensile strength, improvement in alkali resistance and chemical resistance due to carbonization, provision of conductivity and antistatic properties, etc. are seen, and in the case of incomplete carbonization Since the antibacterial properties, fungicidal properties, deodorizing properties, etc., which are the properties of raw bamboo fiber, remain, it is possible to obtain a versatile composite material. In addition, it can be considered that bamboo, the raw material, is inexhaustible in the Asian region including Japan, and because it is highly productive, it is easy to obtain the material at a low price, and by carbonizing it, There is also an advantage that the influence of the difference due to is reduced.
[0008]
According to the TG curve for bamboo fiber, it is recognized that when the yield is 27%, the carbonized state is completely carbonized. In addition, the progress of carbonization changes depending on the temperature, time, etc. If the treatment is performed at a temperature considerably higher than the conditions of the TG curve, the bonding state of carbon molecules changes and the hardness becomes high. For example, when heat treatment is performed at 1000 ° C. to 2000 ° C. A hard bamboo fiber carbide shining silvery is obtained. Therefore, even if it is a complete carbonization state, the yield varies by about 25 to 15% depending on the carbonization conditions. On the other hand, when the yield is 99%, carbonization has hardly progressed. However, the bamboo fiber carbide having a low yield or the bamboo fiber carbide having a high yield may be appropriately selected and used depending on which of the above-mentioned various characteristics is aimed at, for example, a yield of 28% or 99%. Even materials close to the lower limit or the upper limit can be used. In order to fully demonstrate the characteristics of using incompletely carbonized bamboo fiber carbide, it seems that it is preferable to use one with a yield of 30 to 95%.
[0009]
Further, when a biodegradable resin is used as the resin, a biodegradable composite material capable of preventing contamination by plastic waste and reducing the environmental burden can be obtained. Examples of the biodegradable resin include polylactic acid, PBS (polybutylene succinate), cellulose, and starch resins.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0011]
First, raw bamboo was chemically or mechanically pulverized by a known appropriate method to obtain raw bamboo fibers having an average length of 1 mm or less. This fiber was heat-treated in an inert atmosphere under the following conditions to prepare three types of samples 2, 3, and 4, and sample 1 that was not heat-treated with these samples was prepared. This heat treatment was carried out under carbonization conditions in which the ambient temperature was raised from room temperature to a predetermined carbonization temperature at a temperature increase rate of 5 ° C./min, then kept at that temperature for a predetermined holding time, and then naturally cooled. Note that sample 1 is a raw bamboo fiber, and thereafter, as the sample number increases, the yield decreases and carbonization proceeds.
Figure 2005075836
[0012]
Next, using these samples, plastic test pieces molded with the mixing ratio of the base material into the PBS resin as 5, 10 and 20 (wt%) were prepared and subjected to a tensile test. 1 and 2 show the tensile elastic modulus and tensile strength with respect to the mixing rate of each test piece (shown with the same number as the sample) obtained by the test.
[0013]
FIG. 1 shows that the tensile elastic modulus tends to increase as the mixing rate increases. Sample 2 with a high yield is higher than sample 1, sample 3 is almost the same as sample 1, and sample 4 is all samples. It is lower. That is, the tensile modulus generally increases as the mixing rate increases, but the rate of increase is greater than that of raw fibers in samples where carbonization has not progressed much, and the rate of increase decreases as carbonization progresses. Smaller than fiber.
[0014]
In FIG. 2, the tensile strength generally decreases as the mixing rate increases, but the rate of decrease is smaller than that of raw fiber, and the rate of decrease is larger in the sample that has not undergone much carbonization, and decreases as carbonization proceeds. It has become.
[0015]
The general trend from these results is that the tensile elasticity is higher than that using raw bamboo fiber, and the decrease in tensile strength is small, but the characteristics as a composite material depend on the degree of carbonization. Change. Also, as described above, improved chemical resistance, conductivity, antistatic properties, antibacterial properties, antifungal properties, deodorant properties, etc. can be obtained, so that in practical use, the necessary characteristics can be obtained depending on the application. Rate bamboo fiber carbide may be used. For example, if heat absorption, chemical resistance, antistatic properties, etc. are required even if the strength is slightly reduced, the strength is required to be 27% or less with a yield close to complete carbonization, and the color is raw bamboo In the case where it may be close to the above, it is said that cellulosic fibers remain and those having a high yield of 90% or more are used. When the yield is high, the necessary amount can be easily secured, which is advantageous in terms of cost.
[0016]
The above sample was heat-treated under the carbonization conditions described above, but the yield was determined by a combination of the carbonization temperature, the holding time, the rate of temperature increase, etc. Fiber carbide can be obtained. However, even if the yield is the same, if the carbonization conditions are different, there will be a slight difference in physical properties, and as a general theory of organic substances, it is considered that those treated at a low temperature for a long time have higher strength. Therefore, in practical use, it is desirable that sufficient consideration is made in consideration of this point.
[0017]
In general, it is very difficult to pulverize and knead the raw bamboo itself after carbonization, especially to crush and knead the incompletely carbonized bamboo with a yield of 28% to 99%, It is difficult to obtain a raw bamboo that has been uniformly and incompletely carbonized. Moreover, since bamboo fiber obtained by processing raw bamboo is cotton-like, it is difficult to knead it in a large amount and uniformly in a resin, and a mixing rate of 25% is usually considered the limit. . In contrast, a bamboo fiber carbide obtained by heat-treating bamboo fiber is easy to uniformly and completely carbonize and is easily pulverized and has a good dispersion state in the resin. It is easy to knead like this. Therefore, it is possible to achieve a higher mixing rate than in the case of raw bamboo fiber, and it is possible to realize a composite material that exceeds 51% and is not legally recognized as a resin.
[0018]
Moreover, in the case of using a biodegradable resin such as PBS resin as a base resin as in the above example, it is naturally decomposed by being buried in the soil and is prevented from being contaminated with plastic waste. It can be used for a wide range of applications, such as multi-sheets, nursery trays, and disposable tableware.
[0019]
【The invention's effect】
As is apparent from the above description, the composite material of the present invention is obtained by mixing bamboo fiber carbide obtained by carbonizing fibers obtained by chemically or mechanically treating bamboo with a resin. Therefore, the fiber is divided by carbonization and has better dispersibility in the resin compared to raw bamboo fiber, improved tensile elastic modulus, reduced decrease in tensile strength, improved chemical resistance, conductive Effects such as imparting antibacterial properties, antistatic properties, antibacterial properties, antifungal properties, and deodorizing properties, improving moldability, etc., and by selecting the yield of bamboo fiber carbide according to the application, it can be used in various applications A suitable composite material can be obtained.
[0020]
In addition, if biodegradable resins such as polylactic acid, PBS, cellulose, and starch are used as the base resin, biodegradability can be prevented by preventing contamination with plastic waste and reducing the environmental burden. The composite material can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing a tensile elastic modulus of a molded product according to an embodiment of the present invention.
FIG. 2 is a view showing the tensile strength of the molded product.
[Explanation of symbols]
1 Test piece using raw bamboo fiber 2 Test piece using 75% sample 3 Test piece using 55% sample 4 Test piece using 28% sample

Claims (3)

竹を化学的にあるいは機械的に処理して得られた繊維を炭化させた竹繊維炭化物を樹脂に混入してなることを特徴とする複合材料。A composite material obtained by mixing bamboo fiber carbide obtained by carbonizing fibers obtained by chemically or mechanically treating bamboo into a resin. 竹繊維炭化物が、15%乃至99%の収率となる条件において生の竹繊維を不活性雰囲気中で加熱処理して得られたものである請求項1記載の複合材料。2. The composite material according to claim 1, wherein the bamboo fiber carbide is obtained by heat-treating raw bamboo fiber in an inert atmosphere under conditions of a yield of 15% to 99%. 樹脂が生分解性樹脂である請求項1又は2記載の複合材料。The composite material according to claim 1, wherein the resin is a biodegradable resin.
JP2003209484A 2003-08-29 2003-08-29 Composite material Pending JP2005075836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003209484A JP2005075836A (en) 2003-08-29 2003-08-29 Composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003209484A JP2005075836A (en) 2003-08-29 2003-08-29 Composite material

Publications (1)

Publication Number Publication Date
JP2005075836A true JP2005075836A (en) 2005-03-24

Family

ID=34402395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003209484A Pending JP2005075836A (en) 2003-08-29 2003-08-29 Composite material

Country Status (1)

Country Link
JP (1) JP2005075836A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009171386A (en) * 2008-01-18 2009-07-30 Panasonic Corp Diaphragm for speaker and speaker employing the same as well as electronic instrument and device employing this speaker
JP2009246706A (en) * 2008-03-31 2009-10-22 Panasonic Corp Dust cap for speaker, speaker using the same, and electronic device and apparatus using the speaker
JP2009246704A (en) * 2008-03-31 2009-10-22 Panasonic Corp Frame for speaker, speaker using the same, and electronic device and apparatus using the speaker
WO2012140880A1 (en) * 2011-04-15 2012-10-18 パナソニック株式会社 Resin molding part for speakers and speaker equipped with same, and electronic device and mobile device each equipped with said speaker
CN104070571A (en) * 2014-06-17 2014-10-01 福建农林大学 Method for preventing bamboo from mildewing by using aspergillus flavus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009171386A (en) * 2008-01-18 2009-07-30 Panasonic Corp Diaphragm for speaker and speaker employing the same as well as electronic instrument and device employing this speaker
US8340342B2 (en) 2008-01-18 2012-12-25 Panasonic Corporation Diaphragm for speaker, speaker using the diaphragm, electronic device using the speaker, and speaker-mounted device
JP2009246706A (en) * 2008-03-31 2009-10-22 Panasonic Corp Dust cap for speaker, speaker using the same, and electronic device and apparatus using the speaker
JP2009246704A (en) * 2008-03-31 2009-10-22 Panasonic Corp Frame for speaker, speaker using the same, and electronic device and apparatus using the speaker
WO2012140880A1 (en) * 2011-04-15 2012-10-18 パナソニック株式会社 Resin molding part for speakers and speaker equipped with same, and electronic device and mobile device each equipped with said speaker
CN103503479A (en) * 2011-04-15 2014-01-08 松下电器产业株式会社 Loudspeaker resin molding component and loudspeaker using same and electronic device and mobile apparatus using loudspeaker
US8873793B2 (en) 2011-04-15 2014-10-28 Panasonic Corporation Loudspeaker resin molding component and loudspeaker using the same and electronic device and mobile apparatus using the loudspeaker
CN103503479B (en) * 2011-04-15 2016-03-02 松下知识产权经营株式会社 Loud speaker resin-molded component with employ the loud speaker of this resin-molded component and employ electronic equipment and the mobile body device of this loud speaker
CN104070571A (en) * 2014-06-17 2014-10-01 福建农林大学 Method for preventing bamboo from mildewing by using aspergillus flavus
CN104070571B (en) * 2014-06-17 2016-04-06 福建农林大学 A kind ofly utilize Aspergillus flavus to the method preventing bamboo wood from going mouldy

Similar Documents

Publication Publication Date Title
Hulle et al. Agave Americana leaf fibers
Alshahrani et al. Mechanical, fatigue and DMA behaviour of high content cellulosic corn husk fibre and orange peel biochar epoxy biocomposite: a greener material for cleaner production
Antinori et al. Fine-tuning of physicochemical properties and growth dynamics of mycelium-based materials
CN107226997B (en) Dopamine modified glass-fiber-epoxy resin composite material preparation method
Maepa et al. Extraction and characterization of natural cellulose fibers from maize tassel
Teramoto et al. Biodegradation of aliphatic polyester composites reinforced by abaca fiber
Shih et al. Pineapple leaf/recycled disposable chopstick hybrid fiber-reinforced biodegradable composites
Chun et al. Characterization and properties of recycled polypropylene/coconut shell powder composites: Effect of sodium dodecyl sulfate modification
Cai et al. Reinforced and ultraviolet resistant silks from silkworms fed with titanium dioxide nanoparticles
NagarajaGanesh et al. Extraction and characterization of lignocellulosic fibers from Luffa cylindrica fruit
Evans et al. Chemically purified cellulose and its nanocrystals from sugarcane baggase: isolation and characterization
Azieyanti et al. Mechanical and morphology studies of bioplastic-based banana peels
Kuciel et al. Novel biorenewable composites based on poly (3-hydroxybutyrate-co-3-hydroxyvalerate) with natural fillers
CA2898513A1 (en) Methods, products, and systems relating to making, providing, and using nanocrystalline (nc) products comprising nanocrystalline cellulose (ncc), nanocrystalline (nc) polymers and/or nanocrystalline (nc) plastics or other nanocrystals of cellulose composites or structures, in combination with other materials
Yin et al. Self-organization of oligopeptides obtained on dissolution of feather keratins in superheated water
Nepomuceno et al. Extraction and characterization of cellulose nanowhiskers from Mandacaru (Cereus jamacaru DC.) spines
CN103952774A (en) Method for preparing mulberry silk containing nanometer TiO2
JP2003306607A5 (en)
Leão et al. Agro-based biocomposites for industrial applications
CN104872082A (en) Nano-zinc oxide feeding silkworm rearing method for manufacturing high-performance silk and product thereof
Khan et al. A review on chicken feather fiber (CFF) and its application in composites
JP2005075836A (en) Composite material
KR20100035032A (en) Method for producing pla fiber using the grounds of coffee
Faiza et al. Degradation analysis of epoxy resin composites reinforced with bioprotein: Effects of hydrolysis using papain and bromelain
Durowaye et al. Synthesis and characterization of hybrid polypropylene matrix composites reinforced with carbonized Terminalia catappa shell particles and Turritela communis shell particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060829

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090811