JP2005075206A - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP2005075206A
JP2005075206A JP2003309836A JP2003309836A JP2005075206A JP 2005075206 A JP2005075206 A JP 2005075206A JP 2003309836 A JP2003309836 A JP 2003309836A JP 2003309836 A JP2003309836 A JP 2003309836A JP 2005075206 A JP2005075206 A JP 2005075206A
Authority
JP
Japan
Prior art keywords
tire
cross
sectional area
rubber
pneumatic tire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003309836A
Other languages
Japanese (ja)
Other versions
JP4360464B2 (en
Inventor
Atsushi Tanno
篤 丹野
Naoya Amino
直也 網野
Mikio Moriasa
麻樹夫 森
Yuji Yamauchi
裕司 山内
Yasuji Akiyoshi
靖二 秋好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Yokohama Rubber Co Ltd
Original Assignee
Mitsubishi Motors Corp
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp, Yokohama Rubber Co Ltd filed Critical Mitsubishi Motors Corp
Priority to JP2003309836A priority Critical patent/JP4360464B2/en
Publication of JP2005075206A publication Critical patent/JP2005075206A/en
Application granted granted Critical
Publication of JP4360464B2 publication Critical patent/JP4360464B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • B60C19/002Noise damping elements provided in the tyre structure or attached thereto, e.g. in the tyre interior

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pneumatic tire which can effectively lower an air column resonance sound without deteriorating its uniformity. <P>SOLUTION: In the pneumatic tire forming a cavity space 5 between an inner surface 4 of the tire and a rim 11, the cavity space 5 has at least two types of meridian cross sectional shapes, and a rotational mass is uniformly distributed over the whole periphery of the tire. In other words, a cross section adjusting member 21 including an expandable rubber is arranged circumferentially on the inside surface 4 of the tire, and the expansion rate of the cross section adjusting member 21 is varied in the peripheral direction of the tire while keeping the mass distribution of the cross section adjusting member 21 uniform over the whole periphery of the tire. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ホイールに装着した状態でタイヤ内面とリムとの間に空洞部を形成する空気入りタイヤに関し、更に詳しくは、気柱共鳴音を効果的に低減するようにした空気入りタイヤに関する。   The present invention relates to a pneumatic tire in which a hollow portion is formed between an inner surface of a tire and a rim in a state where the tire is mounted on a wheel, and more particularly to a pneumatic tire in which air column resonance noise is effectively reduced.

タイヤにより生じた振動が車室内に伝わることで発生する騒音(ロードノイズ)は、タイヤとリムで囲まれた空洞部が気柱を形成し、空洞部内の空気が約200〜250Hzの周波数域で気柱共鳴を起こすことが一つの原因になっていることが分かっている。   The noise (road noise) generated when the vibration generated by the tire is transmitted to the vehicle interior forms an air column in the cavity surrounded by the tire and the rim, and the air in the cavity is in a frequency range of about 200 to 250 Hz. It is known that the cause of air column resonance is one cause.

このような気柱共鳴音を低減する手段として、タイヤ内部に吸音材や凹凸を付加して共鳴音を吸収することが提案されている。しかしながら、この手法は気柱共鳴の発生を根本的に抑制するものではないので、タイヤ内部において現実的に装着できる吸音材では気柱共鳴音の低減効果を十分に得ることができない。   As means for reducing such air column resonance noise, it has been proposed to add a sound absorbing material or unevenness inside the tire to absorb the resonance noise. However, since this method does not fundamentally suppress the occurrence of air column resonance, a sound absorbing material that can be practically installed inside the tire cannot sufficiently obtain the effect of reducing the air column resonance.

また、タイヤ内部に遮蔽板を配設したり、充填気体を空気以外の気体に変更する等の方法により、共鳴周波数を変化させることが提案されている。しかしながら、タイヤ内部に遮蔽板を設ける場合、タイヤのリム組み作業を困難にし、タイヤ内部に空気以外の気体を充填する場合、特別な充填設備が必要になるため汎用性に乏しいという不都合がある。そのため、これら手法は実用化に至っていないのが現状である。   It has also been proposed to change the resonance frequency by a method such as arranging a shielding plate inside the tire or changing the filling gas to a gas other than air. However, when a shielding plate is provided inside the tire, it is difficult to assemble the rim of the tire, and when filling the inside of the tire with a gas other than air, a special filling facility is required, resulting in poor versatility. For this reason, these methods have not yet been put into practical use.

これに対して、タイヤ内面やリム外周面に所定の容積を有する部材をタイヤ周方向に沿って間欠的に配置し、空洞部の断面積をタイヤ周方向に変化させることで、気柱共鳴の発生を抑制することが提案されている(例えば、特許文献1及び特許文献2参照)。これら手法によれば、気柱共鳴音を効果的に低減することが可能である。しかしながら、空洞部の断面積をタイヤ周方向に変化させるために、タイヤ内面やリム外周面にタイヤ周方向に沿って間欠的に部材を配置すると、それに伴ってタイヤのユニフォミティーが悪化するという新たな問題を生じている。
特開2001−113902号公報 特開2002−120509号公報
In contrast, by disposing a member having a predetermined volume on the tire inner surface or the rim outer peripheral surface intermittently along the tire circumferential direction and changing the cross-sectional area of the cavity in the tire circumferential direction, It has been proposed to suppress the occurrence (see, for example, Patent Document 1 and Patent Document 2). According to these methods, the air column resonance can be effectively reduced. However, in order to change the cross-sectional area of the hollow portion in the tire circumferential direction, if a member is intermittently disposed along the tire circumferential direction on the tire inner surface or the rim outer circumferential surface, the tire uniformity deteriorates accordingly. Is causing serious problems.
JP 2001-113902 A JP 2002-120509 A

本発明の目的は、ユニフォミティーを悪化させずに気柱共鳴音を効果的に低減することを可能にした空気入りタイヤを提供することにある。   An object of the present invention is to provide a pneumatic tire that can effectively reduce air column resonance without deteriorating uniformity.

上記目的を達成するための本発明の空気入りタイヤは、ホイールに装着した状態でタイヤ内面とリムとの間に空洞部を形成する空気入りタイヤにおいて、前記空洞部が少なくとも2種類の子午線断面形状を有し、かつ回転質量がタイヤ全周にわたって均一であることを特徴とするものである。   In order to achieve the above object, a pneumatic tire according to the present invention is a pneumatic tire in which a cavity is formed between a tire inner surface and a rim in a state where the pneumatic tire is mounted on a wheel, wherein the cavity has at least two kinds of meridian cross-sectional shapes. And the rotating mass is uniform over the entire circumference of the tire.

第1の手段として、上記空気入りタイヤにおいて、タイヤ外皮のゴム厚さを空洞部の断面積に比例してタイヤ周方向に変化させることが可能である。   As a first means, in the pneumatic tire, it is possible to change the rubber thickness of the tire skin in the tire circumferential direction in proportion to the cross-sectional area of the cavity.

第2の手段として、上記空気入りタイヤにおいて、タイヤ内面に膨張性ゴムを含む断面積調整部材をタイヤ周方向に沿って配設し、該断面積調整部材の質量分布をタイヤ全周にわたって均一にしながら該断面積調整部材の膨張率をタイヤ周方向に変化させることが可能である。   As a second means, in the pneumatic tire, a cross-sectional area adjusting member including an expandable rubber is disposed on the tire inner surface along the tire circumferential direction, and the mass distribution of the cross-sectional area adjusting member is made uniform over the entire tire circumference. However, it is possible to change the expansion coefficient of the cross-sectional area adjusting member in the tire circumferential direction.

ここで、回転質量とはタイヤ回転軸を中心として微小角度でタイヤを切り取った部分の質量である。本発明では、タイヤを少なくとも16分割したとき、回転質量の最小値に対する最大値の変動率が1.0%以下であることが好ましい。   Here, the rotational mass is the mass of a portion obtained by cutting the tire at a minute angle around the tire rotation axis. In the present invention, when the tire is divided into at least 16 parts, the variation rate of the maximum value with respect to the minimum value of the rotational mass is preferably 1.0% or less.

本発明によれば、空洞部が少なくとも2種類の子午線断面形状を有することにより、共鳴周波数がタイヤ回転に伴って変化し、同一周波数で共鳴する時間が短縮されるので、気柱共鳴音を効果的に低減することができる。しかも、回転質量がタイヤ全周にわたって均一であるので、タイヤのユニフォミティーを悪化させることはない。   According to the present invention, since the cavity has at least two kinds of meridian cross-sectional shapes, the resonance frequency changes as the tire rotates, and the time for resonance at the same frequency is shortened. Can be reduced. In addition, since the rotational mass is uniform over the entire circumference of the tire, the tire uniformity is not deteriorated.

タイヤ外皮のゴム厚さを空洞部の断面積に比例してタイヤ周方向に変化させた場合、空洞部の子午線断面形状の変化に起因する質量の不均一をタイヤ外皮のゴム厚さの変化で補うことができる。   When the rubber thickness of the tire skin is changed in the tire circumferential direction in proportion to the cross-sectional area of the cavity, the unevenness in mass caused by the change in the meridian cross-sectional shape of the cavity is caused by the change in the rubber thickness of the tire skin. Can be supplemented.

一方、断面積調整部材の質量分布をタイヤ全周にわたって均一にしながら断面積調整部材の膨張率をタイヤ周方向に変化させた場合、断面積調整部材に起因して質量の不均一を生じることはない。断面積調整部材はトレッド部におけるタイヤ内面に配置すると良い。この場合、ベルト層で保護されているトレッド部において広い面積で断面積調整部材を配置することができるので、空洞部の断面積変化率をより大きくすることができる。   On the other hand, when the expansion coefficient of the cross-sectional area adjusting member is changed in the tire circumferential direction while making the mass distribution of the cross-sectional area adjusting member uniform over the entire circumference of the tire, non-uniformity of mass is caused due to the cross-sectional area adjusting member. Absent. The cross-sectional area adjusting member may be disposed on the tire inner surface in the tread portion. In this case, since the cross-sectional area adjusting member can be disposed in a wide area in the tread portion protected by the belt layer, the cross-sectional area change rate of the cavity can be further increased.

上記空気入りタイヤにおいては、気柱共鳴音を効果的に低減するために、断面積調整部材に膨張性ゴムからなる複数の膨張部をタイヤ周方向に沿って間欠的に形成し、これら膨張部のタイヤ周方向の総長さを断面積調整部材の周長の30〜70%にすると良い。膨張部の膨張率は100%以上にすることが望ましいが、断面積調整部材をタイヤ内面のインナーライナー層に貼り付けた場合、膨張性ゴムからなる膨張部が波打ち、インナーライナー層から剥がれ易くなる。そのため、膨張部を多層とし、タイヤ内面に接する層の膨張率を100%未満に規制する一方で、他の層の膨張率を100〜500%にすることが好ましい。   In the pneumatic tire described above, in order to effectively reduce air column resonance noise, a plurality of inflatable portions made of inflatable rubber are intermittently formed in the cross-sectional area adjusting member along the tire circumferential direction, and these inflatable portions The total length in the tire circumferential direction may be 30 to 70% of the circumferential length of the cross-sectional area adjusting member. The expansion rate of the expansion part is desirably 100% or more. However, when the cross-sectional area adjusting member is attached to the inner liner layer on the inner surface of the tire, the expansion part made of an expandable rubber is waved and easily peels off from the inner liner layer. . Therefore, it is preferable that the inflating part is a multilayer and the expansion coefficient of the layer in contact with the tire inner surface is restricted to less than 100%, while the expansion coefficient of the other layers is 100 to 500%.

膨張性ゴムとは、発泡剤等の存在により見掛けの比重が低下した状態のゴムである。このような膨張性ゴムとしては、発泡剤を配合したゴム、熱膨張性マイクロカプセルを配合したゴム、又は、発泡剤含有樹脂を配合したゴムを使用することができる。この膨張性ゴムは、インナーライナー層に貼り付けられることを考慮して、ゴム100重量部のうち20重量部以上のブチルゴム又はハロゲン化ブチルゴムを含むものであると良い。   The expansible rubber is a rubber whose apparent specific gravity is lowered due to the presence of a foaming agent or the like. As such an expandable rubber, a rubber compounded with a foaming agent, a rubber compounded with a thermally expandable microcapsule, or a rubber compounded with a foaming agent-containing resin can be used. In consideration of being attached to the inner liner layer, this expansible rubber preferably contains 20 parts by weight or more of butyl rubber or halogenated butyl rubber out of 100 parts by weight of rubber.

膨張率とは、膨張前の体積をAとし、膨張後の体積をBとしたとき、(B−A)/A×100%にて表される。この膨張率は、ゴム成分の比重と膨張状態での見掛けの比重とから求めることができる。例えば、ゴム成分の比重が膨張状態での見掛けの比重の2倍であれば、膨張率は100%である。   The expansion rate is represented by (B−A) / A × 100%, where A is the volume before expansion and B is the volume after expansion. This expansion rate can be determined from the specific gravity of the rubber component and the apparent specific gravity in the expanded state. For example, if the specific gravity of the rubber component is twice the apparent specific gravity in the expanded state, the expansion rate is 100%.

本発明では、気柱共鳴音を効果的に低減するために、空洞部のタイヤ周方向の断面積変化率は2.0〜5.0%であることが好ましい。ここで、空洞部のタイヤ周方向の断面積変化率とは、空洞部をタイヤ子午線に沿って切り欠き、その切り欠き位置をタイヤ周方向に沿って移動させたときに測定される断面積の最大値に対する変化率である。また、本発明の空気入りタイヤに装着するホイールのリムは、JATMAイヤーブック(2002年度版)に規定される標準リムである。   In the present invention, the cross-sectional area change rate in the tire circumferential direction of the cavity is preferably 2.0 to 5.0% in order to effectively reduce air column resonance. Here, the change rate of the cross-sectional area in the tire circumferential direction of the cavity is the cross-sectional area measured when the cavity is notched along the tire meridian and the notch position is moved along the tire circumferential direction. The rate of change relative to the maximum value. The wheel rim to be mounted on the pneumatic tire of the present invention is a standard rim defined in the JATMA Yearbook (2002 edition).

以下、本発明の構成について添付の図面を参照しながら詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail with reference to the accompanying drawings.

図1は本発明の第1実施形態の空気入りタイヤとホイールからなる車輪を示す子午線断面図であり、図2はその空気入りタイヤを赤道線に沿って切り欠いた状態のタイヤ内面を示す概略説明図である。   FIG. 1 is a meridian cross-sectional view showing a wheel formed of a pneumatic tire and a wheel according to a first embodiment of the present invention, and FIG. 2 is a schematic view showing the inner surface of the tire in a state where the pneumatic tire is cut out along the equator line. It is explanatory drawing.

図1において、タイヤTはトレッド部1と、左右一対のビード部2と、これらトレッド部1とビード部2とを互いに連接するサイドウォール部3とを備えている。一方、ホイールHはタイヤTのビード部2,2を装着するためのリム11と、該リム11と不図示の車軸とを連結するディスク12とから構成されている。タイヤTをホイールHに装着して車輪を構成したとき、タイヤ内面4とリム11との間には空洞部5が形成される。   In FIG. 1, a tire T includes a tread portion 1, a pair of left and right bead portions 2, and a sidewall portion 3 that connects the tread portion 1 and the bead portion 2 to each other. On the other hand, the wheel H is composed of a rim 11 for mounting the bead portions 2 and 2 of the tire T, and a disk 12 for connecting the rim 11 and an axle (not shown). When the tire is mounted on the wheel H to form a wheel, a cavity 5 is formed between the tire inner surface 4 and the rim 11.

上記空気入りタイヤは、回転質量がタイヤ全周にわたって均一であるが、その空洞部5が少なくとも2種類の子午線断面形状を有している。より具体的には、図2に示すように、ビード部2におけるタイヤ内面4には複数の凸部6がタイヤ周方向に沿って間欠的に延在するように形成され、その結果として断面積が大きい部分と小さい部分が形成されているが、サイドウォール部3におけるタイヤ外面7には複数の凹部8がタイヤ周方向に沿って間欠的に延在するように形成されている。タイヤ子午線断面において凸部6の断面積と凹部8とは互いに略一致している。つまり、タイヤ外皮のゴム厚さは空洞部5の断面積に比例してタイヤ周方向に変化している。   The pneumatic tire has a rotating mass that is uniform over the entire circumference of the tire, but the cavity 5 has at least two meridian cross-sectional shapes. More specifically, as shown in FIG. 2, a plurality of convex portions 6 are formed on the tire inner surface 4 of the bead portion 2 so as to extend intermittently along the tire circumferential direction, and as a result, the cross-sectional area is increased. A large portion and a small portion are formed, but a plurality of recesses 8 are formed on the tire outer surface 7 of the sidewall portion 3 so as to extend intermittently along the tire circumferential direction. In the tire meridian cross section, the cross-sectional area of the convex portion 6 and the concave portion 8 substantially coincide with each other. That is, the rubber thickness of the tire outer shell changes in the tire circumferential direction in proportion to the cross-sectional area of the cavity 5.

上述のように構成される空気入りタイヤでは、空洞部5が少なくとも2種類の子午線断面形状を有しているので、共鳴周波数がタイヤ回転に伴って変化し、同一周波数で共鳴する時間が短縮される。そのため、気柱共鳴音を効果的に低減することができる。また、回転質量がタイヤ全周にわたって均一であるので、質量バランスを損なうことはなく、タイヤのユニフォミティーの悪化を避けることができる。   In the pneumatic tire configured as described above, since the cavity 5 has at least two types of meridian cross-sectional shapes, the resonance frequency changes as the tire rotates, and the time for resonance at the same frequency is shortened. The Therefore, the air column resonance can be effectively reduced. Further, since the rotational mass is uniform over the entire circumference of the tire, the mass balance is not impaired, and deterioration of the tire uniformity can be avoided.

凸部6は長さL1 を周長の1/16〜1/4とし、タイヤ周方向に沿って等間隔で周上に2〜8個所設置することが好ましい。凸部6の長さL1 や設置数が上記範囲から外れると気柱共鳴音の抑制効果が不十分になる。特に、空洞共鳴周波数を変化させるために、長さL1 はタイヤの接地長よりも長いことが望ましい。一方、凸部6の相互間隔L2 は長さL1 と略等しくすることが好ましいが、必ずしも一致させる必要はない。 Protrusions 6 was 1 / 16-1 / 4 the length L 1 circumferential length of, it is preferable that 2 to 8 to point placed on the circumference at equal intervals along the tire circumferential direction. If the length L 1 and the number of installation of the convex portions 6 are out of the above range, the effect of suppressing air column resonance is insufficient. In particular, in order to change the cavity resonance frequency, it is desirable that the length L 1 is longer than the contact length of the tire. On the other hand, the mutual interval L 2 between the convex portions 6 is preferably substantially equal to the length L 1 , but it is not necessarily required to match.

上述した実施形態ではタイヤ内面に凸部を設け、タイヤ外面に凹部を設けた場合について説明したが、本発明ではタイヤ内面に凹部を設け、タイヤ外面に凸部を設けることも可能である。また、本発明では空洞部の断面積を周期的に変化させることが重要であるので、上述の凹部や凸部は認識が困難な程度に緩やかのものであっても良い。更に、空洞部の子午線断面形状の種類は2種類以上であっても良く、空洞部のタイヤ周方向の断面積変化率が2.0〜5.0%であれば良い。   In the above-described embodiment, the case where the convex portion is provided on the inner surface of the tire and the concave portion is provided on the outer surface of the tire has been described. In the present invention, since it is important to periodically change the cross-sectional area of the hollow portion, the above-described concave portion and convex portion may be so gentle that it is difficult to recognize. Further, the meridian cross-sectional shape of the cavity may be two or more, and the cross-sectional area change rate in the tire circumferential direction of the cavity may be 2.0 to 5.0%.

図3は本発明の第2実施形態の空気入りタイヤとホイールからなる車輪を示す子午線断面図であり、図4はその空気入りタイヤを赤道線に沿って切り欠いた状態のタイヤ内面を示す概略説明図である。   FIG. 3 is a meridian cross-sectional view showing a wheel composed of a pneumatic tire and a wheel according to a second embodiment of the present invention, and FIG. 4 is a schematic view showing the tire inner surface in a state where the pneumatic tire is cut out along the equator line. It is explanatory drawing.

図3において、タイヤTはトレッド部1と、左右一対のビード部2と、これらトレッド部1とビード部2とを互いに連接するサイドウォール部3とを備えている。一方、ホイールHはタイヤTのビード部2,2を装着するためのリム11と、該リム11と不図示の車軸とを連結するディスク12とから構成されている。タイヤTをホイールHに装着して車輪を構成したとき、タイヤ内面4とリム11との間には空洞部5が形成される。   In FIG. 3, the tire T includes a tread portion 1, a pair of left and right bead portions 2, and a sidewall portion 3 that connects the tread portion 1 and the bead portion 2 to each other. On the other hand, the wheel H is composed of a rim 11 for mounting the bead portions 2 and 2 of the tire T, and a disk 12 for connecting the rim 11 and an axle (not shown). When the tire is mounted on the wheel H to form a wheel, a cavity 5 is formed between the tire inner surface 4 and the rim 11.

上記空気入りタイヤは、回転質量がタイヤ全周にわたって均一であるが、その空洞部5が少なくとも2種類の子午線断面形状を有している。より具体的には、トレッド部1におけるタイヤ内面4には膨張性ゴムを含む断面積調整部材21がタイヤ周方向に沿って連続的に配設され、断面積調整部材21の質量分布をタイヤ全周にわたって均一にしながら断面積調整部材21の膨張率をタイヤ周方向に変化させている。図4に示すように、断面積調整部材21は膨張性ゴムからなる膨張部22と非膨張性ゴムからなる非膨張部23とをタイヤ周方向に沿って交互に配置したものである。この断面積調整部材21は不図示のベルト層によって保護されつつトレッド部1の広い面積にわたって形成されているので、その膨張状態に基づいて空洞部5の断面積を大きく変化させることが可能である。   The pneumatic tire has a rotating mass that is uniform over the entire circumference of the tire, but the cavity 5 has at least two meridian cross-sectional shapes. More specifically, a cross-sectional area adjusting member 21 including an expandable rubber is continuously disposed along the tire circumferential direction on the tire inner surface 4 in the tread portion 1, and the mass distribution of the cross-sectional area adjusting member 21 is set to the entire tire area. The expansion coefficient of the cross-sectional area adjusting member 21 is changed in the tire circumferential direction while being uniform over the circumference. As shown in FIG. 4, the cross-sectional area adjusting member 21 is configured by alternately arranging inflatable portions 22 made of inflatable rubber and non-inflatable portions 23 made of non-inflatable rubber along the tire circumferential direction. Since the cross-sectional area adjusting member 21 is formed over a wide area of the tread portion 1 while being protected by a belt layer (not shown), it is possible to greatly change the cross-sectional area of the cavity portion 5 based on its expanded state. .

上述のように構成される空気入りタイヤでは、空洞部5が少なくとも2種類の子午線断面形状を有しているので、共鳴周波数がタイヤ回転に伴って変化し、同一周波数で共鳴する時間が短縮される。そのため、気柱共鳴音を効果的に低減することができる。また、回転質量がタイヤ全周にわたって均一であるので、質量バランスを損なうことはなく、タイヤのユニフォミティーの悪化を避けることができる。   In the pneumatic tire configured as described above, since the cavity 5 has at least two types of meridian cross-sectional shapes, the resonance frequency changes as the tire rotates, and the time for resonance at the same frequency is shortened. The Therefore, the air column resonance can be effectively reduced. Further, since the rotational mass is uniform over the entire circumference of the tire, the mass balance is not impaired, and deterioration of the tire uniformity can be avoided.

図5は本発明の第3実施形態の空気入りタイヤとホイールからなる車輪を示す子午線断面図であり、図6はその空気入りタイヤを赤道線に沿って切り欠いた状態のタイヤ内面を示す概略説明図である。本実施形態は断面積調整部材の位置が第2実施形態から異なるものである。   FIG. 5 is a meridian cross-sectional view showing a wheel composed of a pneumatic tire and a wheel according to a third embodiment of the present invention, and FIG. 6 is a schematic diagram showing the inner surface of the tire in a state where the pneumatic tire is cut out along the equator line. It is explanatory drawing. In the present embodiment, the position of the cross-sectional area adjusting member is different from that of the second embodiment.

図5に示すように、ビード部2におけるタイヤ内面4には膨張性ゴムを含む断面積調整部材21がタイヤ周方向に沿って連続的に配設され、断面積調整部材21の質量分布をタイヤ全周にわたって均一にしながら断面積調整部材21の膨張率をタイヤ周方向に変化させている。図6に示すように、断面積調整部材21は膨張性ゴムからなる膨張部22と非膨張性ゴムからなる非膨張部23とをタイヤ周方向に沿って交互に備えている。このように構成される空気入りタイヤであっても、ユニフォミティーを悪化させることなく、気柱共鳴音を効果的に低減することが可能である。   As shown in FIG. 5, a cross-sectional area adjusting member 21 including an inflatable rubber is continuously disposed along the tire circumferential direction on the tire inner surface 4 in the bead portion 2, and the mass distribution of the cross-sectional area adjusting member 21 is changed to the tire. The expansion coefficient of the cross-sectional area adjusting member 21 is changed in the tire circumferential direction while being uniform over the entire circumference. As shown in FIG. 6, the cross-sectional area adjusting member 21 includes alternately inflating portions 22 made of inflatable rubber and non-inflating portions 23 made of non-inflatable rubber along the tire circumferential direction. Even in the pneumatic tire configured as described above, it is possible to effectively reduce the air column resonance sound without deteriorating the uniformity.

図7及び図8はそれぞれトレッド部に配置された断面積調整部材の膨張前後の状態を示すものである。但し、断面積調整部材はタイヤ1周分を展開した状態にて示す。図7に示すように、膨張前の状態において、膨張部22と非膨張部23とは同じ幅で同じ厚さであり、見掛けの比重も略同一である。そのため、断面積調整部材21の追加によってタイヤの質量分布が不均一になることはない。これに対して、図8に示すように、膨張後の状態において、膨張部22の体積は非膨張部23の体積よりも大きくなっている。そのため、膨張部22と非膨張部23との繰り返しにより、空洞部5の断面積をタイヤ周方向に変化させることができる。   7 and 8 show the states before and after the expansion of the cross-sectional area adjusting member disposed in the tread portion. However, the cross-sectional area adjusting member is shown in a state in which one round of the tire is developed. As shown in FIG. 7, in the state before expansion, the expansion part 22 and the non-expansion part 23 have the same width and the same thickness, and the apparent specific gravity is also substantially the same. Therefore, the addition of the cross-sectional area adjusting member 21 does not make the tire mass distribution non-uniform. On the other hand, as shown in FIG. 8, the volume of the expansion part 22 is larger than the volume of the non-expansion part 23 in the state after expansion. Therefore, the cross-sectional area of the cavity 5 can be changed in the tire circumferential direction by repeating the inflating part 22 and the non-inflating part 23.

膨張部22は長さL11を周長の1/16〜1/4とし、タイヤ周方向に沿って等間隔で周上に2〜8個所設置することが好ましい。膨張部22の長さL11や設置数が上記範囲から外れると気柱共鳴音の抑制効果が不十分になる。特に、空洞共鳴周波数を変化させるために、長さL11はタイヤの接地長よりも長いことが望ましい。一方、膨張部22の相互間隔L12は長さL11と略等しくすることが好ましいが、必ずしも一致させる必要はない。 Inflatable portion 22 is a length L 11 and 1 / 16-1 / 4 of the circumference, it is preferable that 2 to 8 to point placed on the circumference at equal intervals along the tire circumferential direction. If the length L 11 of the inflating part 22 and the number of installations are out of the above range, the effect of suppressing the air column resonance sound becomes insufficient. In particular, in order to change the cavity resonance frequency, it is desirable that the length L 11 is longer than the contact length of the tire. On the other hand, the interval L 12 between the expanding portions 22 is preferably substantially equal to the length L 11 , but it is not necessarily required to match.

膨張部22のタイヤ周方向の総長さ(長さL11の総和)は、断面積調整部材21の周長の30〜70%にすると良い。膨張部22のタイヤ周方向の総長さが上記範囲から外れると気柱共鳴音の抑制効果が不十分になる。 The total length of the inflating portion 22 in the tire circumferential direction (the total length L 11 ) is preferably 30 to 70% of the circumferential length of the cross-sectional area adjusting member 21. If the total length of the inflating portion 22 in the tire circumferential direction is out of the above range, the effect of suppressing the air column resonance is insufficient.

空洞部5のタイヤ周方向の断面積変化率を2.0〜5.0%にするために、膨張部22の膨張率は100%以上、より好ましくは200%以上にすることが望ましい。或いは、膨張部22の見掛けの比重は0.6以下、より好ましくは0.4以下であることが望ましい。膨張部22の膨張率が100%未満であると、空洞部5のタイヤ周方向の断面積変化率を大きくすることが困難になる。   In order to change the cross-sectional area change rate of the hollow portion 5 in the tire circumferential direction to 2.0 to 5.0%, it is desirable that the expansion rate of the expansion portion 22 is 100% or more, more preferably 200% or more. Alternatively, it is desirable that the apparent specific gravity of the expanding portion 22 is 0.6 or less, more preferably 0.4 or less. If the expansion ratio of the expansion portion 22 is less than 100%, it is difficult to increase the cross-sectional area change rate of the cavity portion 5 in the tire circumferential direction.

断面積調整部材21はタイヤ内面4のインナーライナー層に貼り付けられるが、膨張に伴って膨張部22が波打ち、インナーライナー層から剥がれ易くなることがある。そのような不都合を回避するために、図9に示すように、膨張部22を多層とし、タイヤ内面4に接する層22a(密着層)の膨張率を100%未満に規制する一方で、他の層22b(露出層)の膨張率を100〜500%にすると良い。これにより、断面積調整部材21のタイヤ内面4への密着性を確保しながら、空洞部5のタイヤ周方向の断面積変化率を大きくすることが可能になる。   The cross-sectional area adjusting member 21 is affixed to the inner liner layer of the tire inner surface 4, but the inflated portion 22 may wave as it expands, and may easily peel off from the inner liner layer. In order to avoid such an inconvenience, as shown in FIG. 9, the inflatable portion 22 is formed as a multilayer, and the expansion rate of the layer 22 a (adhesion layer) in contact with the tire inner surface 4 is restricted to less than 100%, while other The expansion rate of the layer 22b (exposed layer) is preferably 100 to 500%. Thereby, it is possible to increase the cross-sectional area change rate in the tire circumferential direction of the cavity 5 while ensuring the adhesion of the cross-sectional area adjusting member 21 to the tire inner surface 4.

膨張性ゴムとしては、発泡剤を配合したゴム、熱膨張性マイクロカプセルを配合したゴム、及び、発泡剤含有樹脂を配合したゴムのいずれかを使用することができる。この膨張性ゴムは、インナーライナー層との接着性を確保するために、ゴム100重量部のうち20重量部以上、より好ましくは40〜80重量部のブチルゴム又はハロゲン化ブチルゴムを含むものであると良い。この膨張性ゴムにおいて、ゴム100重量部のうち天然ゴムは0〜80重量部にすることが好ましい。また、良好な膨張性を確保するために、膨張性ゴムの加硫前のムーニー粘度は10〜70であることが好ましい。   As the expandable rubber, any of a rubber compounded with a foaming agent, a rubber compounded with a thermally expandable microcapsule, and a rubber compounded with a foaming agent-containing resin can be used. In order to ensure adhesion to the inner liner layer, the expandable rubber may contain 20 parts by weight or more, more preferably 40 to 80 parts by weight of butyl rubber or halogenated butyl rubber out of 100 parts by weight of rubber. In this expansible rubber, the natural rubber is preferably 0 to 80 parts by weight out of 100 parts by weight of the rubber. Moreover, in order to ensure favorable expansibility, it is preferable that the Mooney viscosity before vulcanization of expansible rubber is 10-70.

ゴムに配合する発泡剤としては、アゾ化合物、ニトロソ化合物、ヒドラジン誘導体、アゾ化合物、重炭酸塩の中から選ばれる少なくとも1種を用いることができ、具体的にはアゾジカルボンアミド(ADCA)、N,N’−ジニトロソペンタメチレンテトラミン(DPT)、4,4’−オキシビス(ベンゼンスルホニルヒドラジド(OBSH)、ヒドラゾジカルボンアミド(HDCA)、バリウムアゾシカルボキシレート(Ba/AC)、炭酸水素ナトリウム(NaHCO3 )等が挙げられる。これら発泡剤としては、永和化成工業社の「ビニルホール」(ADCA)、「セルラー」(DPT)、「ネオセルボン」(OBSH)、「エクセラー」(DPT/ADCA)、「スパンセル」(ADCA/OBSH)、「セルボン」(NaHCO3 )等が市販されている。 As a foaming agent to be blended with rubber, at least one selected from azo compounds, nitroso compounds, hydrazine derivatives, azo compounds, and bicarbonates can be used. Specifically, azodicarbonamide (ADCA), N , N′-dinitrosopentamethylenetetramine (DPT), 4,4′-oxybis (benzenesulfonyl hydrazide (OBSH), hydrazodicarbonamide (HDCA), barium azosicarboxylate (Ba / AC), sodium bicarbonate ( NaHCO 3 ), etc. Examples of these foaming agents include “Vinyl Hall” (ADCA), “Cellular” (DPT), “Neoselbon” (OBSH), “Exceller” (DPT / ADCA) of Eiwa Chemical Industry Co., Ltd., "Supanseru" (ADCA / OBSH), "cervonic" (NaHCO 3) There are commercially available.

熱膨張性マイクロカプセルは、熱により気化して気体を発生する液体を熱可塑性樹脂に内包した熱膨張性熱可塑性樹脂粒子であり、この粒子をその膨張開始温度以上の温度、通常130〜190℃の温度で加熱して膨張させて、その熱可塑性樹脂からなる外殻中に気体を封入した気体封入熱可塑性樹脂粒子となる。熱膨張性マイクロカプセルの膨張前の粒子径は、特に限定されないが、膨張前で5〜300μmであるものが好ましく、さらに好ましくは粒径10〜200μmのものである。熱膨張性マイクロカプセルの配合量は、ゴム100重量部に対して、1〜30重量部、より好ましくは5〜15重量部にすると良い。これにより、良好な膨張性を得ることが可能となる。   The thermally expandable microcapsule is a thermally expandable thermoplastic resin particle in which a liquid that is vaporized by heat to generate a gas is encapsulated in a thermoplastic resin, and the particle is at a temperature higher than its expansion start temperature, usually 130 to 190 ° C. It expands by heating at a temperature of 5 to form gas-encapsulated thermoplastic resin particles in which gas is encapsulated in an outer shell made of the thermoplastic resin. The particle size of the thermally expandable microcapsule before expansion is not particularly limited, but is preferably 5 to 300 μm before expansion, more preferably 10 to 200 μm. The compounding amount of the heat-expandable microcapsule is 1 to 30 parts by weight, more preferably 5 to 15 parts by weight with respect to 100 parts by weight of rubber. Thereby, it is possible to obtain good expansibility.

このような熱膨張性マイクロカプセルとしては、例えば、現在、スウェーデンのEXPANCEL社より商品名「エクスパンセル091DU−80」または「エクスパンセル092DU−120」等として、あるいは松本油脂社より商品名「マツモトマイクロスフェアーF−85」または「マツモトマイクロスフェアーF−100」等として入手可能である。   As such a thermally expandable microcapsule, for example, the trade name “Expancel 091DU-80” or “Expancel 092DU-120” is currently available from EXPANCEL, Sweden, or the trade name “ It can be obtained as “Matsumoto Microsphere F-85” or “Matsumoto Microsphere F-100”.

気体封入熱可塑性樹脂粒子の外殻成分を構成する熱可塑性樹脂としては、その膨張開始温度が100℃以上、好ましくは120℃以上で、最大膨張温度が150℃以上、好ましくは160℃以上のものが好ましく用いられる。そのような熱可塑性樹脂としては、例えば(メタ)アクリロニトリルの重合体、また(メタ)アクリロニトリル含有量の高い共重合体が好適に用いられる。その共重合体の場合の他のモノマー(コモノマー)としては、ハロゲン化ビニル、ハロゲン化ビニリデン、スチレン系モノマー、(メタ)アクリレート系モノマー、酢酸ビニル、ブタジエン、ビニルピリジン、クロロプレン等のモノマーが用いられる。   The thermoplastic resin constituting the outer shell component of the gas-filled thermoplastic resin particles has an expansion start temperature of 100 ° C or higher, preferably 120 ° C or higher, and a maximum expansion temperature of 150 ° C or higher, preferably 160 ° C or higher. Is preferably used. As such a thermoplastic resin, for example, a polymer of (meth) acrylonitrile or a copolymer having a high (meth) acrylonitrile content is preferably used. As the other monomer (comonomer) in the case of the copolymer, monomers such as vinyl halide, vinylidene halide, styrene monomer, (meth) acrylate monomer, vinyl acetate, butadiene, vinylpyridine, chloroprene are used. .

なお、上記熱可塑性樹脂は、ジビニルベンゼン、エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、1,3−ブチレングリコールジ(メタ)アクリレート、アリル(メタ)アクリレート、トリアクリルホルマール、トリアリルイソシアヌレート等の架橋剤で架橋可能にされていても良い。架橋形態については、未架橋が好ましいが、熱可塑性樹脂としての性質を損わない程度に部分的に架橋していても構わない。   The thermoplastic resin is divinylbenzene, ethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, allyl. It may be made crosslinkable with a crosslinking agent such as (meth) acrylate, triacryl formal, triallyl isocyanurate or the like. The crosslinked form is preferably uncrosslinked, but may be partially crosslinked so as not to impair the properties as a thermoplastic resin.

熱により気化して気体を発生する液体としては、例えば、n−ペンタン、イソペンタン、ネオペンタン、ブタン、イソブタン、ヘキサン、石油エーテルのような炭化水素類、塩化メチル、塩化メチレン、ジクロロエチレン、トリクロロエタン、トリクロルエチレンのような塩素化炭化水素のような液体が挙げられる。   Examples of liquids that generate gas upon evaporation by heat include hydrocarbons such as n-pentane, isopentane, neopentane, butane, isobutane, hexane, and petroleum ether, methyl chloride, methylene chloride, dichloroethylene, trichloroethane, and trichloroethylene. And liquids such as chlorinated hydrocarbons.

一方、発泡剤含有樹脂は、樹脂成分に発泡剤を含有させたものである。発泡剤含有樹脂の配合量は、ゴム100重量部に対して、0.5〜20重量部、より好ましくは2〜10重量部にすると良い。これにより、良好な膨張性を得ることが可能となる。   On the other hand, the foaming agent-containing resin is a resin component containing a foaming agent. The blending amount of the foaming agent-containing resin is preferably 0.5 to 20 parts by weight, more preferably 2 to 10 parts by weight with respect to 100 parts by weight of rubber. Thereby, it is possible to obtain good expansibility.

発泡剤含有樹脂を構成する樹脂成分としては、例えば、ポリオレフィン系樹脂を主成分としたものが用いられる。なお、ここで主成分とはポリオレフィン系樹脂が全樹脂成分の75重量%以上、好ましくは85重量%以上のものを言い、他の成分としては、例えば、オレフィンモノマーの未反応残基、重合開始剤や触媒等の残査、加工助剤、ポリオレフィン系樹脂以外のポリマー状樹脂等が挙げられる。この樹脂成分は、ジエン系ゴムとの共架橋を防ぐため分子の主鎖中に二重結合が残っていないものが好ましい。ポリオレフィン系樹脂としては、ポリエチレン、ポリプロピレン、ポリ−4−メチルペンテン−1、ポリブチレン−1等の中から選ばれる少なくとも1種を用いることができ、これらの混合物や共重合体も使用することができる。また、発泡剤含有樹脂における発泡剤の含有率は、5〜65重量%、好ましくは15〜50重量%であると良い。   As the resin component constituting the foaming agent-containing resin, for example, a resin component mainly composed of a polyolefin resin is used. Here, the main component means that the polyolefin resin is 75% by weight or more, preferably 85% by weight or more of the total resin components, and other components include, for example, unreacted residues of olefin monomers, polymerization initiation Residues such as agents and catalysts, processing aids, and polymeric resins other than polyolefin resins. This resin component is preferably one in which no double bond remains in the main chain of the molecule in order to prevent co-crosslinking with the diene rubber. As the polyolefin resin, at least one selected from polyethylene, polypropylene, poly-4-methylpentene-1, polybutylene-1, and the like can be used, and a mixture or copolymer thereof can also be used. . The content of the foaming agent in the foaming agent-containing resin is 5 to 65% by weight, preferably 15 to 50% by weight.

上記発泡剤の分解温度は120〜180℃、好ましくは140〜160℃であるのが好ましい。この温度が低過ぎると、混合、押出加工中に十分な大きさの樹脂被覆気泡を形成することができない。なお、この分解温度が高過ぎる場合には尿素等の発泡助剤との併用によって分解温度を120〜180℃に調整することもできる。発泡助剤は、例えば永和化成工業社の「セルペースト」として入手可能である。   The decomposition temperature of the foaming agent is 120 to 180 ° C, preferably 140 to 160 ° C. If this temperature is too low, a sufficiently large resin-coated bubble cannot be formed during mixing and extrusion. In addition, when this decomposition temperature is too high, a decomposition temperature can also be adjusted to 120-180 degreeC by combined use with foaming adjuvants, such as urea. Foaming aids are available, for example, as “cell paste” from Eiwa Kasei Kogyo.

上記発泡剤の成分は、アゾ化合物、ニトロソ化合物、ヒドラジン誘導体、アゾ化合物、重炭酸塩の中から選ばれる少なくとも1種を用いることができ、具体的にはアゾジカルボンアミド(ADCA)、N,N’−ジニトロソペンタメチレンテトラミン(DPT)、4,4’−オキシビス(ベンゼンスルホニルヒドラジド(OBSH)、ヒドラゾジカルボンアミド(HDCA)、バリウムアゾシカルボキシレート(Ba/AC)、炭酸水素ナトリウム(NaHCO3 )等が挙げられる。これら発泡剤としては、永和化成工業社の「ビニルホール」(ADCA)、「セルラー」(DPT)、「ネオセルボン」(OBSH)、「エクセラー」(DPT/ADCA)、「スパンセル」(ADCA/OBSH)、「セルボン」(NaHCO3 )等が市販されている。 As the foaming agent component, at least one selected from azo compounds, nitroso compounds, hydrazine derivatives, azo compounds, and bicarbonates can be used. Specifically, azodicarbonamide (ADCA), N, N '-Dinitrosopentamethylenetetramine (DPT), 4,4'-oxybis (benzenesulfonyl hydrazide (OBSH), hydrazodicarbonamide (HDCA), barium azosicarboxylate (Ba / AC), sodium hydrogen carbonate (NaHCO 3) These foaming agents include “Vinyl Hall” (ADCA), “Cellular” (DPT), “Neoselbon” (OBSH), “Exceller” (DPT / ADCA), “Span Cell” by Eiwa Kasei Kogyo Co., Ltd. "(ADCA / OBSH)," cervonic "(NaHCO 3) or the like is commercially available To have.

発泡剤含有樹脂の粒子径は、10〜200μmであるのが好ましい。このような発泡剤含有樹脂としては、例えば永和化成工業社から「セルパウダー」が市販されている。また、加硫ゴム組成物内に形成されるマイクロカプセル状気泡は球形であるが、原料段階での発泡剤含有樹脂の形状は球形である必要はない。   The particle diameter of the foaming agent-containing resin is preferably 10 to 200 μm. As such a foaming agent-containing resin, for example, “Cell Powder” is commercially available from Eiwa Chemical Industries. In addition, although the microcapsule-like bubbles formed in the vulcanized rubber composition are spherical, the shape of the foaming agent-containing resin at the raw material stage need not be spherical.

次に、本発明における断面積調整部材の成形方法について説明する。膨張部と非膨張部とを備えた断面積調整部材を成形する方法は、特に限定されるものではないが、タイヤの生産性を考慮すると、下記の2通りの成形方法が推奨される。   Next, a method for forming the cross-sectional area adjusting member in the present invention will be described. The method for forming the cross-sectional area adjusting member having the inflatable portion and the non-inflatable portion is not particularly limited, but considering the productivity of the tire, the following two forming methods are recommended.

図10は断面積調整部材の成形方法の一例を示すものである。図10において、押出機31は膨張性ゴムのストリップXと非膨張性ゴムのストリップYとが交互に並ぶようにタイヤ成形ドラム1周分の長さLと等しい幅を有するシート材Zを連続的に押し出すようになっている。膨張性ゴムのストリップXと非膨張性ゴムのストリップYは、端部同士を突き合わせた状態であっても良く、端部同士を重ね合わせた状態であっても良い。そして、シート材Zを所望の長さで切断することにより、タイヤ周方向に沿って膨張部と非膨張部を交互に備えた断面積調整部材を得ることができる。   FIG. 10 shows an example of a method for forming the cross-sectional area adjusting member. In FIG. 10, the extruder 31 continuously applies a sheet material Z having a width equal to the length L of one round of the tire molding drum so that the strips X of the expandable rubber and the strips Y of the non-expandable rubber are alternately arranged. To extrude. The inflatable rubber strip X and the non-inflatable rubber strip Y may be in a state where the ends are abutted with each other, or in a state where the ends are overlapped. Then, by cutting the sheet material Z at a desired length, a cross-sectional area adjusting member having alternately inflated portions and non-inflated portions along the tire circumferential direction can be obtained.

図11は断面積調整部材の他の成形方法を示すものである。図11において、回転自在に支持された円柱状のロッド32の周囲には膨張性ゴムのストリップXと非膨張性ゴムのストリップYとが交互に並ぶように螺旋状に巻き付けられる。膨張性ゴムのストリップXと非膨張性ゴムのストリップYは、端部同士を突き合わせた状態であっても良く、端部同士を重ね合わせた状態であっても良い。ここで、ストリップX,Yの巻き付け総幅をタイヤ成形ドラム1周分の長さLと等しくする。そして、巻回状態のストリップX,Yをロッド32の軸方向に沿って切断し、その切断片を開くことにより、タイヤ周方向に沿って膨張部と非膨張部を交互に備えた断面積調整部材を得ることができる。   FIG. 11 shows another forming method of the cross-sectional area adjusting member. In FIG. 11, an expandable rubber strip X and a non-expandable rubber strip Y are spirally wound around a cylindrical rod 32 that is rotatably supported. The inflatable rubber strip X and the non-inflatable rubber strip Y may be in a state where the ends are abutted with each other, or in a state where the ends are overlapped. Here, the total winding width of the strips X and Y is made equal to the length L of one round of the tire forming drum. Then, the strips X and Y in the wound state are cut along the axial direction of the rod 32, and the cut pieces are opened, thereby adjusting the cross-sectional area including alternately inflating portions and non-inflating portions along the tire circumferential direction. A member can be obtained.

上述した各成形方法によれば、膨張部と非膨張部を交互に備えた断面積調整部材を容易に成形することができる。このような断面積調整部材をタイヤ内面に貼り付け、そのタイヤを加硫工程に供することで、質量バランスを損なうことなく、空洞部の断面積をタイヤ周方向に変化させることができる。   According to each shaping | molding method mentioned above, the cross-sectional area adjustment member provided with the expansion part and the non-expansion part alternately can be shape | molded easily. By sticking such a cross-sectional area adjusting member to the inner surface of the tire and subjecting the tire to a vulcanization step, the cross-sectional area of the cavity can be changed in the tire circumferential direction without impairing the mass balance.

タイヤサイズ205/65R15の空気入りタイヤとリムサイズ15×6 1/2JJのホイールからなる車輪において、空気入りタイヤの形状だけを下記の如く異ならせた従来例、比較例1〜2及び実施例1〜3をそれぞれ製作した。   In a wheel composed of a pneumatic tire having a tire size of 205 / 65R15 and a wheel having a rim size of 15 × 6 1/2 JJ, only the shape of the pneumatic tire is changed as follows, Comparative Examples 1-2 and Examples 1-2. 3 were produced.

従来例:
空洞部の断面積変化率を0%にした。
Conventional example:
The cross-sectional area change rate of the cavity was set to 0%.

比較例1:
トレッド部におけるタイヤ内面に、ブチルゴムからなる非膨張性部材をタイヤ周方向に沿って1/4周期毎に間欠的に配置し、それによって空洞部の断面積変化率を3.0%にした。タイヤの回転質量の変動率は2.0%であった。
Comparative Example 1:
A non-expandable member made of butyl rubber was intermittently arranged on the tire inner surface in the tread portion every 1/4 cycle along the tire circumferential direction, thereby changing the cross-sectional area change rate of the cavity portion to 3.0%. The variation rate of the rotational mass of the tire was 2.0%.

比較例2:
ビード部におけるタイヤ内面に、ブチルゴムからなる非膨張性部材をタイヤ周方向に沿って1/4周期毎に間欠的に配置し、それによって空洞部の断面積変化率を2.1%にした。タイヤの回転質量の変動率は1.5%であった。
Comparative Example 2:
A non-inflatable member made of butyl rubber was intermittently arranged on the tire inner surface in the bead portion every quarter period along the tire circumferential direction, thereby changing the cross-sectional area change rate of the cavity portion to 2.1%. The variation rate of the rotating mass of the tire was 1.5%.

実施例1:
図1及び図2に示すように、空洞部の断面形状をタイヤ周方向に沿って1/4周期毎に変化させ、それによって空洞部の断面積変化率を2.1%にすると共に、タイヤ外皮のゴム厚さを空洞部の断面積に比例してタイヤ周方向に変化させた。タイヤの回転質量の変動率は0%であった。
Example 1:
As shown in FIGS. 1 and 2, the cross-sectional shape of the cavity is changed every 1/4 cycle along the tire circumferential direction, thereby changing the cross-sectional area change rate of the cavity to 2.1%, and the tire The rubber thickness of the outer skin was changed in the tire circumferential direction in proportion to the cross-sectional area of the cavity. The variation rate of the rotating mass of the tire was 0%.

実施例2:
図3及び図4に示すように、トレッド部におけるタイヤ内面に、膨張性ゴムからなる膨張部とブチルゴムからなる非膨張部とをタイヤ周方向に沿って1/4周期毎に交互に備えた断面積調整部材を配置し、それによって空洞部の断面積変化率を3.0%にした。タイヤの回転質量の変動率は0%であった。
Example 2:
As shown in FIGS. 3 and 4, the tire inner surface in the tread portion is provided with an inflatable portion made of expansive rubber and a non-inflatable portion made of butyl rubber alternately every 1/4 cycle along the tire circumferential direction. The area adjusting member was arranged, thereby changing the cross-sectional area change rate of the cavity to 3.0%. The variation rate of the rotating mass of the tire was 0%.

実施例3:
図5及び図6に示すように、ビード部におけるタイヤ内面に、膨張性ゴムからなる膨張部とブチルゴムからなる非膨張部とをタイヤ周方向に沿って1/4周期毎に交互に備えた断面積調整部材を配置し、それによって空洞部の断面積変化率を2.1%にした。タイヤの回転質量の変動率は0%であった。
Example 3:
As shown in FIGS. 5 and 6, the tire inner surface of the bead portion is provided with an inflatable portion made of expansive rubber and a non-inflatable portion made of butyl rubber alternately every 1/4 cycle along the tire circumferential direction. The area adjusting member was arranged, thereby changing the cross-sectional area change rate of the cavity to 2.1%. The variation rate of the rotating mass of the tire was 0%.

これら空気入りタイヤとホイールからなる車輪について、以下の測定条件により、ロードノイズ(気柱共鳴)及び乗心地(振動)を評価し、その結果を表1に示した。   With respect to these pneumatic tires and wheels, the road noise (air column resonance) and riding comfort (vibration) were evaluated under the following measurement conditions, and the results are shown in Table 1.

ロードノイズ:
各試験タイヤを空気圧220kPaとして排気量2500ccの乗用車に装着し、車室内運転席窓側耳の位置にマイクロフォンを設置し、粗い路面を速度50km/hで走行したときのロードノイズの音圧を測定した。評価結果は、従来例を100とする指数にて示した。この指数値が小さいほど気柱共鳴に起因するロードノイズが小さいことを意味する。
Road noise:
Each test tire was mounted on a passenger car with an air pressure of 220 kPa and a displacement of 2500 cc, a microphone was installed at the position of the driver's seat window side ear, and the sound pressure of road noise was measured when traveling on a rough road surface at a speed of 50 km / h. . The evaluation results are shown as an index with the conventional example being 100. The smaller the index value, the smaller the road noise caused by the air column resonance.

乗心地:
各試験タイヤを空気圧220kPaとして排気量2500ccの乗用車に装着し、5人のパネラーにより振動発生状況についてフィーリング評価を行った。評価結果は、従来例を100とする指数にて示した。この指数値が大きいほど振動が少なく乗心地が良好であることを意味する。
Ride comfort:
Each test tire was mounted on a passenger car with an air pressure of 220 kPa and a displacement of 2500 cc, and a feeling evaluation was performed on the occurrence of vibration by five panelists. The evaluation results are shown as an index with the conventional example being 100. A larger index value means less vibration and better riding comfort.

Figure 2005075206
Figure 2005075206

この表1から判るように、実施例1〜3はいずれも従来例に比べて気柱共鳴に起因するロードノイズが少なく、しかも振動が少なくユニフォミティーが良好であった。一方、比較例1〜2はロードノイズの低減効果があるものの、従来例に比べて振動が多く感じられるものであった。   As can be seen from Table 1, all of Examples 1 to 3 had less road noise due to air column resonance, less vibration, and better uniformity than the conventional example. On the other hand, although Comparative Examples 1 and 2 had an effect of reducing road noise, more vibrations were felt than in the conventional example.

本発明の第1実施形態の空気入りタイヤとホイールからなる車輪を示す子午線断面図である。It is meridian sectional drawing which shows the wheel which consists of a pneumatic tire and wheel of 1st Embodiment of this invention. 図1の空気入りタイヤを赤道線に沿って切り欠いた状態のタイヤ内面を示す概略説明図である。It is a schematic explanatory drawing which shows the tire inner surface of the state which notched the pneumatic tire of FIG. 1 along the equator line. 本発明の第2実施形態の空気入りタイヤとホイールからなる車輪を示す子午線断面図である。It is meridian sectional drawing which shows the wheel which consists of a pneumatic tire and wheel of 2nd Embodiment of this invention. 図3の空気入りタイヤを赤道線に沿って切り欠いた状態のタイヤ内面を示す概略説明図である。FIG. 4 is a schematic explanatory view showing the tire inner surface in a state where the pneumatic tire of FIG. 3 is cut out along the equator line. 本発明の第3実施形態の空気入りタイヤとホイールからなる車輪を示す子午線断面図である。It is meridian sectional drawing which shows the wheel which consists of a pneumatic tire and wheel of 3rd Embodiment of this invention. 図5の空気入りタイヤを赤道線に沿って切り欠いた状態のタイヤ内面を示す概略説明図である。FIG. 6 is a schematic explanatory view showing the tire inner surface in a state where the pneumatic tire of FIG. 5 is cut out along the equator line. トレッド部に配置された断面積調整部材の膨張前の状態を示す断面図である。It is sectional drawing which shows the state before expansion | swelling of the cross-sectional area adjustment member arrange | positioned at a tread part. トレッド部に配置された断面積調整部材の膨張後の状態を示す断面図である。It is sectional drawing which shows the state after expansion of the cross-sectional area adjustment member arrange | positioned at a tread part. 多層構造の膨張部を備えた断面積調整部材を示す断面図である。It is sectional drawing which shows the cross-sectional area adjustment member provided with the expansion part of the multilayer structure. 断面積調整部材の成形方法の一例を示す説明図である。It is explanatory drawing which shows an example of the shaping | molding method of a cross-sectional area adjustment member. 断面積調整部材の他の成形方法を示す説明図である。It is explanatory drawing which shows the other shaping | molding method of a cross-sectional area adjustment member.

符号の説明Explanation of symbols

1 トレッド部
2 ビード部
3 サイドウォール部
4 タイヤ内面
5 空洞部
6 凸部
7 タイヤ外面
8 凹部
11 リム
12 ディスク
21 断面積調整部材
22 膨張部
22a 層(密着層)
22b 層(露出層)
23 非膨張部
H ホイール
T タイヤ
DESCRIPTION OF SYMBOLS 1 Tread part 2 Bead part 3 Side wall part 4 Tire inner surface 5 Cavity part 6 Convex part 7 Tire outer surface 8 Concave part 11 Rim 12 Disc 21 Cross-sectional area adjustment member 22 Expansion part 22a Layer (adhesion layer)
22b layer (exposed layer)
23 Non-inflatable part H Wheel T Tire

Claims (10)

ホイールに装着した状態でタイヤ内面とリムとの間に空洞部を形成する空気入りタイヤにおいて、前記空洞部が少なくとも2種類の子午線断面形状を有し、かつ回転質量がタイヤ全周にわたって均一である空気入りタイヤ。 In a pneumatic tire in which a cavity is formed between the tire inner surface and a rim in a state of being mounted on a wheel, the cavity has at least two kinds of meridian cross-sectional shapes, and the rotational mass is uniform over the entire circumference of the tire Pneumatic tire. タイヤ外皮のゴム厚さを前記空洞部の断面積に比例してタイヤ周方向に変化させた請求項1に記載の空気入りタイヤ。 The pneumatic tire according to claim 1, wherein the rubber thickness of the tire outer shell is changed in the tire circumferential direction in proportion to the cross-sectional area of the hollow portion. タイヤ内面に膨張性ゴムを含む断面積調整部材をタイヤ周方向に沿って配設し、該断面積調整部材の質量分布をタイヤ全周にわたって均一にしながら該断面積調整部材の膨張率をタイヤ周方向に変化させた請求項1に記載の空気入りタイヤ。 A cross-sectional area adjusting member including an inflatable rubber is disposed on the tire inner surface along the tire circumferential direction, and the expansion rate of the cross-sectional area adjusting member is determined while the mass distribution of the cross-sectional area adjusting member is made uniform over the entire tire circumference. The pneumatic tire according to claim 1, which is changed in a direction. 前記断面積調整部材をトレッド部におけるタイヤ内面に配置した請求項3に記載の空気入りタイヤ。 The pneumatic tire according to claim 3, wherein the cross-sectional area adjusting member is disposed on the tire inner surface in the tread portion. 前記断面積調整部材に膨張性ゴムからなる複数の膨張部をタイヤ周方向に沿って間欠的に形成し、これら膨張部のタイヤ周方向の総長さを断面積調整部材の周長の30〜70%にした請求項3又は請求項4に記載の空気入りタイヤ。 A plurality of inflating portions made of inflatable rubber are intermittently formed in the tire circumferential direction on the cross-sectional area adjusting member, and the total length of these inflating portions in the tire circumferential direction is 30 to 70 of the circumferential length of the cross-sectional area adjusting member. The pneumatic tire according to claim 3 or 4, wherein the pneumatic tire is%. 前記膨張部の膨張率を100%以上にした請求項5に記載の空気入りタイヤ。 The pneumatic tire according to claim 5, wherein an expansion rate of the expansion portion is 100% or more. 前記膨張部を多層とし、タイヤ内面に接する層の膨張率を100%未満に規制する一方で、他の層の膨張率を100〜500%にした請求項5に記載の空気入りタイヤ。 The pneumatic tire according to claim 5, wherein the inflatable portion is a multilayer, and an expansion rate of a layer in contact with the tire inner surface is restricted to less than 100%, while another layer has an expansion rate of 100 to 500%. 前記膨張性ゴムが、発泡剤を配合したゴム、熱膨張性マイクロカプセルを配合したゴム、又は、発泡剤含有樹脂を配合したゴムである請求項3〜7のいずれかに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 3 to 7, wherein the expandable rubber is a rubber compounded with a foaming agent, a rubber compounded with a thermally expandable microcapsule, or a rubber compounded with a foaming agent-containing resin. 前記膨張性ゴムが、ゴム100重量部のうち20重量部以上のブチルゴム又はハロゲン化ブチルゴムを含む請求項8に記載の空気入りタイヤ。 The pneumatic tire according to claim 8, wherein the inflatable rubber includes 20 parts by weight or more of butyl rubber or halogenated butyl rubber out of 100 parts by weight of rubber. 前記空洞部のタイヤ周方向の断面積変化率が2.0〜5.0%である請求項1〜9のいずれかに記載の空気入りタイヤ。
The pneumatic tire according to any one of claims 1 to 9, wherein a change rate of a cross-sectional area in the tire circumferential direction of the hollow portion is 2.0 to 5.0%.
JP2003309836A 2003-09-02 2003-09-02 Pneumatic tire Expired - Lifetime JP4360464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003309836A JP4360464B2 (en) 2003-09-02 2003-09-02 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003309836A JP4360464B2 (en) 2003-09-02 2003-09-02 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2005075206A true JP2005075206A (en) 2005-03-24
JP4360464B2 JP4360464B2 (en) 2009-11-11

Family

ID=34411881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003309836A Expired - Lifetime JP4360464B2 (en) 2003-09-02 2003-09-02 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP4360464B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255015A (en) * 2004-03-12 2005-09-22 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2006168510A (en) * 2004-12-15 2006-06-29 Sumitomo Rubber Ind Ltd Assembly of pneumatic tire and rim
JP2006182280A (en) * 2004-12-28 2006-07-13 Sumitomo Rubber Ind Ltd Pneumatic tire and rim assembly
WO2007102279A1 (en) * 2006-03-09 2007-09-13 The Yokohama Rubber Co., Ltd. Tire noise reduction device and pneumatic tire
WO2008038629A1 (en) 2006-09-26 2008-04-03 The Yokohama Rubber Co., Ltd. Tire noise reduction device and pneumatic tire
JP2011235667A (en) * 2010-05-06 2011-11-24 Yokohama Rubber Co Ltd:The Tire noise reducing device and pneumatic tire equipped therewith
US8387670B2 (en) 2006-09-26 2013-03-05 The Yokohama Rubber Co., Ltd. Tire noise reduction device and pneumatic tire
JP2013508525A (en) * 2009-10-27 2013-03-07 コンパニー ゼネラール デ エタブリッスマン ミシュラン Tire having an inner wall with a thermally expandable rubber layer
KR101369017B1 (en) 2012-12-26 2014-03-03 한국타이어 주식회사 The tire wheel mounted electromagnet cell and method for controlling uniformity of vehicle using the same
EP3640061A1 (en) * 2018-10-16 2020-04-22 Toyo Tire Corporation Pneumatic tire
US10632790B2 (en) 2014-09-12 2020-04-28 Bridgestone Corporation Pneumatic tire

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255015A (en) * 2004-03-12 2005-09-22 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2006168510A (en) * 2004-12-15 2006-06-29 Sumitomo Rubber Ind Ltd Assembly of pneumatic tire and rim
JP4575765B2 (en) * 2004-12-15 2010-11-04 住友ゴム工業株式会社 Pneumatic tire and rim assembly
JP2006182280A (en) * 2004-12-28 2006-07-13 Sumitomo Rubber Ind Ltd Pneumatic tire and rim assembly
JP4533130B2 (en) * 2004-12-28 2010-09-01 住友ゴム工業株式会社 Pneumatic tire and rim assembly
JP4522958B2 (en) * 2006-03-09 2010-08-11 横浜ゴム株式会社 Tire noise reduction device and pneumatic tire
JP2007237962A (en) * 2006-03-09 2007-09-20 Yokohama Rubber Co Ltd:The Tire noise reducing device, and pneumatic tire
WO2007102279A1 (en) * 2006-03-09 2007-09-13 The Yokohama Rubber Co., Ltd. Tire noise reduction device and pneumatic tire
US8365782B2 (en) * 2006-09-26 2013-02-05 The Yokohama Rubber Co., Ltd. Tire noise reduction device and pneumatic tire
WO2008038629A1 (en) 2006-09-26 2008-04-03 The Yokohama Rubber Co., Ltd. Tire noise reduction device and pneumatic tire
EP2067633A4 (en) * 2006-09-26 2010-01-06 Yokohama Rubber Co Ltd Tire noise reduction device and pneumatic tire
EP2067633A1 (en) * 2006-09-26 2009-06-10 The Yokohama Rubber Co., Ltd. Tire noise reduction device and pneumatic tire
US8387670B2 (en) 2006-09-26 2013-03-05 The Yokohama Rubber Co., Ltd. Tire noise reduction device and pneumatic tire
JP2013508525A (en) * 2009-10-27 2013-03-07 コンパニー ゼネラール デ エタブリッスマン ミシュラン Tire having an inner wall with a thermally expandable rubber layer
JP2011235667A (en) * 2010-05-06 2011-11-24 Yokohama Rubber Co Ltd:The Tire noise reducing device and pneumatic tire equipped therewith
KR101369017B1 (en) 2012-12-26 2014-03-03 한국타이어 주식회사 The tire wheel mounted electromagnet cell and method for controlling uniformity of vehicle using the same
US10632790B2 (en) 2014-09-12 2020-04-28 Bridgestone Corporation Pneumatic tire
EP3640061A1 (en) * 2018-10-16 2020-04-22 Toyo Tire Corporation Pneumatic tire
US11167602B2 (en) 2018-10-16 2021-11-09 Toyo Tire Corporation Pneumatic tire

Also Published As

Publication number Publication date
JP4360464B2 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
CN1796157B (en) Tire with double layer inner liner
JP4360464B2 (en) Pneumatic tire
EP1253025B1 (en) Tire noise reducing system
JP4891727B2 (en) Pneumatic tire manufacturing method
EP0367556B1 (en) Pneumatic tyre
JP2012111235A (en) Tire with foam noise damper
JPH01254411A (en) Manufacture of pneumatic tire having sound absorbing layer
US20210245556A1 (en) Pneumatic tire
JP2003183434A (en) Rubber composition for use in tire and its manufacturing method
JP2004075039A (en) Safety tire and core for safety tire
JP2007062541A (en) Low noise pneumatic tire and manufacturing method thereof
JP2975438B2 (en) Pneumatic tire
JP4321756B2 (en) Pneumatic tire
JP2002332475A (en) Sealant composition, and pressure container and tire using the same
JPH0640206A (en) Pneumatic tire
JPH10238426A (en) Intake pipe with silencing function and its manufacture
JP2011136667A (en) Pneumatic tire and method for manufacturing the same
JP5051006B2 (en) Pneumatic tire for running on rough terrain
JP2002103929A (en) Safety tire
JP2002332474A (en) Sealant composition, and pressure container and tire using the same
JP2005145398A (en) Wheel for motorcycle
JP2002067620A (en) Pneumatic tire
JP2007130915A (en) Manufacturing method for air bladder for safety tire
JP2003025806A (en) Safety tire and rim assembly and foaming composition
JP2005171092A (en) Rubber composition for tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090804

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4360464

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term