JP2005071525A - Vertical magnetic recording medium and magnetic storage device - Google Patents

Vertical magnetic recording medium and magnetic storage device Download PDF

Info

Publication number
JP2005071525A
JP2005071525A JP2003302503A JP2003302503A JP2005071525A JP 2005071525 A JP2005071525 A JP 2005071525A JP 2003302503 A JP2003302503 A JP 2003302503A JP 2003302503 A JP2003302503 A JP 2003302503A JP 2005071525 A JP2005071525 A JP 2005071525A
Authority
JP
Japan
Prior art keywords
layer
magnetic
recording medium
recording
nonmagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003302503A
Other languages
Japanese (ja)
Inventor
Maki Maeda
麻貴 前田
Hiroki Kodama
宏喜 児玉
Takuya Uzumaki
拓也 渦巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2003302503A priority Critical patent/JP2005071525A/en
Publication of JP2005071525A publication Critical patent/JP2005071525A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vertical magnetic recording medium wherein a narrow track and high density recording are possible and a magnetic storage device provided with the vertical magnetic recording medium. <P>SOLUTION: The vertical magnetic recording medium 10 is constituted by laminating a soft magnetic backing layer 12, a magnetic flux slit layer 13, a nonmagnetic intermediate layer 14, a recording layer 15, a protective coating 16 and a lubricant layer 18 in order on a substrate 11. The magnetic flux slit layer 13 is constituted by arranging nonmagnetic minute particles 20 in a ferromagnetic mother phase 19 comprising an alloy of rare earth metal and transition metal. Since magnetic fluxes from a recording head are narrowed by the ferromagnetic mother phase 19 among the nonmagnetic minute particles 20 when recording, the spreading of the magnetic fluxes at the recording layer 15 is suppressed to be concentrated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は垂直磁気記録媒体および磁気記憶装置に係り、特に狭トラック化、ひいては高密度記録が可能な垂直磁気記録媒体および磁気記憶装置に関する。   The present invention relates to a perpendicular magnetic recording medium and a magnetic storage device, and more particularly to a perpendicular magnetic recording medium and a magnetic storage device capable of narrowing a track, and thus capable of high density recording.

磁気記憶装置の急激な記録密度向上により、磁気記録媒体の面内方向に記録する面内記録方式では面記録密度100Gビット/平方インチがまもなく達成されようとしている。しかしながら、面内記録方式では記録単位のサイズを微小化するにつれて記録された磁化の熱的安定性が問題となってきている。一方、磁気記録媒体の垂直方向に記録する垂直記録方式においては、記録単位のサイズを微小化しても適切な厚さを設けることにより熱的安定性を確保できるため、面記録密度がテラ(T)ビット/平方インチ台まで向上可能であることが予想されている。   Due to the rapid increase in recording density of magnetic storage devices, the surface recording density of 100 Gbit / in 2 is soon to be achieved in the in-plane recording method for recording in the in-plane direction of the magnetic recording medium. However, in the in-plane recording method, the thermal stability of the recorded magnetization has become a problem as the size of the recording unit is reduced. On the other hand, in the perpendicular recording method for recording in the perpendicular direction of the magnetic recording medium, the thermal recording stability can be ensured by providing an appropriate thickness even if the size of the recording unit is miniaturized. It is expected that it can be improved to the bit / square inch range.

垂直記録方式の磁気記憶装置に用いられる垂直磁気記録ヘッドは磁気記録媒体に極度に集中した記録磁界を形成するために、ヘッド先端部分に微細加工を施した垂直磁気記録ヘッドが提案されている。しかし、記録時に磁極先端部分から広がった記録磁界が隣接トラックの情報を消去するという問題があり、その対策としては、ヘッド先端部分にサイドシールドを設けて洩れ磁束を低減する構造(例えば、第26回日本応用磁気学会学術講演概要集、p.437、(2002))や、規則的に磁性粒子を埋め込んで隣接トラックとの境界であるガードバンド部分に記録不可能な低保磁力磁性材料や非磁性材料を充填したパターンドメディアが提案されている。
特開2002−92843号公報
As a perpendicular magnetic recording head used in a perpendicular recording type magnetic storage device, a perpendicular magnetic recording head in which the head end portion is finely processed has been proposed in order to form a recording magnetic field that is extremely concentrated on a magnetic recording medium. However, there is a problem that the recording magnetic field that spreads from the tip of the magnetic pole during recording erases information on the adjacent track. As a countermeasure, a side shield is provided at the tip of the head to reduce the leakage flux (for example, 26th Proceedings of the Annual Conference of the Japan Society of Applied Magnetics, p. 437, (2002)), non-coercive magnetic materials that cannot be recorded in the guard band portion that is regularly embedded with magnetic particles and is the boundary between adjacent tracks Patterned media filled with magnetic materials have been proposed.
JP 2002-92843 A

ところで、図1に示す従来の軟磁性裏打ち層102を有する垂直磁気記録媒体100では、垂直磁気記録ヘッド108からの磁束は記録層104から高透磁率かつ高飽和磁束密度を有する軟磁性裏打ち層102に吸い込まれる過程において面内方向に広がり、記録層104に形成された磁化遷移領域105Aによって囲まれた磁区105(膜厚方向に磁化Mを有する)は磁極先端部分108−1の大きさよりも広がってしまう。すなわち、記録時に隣接トラックの情報を消去してしまうので狭トラック化が図れず、ひいては高記録密度化が図れないという問題が生ずる。また、磁束が広がると磁化遷移領域105Aの幅が大となり、トラックの長手方向の記録密度(いわゆる線記録密度)の向上も図れないという問題が生ずる。   By the way, in the perpendicular magnetic recording medium 100 having the conventional soft magnetic backing layer 102 shown in FIG. 1, the magnetic flux from the perpendicular magnetic recording head 108 has a high magnetic permeability and a high saturation magnetic flux density from the recording layer 104. The magnetic domain 105 (having the magnetization M in the film thickness direction) surrounded by the magnetization transition region 105A formed in the recording layer 104 is larger than the size of the magnetic pole tip portion 108-1. End up. That is, since information on adjacent tracks is erased at the time of recording, narrowing of the track cannot be achieved, and as a result, there is a problem that high recording density cannot be achieved. Further, when the magnetic flux spreads, the width of the magnetization transition region 105A becomes large, and there arises a problem that the recording density in the longitudinal direction of the track (so-called linear recording density) cannot be improved.

そこで、本発明は上記問題点に鑑みてなされたもので、本発明の目的は、狭トラック化及び線記録密度の向上を図り、高密度記録が可能な垂直磁気記録媒体及び垂直磁気記録媒体を備えた磁気記憶装置を提供することである。   Accordingly, the present invention has been made in view of the above problems, and an object of the present invention is to provide a perpendicular magnetic recording medium and a perpendicular magnetic recording medium capable of high-density recording with a narrow track and an improved linear recording density. It is to provide a magnetic storage device provided.

本発明の一観点によれば、基板と、前記基板上に形成された軟磁性裏打ち層と、前記軟磁性裏打ち層上に形成された記録層とを備えた垂直磁気記録媒体であって、前記軟磁性裏打ち層と記録層との間に磁束スリット層を有し、磁束スリット層は、非磁性粒子を層内方向に配置してなる垂直磁気記録媒体が提供される。   According to one aspect of the present invention, there is provided a perpendicular magnetic recording medium comprising a substrate, a soft magnetic backing layer formed on the substrate, and a recording layer formed on the soft magnetic backing layer, There is provided a perpendicular magnetic recording medium having a magnetic flux slit layer between the soft magnetic backing layer and the recording layer, and the magnetic flux slit layer having nonmagnetic particles arranged in the in-layer direction.

本発明によれば、磁束スリット層が軟磁性裏打ち層と非磁性中間層との間に設けられ、磁束スリット層が層内方向に非磁性粒子が配置されている。したがって、記録の際に、記録ヘッドからの磁束が記録層から磁束スリット層を通過する際に非磁性粒子によって狭窄されるので、磁束の広がりが抑制され、隣接トラックの消去を防止することができ、狭トラック化を図ることができる。また、トラックの長手方向においても磁化遷移領域の幅を狭くすることができ、線記録密度を向上することができる。その結果、高記録密度の垂直磁気記録媒体を実現することができる。   According to the present invention, the magnetic flux slit layer is provided between the soft magnetic backing layer and the nonmagnetic intermediate layer, and the magnetic flux slit layer has the nonmagnetic particles arranged in the in-layer direction. Therefore, during recording, the magnetic flux from the recording head is constricted by non-magnetic particles when passing from the recording layer to the magnetic flux slit layer, so that the spread of the magnetic flux is suppressed and erasure of adjacent tracks can be prevented. The track can be narrowed. In addition, the width of the magnetization transition region can be reduced in the longitudinal direction of the track, and the linear recording density can be improved. As a result, a perpendicular magnetic recording medium with a high recording density can be realized.

前記磁束スリット層は、強磁性材料中に非磁性粒子を配置してなり、前記強磁性材料は、希土類金属と遷移金属との合金により構成されてもよい。また、前記非磁性粒子は、Si−O、Al−O、Zr−O、Mg−O、Si−N、Si−C、及びCからなる群のうち少なくとも1種を含む材料より構成されてもよい。強磁性材料よりなる強磁性母相中に自己形成的に非磁性粒子がほぼ球状に形成される。したがって、記録の際に記録ヘッドからの磁束が非磁性粒子間の強磁性母相に狭窄され、磁束の広がりが抑制される。また、強磁性母層は基板に垂直方向に磁化容易軸を有するので高飽和磁束密度を有し、磁気飽和を回避することができる。また、前記軟磁性裏打ち層と磁束スリット層との間に非磁性中間層を有し、前記非磁性微粒子は非磁性中間層の表面に島状に配置されてもよい。   The magnetic flux slit layer may be formed by arranging nonmagnetic particles in a ferromagnetic material, and the ferromagnetic material may be composed of an alloy of a rare earth metal and a transition metal. The nonmagnetic particles may be made of a material including at least one selected from the group consisting of Si—O, Al—O, Zr—O, Mg—O, Si—N, Si—C, and C. Good. Nonmagnetic particles are formed in a substantially spherical shape in a ferromagnetic matrix made of a ferromagnetic material in a self-forming manner. Therefore, the magnetic flux from the recording head is confined to the ferromagnetic matrix between the nonmagnetic particles during recording, and the spread of the magnetic flux is suppressed. Further, since the ferromagnetic mother layer has an easy magnetization axis in the direction perpendicular to the substrate, it has a high saturation magnetic flux density, and magnetic saturation can be avoided. Further, a nonmagnetic intermediate layer may be provided between the soft magnetic backing layer and the magnetic flux slit layer, and the nonmagnetic fine particles may be arranged in an island shape on the surface of the nonmagnetic intermediate layer.

本発明の他の観点によれば、上記いずれかの垂直磁気記録媒体と、該垂直磁気記録媒体に対向して記録再生を行う垂直磁気記録ヘッドとを備えた磁気記憶装置が提供される。   According to another aspect of the present invention, there is provided a magnetic storage device comprising any one of the above-described perpendicular magnetic recording media and a perpendicular magnetic recording head that performs recording / reproduction facing the perpendicular magnetic recording medium.

本発明によれば、垂直磁気記録媒体は、記録の際に垂直磁気記録ヘッドからの磁束を磁束スリット層により狭窄して記録層に集中することができるので、狭トラック化及び線記録密度の向上を図ることができ、一層の高密度記録を実現することができる。   According to the present invention, the perpendicular magnetic recording medium can narrow the track and improve the linear recording density because the magnetic flux from the perpendicular magnetic recording head can be narrowed by the magnetic flux slit layer during recording. And higher density recording can be realized.

本発明によれば、軟磁性裏打ち層と記録層との間に磁束スリット層を設けているので、記録時の磁束の広がりを抑制し、記録ヘッドからの磁束を記録層に集中して、狭トラック化及び線記録密度の向上を図ることができ、高密度記録が可能な垂直磁気記録媒体及び垂直磁気記録媒体を備えた磁気記憶装置を実現することができる。   According to the present invention, since the magnetic flux slit layer is provided between the soft magnetic backing layer and the recording layer, the spread of the magnetic flux during recording is suppressed, and the magnetic flux from the recording head is concentrated on the recording layer to be narrow. Track recording and linear recording density can be improved, and a perpendicular magnetic recording medium capable of high-density recording and a magnetic storage device including the perpendicular magnetic recording medium can be realized.

以下、図面に基づいて本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1の実施の形態)
図2は、本発明の第1の実施の形態に係る垂直磁気記録媒体の概略断面図である。図2を参照するに、垂直磁気記録媒体10は、基板11と、基板11上に、軟磁性裏打ち層12、磁束スリット層13、非磁性中間層14、記録層15、保護膜16および潤滑層18を順次積層した構成となっている。
(First embodiment)
FIG. 2 is a schematic sectional view of the perpendicular magnetic recording medium according to the first embodiment of the present invention. Referring to FIG. 2, a perpendicular magnetic recording medium 10 includes a substrate 11, a soft magnetic backing layer 12, a magnetic flux slit layer 13, a nonmagnetic intermediate layer 14, a recording layer 15, a protective film 16, and a lubricating layer on the substrate 11. 18 is sequentially laminated.

基板11は、例えば、結晶化ガラス基板、強化ガラス基板、Si基板、アルミニウム合金基板などから構成され、垂直磁気記録媒体10がテープ状である場合はポリエステル(PET)、ポリエチレンナフタレート(PEN)、耐熱性に優れたポリイミド(PI)などのフィルムを用いることができる。   The substrate 11 is composed of, for example, a crystallized glass substrate, a tempered glass substrate, an Si substrate, an aluminum alloy substrate, and the like. When the perpendicular magnetic recording medium 10 is in a tape shape, polyester (PET), polyethylene naphthalate (PEN), A film such as polyimide (PI) having excellent heat resistance can be used.

軟磁性裏打ち層12は、例えば、厚さが50nmから2μmであり、Fe、Co、Ni、Al、Si、Ta、Ti、Zr、Hf、V、Nb、CおよびBよりなる群から選択されたうち少なくとも1種類の元素を含む非晶質もしくは微結晶の合金、またはこれらの合金の積層膜などの、飽和磁束密度Bsの高い軟磁性材料により構成される。例えば、FeSi、FeAlSi、FeTaC、NiFeNb、CoCrNbなどを用いることができる。軟磁性裏打ち層12は、メッキ法、スパッタ法、蒸着法、CVD法(化学的気相成長法)などにより形成され、特にスパッタ法を用いることが好ましい。軟磁性裏打ち層12は、単磁極型の記録ヘッドにより記録する場合に、記録ヘッドからの全磁束を吸収するためのもので、飽和記録するためには、飽和磁束密度Bsと膜厚の積の値が大きい方が好ましい。また、軟磁性裏打ち層12は、高周波透磁率が高い方が好ましい。高転送レートでの書込性が向上する。   The soft magnetic backing layer 12 has a thickness of, for example, 50 nm to 2 μm, and is selected from the group consisting of Fe, Co, Ni, Al, Si, Ta, Ti, Zr, Hf, V, Nb, C, and B Of these, an amorphous or microcrystalline alloy containing at least one element, or a laminated film of these alloys is used to form a soft magnetic material having a high saturation magnetic flux density Bs. For example, FeSi, FeAlSi, FeTaC, NiFeNb, CoCrNb, or the like can be used. The soft magnetic backing layer 12 is formed by a plating method, a sputtering method, a vapor deposition method, a CVD method (chemical vapor deposition method) or the like, and it is particularly preferable to use a sputtering method. The soft magnetic backing layer 12 is for absorbing the total magnetic flux from the recording head when recording with a single-pole type recording head. For saturation recording, the soft magnetic backing layer 12 is the product of the product of the saturation magnetic flux density Bs and the film thickness. Larger values are preferred. The soft magnetic backing layer 12 preferably has a high high-frequency magnetic permeability. Writability at a high transfer rate is improved.

磁束スリット層13は、厚さが2nm〜20nmであり、希土類金属と遷移金属との合金からなる強磁性母相19中に非磁性微粒子20を配置して構成される。強磁性母相19の希土類金属はTb、Gd、及びDyから選択され、1種あるいは2種以上を含んでもよい。また、遷移金属はFe及びCoから選択され、1種あるいは2種を含んでもよい。強磁性母相19は、例えばTbFeCo、GdFeCo、DyFeCoなどが挙げられ、希土類とFeCoとの合金の場合は(Tb、Gd、Dy)x(Fe100-yCoy)100-xと表した場合x=10原子%〜30原子%、y=40原子%以下に設定されることが好ましい。このような範囲では、強磁性母相19の磁化容易軸は膜厚方向となり、磁束が通過する膜厚方向の飽和磁束密度を高めることができる。その結果、強磁性母相19の磁気飽和を回避することができ、記録ヘッドからの磁束を狭窄することができる。   The magnetic flux slit layer 13 has a thickness of 2 nm to 20 nm, and is configured by disposing nonmagnetic fine particles 20 in a ferromagnetic matrix 19 made of an alloy of a rare earth metal and a transition metal. The rare earth metal of the ferromagnetic matrix 19 is selected from Tb, Gd, and Dy, and may include one or more. The transition metal is selected from Fe and Co, and may include one or two kinds. Examples of the ferromagnetic matrix 19 include TbFeCo, GdFeCo, DyFeCo, and the like. In the case of an alloy of rare earth and FeCo, (Tb, Gd, Dy) x (Fe100-yCoy) 100-x, x = 10. It is preferable to set the atomic% to 30 atomic% and y = 40 atomic% or less. In such a range, the easy axis of magnetization of the ferromagnetic matrix 19 is in the film thickness direction, and the saturation magnetic flux density in the film thickness direction through which the magnetic flux passes can be increased. As a result, magnetic saturation of the ferromagnetic matrix 19 can be avoided, and the magnetic flux from the recording head can be narrowed.

非磁性微粒子20は、Si−O、Al−O、Zr−O、Mg−O、Si−N、Si−C、及びCから選択された非磁性材料から構成される。これらの酸化物や、窒化物、炭化物等は共有結合性の化合物を形成するので、強磁性母層19を構成する希土類金属−遷移金属合金材料と分離し易く、強磁性母相19中に微粒子状となって析出する。すなわち、非磁性微粒子20は強磁性母相19中に自己形成的に形成される。   The nonmagnetic fine particles 20 are made of a nonmagnetic material selected from Si—O, Al—O, Zr—O, Mg—O, Si—N, Si—C, and C. Since these oxides, nitrides, carbides, and the like form a covalent bond compound, they are easily separated from the rare earth metal-transition metal alloy material constituting the ferromagnetic matrix layer 19, and the fine particles in the ferromagnetic matrix 19 To be deposited. That is, the nonmagnetic fine particles 20 are formed in the ferromagnetic matrix 19 in a self-forming manner.

非磁性微粒子20は、さらにイットリウム(Y)を含むことが好ましい。非磁性微粒子20が酸素を含む場合、強磁性母相19中の希土類金属と酸素の選択的な結合(例えばTb−O)が形成されることを阻害し、強磁性母相19の飽和磁束密度の低下を防止することができる。   The nonmagnetic fine particles 20 preferably further contain yttrium (Y). When the nonmagnetic fine particle 20 contains oxygen, it inhibits the formation of a selective bond (for example, Tb-O) between the rare earth metal and oxygen in the ferromagnetic matrix 19, and the saturation magnetic flux density of the ferromagnetic matrix 19. Can be prevented.

非磁性微粒子20の平均粒径は3nm〜10nmの範囲内に設定され、非磁性微粒子とその隣接する非磁性微粒子との平均間隙は0.5nm〜10nmの範囲内に設定されることが好ましい。このような範囲に設定することにより、記録されるビットの大きさに対して十分磁束を狭窄することができる。   The average particle diameter of the nonmagnetic fine particles 20 is preferably set in the range of 3 nm to 10 nm, and the average gap between the nonmagnetic fine particles and the adjacent nonmagnetic fine particles is preferably set in the range of 0.5 nm to 10 nm. By setting such a range, the magnetic flux can be sufficiently narrowed with respect to the size of the recorded bit.

磁束スリット層13は、真空蒸着法、スパッタ法などにより形成され、例えばスパッタ法を用いる場合は、例えばTbFeCoのスパッタターゲットとYSiO2スパッタターゲットを用いて同時にスパッタすることにより形成する。本実施の形態の一実施例として、RFスパッタ装置を用いて、TbFeCo(20原子%Tb−72原子%Fe−8原子%Co)、YSiO2のスパッタターゲットを同時にスパッタし、磁束スリット層13の体積を基準としてYSiO2を70体積%、厚さ10nmの磁束スリット層13を形成した。 The magnetic flux slit layer 13 is formed by a vacuum deposition method, a sputtering method, or the like. For example, when the sputtering method is used, the magnetic flux slit layer 13 is formed by sputtering simultaneously using, for example, a TbFeCo sputtering target and a YSiO 2 sputtering target. As an example of this embodiment, a sputtering target of TbFeCo (20 atomic% Tb-72 atomic% Fe-8 atomic% Co) and YSiO 2 is simultaneously sputtered using an RF sputtering apparatus, and the magnetic flux slit layer 13 is formed. A magnetic flux slit layer 13 having 70% by volume of YSiO 2 and a thickness of 10 nm was formed based on the volume.

非磁性中間層14は、スパッタ法、蒸着法、CVD法などにより形成され、厚さが1nm〜50nmであり、Ti、C、Pt、TiCr、CoCr、SiO2、MgO、Al23、Ruなどの非磁性材料により構成される。非磁性中間層14は、これらの非磁性材料を用いた積層膜により構成されてもよい。軟磁性裏打ち層12と記録層15の静磁気的相互作用を遮断することができる。 Nonmagnetic intermediate layer 14, a sputtering method, a vapor deposition method, is formed by CVD, the thickness is 1nm~50nm, Ti, C, Pt, TiCr, CoCr, SiO 2, MgO, Al 2 O 3, Ru It is comprised with nonmagnetic materials, such as. The nonmagnetic intermediate layer 14 may be composed of a laminated film using these nonmagnetic materials. The magnetostatic interaction between the soft magnetic underlayer 12 and the recording layer 15 can be blocked.

記録層15は、スパッタ法、蒸着法などにより形成され、厚さ3nm〜30nmであり、Ni、Fe、Co、Ni系合金、Fe系合金、CoCrTa、CoCrPt、CoCrPt−Mを含むCo系合金からなる群のうちいずれかの材料から構成される。ここで、Mは、B、Mo、Nb、Ta、W、Cu及びこれらの合金から選択される。このような強磁性合金は柱状構造を有し膜厚方向に磁化容易軸を有する。記録層15は、例えば、CoCrPtB、CoCrPtTa、CoCrPtTaNbなどが挙げられる。   The recording layer 15 is formed by sputtering, vapor deposition or the like and has a thickness of 3 nm to 30 nm. The recording layer 15 is made of Ni, Fe, Co, a Ni alloy, a Fe alloy, a Co alloy including CoCrTa, CoCrPt, and CoCrPt-M. It is composed of any material in the group. Here, M is selected from B, Mo, Nb, Ta, W, Cu, and alloys thereof. Such a ferromagnetic alloy has a columnar structure and an easy magnetization axis in the film thickness direction. Examples of the recording layer 15 include CoCrPtB, CoCrPtTa, and CoCrPtTaNb.

記録層15は、これらの強磁性材料にSi−O、Al−O、Zr−O、Mg−O、Si−N、Si−C、及びCから選択された非磁性材料を添加して形成された、いわゆるグラニュラー膜でもよい。記録層15は、例えばスパッタ法により記録層15の強磁性材料と非磁性材料を同時に成膜することにより、膜厚方向に成長した柱状構造を有する強磁性材料よりなる結晶粒が非磁性材料により分離された構造、言い換えれば非磁性材料を母相としてその中に柱状構造の強磁性材料よりなる結晶粒が配置された構造を形成することができる。かかる構造により結晶粒間の静磁気的相互作用及び交換相互作用を低減することができ、その結果、媒体ノイズを低減して信号対雑音比を向上することができる。また、非磁性材料の含有量は、記録層15の飽和磁束密度の観点からは、記録層15の体積を基準として、10体積%〜70体積%に設定することが好ましい。また、強磁性材料は、記録層15の飽和磁束密度の観点からは、例えばCoCrPtの場合、Co含有量を53原子%〜88原子%に設定することが好ましい。   The recording layer 15 is formed by adding a nonmagnetic material selected from Si—O, Al—O, Zr—O, Mg—O, Si—N, Si—C, and C to these ferromagnetic materials. A so-called granular film may also be used. The recording layer 15 is formed by simultaneously forming a ferromagnetic material and a nonmagnetic material of the recording layer 15 by sputtering, for example, so that crystal grains made of a ferromagnetic material having a columnar structure grown in the film thickness direction are made of a nonmagnetic material. A separated structure, in other words, a structure in which a non-magnetic material is used as a parent phase and crystal grains made of a ferromagnetic material having a columnar structure are disposed therein can be formed. With such a structure, magnetostatic interaction and exchange interaction between crystal grains can be reduced. As a result, medium noise can be reduced and a signal-to-noise ratio can be improved. The content of the nonmagnetic material is preferably set to 10% by volume to 70% by volume from the viewpoint of the saturation magnetic flux density of the recording layer 15 based on the volume of the recording layer 15. Further, from the viewpoint of the saturation magnetic flux density of the recording layer 15, for example, in the case of CoCrPt, the ferromagnetic material preferably has a Co content set to 53 atomic% to 88 atomic%.

保護膜16は、スパッタ法、CVD法、FCA(Filtered Cathodic Arc)法などにより形成され、例えば、厚さが0.5nm〜15nmのアモルファスカーボン、水素化カーボン、窒化カーボン、酸化アルミニウムなどにより構成される。   The protective film 16 is formed by a sputtering method, a CVD method, an FCA (Filtered Cathodic Arc) method or the like, and is made of, for example, amorphous carbon having a thickness of 0.5 nm to 15 nm, hydrogenated carbon, carbon nitride, aluminum oxide, or the like. The

潤滑層18は、引き上げ法、スピンコート法などにより塗布され、厚さが0.5nm〜5nm、パーフルオロポリエーテルが主鎖の潤滑剤などのより構成される。潤滑剤としては、例えば、ZDol、Z25(以上Monte Fluos社製)Zテトラオール、AM3001(以上アウジモント社製)等を用いることができる。   The lubricating layer 18 is applied by a pulling method, a spin coating method, or the like, and has a thickness of 0.5 nm to 5 nm, and is composed of a lubricant having a main chain of perfluoropolyether. As the lubricant, for example, ZDol, Z25 (manufactured by Monte Fluos) Z-tetraol, AM3001 (manufactured by Augmont) can be used.

本実施の形態によれば、強磁性母相19中に非磁性微粒子20が配置されてなる磁束スリット層13が軟磁性裏打ち層12と非磁性中間層14との間に設けられているので、記録の際に記録層15から磁束スリット層13を介して軟磁性裏打ち層12を流通する磁束が、磁束スリット層13において非磁性粒子20間の強磁性母相19を通過するように狭窄され、記録層15から軟磁性裏打ち層12にかけての磁束の広がりを抑制し、磁束を集中することができる。したがって、磁束の広がりによる隣接トラックの消去を防止することができ、トラック密度を向上することができる。また、トラックの長手方向においても磁化遷移領域の幅を狭くすることができ、線記録密度を向上することができる。その結果、高記録密度の垂直磁気記録媒体を実現することができる。   According to the present embodiment, the magnetic flux slit layer 13 in which the nonmagnetic fine particles 20 are arranged in the ferromagnetic matrix 19 is provided between the soft magnetic backing layer 12 and the nonmagnetic intermediate layer 14. During recording, the magnetic flux flowing from the recording layer 15 through the soft magnetic backing layer 12 through the magnetic flux slit layer 13 is narrowed so as to pass through the ferromagnetic matrix 19 between the nonmagnetic particles 20 in the magnetic flux slit layer 13, The spread of the magnetic flux from the recording layer 15 to the soft magnetic backing layer 12 can be suppressed, and the magnetic flux can be concentrated. Therefore, erasure of adjacent tracks due to the spread of magnetic flux can be prevented, and the track density can be improved. In addition, the width of the magnetization transition region can be reduced in the longitudinal direction of the track, and the linear recording density can be improved. As a result, a perpendicular magnetic recording medium with a high recording density can be realized.

なお、磁束スリット層13は非磁性中間層14上に設けてもよい。磁束を同様に狭窄することができる。また、磁束スリット層13を非磁性中間層14の上下の両方に設けてもよい。磁束を一層狭窄することができ、その結果磁束の広がりを一層抑制することができる。   The magnetic flux slit layer 13 may be provided on the nonmagnetic intermediate layer 14. The magnetic flux can be constricted as well. Further, the magnetic flux slit layer 13 may be provided both above and below the nonmagnetic intermediate layer 14. The magnetic flux can be further constricted, and as a result, the spread of the magnetic flux can be further suppressed.

(第2の実施の形態)
図3は、本発明の第2の実施の形態に係る垂直磁気記録媒体の概略断面図である。図中、先に説明した部分に対応する部分には同一の参照符号を付し、説明を省略する。
(Second Embodiment)
FIG. 3 is a schematic cross-sectional view of a perpendicular magnetic recording medium according to the second embodiment of the present invention. In the figure, portions corresponding to the portions described above are denoted by the same reference numerals, and description thereof is omitted.

図3を参照するに、垂直磁気記録媒体30は、基板11と、基板11上に、軟磁性裏打ち層12、非磁性中間層14、記録層15、保護膜16および潤滑層18を順次積層した構成となっており、非磁性中間層14と記録層15との界面に、非磁性材料の結晶成長核32を形成すると共に離隔して配置された島状膜31が形成されている。   Referring to FIG. 3, in the perpendicular magnetic recording medium 30, the soft magnetic backing layer 12, the nonmagnetic intermediate layer 14, the recording layer 15, the protective film 16, and the lubricating layer 18 are sequentially stacked on the substrate 11 and the substrate 11. An island-like film 31 is formed at the interface between the nonmagnetic intermediate layer 14 and the recording layer 15 so as to form crystal growth nuclei 32 of a nonmagnetic material and are spaced apart from each other.

島状膜31は、非磁性中間層14の表面にスパッタ法、真空蒸着法、CVD法などにより、Al、Ta、Ti、Ag、Cu、Pb、Si、B、Zr、Cr、Ru、Re及びこれらの合金から選択された非磁性材料により構成された結晶成長核32が離隔して配置されたものである。結晶成長核32は、成膜過程の初期に非磁性中間層14の表面に形成される結晶成長の核であり、結晶成長核32の大きさや、隣接する結晶成長核32との間隙の大きさは、基板温度、蒸着量、蒸着速度などにより制御することができる。   The island-like film 31 is formed on the surface of the nonmagnetic intermediate layer 14 by sputtering, vacuum deposition, CVD, or the like by Al, Ta, Ti, Ag, Cu, Pb, Si, B, Zr, Cr, Ru, Re, and the like. Crystal growth nuclei 32 made of a nonmagnetic material selected from these alloys are arranged apart from each other. The crystal growth nuclei 32 are crystal growth nuclei formed on the surface of the nonmagnetic intermediate layer 14 at the initial stage of the film formation process, and the size of the crystal growth nuclei 32 and the size of the gap between the adjacent crystal growth nuclei 32. Can be controlled by the substrate temperature, the deposition amount, the deposition rate, and the like.

島状膜31の厚さは、連続膜として形成されたと仮定した連続膜換算膜厚が2nm以下に設定される。この範囲に設定することにより、結晶成長核32が離隔して配置された状態を形成することができる。なお、連続膜換算膜厚は、例えば、蒸着速度又はスパッタ速度と、成膜時間により求めることができる。なお、連続膜換算膜厚の下限は0.1nmであることが好ましい。また、隣接する結晶成長核32の間隙は、磁束を効果的に狭窄する観点からは平均間隙が1nm〜5nmの範囲内に設定することが好ましい。   The thickness of the island-like film 31 is set to 2 nm or less as a continuous film equivalent film thickness that is assumed to be formed as a continuous film. By setting this range, it is possible to form a state in which the crystal growth nuclei 32 are spaced apart. In addition, the continuous film equivalent film thickness can be calculated | required by the vapor deposition rate or sputtering rate, and the film-forming time, for example. The lower limit of the continuous film equivalent film thickness is preferably 0.1 nm. The gap between adjacent crystal growth nuclei 32 is preferably set within a range of 1 nm to 5 nm in average gap from the viewpoint of effectively confining the magnetic flux.

なお、島状膜31を形成する前に非磁性中間層14の表面を、Arイオンなどを用いてドライエッチングにより極めて微小な窪みを形成してもよい。かかる窪みを起点として結晶成長核32が形成され易くなり、結晶成長核32を均一に形成することができる。   Before forming the island-shaped film 31, extremely small depressions may be formed on the surface of the nonmagnetic intermediate layer 14 by dry etching using Ar ions or the like. The crystal growth nuclei 32 are easily formed starting from the depressions, and the crystal growth nuclei 32 can be formed uniformly.

島状膜31上には、第1の実施の形態において説明した記録層15を同様にして形成する。その結果、記録層15の底の部分に島状膜31の結晶成長核32により、記録の際に磁束が狭窄される構造が形成される。   On the island-like film 31, the recording layer 15 described in the first embodiment is formed in the same manner. As a result, a structure in which the magnetic flux is constricted during recording is formed by the crystal growth nuclei 32 of the island-like film 31 at the bottom of the recording layer 15.

本実施の形態の一実施例として、非磁性中間層(TiCr膜、厚さ3nm)/軟磁性裏打ち層(CoCrNb、厚さ100nm)/ガラス基板を形成し、次いで、真空蒸着法により、圧力0.68PaのArガス雰囲気中において、基板温度250℃、Re(レニウム)を0.2nm/秒の連続換算膜厚に基づく成膜レートで4秒間成膜を行った。その結果、平均粒径5nm、平均間隙5nmのReよりなる結晶成長核が形成された。   As an example of the present embodiment, a nonmagnetic intermediate layer (TiCr film, thickness 3 nm) / soft magnetic backing layer (CoCrNb, thickness 100 nm) / glass substrate is formed, and then the pressure is reduced to 0 by vacuum deposition. The film was formed for 4 seconds in an Ar gas atmosphere of .68 Pa at a substrate temperature of 250 ° C. and Re (rhenium) at a film formation rate based on a continuous equivalent film thickness of 0.2 nm / second. As a result, crystal growth nuclei composed of Re having an average particle diameter of 5 nm and an average gap of 5 nm were formed.

次いでスパッタ法により厚さ15nmのCo65Cr20Pt15を形成し、次いで、厚さ4nmの水素化カーボン膜よりなる保護膜を形成した。次いで潤滑剤(Z−dol)を塗布して厚さ2nmの潤滑層を形成した。 Next, Co 65 Cr 20 Pt 15 having a thickness of 15 nm was formed by sputtering, and then a protective film made of a hydrogenated carbon film having a thickness of 4 nm was formed. Next, a lubricant (Z-dol) was applied to form a 2 nm thick lubricant layer.

本実施の形態によれば、軟磁性裏打ち層12と記録層15との間に島状膜31が形成され、島状膜31の非磁性材料よりなる結晶成長核32が離隔して配置されているので、記録時に、記録ヘッドからの磁束が記録層15の底の部分で狭窄され、記録層15に磁束を集中することができる。   According to the present embodiment, the island-like film 31 is formed between the soft magnetic backing layer 12 and the recording layer 15, and the crystal growth nuclei 32 made of a nonmagnetic material of the island-like film 31 are arranged separately. Therefore, during recording, the magnetic flux from the recording head is constricted at the bottom portion of the recording layer 15, and the magnetic flux can be concentrated on the recording layer 15.

(第2の実施の形態の変形例)
図4は、本発明の第2の実施の形態の変形例に係る垂直磁気記録媒体の概略断面図である。図中、先に説明した部分に対応する部分には同一の参照符号を付し、説明を省略する。
(Modification of the second embodiment)
FIG. 4 is a schematic cross-sectional view of a perpendicular magnetic recording medium according to a modification of the second embodiment of the present invention. In the figure, portions corresponding to the portions described above are denoted by the same reference numerals, and description thereof is omitted.

図4を参照するに、垂直磁気記録媒体40は、基板11と、基板11上に、軟磁性裏打ち層12、島状膜41、非磁性中間層14、記録層15、保護膜16および潤滑層18を順次積層した構成となっている。   Referring to FIG. 4, the perpendicular magnetic recording medium 40 includes a substrate 11, a soft magnetic backing layer 12, an island-like film 41, a nonmagnetic intermediate layer 14, a recording layer 15, a protective film 16, and a lubricating layer on the substrate 11. 18 is sequentially laminated.

島状膜41は、軟磁性裏打ち層12上に非磁性材料よりなる結晶成長核32が離隔して配置され、結晶成長核32の間隙には軟磁性材料が充填されてなる磁束透過部42により構成されている。結晶成長核32は、上述した第2の実施の形態と同様にして形成される。磁束透過部42は、高飽和磁束密度の軟磁性材料、例えば軟磁性裏打ち層12と同様の材料により充填される。なお、磁束透過部42の厚さは結晶成長核32の高さより薄いことが好ましい。磁束の広がりを防止して効果的に狭窄することができる。   The island-like film 41 is arranged on the soft magnetic underlayer 12 with crystal growth nuclei 32 made of a nonmagnetic material separated from each other, and a gap between the crystal growth nuclei 32 is filled with a soft magnetic material. It is configured. The crystal growth nucleus 32 is formed in the same manner as in the second embodiment described above. The magnetic flux transmitting portion 42 is filled with a soft magnetic material having a high saturation magnetic flux density, for example, the same material as that of the soft magnetic backing layer 12. The thickness of the magnetic flux transmission part 42 is preferably thinner than the height of the crystal growth nucleus 32. It is possible to effectively constrict by preventing the spread of magnetic flux.

本変形例によれば、軟磁性裏打ち層12と記録層15との間に島状膜41が形成され、島状膜41の非磁性材料よりなる結晶成長核32が離隔して配置されているので、記録時に、記録ヘッドからの磁束が結晶成長核32間に充填された軟磁性材料に狭窄され、磁束の広がりを抑制することができ、記録層15に磁束を集中することができる。なお、島状膜41は、軟磁性裏打ち層12上に設ける替わりに非磁性中間層14上に設けてもよく、また、両方に設けてもよい。   According to this modification, the island-like film 41 is formed between the soft magnetic backing layer 12 and the recording layer 15, and the crystal growth nuclei 32 made of a nonmagnetic material of the island-like film 41 are arranged separately. Therefore, at the time of recording, the magnetic flux from the recording head is constricted by the soft magnetic material filled between the crystal growth nuclei 32, so that the spread of the magnetic flux can be suppressed and the magnetic flux can be concentrated on the recording layer 15. The island film 41 may be provided on the nonmagnetic intermediate layer 14 instead of being provided on the soft magnetic backing layer 12, or may be provided on both.

(第3の実施の形態)
本発明の実施の形態は、第1の実施の形態に係る垂直磁気記録媒体を備えた磁気記憶装置に係るものである。
(Third embodiment)
The embodiment of the present invention relates to a magnetic storage device including the perpendicular magnetic recording medium according to the first embodiment.

図5は、本発明の実施の形態の磁気記憶装置の要部を示す図である。図5を参照するに、磁気記憶装置60は大略ハウジング61からなる。ハウジング61内には、スピンドル(図示されず)により駆動されるハブ62、ハブ62に固定され回転される垂直磁気記録媒体63、アクチュエータユニット64、アクチュエータユニット64に取り付けられ垂直磁気記録媒体63の半径方向に移動されるアーム65及びサスペンション66、サスペンション66に支持された垂直磁気記録ヘッド68が設けられている。   FIG. 5 is a diagram showing a main part of the magnetic memory device according to the embodiment of the present invention. Referring to FIG. 5, the magnetic storage device 60 generally includes a housing 61. Within the housing 61, a hub 62 driven by a spindle (not shown), a perpendicular magnetic recording medium 63 fixed to the hub 62 and rotated, an actuator unit 64, and a radius of the perpendicular magnetic recording medium 63 attached to the actuator unit 64 An arm 65 and a suspension 66 that are moved in the direction are provided, and a perpendicular magnetic recording head 68 supported by the suspension 66 is provided.

図6(A)は垂直磁気記録ヘッドの概略断面図、(B)は主磁極の拡大図である。図6(A)を参照するに、垂直磁気記録ヘッド68は、アルチックのスライダ70上にアルミナ絶縁層71を介して、単磁極型記録ヘッド72とGMR(Giant Magneto Resistive)素子73を用いた再生ヘッド74が形成された構成となっている。単磁極型記録ヘッド72は、垂直磁気記録媒体63に記録磁界を印加するための軟磁性体よりなる主磁極75と、主磁極75に磁気的に接続されたリターンヨーク76と、主磁極75とリターンヨーク76に記録磁界を誘導するための記録用コイル78などから構成されている。また、再生ヘッド74は、主磁極75を下部シールドとし、主磁極74上にアルミナ絶縁層71を介して形成されたGMR素子73と、さらにアルミナ絶縁層71を介して形成された上部シールド79より構成されている。単磁極型記録ヘッド72は、主磁極75から記録磁界を垂直磁気記録媒体63に対して垂直方向に印加して、垂直磁気記録媒体63に垂直方向の磁化を形成する。   FIG. 6A is a schematic cross-sectional view of a perpendicular magnetic recording head, and FIG. 6B is an enlarged view of the main pole. Referring to FIG. 6A, a perpendicular magnetic recording head 68 uses a single magnetic pole type recording head 72 and a GMR (Giant Magneto Resistive) element 73 on an Altic slider 70 with an alumina insulating layer 71 interposed therebetween. The head 74 is formed. The single magnetic pole type recording head 72 includes a main magnetic pole 75 made of a soft magnetic material for applying a recording magnetic field to the perpendicular magnetic recording medium 63, a return yoke 76 magnetically connected to the main magnetic pole 75, a main magnetic pole 75, The return yoke 76 is composed of a recording coil 78 for inducing a recording magnetic field. Further, the reproducing head 74 has a main magnetic pole 75 as a lower shield, a GMR element 73 formed on the main magnetic pole 74 via an alumina insulating layer 71, and an upper shield 79 formed further via the alumina insulating layer 71. It is configured. The single magnetic pole type recording head 72 applies a recording magnetic field from the main magnetic pole 75 in the perpendicular direction to the perpendicular magnetic recording medium 63 to form perpendicular magnetization in the perpendicular magnetic recording medium 63.

図6(B)を参照するに、主磁極75の先端部75−1は先端に向かう程先細、すなわち断面積が小となっている。記録磁界に係る磁束密度を高めて垂直保磁力の高い垂直磁気記録媒体63を磁化することができる。主磁極75の先端部75−1の軟磁性材料は飽和磁束密度の高い、例えば50at%Ni−50at%Fe、FeCoNi合金、FeCoAlOなどよりなることが好ましい。磁気飽和を防止して高い磁束密度の磁束を集中して垂直磁気記録媒体63に印加することができる。   Referring to FIG. 6B, the tip 75-1 of the main pole 75 is tapered toward the tip, that is, the cross-sectional area is smaller. The perpendicular magnetic recording medium 63 having a high perpendicular coercive force can be magnetized by increasing the magnetic flux density related to the recording magnetic field. The soft magnetic material of the tip 75-1 of the main pole 75 is preferably made of a high saturation magnetic flux density, for example, 50 at% Ni-50 at% Fe, FeCoNi alloy, FeCoAlO, or the like. Magnetic saturation can be prevented and a magnetic flux having a high magnetic flux density can be concentrated and applied to the perpendicular magnetic recording medium 63.

また、再生ヘッド74は、垂直磁気記録媒体63の磁化が漏洩する磁界を感知して、その方向に対応するGMR素子73の抵抗値の変化により垂直磁気記録媒体63に記録された情報を得ることができる。なお、GMR素子73の替わりにTMR(Ferromagnetic Tunnel Junction Magneto Resistive)素子を用いることができる。   Further, the reproducing head 74 senses a magnetic field in which the magnetization of the perpendicular magnetic recording medium 63 leaks, and obtains information recorded on the perpendicular magnetic recording medium 63 by a change in the resistance value of the GMR element 73 corresponding to the direction. Can do. In place of the GMR element 73, a TMR (Ferromagnetic Tunnel Junction Magneto Resistive) element can be used.

本実施の形態の磁気記憶装置60は、垂直磁気記録媒体63に特徴がある。例えば、垂直磁気記録媒体63は第1の実施の形態、第2の実施の形態、または第2の実施の形態の変形例にかかる垂直磁気記録媒体である。   The magnetic storage device 60 of this embodiment is characterized by a perpendicular magnetic recording medium 63. For example, the perpendicular magnetic recording medium 63 is a perpendicular magnetic recording medium according to the first embodiment, the second embodiment, or a modification of the second embodiment.

磁気記憶装置60の基本構成は、図5に示すものに限定されるものではない。本発明で用いる垂直磁気記録媒体63は、磁気ディスクに限定されず磁気テープであってもよい。   The basic configuration of the magnetic storage device 60 is not limited to that shown in FIG. The perpendicular magnetic recording medium 63 used in the present invention is not limited to a magnetic disk but may be a magnetic tape.

本実施の形態によれば、磁気記憶装置60は、垂直磁気記録媒体63が単磁極型記録ヘッド72からの磁束を一層狭窄して記録層に集中することにより、狭トラック化及び線記録密度の向上を図ることができ、高密度記録が可能である。   According to the present embodiment, the perpendicular magnetic recording medium 63 further narrows the magnetic flux from the single-pole recording head 72 and concentrates it on the recording layer, thereby reducing the track width and the linear recording density. Improvement can be achieved and high-density recording is possible.

以上本発明の好ましい実施例について詳述したが、本発明は係る特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の範囲内において、種々の変形・変更が可能である。   Although the preferred embodiments of the present invention have been described in detail above, the present invention is not limited to the specific embodiments, and various modifications and changes can be made within the scope of the present invention described in the claims. Is possible.

例えば、第3の実施の形態に係る磁気記憶装置では、垂直磁気記録媒体として磁気ディスクを例に説明したが、本発明の垂直磁気記録媒体は磁気ディスクに限定されず、基板にPETや、PEN、ポリイミドよりなるフィルムを用いて、ヘリカルスキャンあるいはラテラル走行型の磁気テープであってもよく、カードの形態であってもよい。   For example, in the magnetic storage device according to the third embodiment, the magnetic disk is described as an example of the perpendicular magnetic recording medium. However, the perpendicular magnetic recording medium of the present invention is not limited to the magnetic disk, and the substrate is PET or PEN. Further, a helical scan or lateral running type magnetic tape using a film made of polyimide may be used, or a card form may be used.

なお、以上の説明に関して更に以下の付記を開示する。
(付記1) 基板と、
前記基板上に形成された軟磁性裏打ち層と、
前記軟磁性裏打ち層上に形成された記録層とを備えた垂直磁気記録媒体であって、
前記軟磁性裏打ち層と記録層との間に磁束スリット層を有し、
磁束スリット層は、非磁性粒子を層内方向に配置してなることを特徴とする垂直磁気記録媒体。
(付記2) 前記磁束スリット層は、強磁性材料中に非磁性粒子を配置してなり、
前記強磁性材料は、希土類金属と遷移金属との合金よりなることを特徴とする付記1記載の垂直磁気記録媒体。
(付記3) 前記希土類金属はTb、Gd、及びDyからなる群のうち少なくともいずれか1種を含み、前記遷移金属はFe及びCoのうち少なくともいずれか1種を含むことを特徴とする付記2記載の垂直磁気記録媒体。
(付記4) 前記非磁性粒子は、Si−O、Al−O、Zr−O、Mg−O、Si−N、Si−C、及びCからなる群のうち少なくとも1種を含む材料よりなることを特徴とする付記1〜3のうち、いずれか一項記載の垂直磁気記録媒体。
(付記5) 前記非磁性粒子は、イットリウムをさらに含む材料よりなることを特徴とする付記4記載の垂直磁気記録媒体。
(付記6) 前記磁束スリット層は厚さが2nm〜20nmの範囲内に設定されることを特徴とする付記1〜5のうち、いずれか一項記載の垂直磁気記録媒体。
(付記7) 前記非磁性微粒子の平均粒径は3nm〜10nmの範囲内に設定されることを特徴とする付記1〜6記載の垂直磁気記録媒体。
(付記8) 前記非磁性微粒子とその隣接する非磁性微粒子との平均間隙は0.5nm〜10nmの範囲内に設定されることを特徴とする付記1〜7記載の垂直磁気記録媒体。
(付記9) 前記軟磁性裏打ち層と磁束スリット層との間、及び磁束スリット層と記録層との間のうち少なくとも一方の間に非磁性中間層をさらに有することを特徴とする付記1〜8のうち、いずれか一項記載の垂直磁気記録媒体。
(付記10) 前記軟磁性裏打ち層と磁束スリット層との間に非磁性中間層を有し、前記非磁性微粒子は非磁性中間層の表面に島状に配置されてなることを特徴とする付記1記載の垂直磁気記録媒体。
(付記11) 前記磁束スリット層の連続膜換算膜厚が2nm以下に設定されることを特徴とする付記10記載の垂直磁気記録媒体。
(付記12) 前記磁束スリット層は、軟磁性裏打ち層上に形成され、
前記非磁性微粒子が軟磁性裏打ち層の表面に島状に配置されると共に、非磁性微粒子間が軟磁性材料により充填されてなることを特徴とする付記1記載の垂直磁気記録媒体。
(付記13) 前記非磁性微粒子は、Al、Ta、Ti、Ag、Cu、Pb、Si、B、Zr、Cr、Ru、Re及びこれらの合金からなる群のうち少なくとも1種を含む材料よりなることを特徴とする付記10〜12のうち、いずれか一項記載の垂直磁気記録媒体。
(付記14) 前記記録層は、Ni、Fe、Co、Ni系合金、Fe系合金、CoCrTa、CoCrPt、CoCrPt−Mを含むCo系合金からなる群のうちいずれかの材料よりなり、M=B、Mo、Nb、Ta、W、Cu及びこれらの合金であることを付記1〜13のうち、いずれか一項記載の垂直磁気記録媒体。
(付記15) 前記記録層はSi−O、Al−O、Zr−O、Mg−O、Si−N、Si−C、及びCからなる群のうち少なくとも1種をさらに含むことを特徴とする付記1〜14のうち、いずれか一項記載の垂直磁気記録媒体。
(付記16) 付記1〜15のうち、いずれか一項記載の垂直磁気記録媒体と、該垂直磁気記録媒体に対向して記録再生を行う垂直磁気記録ヘッドとを備えた磁気記憶装置。
In addition, the following additional notes are disclosed regarding the above description.
(Appendix 1) a substrate,
A soft magnetic backing layer formed on the substrate;
A perpendicular magnetic recording medium comprising a recording layer formed on the soft magnetic backing layer,
Having a magnetic flux slit layer between the soft magnetic backing layer and the recording layer;
The magnetic flux slit layer is a perpendicular magnetic recording medium comprising nonmagnetic particles arranged in an in-layer direction.
(Appendix 2) The magnetic flux slit layer is formed by arranging nonmagnetic particles in a ferromagnetic material,
2. The perpendicular magnetic recording medium according to claim 1, wherein the ferromagnetic material is made of an alloy of a rare earth metal and a transition metal.
(Additional remark 3) The said rare earth metal contains at least any 1 type in the group which consists of Tb, Gd, and Dy, The said transition metal contains at least any 1 type in Fe and Co characterized by the above-mentioned. The perpendicular magnetic recording medium described.
(Supplementary Note 4) The non-magnetic particles are made of a material including at least one selected from the group consisting of Si-O, Al-O, Zr-O, Mg-O, Si-N, Si-C, and C. The perpendicular magnetic recording medium according to any one of appendices 1 to 3, characterized in that:
(Supplementary note 5) The perpendicular magnetic recording medium according to supplementary note 4, wherein the nonmagnetic particles are made of a material further containing yttrium.
(Supplementary note 6) The perpendicular magnetic recording medium according to any one of Supplementary notes 1 to 5, wherein the magnetic flux slit layer has a thickness set in a range of 2 nm to 20 nm.
(Supplementary note 7) The perpendicular magnetic recording medium according to supplementary notes 1 to 6, wherein an average particle diameter of the nonmagnetic fine particles is set in a range of 3 nm to 10 nm.
(Supplementary note 8) The perpendicular magnetic recording medium according to supplementary notes 1 to 7, wherein an average gap between the nonmagnetic fine particles and the adjacent nonmagnetic fine particles is set in a range of 0.5 nm to 10 nm.
(Supplementary note 9) The supplementary notes 1 to 8, further comprising a nonmagnetic intermediate layer between at least one of the soft magnetic backing layer and the magnetic flux slit layer and between the magnetic flux slit layer and the recording layer. The perpendicular magnetic recording medium according to claim 1.
(Additional remark 10) It has a nonmagnetic intermediate | middle layer between the said soft-magnetic backing layer and a magnetic-flux slit layer, The said nonmagnetic fine particle is arrange | positioned at the surface of a nonmagnetic intermediate | middle layer at island shape, It is characterized by the above-mentioned. 1. A perpendicular magnetic recording medium according to 1.
(Additional remark 11) The perpendicular magnetic recording medium of Additional remark 10 characterized by the continuous film equivalent film thickness of the said magnetic flux slit layer being set to 2 nm or less.
(Appendix 12) The magnetic flux slit layer is formed on a soft magnetic backing layer,
2. The perpendicular magnetic recording medium according to claim 1, wherein the nonmagnetic fine particles are arranged in an island shape on the surface of the soft magnetic underlayer, and the spaces between the nonmagnetic fine particles are filled with a soft magnetic material.
(Additional remark 13) The said nonmagnetic fine particle consists of material containing at least 1 sort (s) among the group which consists of Al, Ta, Ti, Ag, Cu, Pb, Si, B, Zr, Cr, Ru, Re, and these alloys. The perpendicular magnetic recording medium according to any one of Supplementary Notes 10 to 12, wherein
(Supplementary Note 14) The recording layer is made of any material selected from the group consisting of Ni, Fe, Co, Ni alloys, Fe alloys, CoCrTa, CoCrPt, and CoCr alloys including CoCrPt-M, and M = B The perpendicular magnetic recording medium according to any one of appendices 1 to 13, wherein the perpendicular magnetic recording medium is Mo, Nb, Ta, W, Cu, or an alloy thereof.
(Supplementary Note 15) The recording layer further includes at least one selected from the group consisting of Si-O, Al-O, Zr-O, Mg-O, Si-N, Si-C, and C. The perpendicular magnetic recording medium according to any one of appendices 1 to 14.
(Supplementary note 16) A magnetic storage device comprising: the perpendicular magnetic recording medium according to any one of supplementary notes 1 to 15; and a perpendicular magnetic recording head that performs recording and reproduction while facing the perpendicular magnetic recording medium.

従来の垂直磁気記録媒体の概略断面図である。It is a schematic sectional drawing of the conventional perpendicular magnetic recording medium. 本発明の第1の実施の形態に係る垂直磁気記録媒体の概略断面図である。1 is a schematic cross-sectional view of a perpendicular magnetic recording medium according to a first embodiment of the invention. 本発明の第2の実施の形態に係る垂直磁気記録媒体の概略断面図である。It is a schematic sectional drawing of the perpendicular magnetic recording medium based on the 2nd Embodiment of this invention. 第2の実施の形態の変形例に係る垂直磁気記録媒体の概略断面図である。It is a schematic sectional drawing of the perpendicular magnetic recording medium based on the modification of 2nd Embodiment. 本発明の第2の実施の形態の磁気記憶装置の要部を示す図である。It is a figure which shows the principal part of the magnetic storage apparatus of the 2nd Embodiment of this invention. (A)は垂直磁気記録ヘッドの概略断面図、(B)は主磁極の拡大図である。(A) is a schematic sectional view of a perpendicular magnetic recording head, and (B) is an enlarged view of a main magnetic pole.

符号の説明Explanation of symbols

10、30、40、63 垂直磁気記録媒体
11 基板
12 軟磁性裏打ち層
13 磁束スリット層
14 非磁性中間層
15 記録層
16 保護膜
18 潤滑層
19 強磁性母相
20 非磁性微粒子
31、41 島状膜
32 結晶成長核
42 磁束透過部
60 磁気記憶装置
68 垂直磁気記録ヘッド
10, 30, 40, 63 Perpendicular magnetic recording medium 11 Substrate 12 Soft magnetic backing layer 13 Magnetic flux slit layer 14 Nonmagnetic intermediate layer 15 Recording layer 16 Protective film 18 Lubricating layer 19 Ferromagnetic matrix 20 Nonmagnetic fine particles 31, 41 Island shape Film 32 Crystal growth nucleus 42 Magnetic flux transmission part 60 Magnetic storage device 68 Perpendicular magnetic recording head

Claims (5)

基板と、
前記基板上に形成された軟磁性裏打ち層と、
前記軟磁性裏打ち層上に形成された記録層とを備えた垂直磁気記録媒体であって、
前記軟磁性裏打ち層と記録層との間に磁束スリット層を有し、
磁束スリット層は、非磁性粒子を層内方向に配置してなることを特徴とする垂直磁気記録媒体。
A substrate,
A soft magnetic backing layer formed on the substrate;
A perpendicular magnetic recording medium comprising a recording layer formed on the soft magnetic backing layer,
Having a magnetic flux slit layer between the soft magnetic backing layer and the recording layer;
The magnetic flux slit layer is a perpendicular magnetic recording medium comprising nonmagnetic particles arranged in an in-layer direction.
前記磁束スリット層は、強磁性材料中に非磁性粒子を配置してなり、
前記強磁性材料は、希土類金属と遷移金属との合金よりなることを特徴とする請求項1記載の垂直磁気記録媒体。
The magnetic flux slit layer is formed by arranging nonmagnetic particles in a ferromagnetic material,
2. The perpendicular magnetic recording medium according to claim 1, wherein the ferromagnetic material is made of an alloy of a rare earth metal and a transition metal.
前記非磁性粒子は、Si−O、Al−O、Zr−O、Mg−O、Si−N、Si−C、及びCからなる群のうち少なくとも1種を含む材料よりなることを特徴とする請求項1または2記載の垂直磁気記録媒体。   The nonmagnetic particles are made of a material including at least one selected from the group consisting of Si-O, Al-O, Zr-O, Mg-O, Si-N, Si-C, and C. The perpendicular magnetic recording medium according to claim 1 or 2. 前記軟磁性裏打ち層と磁束スリット層との間に非磁性中間層を有し、前記非磁性微粒子は非磁性中間層の表面に島状に配置されてなることを特徴とする請求項1記載の垂直磁気記録媒体。   The nonmagnetic intermediate layer is provided between the soft magnetic backing layer and the magnetic flux slit layer, and the nonmagnetic fine particles are arranged in an island shape on the surface of the nonmagnetic intermediate layer. Perpendicular magnetic recording medium. 請求項1〜4のうち、いずれか一項記載の垂直磁気記録媒体と、該垂直磁気記録媒体に対向して記録再生を行う垂直磁気記録ヘッドとを備えた磁気記憶装置。   5. A magnetic storage device comprising: the perpendicular magnetic recording medium according to claim 1; and a perpendicular magnetic recording head that performs recording and reproduction facing the perpendicular magnetic recording medium.
JP2003302503A 2003-08-27 2003-08-27 Vertical magnetic recording medium and magnetic storage device Pending JP2005071525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003302503A JP2005071525A (en) 2003-08-27 2003-08-27 Vertical magnetic recording medium and magnetic storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003302503A JP2005071525A (en) 2003-08-27 2003-08-27 Vertical magnetic recording medium and magnetic storage device

Publications (1)

Publication Number Publication Date
JP2005071525A true JP2005071525A (en) 2005-03-17

Family

ID=34406756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003302503A Pending JP2005071525A (en) 2003-08-27 2003-08-27 Vertical magnetic recording medium and magnetic storage device

Country Status (1)

Country Link
JP (1) JP2005071525A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011075212A1 (en) * 2009-12-18 2011-06-23 E. I. Du Pont De Nemours And Company Method for coating measurement
JP2012160242A (en) * 2011-02-02 2012-08-23 Fuji Electric Co Ltd Method for manufacturing magnetic recording medium for heat-assisted recording device
WO2012157600A1 (en) * 2011-05-17 2012-11-22 昭和電工株式会社 Magnetic recording medium, manufacturing method thereof, and magnetic record/play device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011075212A1 (en) * 2009-12-18 2011-06-23 E. I. Du Pont De Nemours And Company Method for coating measurement
CN102667444A (en) * 2009-12-18 2012-09-12 纳幕尔杜邦公司 Method for coating measurement
US8771785B2 (en) 2009-12-18 2014-07-08 Axalta Coating Systems Ip Co., Llc Method for coating measurement
US8999429B2 (en) 2009-12-18 2015-04-07 Axalta Coating Systems Ip Co., Llc Systems and methods for coating measurement
JP2012160242A (en) * 2011-02-02 2012-08-23 Fuji Electric Co Ltd Method for manufacturing magnetic recording medium for heat-assisted recording device
US9263075B2 (en) 2011-02-02 2016-02-16 Fuji Electric Co., Ltd. Magnetic recording medium for heat-assisted recording device and manufacturing method thereof
WO2012157600A1 (en) * 2011-05-17 2012-11-22 昭和電工株式会社 Magnetic recording medium, manufacturing method thereof, and magnetic record/play device
JPWO2012157600A1 (en) * 2011-05-17 2014-07-31 昭和電工株式会社 Magnetic recording medium, method for manufacturing the same, and magnetic recording / reproducing apparatus
US9245563B2 (en) 2011-05-17 2016-01-26 Showa Denko K.K. Magnetic medium with an orientation control layer

Similar Documents

Publication Publication Date Title
US6403203B2 (en) Magnetic recording medium and magnetic recording apparatus using the same
CN100440324C (en) Perpendicular magnetic recording medium and magnetic storage device
KR100637104B1 (en) Magnetic recording medium, magnetic storage and method for reproducing information from magnetic recording medium
JP4628294B2 (en) Magnetic storage
JP2007200548A (en) Perpendicular magnetic recording disk
JP2004118956A (en) Magnetic recording medium
US20080075979A1 (en) Magnetic recording medium, method of manufacturing magnetic recording medium, and magnetic recording device
JP2007273055A (en) Perpendicular magnetic recording medium and magnetic storage device
KR101797605B1 (en) Magnetic recording media with reliable writability and erasure
JP2003317221A (en) Perpendicular magnetic recording medium
JP4740787B2 (en) Perpendicular magnetic recording medium, recording method and reproducing method thereof, and magnetic storage device
JP4197707B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP2005071525A (en) Vertical magnetic recording medium and magnetic storage device
JP2006190485A (en) Perpendicular magnetic recording medium and magnetic storage device
KR100811704B1 (en) Perpendicular magnetic recording medium, recording method, reproducing method, and magnetic storing apparatus
KR100813140B1 (en) Perpendicular magnetic recording medium, its manufacturing method, recording method, and reproducing method
KR100811705B1 (en) Perpendicular magnetic recording medium, and magnetic storing apparatus
KR100867969B1 (en) Perpendicular magnetic recording medium, and magnetic recording apparatus
JP2006228424A (en) Vertical magnetic recording medium, recording method, and magnetic storage apparatus
JP2002092840A (en) Magnetic recording medium and magnetic recording device provided with the same
KR20060090316A (en) Perpendicular magnetic recording medium, and recording method
JP2003162812A (en) Perpendicular magnetic recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060712

A977 Report on retrieval

Effective date: 20080911

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080924

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081118

A02 Decision of refusal

Effective date: 20081216

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090115

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090224

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090319

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090902