JP2005070682A - 光学デバイスおよびその製造方法 - Google Patents

光学デバイスおよびその製造方法 Download PDF

Info

Publication number
JP2005070682A
JP2005070682A JP2003303764A JP2003303764A JP2005070682A JP 2005070682 A JP2005070682 A JP 2005070682A JP 2003303764 A JP2003303764 A JP 2003303764A JP 2003303764 A JP2003303764 A JP 2003303764A JP 2005070682 A JP2005070682 A JP 2005070682A
Authority
JP
Japan
Prior art keywords
optical
optical device
substrate
optical element
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003303764A
Other languages
English (en)
Inventor
Yoshiyuki Shigeoka
義之 重岡
Michitaka Okuda
通孝 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003303764A priority Critical patent/JP2005070682A/ja
Publication of JP2005070682A publication Critical patent/JP2005070682A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

【課題】光学素子と基板が金属酸化膜を介して強固に接合し、かつ小型化が可能で組み立てが容易な、良好な挿入損失、消光比を有し、信頼性の高い光学デバイスおよびその製造方法を提供する。
【解決手段】光学素子の少なくとも一面が基板と接合されて成る光学デバイスにおいて、光学素子が基板に接合して成り、光学素子または基板上の接合面に金属酸化膜が形成されていることを特徴とする光学デバイスおよびその製造方法。
【選択図】図1

Description

本発明は、基板上に配列した複数の光学素子を有する光学デバイスにおいて、該光学素子と該基板が金属酸化膜を介して接合して成る光学デバイスおよびその製造方法に関するものである。
近年、WDM(Wavelength Division Multiplex、波長分割多重)の多波長化により、光通信システムの高集積化が進み、そこに使用する光学デバイスの小型化に対する要求も強くなってきている。
光学デバイスは多くの場合、固定部材に光学素子を接合し、これらを組み合わせることにより構成されているが、この方法では、固定部材が邪魔になり光学デバイスの小型化の妨げとなっているため、固定部材を排除して、光学素子同士を接着する方法が検討されている。
光学デバイスの小型化には、光学素子の透光面同士を接合すると効果的であり、このような光学素子同士の接合において最も簡単な方法は、有機接着剤を使用して接合を行うことである。
しかしながら、有機接着剤は、アウトガスがレーザーダイオードに悪影響を及ぼす上に、高出力レーザーの照射や高温高湿雰囲気下での暴露に弱く、デバイスの信頼性に欠けるといった欠点を有する。
そこで、有機接着剤を使用することなく、光学素子同士を接合する方法が望まれ、種々検討されており、例えば無機接合材として低融点ガラスや半田が挙げられる。
図3に示す従来の光学デバイス20は、光学素子26が偏光ガラス22、検光子23とビスマス置換鉄ガーネット製のファラデー回転子21を接合材25で基板24上に接合している構成が示されている。
接合材25として例えば低融点ガラスは、PbO、Bi、TeO等の低融点材料を主成分としたものであるが、接合時に軟化点よりも高温に加熱する必要があるため、軟化の際に光学素子26に施した反射防止膜と低融点ガラス25が反応してしまい、反射防止機能が損なわれるといった問題があったため、透光面同士の接合に低融点ガラスを使用するのは困難とされている。
一方、接合材25として例えば半田を使用する場合、透光性が全く無いため透光面に直接配置することができないので、透光面の外枠に選択的メタライズを施し、メタライズ部のみに半田が介在するような接合方法が採られているが、複雑なメタライズ工程を必要とし、歩留りの低下およびコスト上昇が避け難いとされている。
上記に鑑みて、近年では接合材25を一切使用しないで光学素子26同士を直接接合する方法がある(特許文献1,2参照)。
この方法は、光学素子26の表面を親水化処理した後に、親水化面同士を貼り合せるもので、半導体ではSOI(Silicon On Insulator)ウエーハの製造工程で実用化されている。
図4(a)にて、ファラデー回転子1の両面に金属酸化膜5を形成し、偏光ガラス2、3の片面に金属酸化膜5を形成した後、図4(b)に示すように偏光ガラス2、3の接合面6とファラデー回転子1の両表面の接合面6が金属酸化膜5を介して接合され、光学素子30として一体化した構成を示している。
この直接接合方法は、被接合物の形状および物性に大きく依存し、例えば、反りに関しては、曲率半径で数百m以上あることが望ましく、また、被接合物の算術平均表面粗さは、Ra=0.3nm以下であることが望ましいと言われており、さらに、被接合物間の線膨張係数の差にも大きく影響する。
特開平7−220923号公報。 特開2000−56265号公報。
しかしながら、上記特許文献1,2ような接合方法では、次に述べるような問題点があり、実用化が困難な状況である。
例えば、光学デバイスで一般的に使用する光学素子の一つである鉄系ガーネット等は、厚さ方向に応力分布を有するため大きな反りを伴うことが多いという問題があった。
また、偏光ガラス2,3は、ガラスに銀や銅等の金属微粒子を分散させた構造であるため算術平均表面粗さを制御することが困難であり、このような光学素子26同士を直接接合した場合、接合面6での剥離が発生しやすく密着性、耐久性は低いという問題があった。
さらに、これら光学素子26の線膨張係数は、材料によって大きく異なる場合が多く、被接合物間の線膨張係数には大きな差が生じ、このような線膨張係数の異なる材料を直接接合した場合、異種材料間に熱応力が発生し、それが接合部6に集中することによって光学歪が生じやすくなり、消光比等の光学特性を低下するという問題があった。
上記に鑑みて本発明はこれらの課題を解決するためのものであり、基板上に配列した複数の光学素子を有する光学デバイスにおいて、前記光学素子と該基板が金属酸化膜を介して接合して成ることを特徴とするものである。
また、前記金属酸化膜がAl、TiO、SiOから選択する1種以上であることを特徴とするものである。
さらに、前記金属酸化膜の厚みが1nm以上250nm以下であることを特徴とするものである。
また、前記光学素子が偏光ガラスおよび/またはビスマス置換鉄ガーネット製ファラデー回転子であり、前記基板がガラス製であることを特徴とするものである。
さらに、光学デバイスにおける光学素子または基板の接合面の少なくとも一方に金属酸化膜を形成した後に接合することを特徴とするものである。
また、前記金属酸化膜を親水化処理、洗浄、乾燥する第一工程と、前記光学素子と基板を直接または水を介して接合して熱処理する第二工程からなることを特徴とするものである。
さらに、前記熱処理は80℃以上300℃以下の温度範囲で行なうことを特徴とするものである。
以上のように本発明によれば、光学素子と基板の接合が容易でかつ強固な接合強度が得られるとともに、アウトガスの発生や接合面の劣化がなく、小型で高信頼性の光デバイスを安価に提供することが可能となる。
また、光学素子を基板上に仮固定できるため精度良い光学調整が可能となり、光学デバイスを組み立てが容易に出来る。
さらに、半田等を使用する場合のように高温処理する必要がないので基板の反りの心配がないため基板を薄くすることができ、また、光軸方向の長さも短くできる。
本発明者等は、小型で信頼性の高い光学デバイスを安価に提供することを種々検討した結果、該光学素子と該基板が金属酸化膜を介して接合して成ることとすれば、光学素子と基板との接合強度も十分強固で確実なものとなり、また小型化にも有利であることを見出し、接合に関する諸条件を精査して本発明を完成させた。
以下、本発明の実施の形態を図面を参照して詳細に説明する。
図1は、本発明の接合による光学素子と基板の接合として完成した光デバイスを示す斜視断面図である。
図1に示した光学デバイス10は、光学素子15同士との間にそれぞれ空隙部t、t’を設け、基板4上にほぼ平行に配列したものであり、光学素子15と基板4が金属酸化膜5を介して接合されている。
光学素子15はファラデー回転子1、偏光ガラス2、3からなり、光学素子15または基板4上の接合面6の少なくとも一方に金属酸化膜5を形成した後に接合されている。
好ましくは光学素子15が相対する基板4、4’の接合面6の少なくとも一方に金属酸化膜5、5’をAl、TiO、SiOから選択する1種以上で形成したこととし、該金属酸化膜5、5’を単層または多層に積層することで親水化処理後の接合力を高めることができる。
基板4、4’の接合面6、6’に形成する金属酸化膜5、5’は、通常の電子ビーム蒸着法で行なうことができ、光学素子15または基板4、4’の接合面6、6’の少なくとも一方に金属酸化膜5、5’を形成した後に接合するができる。
金属酸化膜層5、5’の膜厚は、単層膜または多層膜となる厚さが1nm以上250nm以下まで蒸着するのが好ましく、1nm未満では接合力が少なくなり、250nmより大きいと反りが大きくなるため密着させるのが困難になる。
本発明の光学デバイス10を構成するファラデー回転子1をビスマス置換鉄ガーネット製、偏光ガラス2,3や基板4をガラス製とすれば、金属酸化膜5との密着性がよくなるため、信頼性が向上し、光学特性に影響を及ぼすことなく有効に機能するものとなる。
次に本願の光デバイスの製造方法について説明する。
図2は本発明の光学デバイスの光学素子と基板が、金属酸化膜を介して接合するまでの製造方法の実施形態を示す断面斜視図である。
図2(a)に示すように、2枚の基板4、4’間に配列した複数の光学素子15が互いに空隙寸法t、t’、sで配置され、光学素子15と2枚の基板4、4’が金属酸化膜5を介して接合する構造を有している。
光学素子15または基板4、4’の接合面6、6’との接合は、親水化処理、洗浄、乾燥する第一工程を施した後、該光学素子15と該基板4、4’を直接または水を介して接合し、その後熱処理をする第二工程を施すことによって行なわれる。
前処理工程として鏡面研磨を行ない、光学素子15または基板4、4’の接合面6、6’を好ましい算術平均表面粗さ(Ra(nm))、反り(曲率半径(m))の目標値とし、例えば対偏光ガラス2、3はRa=4nm以下、反り=70nm以上、ファラデー回転子4、4’は、Ra=3nm以下、反り=40nm以上となるように通常の湿式鏡面研磨を行ない、次に通常の湿式洗浄、さらに短波長紫外線処理(UV処理)やプラズマ処理を併用するとより効果的である。
第一工程として、光学素子15または基板4、4’の接合面6、6’に親水化処理を行う(ファラデー回転子1については接合面6、6’に金属酸化膜5、5’を形成した後に、洗浄、親水化処理を行なう)。
親水化処理には、半導体SOIウエーハプロセスで一般的に利用されているアンモニア過水(アンモニア水、過酸化水素水、純水の混合液)や硝酸、塩酸の希釈液もしくはこれら希釈液に過酸化水素水を添加した水溶液が有効である。
そして純水による洗浄を行い親水化処理液を除去し、スピンドライヤ等でむらなく乾燥することが望ましい。
このようにして得られた前処理済み光学素子15または基板4、4’上の接合面6、6’の少なくとも一方に金属酸化膜5、5’を形成した後にそれぞれを密着させ、図2(b)に示すように光学素子15または基板4、4’上の接合面6、6’の少なくとも一方に金属酸化膜5、5’を形成した後に接合する。
この場合特に水を介して接合するのが好ましく、より容易に接合することができる。
接合はレーザ光を光学素子15に対して垂直に透過させ、その消光比が最大になる角度で固定させるのがよい。
次に第二工程として、上記の手順で接合した光学素子15と基板4、4’を数時間熱処理することで必要十分な接合力が得られ、80℃以上300℃以下程度の温度とすることが好ましい。
ここで80℃未満だと接合強度が強まる効果を得ることができず、300℃を超えると光学素子15の反りが発生してくるため互いに密着が困難になる。
この時、熱処理工程における昇温速度が速や過ぎると、昇温中に接合面6で剥離が発生する恐れがあり、20℃/h以下の昇温速度に設定することが望ましい。
また、熱処理時の雰囲気は、大気中であっても問題はないが、減圧雰囲気もしくは水素を含む雰囲気であるとより望ましい。
以上の工程を経て光学素子15と基板4、4’が金属酸化膜5、5’を介して接合を完結し、光学デバイス10を完成することができる。
この光学デバイス10は、図2(c)に示すように、基板4、4’に配列した複数の光学素子15が空隙寸法t、t’、sをもって配置されており、ブロック状に切断して多数個切り出すこともできる(図中点線は切断部を示す)。
本発明の光学デバイスの実施例とし図1の光学デバイス10の試作を行った。
複数の光学素子15を互いに空隙寸法t、t’、sをもって、基板4、4’に接合した。
光学素子15は、偏光ガラス2,3が15mm×2.05mm×t0.195mmで屈折率が1.47、ファラデー回転子1が15mm×2.05mm×t0.420mmで屈折率が2.35、基板4、4’が15mm×15mm×t0.5mmで屈折率が1.5である。
各光学素子15の空隙寸法t、t’が0.01mmであり、空隙寸法sが0.03mmである。
各光学素子15の接合面6、6’を十分に研磨した後、各光学素子15と基板4、4’の接合面6、6’の表面上に金属酸化膜5、5’をTiO、Al、SiOにて屈折率1.5の多層積層膜(150nm)を形成した。
また、レーザ光が各光学素子15の接合面6以外(不図示)の面を透過し、透過面は光軸に対して垂直であり、透過面側にSiOを120nmだけ成膜している。
尚、SiOの屈折率は1.45で、反射防止膜は波長1.55μmで最適化した。
次に各光学素子15を低圧水銀灯によるUV(紫外線)処理後、純水による超音波洗浄を行なった。
次に第一工程として、親水化処理としてアンモニア水:過酸化水素水:純水=1:1:4のアンモニア過水に浸漬し、純水による超音波洗浄にてアンモニア過水を洗い流し、IPA蒸気乾燥により乾燥を行なった。
次に第二工程として、複数の偏光ガラス2、3の間に複数のファラデー回転子1を挟み、それぞれの接合面6、6’に水を介して、複数の偏光ガラス2、3と複数のファラデー回転子1を互いに空隙t、t’、sをもって基板4、4’に配置した。
この時複数の偏光ガラス2,3の偏波方向が互いに45°になるように角度調整を行い、基板4、4’に静置し、120℃、12時間、0.4気圧の水素雰囲気中で真空乾燥を行い、各光学素子15と基板4、4’との接合面6、6’からの脱水を行ない、この時昇温速度は4℃/hとした。
上記手順で光学デバイス10を構成し、複数の光学素子15と基板4、4’をダイシングによって0.85×1×t1.5mmのチップ状に切断し、更に小さな光学デバイス10を完成させたこの光学デバイス10の光透過方向の長さは0.85mmとすることができた。
一方、比較例として図3のように用いた光学素子26は、これらの各光学素子26の側面の一辺には金の蒸着層を設け、接合材25として半田による固定が可能になるようにし、また、基板24にはステンレス(SUS304)製平板1.05mm×3.2mm×t0.5mmを用い、表面に金メッキを行い半田付けが可能になるようにした。
上記基板24上の各部材が固定する場所に金−錫系の高温半田箔(融点:280℃)を載せ、その上に偏光ガラス22、検光子23、ファラデー回転子21を配置した。
このとき偏光ガラス22、検光子23、ファラデー回転子21の空隙寸法はt2、t3を0.05mm間隔で配置して基板24と高周波加熱で350℃に加熱し、接合材25として半田接合して光学デバイス20を完成させた。
この光学デバイス20の光透過方向の長さは1.05mmであったが、これは半田が光学素子26間の空隙に表面張力で充填されてしまうのを防ぐため設けられた最低限の寸法t2、t3の和に依存するものである。
本発明実施例と比較例の光学デバイス10、20のサンプルをそれぞれ11個作製し、それらについて光学特性(順方向挿入損失、逆方向挿入損失)を測定した。
光学特性の測定条件は、光波長λを1550nm、レーザの光出力強度を0dBmまたは1mWで行なった。
測定系には、パワーメータとしてHewlett Packard社のHP8153A光マルチメータ、固定レーザ光源モジュールとしてHP81553SMシリーズ、光パワー・センサ・モジュールとしてHP81531Aシリーズを使用して測定を行った。
以上の測定条件で本発明の実施例、比較例の光学デバイスの光学特性評価結果を表1に示した。
Figure 2005070682
これにより、本発明の実施例の11個の順方向挿入損失の平均は、0.10dBであり、逆方向挿入損失の平均は45dBであった。
また、比較例の11個の順方向挿入損失の平均は、0.13dBであり、逆方向挿入損失の平均は39dBであった。
比較例よりも十分に良好な光学特性を有し、それらの値も安定していることが確認できた。
以上の結果から明らかな様に、特に偏光ガラスとファラデー回転子の角度ずれが顕著に表れる逆方向挿入損失の値は、実施例の結果よりもかなり悪くなっており、また光学デバイス個々の値もばらつきが大きかった。
これは半田時点で偏光ガラスとファラデー回転子の角度調整がずれたためだと考えられる。
また、半田を用いた光学デバイスでは大きな熱応力が生じたためにアイソレーション特性が著しく劣化した。
また、本発明による光学デバイスでは、偏光ガラスとファラデー回転子の角度調整の精度が確保されているため、光学特性は良好でありかつ安定していることが判る。
また、偏光ガラス、ファラデー回転子を基板上に密着・接合しているため、特に光透過方向での小型化が可能になった。
以上により、光学素子と基板が金属酸化膜を介して接合して成る光学デバイスの長期安定性が実現した。
本発明の光学デバイスの一実施形態を示す断面斜視図である。 (a)〜(d)は本発明の光学デバイスの作製方法を示す断面斜視図である。 従来の光学デバイスを示す断面斜視図である。 (a)、(b)は従来の光学デバイスを示す断面図である。
符号の説明
1、21 ファラデー回転子
2、3、22 偏光ガラス
4、4’ ガラス基板
5、5’ 金属酸化膜
6、6’ 接合面
10、20、30 光学デバイス
15、26 光学素子
23 検光子
24 基板
25 接合材
t、t’、s、t2、t3 空隙寸法

Claims (7)

  1. 基板上に配列した複数の光学素子を有する光学デバイスにおいて、前記光学素子と基板が金属酸化膜を介して接合して成ることを特徴とする光学デバイス。
  2. 前記金属酸化膜がAl、TiO、SiOから選択する1種以上であることを特徴とする請求項1に記載の光学デバイス。
  3. 前記金属酸化膜の厚みが1nm以上250nm以下であることを特徴とする請求項1または2に記載の光学デバイス。
  4. 前記光学素子が偏光ガラスおよび/またはビスマス置換鉄ガーネット製ファラデー回転子であり、前記基板がガラス製であることを特徴とする請求項1ないし3のいずれかに記載の光学デバイス。
  5. 請求項1〜4記載の光学デバイスにおける光学素子または基板の接合面の少なくとも一方に金属酸化膜を形成した後に接合することを特徴とする光学デバイスの製造方法。
  6. 前記金属酸化膜を親水化処理、洗浄、乾燥する第一工程と、前記光学素子と基板を直接または水を介して接合して熱処理する第二工程からなることを特徴とする請求項5に記載の光学デバイスの製造方法。
  7. 前記熱処理は80℃以上300℃以下の温度範囲で行なうことを特徴とする請求項6に記載の光学デバイスの製造方法。
JP2003303764A 2003-08-27 2003-08-27 光学デバイスおよびその製造方法 Withdrawn JP2005070682A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003303764A JP2005070682A (ja) 2003-08-27 2003-08-27 光学デバイスおよびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003303764A JP2005070682A (ja) 2003-08-27 2003-08-27 光学デバイスおよびその製造方法

Publications (1)

Publication Number Publication Date
JP2005070682A true JP2005070682A (ja) 2005-03-17

Family

ID=34407640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003303764A Withdrawn JP2005070682A (ja) 2003-08-27 2003-08-27 光学デバイスおよびその製造方法

Country Status (1)

Country Link
JP (1) JP2005070682A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117707A (ja) * 2007-11-08 2009-05-28 Mitsubishi Heavy Ind Ltd デバイスおよびデバイス製造方法
EP1973857A4 (en) * 2006-01-06 2012-07-04 Volodymyr Petrovich Maslov CERAMIC JOINING OF GLASARTIG CRYSTALLINE UNITS

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1973857A4 (en) * 2006-01-06 2012-07-04 Volodymyr Petrovich Maslov CERAMIC JOINING OF GLASARTIG CRYSTALLINE UNITS
JP2009117707A (ja) * 2007-11-08 2009-05-28 Mitsubishi Heavy Ind Ltd デバイスおよびデバイス製造方法
KR101240063B1 (ko) * 2007-11-08 2013-03-06 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 디바이스 및 디바이스 제조 방법
US8936998B2 (en) 2007-11-08 2015-01-20 Mitsubishi Heavy Industries, Ltd. Manufcaturing method for room-temperature substrate bonding

Similar Documents

Publication Publication Date Title
KR100625719B1 (ko) 접합 기판, 탄성 표면파 소자 및 탄성 표면파 디바이스
KR20040104694A (ko) 광분리기 및 직접 결합을 이용한 제조하는 방법
US20190029496A1 (en) Method for manufacturing optical unit for endoscope and endoscope
JP4573722B2 (ja) 接着剤の剥離方法、光学素子の製造方法、プリズムの製造方法及び当該製造方法により製造されたプリズム
JP2004354674A (ja) 光モジュール及びその製造方法
JP2002321947A (ja) 光学デバイスおよびその製造方法
JP3277646B2 (ja) 光半導体装置の製造方法
JP2005070682A (ja) 光学デバイスおよびその製造方法
US6806990B2 (en) Optical device and method for producing optical device
JP3194822B2 (ja) 複合基板材料の製造方法
JP4469289B2 (ja) 光路変換ミラーの製法
JP2003161914A (ja) 光学デバイス及び光学デバイスの製造方法
JP2003207744A (ja) 光学デバイスの製造方法及び光学デバイス
JP4525006B2 (ja) 光導波路モジュール
JP4959884B2 (ja) 光学デバイスの製造方法
JP2003270438A (ja) 光学デバイスの製造方法及び光学デバイス
JP5464121B2 (ja) 光学素子の製造方法
JP5138848B2 (ja) 光学デバイスの製造方法
JP2003161913A (ja) 光学デバイス及び光学デバイスの製造方法
US20030127176A1 (en) Optical device, optical isolator and method for producing the same
JP2003084130A (ja) 光学デバイスの製造方法及び光学デバイス
JP2003084255A (ja) 光学デバイスおよびその製造方法
JP2003195047A (ja) 光学デバイスの製造方法及び光学デバイス
JP2003227930A (ja) 光学デバイスの製造方法及び光学デバイス
JP4903326B2 (ja) 光学デバイス及び光学デバイスの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060811

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081009