JP2005066435A - Liquid/gas mixer - Google Patents

Liquid/gas mixer Download PDF

Info

Publication number
JP2005066435A
JP2005066435A JP2003298122A JP2003298122A JP2005066435A JP 2005066435 A JP2005066435 A JP 2005066435A JP 2003298122 A JP2003298122 A JP 2003298122A JP 2003298122 A JP2003298122 A JP 2003298122A JP 2005066435 A JP2005066435 A JP 2005066435A
Authority
JP
Japan
Prior art keywords
liquid
gas
hollow fiber
fiber membrane
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003298122A
Other languages
Japanese (ja)
Inventor
Kiyoo Keino
清男 慶野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MENBUREN ENG KK
Original Assignee
MENBUREN ENG KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MENBUREN ENG KK filed Critical MENBUREN ENG KK
Priority to JP2003298122A priority Critical patent/JP2005066435A/en
Publication of JP2005066435A publication Critical patent/JP2005066435A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid/gas mixer which can be simply assembled into e.g. piping, is low-cost, and can attain a necessary gas solubility. <P>SOLUTION: A multi-tube hollow fiber membrane 20 formed of a bundle of a plurality of hollow fiber membrane elements 22 is slantly disposed to part of a holder 10 having an inlet 11 and an outlet 12 for the liquid to be treated in a manner that the hollow fiber membrane elements are arranged in the direction of flow, a gas is fed from one end of the membrane 20, and a gas is fed into the liquid to be treated from the other end of each hollow fiber membrane element. Further, a baffle plate 25 is disposed in a liquid passage in a downstream position of the location of the membrane 20 in the holder 10. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、液体中へ気体を溶解させるためのミキシング装置に関するもので、詳しくは多数の中空糸膜エレメントを束ねて被処理液の流れ中に配置し、中空糸膜エレメントの一方の端部から気体を供給して、他端の端部から被処理液中に気体を排出して被処理液中に気体を溶解させる液体・気体のミキシング装置に関するものである。   The present invention relates to a mixing apparatus for dissolving a gas in a liquid. Specifically, a large number of hollow fiber membrane elements are bundled and arranged in a flow of a liquid to be treated, and from one end of the hollow fiber membrane element. The present invention relates to a liquid / gas mixing device that supplies gas and discharges gas from the end of the other end into the liquid to be processed to dissolve the gas in the liquid to be processed.

従来から行われている液体中への気体の溶解方法は、(1)ミキシングポンプを用いる方法、(2)ハニカム型ミキサーを用いる方法、(3)拡散膜型ミキサーを用いる方法、(4)エジェクターを用いる方法、(5)散気管を用いる方法などがある。   Conventional methods for dissolving gas in liquid include (1) a method using a mixing pump, (2) a method using a honeycomb type mixer, (3) a method using a diffusion film type mixer, and (4) an ejector. And (5) a method using an air diffuser.

上記(1)に示す方法で用いるミキシングポンプとは、気体と液体とを混合する専用ポンプであり、サクション(吸引)側から気体を供給して高濃度の気体液を生成するためのものである(特許文献1参照)。
また、(2)に示す方法で用いるハニカム型ミキサーは、ハニカムエレメントを円筒内に組み込んだもので、この円筒内に気体・液体を混合させて通水し、液体中に気体を溶解させるものである。
(3)に示す拡散膜型ミキサーは、中空糸膜を用いたもので、中空糸膜の膜内に液体を通水し、その外側から膜内に気体を拡散させて気体液を生成する方法、或いはその逆の方法がある(特許文献2参照)。
(4)に示す方法で用いるエジェクターは、管体の側面に孔を形成して、管体通路に例えば液体を流すと、管体の側面の孔が負圧になることを利用して気体を吸い込ませて、液体中に気体を溶解させるようにしたものである(特許文献3参照)。
(5)に示す方法に用いる散気管は、極微細な気孔(最小50μm〜80μm)を有するアルミナ質の磁器製筒に、気体を供給して気体水液を生成するものであり、主に浄水場の処理タンク内に設置され使用されている。処理タンク内に散気管を介して直接気体を供給する場合は、気体の気泡をタンク内に均一に分散させることにより気体濃度が向上する(特許文献4参照)。
The mixing pump used in the method shown in (1) above is a dedicated pump that mixes gas and liquid, and is for supplying gas from the suction (suction) side to generate a high-concentration gas liquid. (See Patent Document 1).
In addition, the honeycomb mixer used in the method shown in (2) is one in which a honeycomb element is incorporated in a cylinder, and a gas / liquid is mixed and passed through the cylinder to dissolve the gas in the liquid. is there.
The diffusion membrane type mixer shown in (3) uses a hollow fiber membrane, and a method for producing a gas liquid by passing a liquid through the membrane of the hollow fiber membrane and diffusing a gas from the outside into the membrane. Alternatively, there is a reverse method (see Patent Document 2).
The ejector used in the method shown in (4) forms a hole on the side surface of the tubular body, and for example, when a liquid is allowed to flow through the tubular body passage, the hole on the side surface of the tubular body becomes negative pressure. A gas is dissolved in a liquid by sucking (see Patent Document 3).
The air diffuser used in the method shown in (5) is for supplying a gas to an alumina porcelain cylinder having extremely fine pores (minimum 50 μm to 80 μm) to produce a gaseous water solution. It is installed and used in the treatment tank of the site. When the gas is directly supplied into the processing tank via the air diffuser, the gas concentration is improved by uniformly dispersing the gas bubbles in the tank (see Patent Document 4).

特開平11−333475号公報(全文)Japanese Patent Laid-Open No. 11-333475 (full text) 特開2003−10662号公報(発明の詳細な説明)Japanese Patent Laid-Open No. 2003-10661 (Detailed Description of the Invention) 特開平9−206951号公報(従来の技術)JP-A-9-206951 (conventional technology) 特開2003−220396号公報(発明の詳細な説明)JP 2003-220396 A (Detailed description of the invention)

しかしながら、上述(1)の場合、大容量、高濃度の気体液を生成するには多数のポンプを必要とする。設置スペースやコストに問題がある。(2)の場合、ハニカム型ミキサーは液体に対し直角衝突、分散、合流、蛇行、渦流などを与えるため圧力損失が非常に大きくなるという問題がある。(3)の場合、例えば気体がオゾンガスの場合など、オゾンガスの吐き出し圧力が小さいため、液体に効率よく溶解できないという問題がある。(4)の場合、液体・気体のミキシング装置としても利用されているが、高いポンプ圧力を必要とする割には気体の溶解度が少なく、効率が悪い。(5)の場合、溶存気体濃度を高めるためには、液体を入れたタンク内の線流速を大きくする必要があるが、そのためには大容量のポンプが必要となり、問題がある。   However, in the case of the above (1), a large number of pumps are required to generate a large volume and high concentration gas liquid. There are problems with installation space and cost. In the case of (2), the honeycomb type mixer gives a right-angle collision, dispersion, merging, meandering, vortex, etc. to the liquid, and there is a problem that the pressure loss becomes very large. In the case of (3), for example, when the gas is ozone gas, there is a problem that the discharge pressure of the ozone gas is small, so that it cannot be efficiently dissolved in the liquid. In the case of (4), it is also used as a liquid / gas mixing device, but the gas solubility is low and the efficiency is low for high pump pressure. In the case of (5), in order to increase the dissolved gas concentration, it is necessary to increase the linear flow velocity in the tank containing the liquid, but this requires a large capacity pump, which is problematic.

本発明の課題は、配管等に簡単に組み込めて、かつ低コストで必要な気体溶解度を得ることのできる液体・気体のミキシング装置を提供することにある。   An object of the present invention is to provide a liquid / gas mixing apparatus that can be easily incorporated into a pipe or the like and can obtain a necessary gas solubility at a low cost.

請求項1記載の液体・気体のミキシング装置は、被処理液の流入口と流出口とを有するホルダーの一部に、複数の中空糸膜エレメントを束ねた多管式中空糸膜を、該中空糸膜エレメントが被処理液の流れ方向に沿うように傾斜配置して、該多管式中空糸膜の一端から気体を供給し、各中空糸膜エレメントの他端から被処理液中に気体を供給するようにしたことを特徴としている。   The liquid / gas mixing apparatus according to claim 1, wherein a multi-tubular hollow fiber membrane in which a plurality of hollow fiber membrane elements are bundled in a part of a holder having an inlet and an outlet of a liquid to be treated is The yarn membrane element is inclined so as to follow the flow direction of the liquid to be treated, gas is supplied from one end of the multi-tubular hollow fiber membrane, and gas is introduced into the liquid to be treated from the other end of each hollow fiber membrane element. It is characterized by being supplied.

請求項2記載の液体・気体のミキシング装置は、請求項1記載の発明において、前記ホルダーの内部で、かつ前記多管式中空糸膜の配置場所よりも被処理液流路下流側にバッフル板を配置したことを特徴としている。   According to a second aspect of the present invention, there is provided the liquid / gas mixing apparatus according to the first aspect of the present invention, wherein the baffle plate is disposed inside the holder and on the downstream side of the liquid passage to be treated with respect to the location of the multi-tubular hollow fiber membrane. It is characterized by having arranged.

請求項3記載の液体・気体のミキシング装置は、請求項1又は2記載の発明において、前記中空糸膜エレメントは、フッ素樹脂にて形成されていることを特徴としている。   According to a third aspect of the present invention, there is provided the liquid / gas mixing device according to the first or second aspect, wherein the hollow fiber membrane element is made of a fluororesin.

本発明によれば、被処理液中への気体ミキシングの際、圧力損失が非常に小さい。また、中空糸膜が束ねられてハニカム構造なので、高濃度のガス水溶液の生成が可能となる。また、中空糸膜の材質がフッ素樹脂なので、耐薬品性が高く種々の被処理液に対応させることができる。更に、外形がホルダー形式になっているので配管の間に組み込みやすいので、種々の場所での使用に適する。   According to the present invention, the pressure loss is very small during gas mixing into the liquid to be treated. Further, since the hollow fiber membranes are bundled and have a honeycomb structure, it is possible to generate a high concentration gas aqueous solution. Moreover, since the material of the hollow fiber membrane is a fluororesin, it has high chemical resistance and can be used for various liquids to be treated. Furthermore, since the outer shape is in the form of a holder, it can be easily assembled between pipes, making it suitable for use in various places.

図1に本発明に係る液体・気体のミキシング装置の実施の形態を示す。
液体・気体のミキシング装置100は、図に示すように、被処理液の流入口11と流出口12とを有する円筒形のホルダー10を備えており、これら流入口11、流出口12ともフランジ部13が形成されていて、各フランジ部13には他の配管のフランジ部と接続するためのボルト穴13aが設けられている。
FIG. 1 shows an embodiment of a liquid / gas mixing apparatus according to the present invention.
As shown in the figure, the liquid / gas mixing apparatus 100 includes a cylindrical holder 10 having an inlet 11 and an outlet 12 for a liquid to be treated. Both the inlet 11 and the outlet 12 are flange portions. 13 is formed, and each flange portion 13 is provided with a bolt hole 13a for connecting to a flange portion of another pipe.

また、ホルダー10の中央部近傍外面には、被処理液の流路上流方向に傾斜させた分岐管14が設けられており、該分岐管14の端部には、中心部に気体流入用の穴15aを有する蓋状のフランジ15が嵌合されている。また、該フランジ15には気体導入用のノズル管16が接続されているとともに、内部には多管式中空糸膜が着脱可能に構成された中空糸膜取り付け部17が形成されている。   Further, a branch pipe 14 that is inclined in the upstream direction of the flow path of the liquid to be treated is provided on the outer surface in the vicinity of the center of the holder 10, and the end of the branch pipe 14 is used for gas inflow at the center. A lid-like flange 15 having a hole 15a is fitted. The flange 15 is connected to a nozzle pipe 16 for introducing gas, and a hollow fiber membrane attachment portion 17 is formed inside the tube 15 so that a multi-tubular hollow fiber membrane can be attached and detached.

一方、多管式中空糸膜20は、図2(a)の側面図、(b)の底面図に示すように、小径の中空糸膜エレメント22を多数平行に引き揃えて束ねて、その一端を筒状のヘッダー24にて統合したものである。
この多管式中空糸膜20のヘッダー24を、上記中空糸膜取り付け部17に取り付け固定することにより、蓋状のフランジ15と一体化している。
On the other hand, as shown in the side view of FIG. 2A and the bottom view of FIG. 2B, the multi-tubular hollow fiber membrane 20 is formed by bundling a large number of small-diameter hollow fiber membrane elements 22 in parallel. Are integrated by a cylindrical header 24.
The header 24 of the multi-tubular hollow fiber membrane 20 is integrated with the lid-like flange 15 by being fixed to the hollow fiber membrane attachment portion 17.

各中空糸膜エレメント22の寸法は、一例として、内径φ0.9mmで長さ300mmで、これを125本を収束してヘッダ24にて統合している。また、中空糸膜エレメント22の材質は、この例ではフッ素樹脂にて構成されており、このようにして構成された中空糸膜エレメント22の集合体である多管式中空糸膜20が蓋状のフランジ15とともにホルダー10の分岐管14内に先端部から導入され、中空糸膜エレメント22がホルダー10内の被処理液の流れ方向に糸長方向を沿わせて挿入されることになる。   The dimensions of each hollow fiber membrane element 22 are, for example, an inner diameter of 0.9 mm and a length of 300 mm. In addition, the material of the hollow fiber membrane element 22 is made of fluororesin in this example, and the multi-tubular hollow fiber membrane 20 that is an aggregate of the hollow fiber membrane elements 22 thus configured is a lid-like shape. The hollow fiber membrane element 22 is inserted into the branch pipe 14 of the holder 10 together with the flange 15 of the holder 10 along the yarn length direction in the flow direction of the liquid to be treated in the holder 10.

また、ホルダー10の内部で、かつ前記多管式中空糸膜20の配置場所よりも被処理液流路下流側にバッフル板(邪魔板)25を配置して、被処理液の流れに抵抗を与えている。   Further, a baffle plate (baffle plate) 25 is arranged inside the holder 10 and downstream of the treatment liquid flow path from the place where the multi-tubular hollow fiber membrane 20 is arranged, thereby resisting the flow of the treatment liquid. Giving.

そして、気体がノズル管16を経てヘッダー24にて束ねられた各中空糸膜エレメント22に供給され、それぞれの先端部から吹き出される。また、被処理液はホルダー10の流入口11から流入し、流出口12へ抜けるが、この間にホルダー10の分岐管14との交差部から下流側において気体が混合され、バッフル板30を経て更に混合され処理液中に気体が溶解される。なお、ホルダー10内の圧力損失が大きい場合でも、多管式中空糸膜の先端部はホルダー10の分岐管14との交差部近傍で、被処理液の流出口方向を向くように挿入されているので、交差部近傍ではエジェクター効果(負圧効果)を期待することもできる。なお、中空糸膜エレメント22の表面に形成されている微細孔から吹き出す気体は、この利用方法においては微少なので、気体溶解への効果は考えていない。   Then, the gas is supplied to each hollow fiber membrane element 22 bundled by the header 24 through the nozzle tube 16 and blown out from the respective tip portions. Further, the liquid to be treated flows in from the inlet 11 of the holder 10 and exits to the outlet 12. During this time, gas is mixed downstream from the intersection with the branch pipe 14 of the holder 10, and further through the baffle plate 30. The gas is dissolved in the processing liquid after mixing. Even when the pressure loss in the holder 10 is large, the tip of the multi-tubular hollow fiber membrane is inserted in the vicinity of the intersection with the branch pipe 14 of the holder 10 so as to face the outlet of the liquid to be treated. Therefore, the ejector effect (negative pressure effect) can be expected near the intersection. In addition, since the gas which blows off from the micropore formed in the surface of the hollow fiber membrane element 22 is very small in this utilization method, the effect on gas dissolution is not considered.

次に、この液体・気体のミキシング装置の用途について説明する。
被処理液中へ溶解する気体をオゾンガスとして、被処理液を殺菌、洗浄、化学物質の除染等に用いる。
図3にその概略を示す。酸素ガスボンベ30からオゾン発生器31を介して発生させたオゾンを、本実施形態に示す液体・気体のミキシング装置100に接続されたノズル管16に導入して、中空糸膜エレメント22の先端部から吹き出させる。一方、液体・気体のミキシング装置100のホルダー10の流入口11から水(又は純水など)を流入させ、オゾンを溶解させて流出口12から流出され、洗浄室32の天井から洗浄液としてシャワー状にして下方へ吹き付ける。
Next, the use of the liquid / gas mixing apparatus will be described.
A gas that dissolves in the liquid to be treated is used as ozone gas, and the liquid to be treated is used for sterilization, cleaning, decontamination of chemical substances, and the like.
The outline is shown in FIG. The ozone generated from the oxygen gas cylinder 30 via the ozone generator 31 is introduced into the nozzle tube 16 connected to the liquid / gas mixing device 100 shown in the present embodiment, and from the tip of the hollow fiber membrane element 22. Blow out. On the other hand, water (or pure water or the like) is introduced from the inlet 11 of the holder 10 of the liquid / gas mixing apparatus 100, ozone is dissolved and discharged from the outlet 12, and is showered as a cleaning liquid from the ceiling of the cleaning chamber 32. And spray downward.

洗浄室32内には、コンベア33に載置された被洗浄物34が通過し、洗浄液
によって洗浄される。
洗浄室32の底に貯留した洗浄液は、配管を介してポンプ35で抜かれ、ヒータ36で加熱されて再びキシング装置100のホルダー10の流入口11から被処理液としてオゾン溶解が繰り返される。
オゾンは殺菌・漂白・酸化作用があるので、水処理の最終段階などで飲料水の殺菌に用いられる外、上記のように構成して、医療用器具、食品容器等の殺菌、消毒が行われる。
また、半導体生産現場における有機汚染物質の除去や、オゾンの酸化力によって、原子力施設の配管、機器の放射性物質の除去として利用することができる。放射性物質の除去は、オゾンの酸化力によってステンレス鋼表面の耐食性被膜を水溶性の被膜に変換し、水洗浄により酸化被膜と放射性物質とを除去することができる。
An object to be cleaned 34 placed on the conveyor 33 passes through the cleaning chamber 32 and is cleaned by the cleaning liquid.
The cleaning liquid stored in the bottom of the cleaning chamber 32 is extracted by a pump 35 through a pipe, heated by a heater 36, and ozone dissolution is repeated as a liquid to be processed from the inlet 11 of the holder 10 of the kissing apparatus 100 again.
Ozone is sterilized, bleached and oxidized, so it is used for sterilization of drinking water in the final stage of water treatment, etc. In addition, it is configured as described above to sterilize and disinfect medical equipment, food containers, etc. .
In addition, it can be used to remove radioactive substances from piping and equipment in nuclear facilities by removing organic pollutants at semiconductor production sites and oxidizing power of ozone. The radioactive substance can be removed by converting the corrosion-resistant film on the surface of the stainless steel into a water-soluble film by the oxidizing power of ozone, and removing the oxide film and the radioactive substance by washing with water.

次に、この液体・気体のミキシング装置の他の用途について説明する。
被処理液中へ溶解する気体を炭酸ガスとして、被処理液のpHコントロールとして用いる。
図4にその概略を示す。
Next, another application of the liquid / gas mixing apparatus will be described.
A gas dissolved in the liquid to be processed is used as carbon dioxide gas as a pH control of the liquid to be processed.
The outline is shown in FIG.

炭酸ガスボンベ40から炭酸ガスを本実施形態に示す液体・気体のミキシング装置100に接続されたノズル管16に導入して、中空糸膜エレメント22の先端部から吹き出させる。一方、被処理液は処理槽41の中に貯留させておき、処理槽41に接続された配管42からポンプ43、流量計44を介して液体・気体のミキシング装置100のホルダー10の流入口11から流入させ、炭酸ガスを溶解させて流出口12から流出され、処理槽41へ戻る。これを繰り返すことにより被処理液のpH値が小さく(酸度が高く)なる。   Carbon dioxide gas is introduced from the carbon dioxide gas cylinder 40 into the nozzle tube 16 connected to the liquid / gas mixing apparatus 100 shown in the present embodiment, and blown out from the tip of the hollow fiber membrane element 22. On the other hand, the liquid to be treated is stored in the treatment tank 41, and the inlet 11 of the holder 10 of the liquid / gas mixing device 100 is connected from the pipe 42 connected to the treatment tank 41 through the pump 43 and the flow meter 44. The carbon dioxide gas is dissolved and discharged from the outlet 12, and returns to the treatment tank 41. By repeating this, the pH value of the liquid to be treated becomes small (acidity is high).

処理槽41には、pHメータが設置されており、目的のpH値に達したらポンプ43を止めると共に、炭酸ガスボンベ40のバルブ45を締めて、所望のpH値の被処理液を得ることができる。
上記例では、オゾンガスや炭酸ガスの溶解に用いたが、これに限らず酸素を溶解させれば、活魚の輸送用水槽にも応用できるし、また他の気体を溶解させることも容易に可能である。
The treatment tank 41 is provided with a pH meter. When the target pH value is reached, the pump 43 is stopped, and the valve 45 of the carbon dioxide gas cylinder 40 is tightened to obtain a liquid to be treated having a desired pH value. .
In the above example, ozone gas and carbon dioxide gas were used for dissolution, but not limited to this, if oxygen is dissolved, it can be applied to a fish tank for transporting live fish, and other gases can be easily dissolved. is there.

本発明は、必要とする大量の液体・気体の混合液を効率的に得ることができるので、その気体にオゾンガスや炭酸ガスを用いることで、半導体、食品施設の配管、機器その他の構造部品の洗浄・殺菌等に利用でき、またオゾンガスの酸化作用を利用すれば、LSI等に付着した有機汚染物質の除去や放射性物質の除去等に利用することができる。   Since the present invention can efficiently obtain a large amount of liquid / gas mixture required, by using ozone gas or carbon dioxide gas as the gas, semiconductors, food facility piping, equipment and other structural parts It can be used for cleaning, sterilization, and the like, and by utilizing the oxidizing action of ozone gas, it can be used for removal of organic pollutants attached to LSI and the like, removal of radioactive substances, and the like.

本発明に係る液体・気体のミキシング装置の実施形態を示す図である。1 is a diagram showing an embodiment of a liquid / gas mixing device according to the present invention. 多管式中空糸膜を示す図で,(a)は側面図、(b)は底面図である。It is a figure which shows a multitubular hollow fiber membrane, (a) is a side view, (b) is a bottom view. 本発明に係る液体・気体のミキシング装置の利用例である。It is an application example of the liquid / gas mixing apparatus according to the present invention. 本発明に係る液体・気体のミキシング装置の他の利用例である。It is the other usage example of the mixing apparatus of the liquid and gas which concerns on this invention.

符号の説明Explanation of symbols

10 ホルダー
11 流入口
12 流出口
14 分岐管
15 フランジ
16 ノズル管
20 多管式中空糸膜
22 中空糸膜エレメント
24 ヘッダー
25 バッフル板(邪魔板)
100 液体・気体のミキシング装置
DESCRIPTION OF SYMBOLS 10 Holder 11 Inflow port 12 Outlet port 14 Branch pipe 15 Flange 16 Nozzle pipe 20 Multi-tubular hollow fiber membrane 22 Hollow fiber membrane element 24 Header 25 Baffle plate (baffle plate)
100 Liquid / gas mixing equipment

Claims (3)

処理液の流入口と流出口とを有するホルダーの一部に、複数の中空糸膜エレメントを束ねた多管式中空糸膜を、該中空糸膜エレメントが処理液の流れ方向に沿うように傾斜配置して、該多管式中空糸膜の一端から気体を供給し、各中空糸膜エレメントの他端から処理液中に気体を供給するようにしたことを特徴とする液体・気体のミキシング装置。 A multi-tubular hollow fiber membrane, in which a plurality of hollow fiber membrane elements are bundled, is tilted so that the hollow fiber membrane element is along the flow direction of the treatment liquid. A liquid / gas mixing device, characterized in that a gas is supplied from one end of the multi-tubular hollow fiber membrane and gas is supplied into the treatment liquid from the other end of each hollow fiber membrane element. . 前記ホルダーの内部で、かつ前記多管式中空糸膜の配置場所よりも処理液流路下流側にバッフル板を配置したことを特徴とする請求項1記載の液体・気体のミキシング装置。 The liquid / gas mixing apparatus according to claim 1, wherein a baffle plate is arranged inside the holder and downstream of the treatment liquid flow path from the arrangement position of the multi-tubular hollow fiber membrane. 前記中空糸膜エレメントは、フッ素樹脂にて形成されていることを特徴とする請求項1又は2に記載の液体・気体のミキシング装置。 3. The liquid / gas mixing apparatus according to claim 1, wherein the hollow fiber membrane element is made of a fluororesin.
JP2003298122A 2003-08-22 2003-08-22 Liquid/gas mixer Pending JP2005066435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003298122A JP2005066435A (en) 2003-08-22 2003-08-22 Liquid/gas mixer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003298122A JP2005066435A (en) 2003-08-22 2003-08-22 Liquid/gas mixer

Publications (1)

Publication Number Publication Date
JP2005066435A true JP2005066435A (en) 2005-03-17

Family

ID=34403705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003298122A Pending JP2005066435A (en) 2003-08-22 2003-08-22 Liquid/gas mixer

Country Status (1)

Country Link
JP (1) JP2005066435A (en)

Similar Documents

Publication Publication Date Title
US6132629A (en) Method and apparatus for continuous or intermittent supply of ozonated water
KR100642986B1 (en) Dirty/waste water treatment system using the ozone
JP2019509894A (en) Composition comprising nanobubbles in a liquid carrier
JP4916496B2 (en) Fluid mixing device
TWI503289B (en) Gas dispersion apparatus for improved gas-liquid mass transfer
US20170333850A1 (en) Fluid distribution device for a gas-liquid contactor, gas-liquid contactor and method for adding a gas to a liquid
JP2004188246A (en) System for manufacturing ozonized water
JP2007167856A (en) Air diffusion device
US20020139755A1 (en) Gas-liquid contact apparatus
KR101845909B1 (en) Noxious gas treatment apparatus using micro bubble
JP2004330050A (en) Ozonized-water supplying apparatus and fluid mixing apparatus
US20050218085A1 (en) Ozone sterilization method and device for water supply drainage
JP2009101329A (en) Liquid treatment apparatus
JP2002346351A (en) Gas dissolving device
JP2004174325A (en) Water treatment apparatus and water treatment method
WO2000023383A1 (en) Method and apparatus for continuous or intermittent supply of ozonated water
JP2007105666A (en) Ballast water treating apparatus and water treating apparatus
JP2005066435A (en) Liquid/gas mixer
JP2008173525A (en) Water treatment apparatus
TW200936514A (en) Method and apparatus for treating organic-containing water
JP2004188240A (en) Water treatment apparatus
JP2013111520A (en) Waste water treatment apparatus, and waste water treatment method
PL183241B1 (en) Apparatus for mixing air with water in a water purifier
JP2005052689A (en) Membrane washing method and membrane filtration device
JP4299974B2 (en) Chemical decontamination method and apparatus for structural parts of radiation handling facilities

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071127

A131 Notification of reasons for refusal

Effective date: 20071204

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080715