JP2005062860A - Manufacturing process for electrophotographic endless belt - Google Patents

Manufacturing process for electrophotographic endless belt Download PDF

Info

Publication number
JP2005062860A
JP2005062860A JP2004225710A JP2004225710A JP2005062860A JP 2005062860 A JP2005062860 A JP 2005062860A JP 2004225710 A JP2004225710 A JP 2004225710A JP 2004225710 A JP2004225710 A JP 2004225710A JP 2005062860 A JP2005062860 A JP 2005062860A
Authority
JP
Japan
Prior art keywords
endless belt
fiber material
substrate
outer peripheral
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004225710A
Other languages
Japanese (ja)
Inventor
Keisuke Tokoro
圭輔 所
Akihiko Kachi
明彦 加地
Tsukasa Fujita
司 藤田
Seiki Kanda
成輝 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2004225710A priority Critical patent/JP2005062860A/en
Publication of JP2005062860A publication Critical patent/JP2005062860A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing process for an endless belt for an electrophotographic apparatus which is excellent in product characteristics and is low in production cost. <P>SOLUTION: The endless belt for the electrophotographic aperture is obtained by winding hot meltable fiber materials 3 a plurality of times closely with each other or apart prescribed intervals around the outer peripheral surface of a cylindrical or columnar substrate 1; heating the fiber materials 3 to melt and to integrate the adjacent fiber materials 3 to each other to form a cylindrical body on the outer peripheral surface of the substrate 1; curing the cylindrical body by cooling.; then removing the cylindrical body from the substrate 1. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、フルカラー複写機,フルカラープリンター等の電子写真技術を採用した機器において、感光体上のトナー像を写し取る中間転写ベルト等に用いられる電子写真用無端ベルトの製法に関するものである。   The present invention relates to a process for producing an electrophotographic endless belt used for an intermediate transfer belt or the like for copying a toner image on a photoreceptor in an apparatus employing electrophotographic technology such as a full color copying machine or a full color printer.

一般に、フルカラー複写機等のフルカラー電子写真機器では、感光体上に現像されたトナー像を複写紙に転写する際に、一旦トナー像を中間転写ベルトに転写(1次転写)したのち、複写紙に転写(2次転写)するというプロセスが採用されている。   Generally, in a full-color electrophotographic apparatus such as a full-color copying machine, when a toner image developed on a photoconductor is transferred to a copy paper, the toner image is once transferred (primary transfer) to an intermediate transfer belt and then copied to the copy paper. A process of transferring (secondary transfer) is adopted.

上記中間転写ベルトは、筒状の無端ベルトであり、その製法としては、成膜による製法がある。そして、その成膜方法としては、例えば、(1)遠心成形法,(2) 押出成形法,(3) ディッピング製法,(4) スプレー製法,(5) フィルム溶着製法,および(6) スパイラル塗布法〔上記基体を水平にして周方向に回転させた状態で、その外周面に上記材料をノズルから帯状に吐出させながら、らせん状に塗布する方法(例えば、特許文献1参照)〕等があげられる。そのうちの(2) 〜(6) は、円筒状の基体の外周面に、中間転写ベルト用材料を用い成膜した後、その円筒状膜を基体から抜き取る製法である。   The intermediate transfer belt is a cylindrical endless belt, and as a manufacturing method thereof, there is a manufacturing method by film formation. Examples of the film formation method include (1) centrifugal molding method, (2) extrusion molding method, (3) dipping method, (4) spray method, (5) film welding method, and (6) spiral coating. [Method of applying spirally while discharging the material from the nozzle to the outer peripheral surface in a strip shape while the substrate is rotated horizontally in the circumferential direction] (see, for example, Patent Document 1) It is done. Among them, (2) to (6) are methods for forming a film on the outer peripheral surface of a cylindrical substrate using an intermediate transfer belt material and then removing the cylindrical film from the substrate.

一方、上記中間転写ベルトは、導電性を有する無端ベルトであり、高画質の画像を得るためには、製品特性の向上が重要となっている。すなわち、表面を全体的に平滑にすること、ならびに、厚み(膜厚)および電気特性(導電性,電気抵抗)を全体的に均一にすることが重要となっている。また、中間転写ベルトの製造メーカーとしては、その生産コストを低減することも重要となっている。
特開2002−263562号公報(段落〔0048〕、図2)
On the other hand, the intermediate transfer belt is an endless belt having conductivity, and it is important to improve product characteristics in order to obtain a high-quality image. That is, it is important to make the surface generally smooth and to make the thickness (film thickness) and electrical characteristics (conductivity, electrical resistance) uniform overall. As a manufacturer of an intermediate transfer belt, it is also important to reduce its production cost.
JP 2002-263562 A (paragraph [0048], FIG. 2)

しかしながら、(1)遠心成形法は、ロット間での電気特性のばらつきが大きく、また、成形工程が長く生産性が低い(生産コストが高い)。(2)押出成形法は、生産性に優れる(生産コストが低い)ものの、高粘度材料の押し出しにより膜厚がばらつき、しかも、ウエルドラインにより電気特性もばらつく。(3)ディッピング製法は、膜形成材料が下方に垂れて膜の厚みが下側ほど厚くなる。また、膜の一部(端部)は中間転写ベルトとならならずに切除されるため、材料の浪費が大きい(生産コストが高い)。(4)スプレー製法は、即乾材料の噴霧により表面の平滑化が困難となっている。また、材料が飛散するため、材料の浪費が大きい(生産コストが高い)。(5)フィルム溶着製法は、生産性に優れる(生産コストが低い)ものの、フィルム溶着部の表面平滑性や電気特性に劣る。(6)上記特許文献1のように基体を水平にしたスパイラル塗布法は、液体材料を流したり止めたりして塗布範囲を選択することができるため、その塗布範囲を所望の無端ベルトの幅程度にすることができ、材料の浪費が殆どない(生産コストが低い)。しかし、1回の塗布で厚い膜を形成するために高粘度材料を用いると、基体が水平であるため、基体の外周面に吐出した材料が均一に延び難く、表面が平滑にならないまま乾燥して固まり、表面の平滑化が困難となっている。   However, (1) Centrifugal molding has a large variation in electrical characteristics among lots, and the molding process is long and the productivity is low (production cost is high). (2) Although the extrusion molding method is excellent in productivity (low production cost), the film thickness varies due to extrusion of a high viscosity material, and the electric characteristics vary due to the weld line. (3) In the dipping method, the film forming material hangs downward and the film thickness increases toward the lower side. Moreover, since a part (end part) of the film is cut without becoming an intermediate transfer belt, the material is wasted (the production cost is high). (4) In the spray production method, it is difficult to smooth the surface by spraying the quick-drying material. Moreover, since the material is scattered, the waste of the material is large (the production cost is high). (5) Although the film welding method is excellent in productivity (low production cost), it is inferior in the surface smoothness and electrical characteristics of the film welding portion. (6) Since the spiral coating method in which the substrate is leveled as in the above-mentioned Patent Document 1 can select the coating range by flowing or stopping the liquid material, the coating range is set to the width of the desired endless belt. And there is almost no waste of material (low production costs). However, if a high-viscosity material is used to form a thick film by a single application, the substrate is horizontal, so the material discharged to the outer peripheral surface of the substrate is difficult to extend uniformly, and the surface is dried without being smooth. It becomes difficult to smooth the surface.

このように、従来の製法には、製品特性と生産コストの両方を充分に満足させる製法はない。   As described above, there is no manufacturing method that sufficiently satisfies both the product characteristics and the production cost.

本発明は、このような事情に鑑みなされたもので、製品特性に優れるとともに生産コストが低い電子写真用無端ベルトの製法の提供をその目的とする。   The present invention has been made in view of such circumstances, and an object thereof is to provide a method for producing an electrophotographic endless belt having excellent product characteristics and low production costs.

上記の目的を達成するため、本発明の電子写真用無端ベルトの製法は、円筒状または円柱状の無端ベルト用基体の外周面に、熱溶融性繊維材を、軸方向に複数回、相互に隙間なく、もしくは、所定の間隔をあけて巻装し、これを加熱して上記繊維材を溶融させ、隣接する繊維材同士を一体化して上記基体の外周面に筒状体を形成し、ついで冷却して上記筒状体を硬化させた後、上記基体から抜き取り、電子写真用無端ベルトを得るという構成をとる。   In order to achieve the above object, an electrophotographic endless belt manufacturing method according to the present invention includes a heat-meltable fiber material axially attached to an outer peripheral surface of a cylindrical or columnar endless belt substrate, a plurality of times in the axial direction. Wrap without gaps or at a predetermined interval, heat this to melt the fiber material, and integrate adjacent fiber materials to form a cylindrical body on the outer peripheral surface of the substrate, After cooling and curing the cylindrical body, the tubular body is extracted from the base body to obtain an electrophotographic endless belt.

本発明者らは、電子写真用無端ベルトの製法において、作製される無端ベルトを製品特性が優れるものとなるようにするとともに、その生産コストが低くなるようにすべく、鋭意研究を重ねた。その結果、前記従来法のように、それ自体流動性を有する膜形成材料を用いるのではなく、熱溶融性を有する樹脂等からなる固形の繊維材を用い、これを無端ベルト用基体の外周面に巻装した後、加熱して上記繊維材を溶融させ、隣接する繊維材同士を一体化して上記基体の外周面に筒状体を形成し、ついで上記基体から抜き取ると、所期の目的を達成できることを見出し、本発明に到達した。   In the process for producing an electrophotographic endless belt, the present inventors have made extensive studies to make the produced endless belt excellent in product characteristics and to reduce its production cost. As a result, instead of using a film-forming material that itself has fluidity as in the conventional method, a solid fiber material made of a resin having heat melting properties is used, and this is used as the outer peripheral surface of the endless belt substrate. After being wound on, the fiber material is heated to melt, the adjacent fiber materials are integrated with each other to form a cylindrical body on the outer peripheral surface of the base body, and then extracted from the base body, the intended purpose is We have found that this can be achieved and have reached the present invention.

本発明の電子写真用無端ベルトの製法によれば、円筒状または円柱状の無端ベルト用基体の外周面に、熱溶融性繊維材を、巻装した後、加熱して上記繊維材を溶融させ、隣接する繊維材同士を一体化して上記基体の外周面に筒状体を形成している。このため、溶融した巻装体の材料は、適度に垂れ、その垂れにより、上記筒状体の表面、延いては無端ベルトの表面を全体的に平滑にすること、ならびに、その厚み(膜厚)および電気特性(導電性,電気抵抗)を全体的に均一にすることを、容易にすることができる。すなわち、製品特性を容易に向上させることができる。特に、繊維材の材料を調製する際の混練により、繊維材内では、導電剤が高分散化するため、無端ベルトの電気特性が安定する。また、本発明の製法では、繊維材を上記基体の外周面に巻装しているため、その巻装範囲を容易に選択することができる。このため、繊維材の浪費が殆どなく、生産コストを低減することができる。   According to the electrophotographic endless belt manufacturing method of the present invention, a heat-meltable fiber material is wound around the outer peripheral surface of a cylindrical or columnar endless belt substrate, and then heated to melt the fiber material. Adjacent fiber materials are integrated to form a cylindrical body on the outer peripheral surface of the substrate. For this reason, the melted material of the wound body sag moderately, and by the sag, the surface of the cylindrical body, and eventually the surface of the endless belt, is smoothed, and the thickness (film thickness) ) And electrical characteristics (conductivity, electrical resistance) can be made uniform as a whole. That is, the product characteristics can be easily improved. In particular, the kneading at the time of preparing the material of the fiber material makes the conductive agent highly dispersed in the fiber material, so that the electrical characteristics of the endless belt are stabilized. Moreover, in the manufacturing method of this invention, since the fiber material is wound around the outer peripheral surface of the said base | substrate, the winding range can be selected easily. For this reason, there is almost no waste of the fiber material, and the production cost can be reduced.

特に、上記熱溶融性繊維材がフィラメントであり、その横断面形状が長方形である場合には、その繊維材を基体の外周面に巻装する際に、相互に隙間なくらせん状に巻装することができるため、容易にその巻装体に空気が入らないようにすることができ、無端ベルトの製品特性を向上させることができる。また、表面の平滑化および膜厚の均一化も容易となる。   In particular, when the heat-meltable fiber material is a filament and the cross-sectional shape is rectangular, when the fiber material is wound around the outer peripheral surface of the substrate, it is wound spirally without any gap between them. Therefore, air can be easily prevented from entering the wound body, and the product characteristics of the endless belt can be improved. In addition, the surface can be smoothed and the film thickness can be made uniform.

また、上記熱溶融性繊維材がフィラメントであり、その横断面形状が円形であり、その外径が0.1〜1μmの範囲である場合には、巻装体に入る空気量を少なくすることができる。また、表面の平滑化および膜厚の均一化にも有効に作用する。   Moreover, when the said heat-meltable fiber material is a filament, the cross-sectional shape is circular, and the outer diameter is the range of 0.1-1 micrometer, reduce the air quantity which enters a wound body. Can do. It also effectively acts on surface smoothing and film thickness uniformity.

つぎに、本発明を図面にもとづいて詳しく説明する。   Next, the present invention will be described in detail with reference to the drawings.

図1および図2は、本発明の電子写真用無端ベルトの製法の一実施の形態を示している。この製法は、まず、図1に示すように、熱溶融性の繊維材3を準備する。そして、その繊維材3を円筒状または円柱状の無端ベルト用基体1の外周面に巻装する。この巻装は、軸方向に沿って複数回行われ、その際の繊維材3同士の隙間は、0もしくは所定の間隔とする。つぎに、これを加熱炉等に入れて加熱し、上記繊維材3を溶融させ、図2に示すように、隣接する繊維材3同士を一体化して筒状体4を形成する。ついで、上記加熱炉等から取り出して冷却し、上記筒状体4を硬化させる。その後、その筒状体4を上記基体1から抜き取り、電子写真用無端ベルトを得る。   1 and 2 show an embodiment of a method for producing an electrophotographic endless belt of the present invention. In this manufacturing method, first, as shown in FIG. 1, a heat-meltable fiber material 3 is prepared. Then, the fiber material 3 is wound around the outer peripheral surface of the cylindrical or columnar endless belt substrate 1. This winding is performed a plurality of times along the axial direction, and the gap between the fiber materials 3 at that time is set to 0 or a predetermined interval. Next, this is put into a heating furnace or the like and heated to melt the fiber material 3, and as shown in FIG. 2, the adjacent fiber materials 3 are integrated to form a cylindrical body 4. Subsequently, it takes out from the said heating furnace etc., cools, and the said cylindrical body 4 is hardened. Then, the cylindrical body 4 is extracted from the base body 1 to obtain an electrophotographic endless belt.

このように、上記基体1の外周面に上記繊維材3を巻装して溶融させると、その溶融した巻装体は、重力方向に適度に垂れる。基体1の外周面における垂れの方向は、基体1の軸の傾きに依存するが、本発明の製法では、通常、基体1の軸を鉛直方向にして行われるため、軸方向に垂れる。この垂れ量は少なく、その垂れにより、図3に示すように、隣接する繊維材3同士を一体化して形成された筒状体4の表面には、基体1の軸方向に繊維材3の幅程度のピッチPで、高さHが0.01〜2μm突出したうねり形状が形成され、目視で模様として見える場合があるが、全体的にみれば、表面は平滑であり、膜厚も均一になっている。その結果、得られる無端ベルトの電気特性(導電性,電気抵抗)も全体的に均一になっている。また、上記巻装の際に繊維材3同士に所定の間隔をあけた場合、その間隔を約5μm以下になるようにすれば、その間隔は、上記垂れにより埋めることができ、筒状体4の表面の平滑化および膜厚の均一化を確保することができる。   As described above, when the fiber material 3 is wound around the outer peripheral surface of the base body 1 and melted, the melted wound body appropriately hangs down in the direction of gravity. The sagging direction on the outer peripheral surface of the base body 1 depends on the inclination of the axis of the base body 1. However, in the manufacturing method of the present invention, the base body 1 is usually set in the vertical direction, and therefore, it hangs down in the axial direction. The amount of sagging is small, and as shown in FIG. 3, the sagging amount is such that the surface of the cylindrical body 4 formed by integrating the adjacent fiber materials 3 with each other has a width of the fiber material 3 in the axial direction of the substrate 1. A waviness shape with a height P of about 0.01 to 2 μm is formed at a pitch P of about, and it may appear as a pattern visually, but the surface is smooth and the film thickness is uniform even when viewed as a whole. It has become. As a result, the electric characteristics (conductivity, electric resistance) of the obtained endless belt are uniform throughout. Further, when a predetermined interval is provided between the fiber materials 3 at the time of winding, the interval can be filled by the drooping as long as the interval is set to about 5 μm or less. The surface can be smoothed and the film thickness can be made uniform.

また、上記巻装体の形成方法は、図1に示すように、繊維材3を基体1の外周面に巻装するため、その巻装範囲を容易に選択することができる。その結果、繊維材3の浪費を殆どなくすことができ、生産コストを低減することができる。   Further, as shown in FIG. 1, the method of forming the wound body winds the fiber material 3 around the outer peripheral surface of the base body 1, so that the winding range can be easily selected. As a result, the waste of the fiber material 3 can be almost eliminated, and the production cost can be reduced.

本発明についてより詳しく説明すると、本発明の製法のように基体1の外周面に繊維材3を巻装するための巻装装置としては、例えば、つぎのようなものが使用できる。すなわち、上記基体1を同軸的かつ着脱自在に固定できる基体回転部10と、上記繊維材3を基体1に向かって供給する供給部(図示せず)とを備え、上記基体回転部10と供給部とが基体1の軸方向に沿って相対的にスライドしてらせん状の巻装体を軸方向に徐々に形成するようになっている巻装装置である。上記基体回転部10としては、特に限定されないが、基体1を下端部または上端部で固定する基体固定具11と、基体1を周方向に回転させる電動モータ12等の駆動源とを備えているもの等があげられる。   The present invention will be described in more detail. As a winding apparatus for winding the fiber material 3 around the outer peripheral surface of the base 1 as in the production method of the present invention, for example, the following can be used. That is, a base rotating unit 10 that can fix the base 1 coaxially and detachably and a supply unit (not shown) that supplies the fiber material 3 toward the base 1 are provided. This is a winding device in which the portion is relatively slid along the axial direction of the base 1 to gradually form a spiral wound body in the axial direction. The base rotating unit 10 is not particularly limited, and includes a base fixture 11 that fixes the base 1 at the lower end or the upper end, and a drive source such as an electric motor 12 that rotates the base 1 in the circumferential direction. Things.

上記基体1は、円筒状でも円柱状でもよいが、基体回転部10の負担を軽くできる観点から、円筒状であることが好ましい。円筒状の基体1を使用する場合、上記基体回転部10の基体固定具11への固定は、円筒状の基体1の両端開口周縁部または一端開口周縁部で行ってもよいし、または、円筒状の基体1の両端開口部または一端開口部に蓋体を設け、その蓋体で上記基体固定具11と固定するようにしてもよい。また、上記基体1の材質は、特に限定されないが、通常、金属(鉄,アルミニウム,ステンレス等)製のものが用いられる。また、上記基体1の大きさは、作製される無端ベルトの大きさにより決まり、通常、外径30〜350mmの範囲、軸方向の長さ300〜600mmの範囲のものが用いられる。なお、基体1とその外周面に形成される筒状体4との離型性の観点から、基体1の外周面には、予め剥離剤を塗布しておくことが好ましい。   The substrate 1 may be cylindrical or columnar, but is preferably cylindrical from the viewpoint of reducing the burden on the substrate rotating unit 10. When the cylindrical base 1 is used, the base rotating part 10 may be fixed to the base fixture 11 at both ends of the cylindrical base 1 or at one end of the peripheral, or cylindrical. It is also possible to provide lids at both end openings or one end openings of the substrate 1 and fix the base fixture 11 with the lids. The material of the substrate 1 is not particularly limited, but a metal (iron, aluminum, stainless steel, etc.) is usually used. The size of the substrate 1 is determined by the size of the endless belt to be produced, and usually the one having an outer diameter of 30 to 350 mm and an axial length of 300 to 600 mm is used. Note that, from the viewpoint of releasability between the base body 1 and the cylindrical body 4 formed on the outer peripheral surface thereof, it is preferable to apply a release agent to the outer peripheral surface of the base body 1 in advance.

そして、異なる大きさの無端ベルトを作製する場合には、基体1を外径が異なるものに交換することにより、容易に対応することができる。また、異なる材料の無端ベルトを作製する場合や複数種類の材料で積層する場合には、繊維材3を、異なる種類の繊維材3に交換することにより、容易に対応することができる。これらのようにして、多品種のものに容易に対応することができる。   And when producing endless belts of different sizes, it can be easily handled by replacing the substrate 1 with one having a different outer diameter. Further, when producing an endless belt made of different materials or laminating with a plurality of types of materials, the fiber material 3 can be easily replaced by replacing the fiber material 3 with a different type. In this way, it is possible to easily deal with a variety of products.

上記熱溶融性の繊維材3としては、例えば、下記の樹脂を主成分とし、これに導電剤を配合したものからなる、モノフィラメント,マルチフィラメント,または上記フィラメントを撚って糸状にしたもの等があげられる。すなわち、樹脂としては、例えば、ポリアリレート(PAR),ポリエステル(PET),ポリアミド(PA),シンジオタクチックポリスチレン系重合体,ポリメチルペンテン(PMC),ポリカーボネート(PC),ポリフェニレンエーテル(PPE),ポリエーテルケトン(PEK),ポリシアノアリールエーテル,ポリエーテルスルホン(PES),ポリエーテルエーテルケトン(PEEK),ポリフェニレンサルフォン(PPS),ポリアミドイミド(PAI),ポリサルホン(PSU),ポリエーテルイミド(PEI)等があげられ、これらは単独でもしくは2種以上併せて用いられる。これらの樹脂に他の樹脂を混合して用いてもよい。また、導電剤としては、特に限定されないが、例えば、導電性金属酸化物,金属粉末,カーボンブラック,イオン性導電剤等があげられ、これらは単独でもしくは2種以上併せて用いられる。   Examples of the heat-meltable fiber material 3 include monofilaments, multifilaments, or filaments made by twisting the filaments, which are mainly composed of the following resin and blended with a conductive agent. can give. That is, examples of the resin include polyarylate (PAR), polyester (PET), polyamide (PA), syndiotactic polystyrene polymer, polymethylpentene (PMC), polycarbonate (PC), polyphenylene ether (PPE), Polyetherketone (PEK), Polycyanoaryl ether, Polyethersulfone (PES), Polyetheretherketone (PEEK), Polyphenylenesulfone (PPS), Polyamideimide (PAI), Polysulfone (PSU), Polyetherimide (PEI) These are used singly or in combination of two or more. You may mix and use other resin for these resins. Further, the conductive agent is not particularly limited, and examples thereof include conductive metal oxides, metal powders, carbon black, ionic conductive agents, and the like, and these are used alone or in combination of two or more.

上記フィラメントの作製は、上記樹脂を溶融させたもののなかに上記導電剤を混練し、それを口金に通すことにより行われる。フィラメントの横断面形状(長手方向に直角な断面形状)は、その口金の形状によって設定することができる。そして、そのフィラメントをそのまま、または複数のフィラメントを撚って、上記繊維材3とする。この作製された繊維材3は、直接、基体1に巻装してもよいし、一旦ロール体に巻装し、そのロール体から繊維材3を繰り出して上記基体1に巻装してもよい。なお、上記フィラメントの作製の際の混練により、フィラメント内では、導電剤が高分散化するため、作製された無端ベルトは、電気特性が安定したものとなる。   The filament is produced by kneading the conductive agent in a melted resin and passing it through a die. The cross-sectional shape (cross-sectional shape perpendicular to the longitudinal direction) of the filament can be set by the shape of the die. Then, the filament 3 is used as it is or by twisting a plurality of filaments. The produced fiber material 3 may be directly wound around the base body 1, or may be once wound around a roll body, and the fiber material 3 may be unwound from the roll body and wound around the base body 1. . In addition, since the conductive agent is highly dispersed in the filament by kneading in the production of the filament, the produced endless belt has stable electrical characteristics.

上記フィラメントの横断面形状としては、特に限定されないが、長方形であることが好ましい。上記横断面形状が長方形であれば、そのフィラメントを基体1の外周面に巻装する際に、相互に隙間なくらせん状に巻装することができるため、その巻装体に空気が入らないようにすることが容易にでき、無端ベルトの製品特性を向上させることができるからである。また、表面の平滑化および膜厚の均一化も容易となる。上記横断面形状が長方形である場合、その大きさは特に限定されないが、幅が30〜200μm、厚みが30〜200μmであることが好ましい。一方、上記横断面形状が円形のフィラメントを用いてもよいが、この場合は、横断面形状が円形であるため、空気が入らないように巻装することが困難である。このため、その空気量をできる限り少なくするために、フィラメントの外径を0.1〜1μmの範囲の細いものとすることが好ましい。しかも、細いフィラメントを用いると、横断面形状が円形であっても、表面の平滑化および膜厚の均一化にも有効に作用する。そして、無端ベルトの厚みは、通常、50〜500μmの範囲であるため、その厚みになるように、上記フィラメントを、一重巻きで巻装してもよいし、重ね巻きで巻装してもよい。なお、上記説明は、繊維材3がフィラメントである場合について行っているが、そのフィラメントを撚って糸状にしたものについても、フィラメントに準じて扱うことができる。   The cross-sectional shape of the filament is not particularly limited, but is preferably rectangular. If the cross-sectional shape is rectangular, when the filament is wound around the outer peripheral surface of the substrate 1, it can be spirally wound with no gap between them, so that air does not enter the wound body. This is because the product characteristics of the endless belt can be improved. In addition, the surface can be smoothed and the film thickness can be made uniform. When the cross-sectional shape is a rectangle, the size is not particularly limited, but the width is preferably 30 to 200 μm and the thickness is preferably 30 to 200 μm. On the other hand, a filament having a circular cross-sectional shape may be used, but in this case, since the cross-sectional shape is circular, it is difficult to wind so that air does not enter. For this reason, in order to reduce the amount of air as much as possible, it is preferable that the outer diameter of the filament is as thin as 0.1 to 1 μm. In addition, when a thin filament is used, even if the cross-sectional shape is circular, it effectively acts to smooth the surface and make the film thickness uniform. And since the thickness of an endless belt is the range of 50-500 micrometers normally, the said filament may be wound by single winding so that it may become the thickness, and may be wound by overlap winding. . In addition, although the said description is performed about the case where the fiber material 3 is a filament, what twisted the filament and made it into a thread form can also be handled according to a filament.

なお、図1では、基体1に対する繊維材3の巻装を、基体1を周方向に回転させることにより行ったが、逆に、基体1を周方向に回転させずに、繊維材3の供給部を基体1の周りに回転させてもよい。または、基体1と供給部とをそれぞれ反対方向に回転させてもよい。基体1と供給部との相対的なスライドも同様に、基体1だけをスライドさせてもよいし、供給部だけをスライドさせてもよいし、基体1と供給部とをそれぞれ反対方向にスライドさせてもよい。   In FIG. 1, the fiber material 3 is wound around the base body 1 by rotating the base body 1 in the circumferential direction. Conversely, the fiber material 3 is supplied without rotating the base body 1 in the circumferential direction. The part may be rotated around the substrate 1. Alternatively, the substrate 1 and the supply unit may be rotated in opposite directions. Similarly, the relative slide between the base body 1 and the supply section may be performed by sliding only the base body 1, sliding the supply section alone, or sliding the base body 1 and the supply section in opposite directions. May be.

このようにして上記基体1の外周面に巻装体を形成した後は、基体1を巻装装置の基体回転部10から外し、加熱炉等に入れ、その巻装体を形成する繊維材3の融点以上に加熱し、隣接する繊維材3同士を一体化して(繊維材3の種類にもよるが、200〜400℃×60〜480分間程度)、筒状体4を形成する。そして、上記加熱炉等から取り出して冷却し、上記筒状体4を硬化させる。そして、上記冷却を終えると、筒状体4の一端縁と基体1の外周面との間から高圧エアを吹き込む等して、硬化した筒状体4を基体1から抜き取り、無端ベルトを得ることができる。   After forming the wound body on the outer peripheral surface of the substrate 1 in this way, the substrate 1 is removed from the substrate rotating portion 10 of the winding apparatus and placed in a heating furnace or the like, and the fiber material 3 forming the wound body. The cylindrical body 4 is formed by heating up to the melting point of the above and integrating the adjacent fiber materials 3 together (depending on the type of the fiber material 3, about 200 to 400 ° C. × 60 to 480 minutes). And it takes out from the said heating furnace etc., cools, and the said cylindrical body 4 is hardened. When the cooling is finished, the hardened cylindrical body 4 is extracted from the base body 1 by blowing high-pressure air between the one end edge of the cylindrical body 4 and the outer peripheral surface of the base body 1 to obtain an endless belt. Can do.

なお、繊維材3の巻装における始点および終点は、例えば、つぎのようにして処理される。すなわち、図4に示すように、まず、スリット5a,6aが形成された略円柱状の係止体5,6を2個準備し、各係止体5,6を基体1における巻装開始部分と巻装終了部分とにそれぞれ着脱自在かつ回転自在に取り付ける。ついで、繊維材3の先端を溶融後冷却して上記スリット5aの幅よりも大きな塊部3aに形成した後、その先端部分を、巻装開始部分に取り付けた上記係止体5のスリット5aに差し込んで上記塊部3aを係止させる。つぎに、その係止体5を回転させて繊維材3をその係止体5に数周巻き付けた後、繊維材3の巻装を開始する。そして、巻装終了後、繊維材3の終点部分を、巻装終了部分に取り付けた上記係止体6のスリット6aに差し込み、その係止体6を回転させて繊維材3をその係止体6に数周巻き付け、その巻き付けた後側の繊維材3を溶融して切断する(この切断部は、つぎの巻装の始点の上記塊部3aとなる)。つぎに、この状態で繊維材3を溶融させ、隣接する繊維材3同士を一体化して筒状体4(図2参照)を得る。そして、その筒状体4と各係止体5,6に巻き付けた繊維材3とを切断し、各係止体5,6を基体1から取り外す。その後、上記筒状体4を基体1から抜き取り、電子写真用無端ベルトを得る。このようにして繊維材3の始点と終点が処理されるが、その処理は、繊維材3の始点と終点が基体1に固定できれば、他でもよく、上記処理に限定されるものではない。   In addition, the starting point and end point in winding of the fiber material 3 are processed as follows, for example. That is, as shown in FIG. 4, first, two substantially cylindrical locking bodies 5 and 6 having slits 5a and 6a are prepared, and each of the locking bodies 5 and 6 is a winding start portion in the base body 1. And detachably and rotatably attached to the winding end portion. Next, after melting and cooling the front end of the fiber material 3 to form a lump portion 3a larger than the width of the slit 5a, the front end portion is inserted into the slit 5a of the locking body 5 attached to the winding start portion. The lump portion 3a is locked by being inserted. Next, after the locking body 5 is rotated and the fiber material 3 is wound around the locking body 5 several times, winding of the fiber material 3 is started. Then, after the end of winding, the end point portion of the fiber material 3 is inserted into the slit 6a of the locking body 6 attached to the winding end portion, and the locking body 6 is rotated so that the fiber material 3 is moved to the locking body. 6 is wound several times, and the wound fiber material 3 is melted and cut (this cut portion becomes the above-mentioned lump portion 3a at the start point of the next winding). Next, in this state, the fiber material 3 is melted, and the adjacent fiber materials 3 are integrated to obtain a cylindrical body 4 (see FIG. 2). Then, the tubular body 4 and the fiber material 3 wound around each of the locking bodies 5 and 6 are cut, and each of the locking bodies 5 and 6 is removed from the base body 1. Thereafter, the cylindrical body 4 is extracted from the base 1 to obtain an electrophotographic endless belt. In this way, the starting point and the end point of the fiber material 3 are processed. However, the processing is not limited to the above processing as long as the starting point and the end point of the fiber material 3 can be fixed to the base 1.

つぎに、実施例について比較例と併せて説明する。   Next, examples will be described together with comparative examples.

〔繊維材3の作製〕
ポリアリレート〔クラレ社製、ベクトラン(登録商標)、融点:290〜300℃〕100重量部を溶融し、それにカーボンブラック(昭和キャボット社製、ショウブラックN220)10重量部を混練した。そして、それを口金に通し、横断面形状が長方形(130μm×80μm)の繊維材(モノフィラメント)3を得た。
[Fabrication of fiber material 3]
100 parts by weight of polyarylate (Kuraray Co., Ltd., Vectran (registered trademark), melting point: 290 to 300 ° C.) was melted, and 10 parts by weight of carbon black (Showa Cabot Co., Show Black N220) was kneaded. Then, it was passed through a base to obtain a fiber material (monofilament) 3 having a rectangular cross section (130 μm × 80 μm).

〔巻装体の形成〕
基体1の外周面に、上記繊維材3を相互に隙間なくらせん状に巻装した。巻装は一巻きとした。なお、上記基体1は、外径200mm、軸方向の長さ450mmのものを用いた。そして、巻装範囲は、基体1の軸方向に400mmとした。
[Formation of wound body]
The fiber material 3 was spirally wound around the outer peripheral surface of the base body 1 without any gap therebetween. The winding was one roll. In addition, the said base | substrate 1 used the thing with an outer diameter of 200 mm and the length of 450 mm of an axial direction. The winding range was 400 mm in the axial direction of the base 1.

〔筒状体4の形成〕
上記巻装体を形成した後、基体1を巻装装置の基体回転部10から外し、加熱炉に入れ加熱した(300℃×300分間)。その後、加熱炉から取り出して冷却した。
[Formation of cylindrical body 4]
After forming the wound body, the substrate 1 was removed from the substrate rotating portion 10 of the winding apparatus, and heated in a heating furnace (300 ° C. × 300 minutes). Then, it took out from the heating furnace and cooled.

〔乾燥および無端ベルトの抜き取り工程〕
上記冷却後、筒状体4の一端縁と基体1の外周面との間から高圧エアを吹き込み、硬化した筒状体4を基体1から抜き取り、無端ベルトを得た。
[Drying and extracting process of endless belt]
After the cooling, high-pressure air was blown from between one end edge of the cylindrical body 4 and the outer peripheral surface of the base body 1, and the cured cylindrical body 4 was extracted from the base body 1 to obtain an endless belt.

〔比較例1〕
ディッピング製法により、基体1の外周面に、下記の液体材料からなる塗膜を形成した。基体1は、上記実施例と同様のものを用いた。そして、上記塗膜を乾燥させ、上記実施例1と同様にして、基体1から抜き取り、無端ベルトを得た。
[Comparative Example 1]
A coating film made of the following liquid material was formed on the outer peripheral surface of the substrate 1 by dipping. The substrate 1 used was the same as in the above example. And the said coating film was dried, and it extracted from the base | substrate 1 like the said Example 1, and obtained the endless belt.

〔液体材料の調製〕
溶剤可溶性のPoly(VdF−TFE)(ダイキン社製、VF100)100重量部と、カーボンブラック(昭和キャボット社製、ショウブラックN220)10重量部とを、アセトン(溶剤)を所定量混合し、ボールミルで混練、攪拌することにより、粘度が5000mPa・sの液体材料を調製した。
[Preparation of liquid material]
Solvent-soluble Poly (VdF-TFE) (Daikin, VF100) 100 parts by weight and carbon black (Showa Cabot, Show Black N220) 10 parts by weight are mixed with acetone (solvent) in a predetermined amount, and a ball mill is mixed. Were mixed and stirred to prepare a liquid material having a viscosity of 5000 mPa · s.

このようにして得られた実施例1および比較例1の無端ベルトについて、下記の基準に従い、各特性の評価を行った。   With respect to the endless belts of Example 1 and Comparative Example 1 thus obtained, each characteristic was evaluated according to the following criteria.

〔表面平滑性〕
無端ベルト外周面の幅方向(軸方向)の凹凸を、サーフコム480A(東京精密社製)を用いて測定し、凹凸差とその凹凸差が大きく現れるピッチPを測定した。その結果、実施例1の無端ベルトでは、上記凹凸差はあるものの小さく、しかもその凹凸差が大きく現れるピッチPも略一定となっており、全体的にみれば、略平滑となっていた。また、比較例1の無端ベルトについても、表面は略平滑となっていた。
[Surface smoothness]
The unevenness in the width direction (axial direction) of the outer peripheral surface of the endless belt was measured using Surfcom 480A (manufactured by Tokyo Seimitsu Co., Ltd.), and the unevenness difference and the pitch P at which the unevenness difference greatly appeared were measured. As a result, in the endless belt of Example 1, although the unevenness difference is small, the pitch P at which the unevenness difference is large is substantially constant, and is generally smooth as a whole. Further, the surface of the endless belt of Comparative Example 1 was substantially smooth.

〔厚み〕
無端ベルトの厚みを、マイクロメーターを用いて測定した。この測定は、無端ベルトを切り開き、軸方向と周方向を細かく測定した。その結果、実施例1の無端ベルトについては、上記のように表面に凹凸差はあるものの小さく、しかもそのピッチPも略一定となっており、全体的には、厚みは略一定となっていた。これに対して、比較例1の無端ベルトでは、軸方向下方にいくにつれて徐々に厚くなっていた。
[Thickness]
The thickness of the endless belt was measured using a micrometer. In this measurement, the endless belt was cut open, and the axial direction and the circumferential direction were measured finely. As a result, the endless belt of Example 1 was small although the surface had unevenness as described above, and the pitch P was substantially constant, and the thickness was generally constant as a whole. . On the other hand, the endless belt of Comparative Example 1 was gradually thicker as it went downward in the axial direction.

〔電気抵抗〕
無端ベルトの電気抵抗を、三菱化学社製ハイレスタを用いて測定した。この測定は、軸方向の上端部,中央部,下端部の3点で行った。その結果、実施例1の無端ベルトでは、3点とも略一定の値を示した。これに対して、比較例1の無端ベルトでは、上端部の値と下端部の値とで約1桁の差があった。
[Electric resistance]
The electric resistance of the endless belt was measured using a Hiresta manufactured by Mitsubishi Chemical Corporation. This measurement was performed at three points, that is, an upper end portion, a central portion, and a lower end portion in the axial direction. As a result, the endless belt of Example 1 showed a substantially constant value at all three points. On the other hand, the endless belt of Comparative Example 1 had a difference of about one digit between the value at the upper end and the value at the lower end.

本発明の電子写真用無端ベルトの製法の一実施の形態を示す説明図である。It is explanatory drawing which shows one Embodiment of the manufacturing method of the endless belt for electrophotography of this invention. 上記製法を示す説明図である。It is explanatory drawing which shows the said manufacturing method. 上記製法における筒状体の表面のうねり形状を示す断面図である。It is sectional drawing which shows the wave | undulation shape of the surface of the cylindrical body in the said manufacturing method. 上記製法における繊維材の始点および終点の処理方法を示す説明図である。It is explanatory drawing which shows the processing method of the starting point and end point of the fiber material in the said manufacturing method.

符号の説明Explanation of symbols

1 基体
3 繊維材
1 Base 3 Textile material

Claims (3)

円筒状または円柱状の無端ベルト用基体の外周面に、熱溶融性繊維材を、軸方向に複数回、相互に隙間なく、もしくは、所定の間隔をあけて巻装し、これを加熱して上記繊維材を溶融させ、隣接する繊維材同士を一体化して上記基体の外周面に筒状体を形成し、ついで冷却して上記筒状体を硬化させた後、上記基体から抜き取り、電子写真用無端ベルトを得るようにしたことを特徴とする電子写真用無端ベルトの製法。   A heat-meltable fiber material is wound around the outer peripheral surface of a cylindrical or column-shaped endless belt base body a plurality of times in the axial direction without gaps or at predetermined intervals, and heated. The fiber material is melted, the adjacent fiber materials are integrated to form a cylindrical body on the outer peripheral surface of the base body, and then cooled to harden the cylindrical body, and then extracted from the base body and electrophotographic. An endless belt for electrophotography, characterized in that an endless belt is obtained. 上記熱溶融性繊維材がフィラメントであり、その横断面形状が長方形である請求項1記載の電子写真用無端ベルトの製法。   The process for producing an endless belt for electrophotography according to claim 1, wherein the heat-meltable fiber material is a filament and the cross-sectional shape thereof is a rectangle. 上記熱溶融性繊維材がフィラメントであり、その横断面形状が円形であり、その外径が0.1〜1μmの範囲である請求項1記載の電子写真用無端ベルトの製法。   The process for producing an endless belt for electrophotography according to claim 1, wherein the heat-meltable fiber material is a filament, the cross-sectional shape thereof is circular, and the outer diameter thereof is in the range of 0.1 to 1 µm.
JP2004225710A 2003-07-31 2004-08-02 Manufacturing process for electrophotographic endless belt Pending JP2005062860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004225710A JP2005062860A (en) 2003-07-31 2004-08-02 Manufacturing process for electrophotographic endless belt

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003284181 2003-07-31
JP2004225710A JP2005062860A (en) 2003-07-31 2004-08-02 Manufacturing process for electrophotographic endless belt

Publications (1)

Publication Number Publication Date
JP2005062860A true JP2005062860A (en) 2005-03-10

Family

ID=34380253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004225710A Pending JP2005062860A (en) 2003-07-31 2004-08-02 Manufacturing process for electrophotographic endless belt

Country Status (1)

Country Link
JP (1) JP2005062860A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8488994B2 (en) 2011-09-23 2013-07-16 Stratasys, Inc. Electrophotography-based additive manufacturing system with transfer-medium service loops
US8718522B2 (en) 2011-09-23 2014-05-06 Stratasys, Inc. Layer transfusion with part heating for additive manufacturing
US8879957B2 (en) 2011-09-23 2014-11-04 Stratasys, Inc. Electrophotography-based additive manufacturing system with reciprocating operation
US9023566B2 (en) 2013-07-17 2015-05-05 Stratasys, Inc. ABS part material for electrophotography-based additive manufacturing
US9029058B2 (en) 2013-07-17 2015-05-12 Stratasys, Inc. Soluble support material for electrophotography-based additive manufacturing
US9144940B2 (en) 2013-07-17 2015-09-29 Stratasys, Inc. Method for printing 3D parts and support structures with electrophotography-based additive manufacturing
US9643357B2 (en) 2014-03-18 2017-05-09 Stratasys, Inc. Electrophotography-based additive manufacturing with powder density detection and utilization
US9688027B2 (en) 2014-04-01 2017-06-27 Stratasys, Inc. Electrophotography-based additive manufacturing with overlay control
US9770869B2 (en) 2014-03-18 2017-09-26 Stratasys, Inc. Additive manufacturing with virtual planarization control
US9868255B2 (en) 2014-03-18 2018-01-16 Stratasys, Inc. Electrophotography-based additive manufacturing with pre-sintering
US9919479B2 (en) 2014-04-01 2018-03-20 Stratasys, Inc. Registration and overlay error correction of electrophotographically formed elements in an additive manufacturing system
US10011071B2 (en) 2014-03-18 2018-07-03 Evolve Additive Solutions, Inc. Additive manufacturing using density feedback control
US10144175B2 (en) 2014-03-18 2018-12-04 Evolve Additive Solutions, Inc. Electrophotography-based additive manufacturing with solvent-assisted planarization
US11241824B2 (en) 2011-09-23 2022-02-08 Evolve Additive Solutions, Inc. Layer transfusion for heat capacitor belt for additive manufacturing

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9720363B2 (en) 2011-09-23 2017-08-01 Stratasys, Inc. Layer transfusion with rotatable belt for additive manufacturing
US8718522B2 (en) 2011-09-23 2014-05-06 Stratasys, Inc. Layer transfusion with part heating for additive manufacturing
US8879957B2 (en) 2011-09-23 2014-11-04 Stratasys, Inc. Electrophotography-based additive manufacturing system with reciprocating operation
US11241824B2 (en) 2011-09-23 2022-02-08 Evolve Additive Solutions, Inc. Layer transfusion for heat capacitor belt for additive manufacturing
US9904223B2 (en) 2011-09-23 2018-02-27 Stratasys, Inc. Layer transfusion with transfixing for additive manufacturing
US9141015B2 (en) 2011-09-23 2015-09-22 Stratasys, Inc. Electrophotography-based additive manufacturing system with transfer-medium service loops
US8488994B2 (en) 2011-09-23 2013-07-16 Stratasys, Inc. Electrophotography-based additive manufacturing system with transfer-medium service loops
US9423756B2 (en) 2011-09-23 2016-08-23 Stratasys, Inc. Electrophotography-based additive manufacturing system with reciprocating operation
US9885987B2 (en) 2011-09-23 2018-02-06 Stratasys, Inc. Layer transfusion for additive manufacturing
US9144940B2 (en) 2013-07-17 2015-09-29 Stratasys, Inc. Method for printing 3D parts and support structures with electrophotography-based additive manufacturing
US9933718B2 (en) 2013-07-17 2018-04-03 Stratasys, Inc. Part material for electrophotography-based additive manufacturing
US9023566B2 (en) 2013-07-17 2015-05-05 Stratasys, Inc. ABS part material for electrophotography-based additive manufacturing
US9557661B2 (en) 2013-07-17 2017-01-31 Stratasys, Inc. Soluble support material for electrophotography-based additive manufacturing
US10065371B2 (en) 2013-07-17 2018-09-04 Evolve Additive Solutions, Inc. Method for printing 3D parts and support structures with electrophotography-based additive manufacturing
US10018937B2 (en) 2013-07-17 2018-07-10 Evolve Additive Solutions, Inc. Soluble support material for electrophotography-based additive manufacturing
US9482974B2 (en) 2013-07-17 2016-11-01 Stratasys, Inc. Part material for electrophotography-based additive manufacturing
US9029058B2 (en) 2013-07-17 2015-05-12 Stratasys, Inc. Soluble support material for electrophotography-based additive manufacturing
US9770869B2 (en) 2014-03-18 2017-09-26 Stratasys, Inc. Additive manufacturing with virtual planarization control
US10011071B2 (en) 2014-03-18 2018-07-03 Evolve Additive Solutions, Inc. Additive manufacturing using density feedback control
US9868255B2 (en) 2014-03-18 2018-01-16 Stratasys, Inc. Electrophotography-based additive manufacturing with pre-sintering
US9643357B2 (en) 2014-03-18 2017-05-09 Stratasys, Inc. Electrophotography-based additive manufacturing with powder density detection and utilization
US10144175B2 (en) 2014-03-18 2018-12-04 Evolve Additive Solutions, Inc. Electrophotography-based additive manufacturing with solvent-assisted planarization
US9919479B2 (en) 2014-04-01 2018-03-20 Stratasys, Inc. Registration and overlay error correction of electrophotographically formed elements in an additive manufacturing system
US9688027B2 (en) 2014-04-01 2017-06-27 Stratasys, Inc. Electrophotography-based additive manufacturing with overlay control

Similar Documents

Publication Publication Date Title
JP2005062860A (en) Manufacturing process for electrophotographic endless belt
KR101052089B1 (en) Fluorine resin tube and its manufacturing method
JP5473352B2 (en) Belt member manufacturing method and belt member
JPWO2006033471A1 (en) Electrophotographic belt, method for producing electrophotographic belt, and electrophotographic apparatus
JP3990467B2 (en) Tubular product manufacturing method and tubular product
US6217963B1 (en) Seamless tubular composite film and method for producing the same
US8971781B2 (en) Roller for image-forming apparatus and process for producing the same
JP5540800B2 (en) Transfer belt, image forming apparatus, and transfer belt manufacturing method
US20110142509A1 (en) Heating fixing roller and process for producing the heating fixing roller
US20120003415A1 (en) Belts for electrostatographic apparatus and methods for making the same
JP2005275335A (en) Seamless belt and its manufacturing method
US7334336B2 (en) Method for producing a sleeved polymer member, an image cylinder or a blanket cylinder
CN106466972B (en) The manufacturing method of annulus and annulus
JP3891300B2 (en) Tubular product manufacturing method and tubular product
JP4485879B2 (en) Seamless belt manufacturing method
JP3855896B2 (en) Production method of endless belt for electrophotography
JP3011204B1 (en) Manufacturing method for tubular objects
JPH09297482A (en) Manufacture of fixing roller
JP2006095838A (en) Seamless belt and method for producing seamless belt
JP2009134119A (en) Method for manufacturing cylindrical photoreceptor
JP6206073B2 (en) Cooling device, tubular body manufacturing apparatus, and tubular body manufacturing method
JP5576439B2 (en) Method for producing polyimide composite tubular material and polyimide composite tubular material
JP2014059376A (en) Manufacturing method for intermediate transfer belt
JP5483597B2 (en) Roller manufacturing method
JP5079629B2 (en) Method for producing polyimide composite tubular material and polyimide composite tubular material