JP2005062130A - 微小薄片作製装置 - Google Patents

微小薄片作製装置 Download PDF

Info

Publication number
JP2005062130A
JP2005062130A JP2003296327A JP2003296327A JP2005062130A JP 2005062130 A JP2005062130 A JP 2005062130A JP 2003296327 A JP2003296327 A JP 2003296327A JP 2003296327 A JP2003296327 A JP 2003296327A JP 2005062130 A JP2005062130 A JP 2005062130A
Authority
JP
Japan
Prior art keywords
sample
electron microscope
chamber
electron
needle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003296327A
Other languages
English (en)
Inventor
Takao Kusaka
貴生 日下
Taketoshi Watanabe
壮俊 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003296327A priority Critical patent/JP2005062130A/ja
Publication of JP2005062130A publication Critical patent/JP2005062130A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/208Elements or methods for movement independent of sample stage for influencing or moving or contacting or transferring the sample or parts thereof, e.g. prober needles or transfer needles in FIB/SEM systems

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

【課題】 有機物や生物等の揮発性物質含有試料の任意の部位を、変質することなく、透過電子顕微鏡観察が可能なサイズの微小薄片試料としてサンプリングでき、同時に電子顕微鏡観察が可能な装置を提供する。
【解決手段】 雰囲気制御が可能な試料チャンバー2、試料チャンバー内に揮発性物質含有試料を導入する試料ホルダー14、この保持された試料を観察するための走査電子顕微鏡、試料ホルダー14に保持された試料をサンプリングするマニピュレータ、サンプリングされた試料を試料チャンバー2の外部に取り出すための試料ホルダー15を具備する。この構成により、揮発性物質含有試料を変質することなくサンプリングでき、透過電子顕微鏡の観察用試料として容易に作製できる。
【選択図】 図1


Description

本発明は、有機物や生物等の揮発性物質含有試料の微小薄片を作製する微小薄片作製装置に関するものである。
従来、透過電子顕微鏡観察用の試料作製方法としては、様々な方法が考案されている。特に、生物試料や高分子試料等に対してはミクロトーム法が活用されている。ミクロトーム法はエポキシやアラルダイト等の樹脂に対象試料を包埋後、ガラスナイフやダイヤモンドナイフを用いて超薄切片を作製し、水等に浮かせた切片をグリッドですくい上げて透過電子顕微鏡観察用の試料とする方法である(非特許文献1参照)。
一方、サブミクロンオーダーの空間分解能で特定部位の試料断面を形成する方法としては、FIB(Focused Ion Beam)加工法がある。FIB加工法は希望する特定の領域にGaイオンを集束させてその領域だけをスパッタエッチングする方法である(非特許文献2参照)。
更に、試料の一部分を剥ぎ取ったり、或いは切り出したりし、それを所定の場所に移動する方法としてはマニピュレータを使用することが考えられる。特に、透過電子顕微鏡観察用の試料を作製する際にはマニピュレータを利用する方法は有効である。マニピュレータを操作する際には、操作状態を観察する方法が重要となるが、一般には、光学顕微鏡(特開平11−271036号公報等)、走査電子顕微鏡(特開2001−198896号、特開2001−88100号公報等)等を組み合わせて使用されている。
また、これら生物試料や高分子試料の電子顕微鏡による形態観察では、外形や内部構造を観察するために、高傾斜観察による立体観察が必要である。
朝倉健太郎・広畑泰久 共著「ウルトラミクロトーム技法Q&A」 アグネ承風社出版 1999・9・30発行 平坂雅男・朝倉健太郎 共著「FIB・イオンミリング技法Q&A」 アグネ承風社出版 2002・9・25発行
しかしながら、上記従来技術であるミクロトーム法はスライス手法であるため試料の一断面しか観察できない。また、目的の部位を観察するためには、切片の作製と透過電子顕微鏡による観察を繰り返しながらその部位に近づいて行くしか方法がない。また、硬さ、密着性、切削性、化学的影響等試料と包埋樹脂の相性が非常に重要であり、試行錯誤が欠かせない手法であった。
一方、FIB加工法を用いて有機材料を加工する場合には、金属材料や半導体材料に比べて加工の際のダメージが大きい。更に、試料を真空環境に導入しなければならないため、揮発性物質を含有する試料では試料の変形、変質が生じてしまい、使用することができない。
また、マニピュレータを操作する際には観察方法が併用されるが、透過電子顕微鏡で観察可能なレベルの微小薄片を作製するためには、光学顕微鏡では空間分解能が足りない。また、走査電子顕微鏡を併用する場合には、空間分解能は十分であるが、真空環境に試料を導入しなければならないため、揮発性物質を含有する試料では試料の変形、変質が生じ使用できない。
また、これら生物試料や高分子試料の立体的な外形及び内部構造の情報を得るには、走査電子顕微鏡による表面形態観察と透過電子顕微鏡による透過像観察を様々な方向から行う必要である。しかし、従来技術では各々の電子顕微鏡観察を別々に行う必要がある上、様々な方向からの観察行う為に高傾斜観察が可能な走査電子顕微鏡と透過電子顕微鏡装置が必要であった。
本発明は、上記従来の問題点に鑑みなされたもので、その目的は、有機物や生物等の揮発性物質含有試料の任意の部位を、変質することなく、透過電子顕微鏡観察が可能なサイズの微小薄片として容易に作製することが可能な微小薄片作製装置を提供することにある。
本発明は、上記目的を達成するため、雰囲気制御が可能な試料チャンバーと、前記試料チャンバー内に揮発性物質含有試料を導入する第1の試料ホルダーと、前記試料ホルダーに保持された試料を観察するための走査電子顕微鏡と、前記第1の試料ホルダーに保持された試料をサンプリングするためのマニピュレータと、前記マニピュレータによってサンプリングされた試料を保持し、前記試料チャンバーの外部に取り出すための第2の試料ホルダーとを備えたことを特徴とする。
本発明は、この構成により、有機物や生物等の揮発性物質含有試料の任意の部位を、変質することなく、透過電子顕微鏡観察が可能なサイズの微小薄片として容易に作製することができる。
また、本発明は、上記構成の装置において、前記マニピュレータが温度制御可能であり、かつサンプリングした試料の観察を行う為の電子検出器を備えたことを特徴とし、前記電子検出器は、走査電子顕微鏡像観察のための電子検出器と走査型透過電子顕微鏡像の明視野像及び暗視野像観察のための電子検出器であることを特徴とする。
本発明では、試料チャンバー内を試料の変質が生じない程度の真空度に排気し、走査型電子顕微鏡で観察しながらマニピュレータを操作し、対象試料の微小薄片を透過電子顕微鏡観察用試料としてサンプリングを行う。更に、マニピュレータの温度制御機構による試料冷却と電子光学鏡筒内のレンズ室及び試料チャンバーの高真空排気を行った後、微小薄片表面に電子線を照射及び走査し、走査電子顕微鏡用の電子検出器による二次電子像観察と走査型透過電子顕微鏡用の電子検出器による走査型透過電子顕微鏡像観察を行うことが出来る。更に、ニードルの軸回転により傾斜観察を組み合わせて同時に行うことが可能である。
従って、本発明は、この構成により、有機物や生物等の揮発性物質含有試料の任意の部位を、変質することなく、透過電子顕微鏡観察が可能なサイズの微小薄片として容易に作製できると同時に、その場で電子顕微鏡により簡単に試料の外形或いは内部構造の観察を行うことが可能となる。
本発明によれば、有機物や生物等の揮発性物質含有試料の任意の部位を、試料にダメージを与えることなく、透過電子顕微鏡観察が可能なサイズの微小薄片として容易にサンプリングすることができる。また、有機物や生物等の揮発性物質含有試料の任意の部位を、試料にダメージを与えることなく、透過電子顕微鏡観察が可能なサイズの微小薄片として容易にサンプリングすることができると同時に、その場で、サンプリングした微小薄片試料の電子顕微鏡観察を行うことができる。
次に、本発明を実施するための最良の形態について図面を参照して詳細に説明する。
(第1の実施形態)
図1は本発明の第1の実施形態を示す構成図である。図中1は電子光学鏡筒、2は揮発性物質含有試料を導入する試料室(試料チャンバー)である。電子光学鏡筒1の内部には、電子銃3が設置された電子銃室4、コンデンサレンズ5、走査コイル6、非点補正装置7、対物レンズ8を有するレンズ室9が設けられている。
また、試料室2の内部には、ニードル12、試料ホルダー14、透過電子顕微鏡用試料ホルダー15が設置されている。ニードル12は外部からの操作が可能なマニピュレータ(図示せず)の先端に接続されている。ニードル12は、例えば、金属製もしくは金属をコートしたガラス製である。
試料ホルダー14は生物や高分子等の揮発性物質含有試料13を保持し、試料室2内に導入するものであり、透過電子顕微鏡用試料ホルダー15は試料13から剥ぎ取られた試料、或いは試料13から切断された試料を保持し、透過電子顕微鏡観察用の試料として試料室2の外部に取り出すものである。試料ホルダー14と透過電子顕微鏡用試料ホルダー15は、各々予め所定の真空度に排気された予備排気室20、21を介して個別に導入できる機構となっている。予備排気室20は試料導入前に予め所定の真空度に排気し、予備排気室21は試料排出前に予め所定の真空度に排気しておく。
電子光学鏡筒1内の電子銃室4は排気部16から排気系(図示せず)に接続され、レンズ室9は排気部17から排気系(図示せず)に接続され、それぞれ別個に各室の真空を維持することが可能である。一方、試料室2は排気部18から排気系(図示せず)に接続され、且つ、バルブを介してガス導入部19が設けられ、任意のガス雰囲気(例えば、水、窒素等)で、任意の真空度に維持することが可能である。
また、10、11は圧力の異なる領域を仕切り、且つ、電子ビームを通過させるオリフィスである。オリフィス10は電子銃室4とレンズ室9を、オリフィス11はレンズ室9と試料室2をそれぞれ仕切っている。通常、オリフィス11としては、対物絞りが用いられる。
次に、揮発性物質含有試料の微小薄片試料作製方法について説明する。まず、電子銃室4、試料室2、レンズ室9の各室の真空度を調節する。電子銃室4は電子銃3により電子ビームを発生する必要があるため、排気部16から排気し、10-3Pa程度の真空度に調節する。
一方、試料室2は有機物や生物等の揮発性物質を含有する試料を導入できるように、即ち、揮発性物質含有試料が変質しない真空度に調節する。その方法は、まず1Pa以下の真空度になるように排気部18から排気し、続いてガス導入部19から水、窒素等のガスを導入して1000Pa程度の真空度に調節する。試料室2と電子銃室4の中間に位置するレンズ室9は排気部17から排気し、1Pa程度の真空度に調節する。
次に、予備排気室20を介して試料13を搭載した試料ホルダー14を試料室2内に導入し、電子銃3の電子ビームの光軸上に試料13が位置するように置く。また、予備排気室21を介して透過電子顕微鏡用試料ホルダー15を導入するが、試料ホルダー14に接触しないように退避位置に置く。
次いで、電子銃3から電子を放出させ、コンデンサレンズ5、非点補正装置7、対物レンズ8を動作させて試料13上に細く絞った電子線を照射する。また、走査コイル6を駆動して電子線を偏向させ、試料13面上に電子線をスキャンする。この時、試料13の試料電流を検出器(図示せず)で測定し、この測定電流と電子線を走査させるための信号とを同期させて表示することで試料の表面の像が得られる。
なお、試料電流は、一次電子線が試料13に入射した時に試料13とアース間に流れる電流であり、一次電子線から試料13より放射される二次電子及び反射電子等の電子を差し引いた分の電流である。
また、本装置においてはニードル12及び透過電子顕微鏡用試料ホルダー15からも電流を計測できる構成となっており、像表示には、試料13、ニードル12、透過電子顕微鏡用試料ホルダー15の電流を検出器(図示せず)でそれぞれ検出する。そして、検出した各部の電流と電子線を走査させるための信号とをそれぞれ同期させて表示することで、試料13、ニードル12、試料ホルダー15を組み合わせた像が得られる。この場合には、試料13、ニードル12、試料ホルダー15の位置関係が分かるので、操作性が向上する。
次に、試料13の表面の像にフォーカスを合わせ、試料13のサンプリングすべき部位を決定する。その後、マニピュレータを操作してニードル12を試料13に近づけ、試料13の所望の部位を剥ぎ取る。場合によっては、二本のニードル12を用いて試料13の一部を切断することも可能である。最終的に透過電子顕微鏡の試料として使用する部分をニードル12に付着させて、試料13の表面から電子光学鏡筒1側へ退避させる。
また、試料13がニードル12に接触しないように試料ホルダー14を予備排気室20側に退避させ、電子ビームの光軸上に透過電子顕微鏡用試料ホルダー15を移動させる。この時、各レンズの設定を変更せずに、透過電子顕微鏡用試料ホルダー15を移動させてフォーカスを合わせるようにすると試料ホルダー15がニードル12に接触することが避けられる。
次に、再び、マニピュレータを操作して透過電子顕微鏡用試料ホルダー15のメッシュ部位(透過電子顕微鏡の観察時の試料保持部)にニードル12を近づけ、先にサンプリングした試料の一部を置く。試料がニードル12から離れ難い場合には、もう一本のニードル12を利用すると良い。ニードル12を透過電子顕微鏡用試料ホルダー15から離した後、予備排気室21を介して透過電子顕微鏡用試料ホルダー15を試料室2から外部に退出させる。この試料は、透過電子顕微鏡用の微小薄片試料として用いられる。
本実施形態では、有機物や生物等の揮発性物質含有試料の任意の部位を、変質することなく、容易に透過電子顕微鏡で観察が可能なサイズの微小薄片としてサンプリングすることができる。
(第2の実施形態)
図2は本発明の第2の実施形態を示す構成図である。第1の実施形態との違いは、電子光学鏡筒1の下方位置に試料13、ニードル12、透過電子顕微鏡用試料ホルダー15から発生する反射電子を検出する反射電子検出器22を設けた点であり、その他の構成は図1と同様である。本実施形態では、試料13やニードル12、透過電子顕微鏡用試料ホルダー15の像を形成する際に試料電流ではなく、反射電子検出器22で検出した信号を電子線を走査するための信号と同期させて表示することで、像を得るものである。
本実施形態では、反射電子検出器22で検出した信号を用いて試料13やニードル12、透過電子顕微鏡用試料ホルダー15の像を表示するため、ニードル12の材質としてガラス等が使用可能であり、対象の揮発性物質含有試料によって金属製ニードルを使用できない場合に、本実施形態の構成は有効である。
なお、以上の実施形態では、マニピュレータの先端形状としてニードルタイプを使用しているが、これに限ることなく、例えば、はさみタイプや作動排気を利用した真空吸引ノズル等を使用しても良い。また、対象試料が小さい場合にはカーボンナノチューブを使用しても良い。更に、フォーカスを試料に合わせるように操作しているが、フォーカス位置をマニピュレータの先端に固定し、ニードルの移動に連動してフォーカスが自動的に修正される方法を用いても構わない。
(第3の実施形態)
図3は本発明の第3の実施形態を示す構成図である。なお、図3では図1、図2と同一部分は同一符号を付している。まず、本実施形態では、主に、雰囲気制御が可能な試料室(試料チャンバー)2、電子光学鏡筒1、ニードルを先端に有するマニピュレータ30、走査電子顕微鏡用の電子検出器31、走査型透過電子顕微鏡用の電子検出器32等から構成されている。
本実施形態では、生物や高分子等の揮発性物質含有試料13から微小薄片試料34をマニピュレータ30の先端のニードル35でサンプリングし、詳しく後述するように走査電子顕微鏡用の電子検出器31による走査電子顕微鏡観察、或いは走査型透過電子顕微鏡用の電子検出器32による走査型透過電子顕微鏡観察が可能なように構成したものである。
電子光学鏡筒1は、電子銃3が設置された電子銃室4と、コンデンサレンズ5、走査コイル6、非点補正装置7、対物レンズ8が設置されたレンズ室9からなっている。電子光学鏡筒1は、電子銃室4とレンズ室9の間に設置されたオリフィス10で仕切られており、電子銃室4、レンズ室9はそれぞれ排気部16、17より排気系(不図示)に接続され、真空を維持することが可能である。
試料室2内には、ニードル35を先端に有するマニピュレータ30、マニピュレータ30をXYZ(図3参照)方向に移動させるマニピュレータステージ36、マニピュレータ30のニードル35をΦ方向に案内するガイドレール37、試料をXYZΘ方向(図3参照)に移動させる試料ステージ38が設けられている。Φ方向は試料ステージ38を中心とする円周方向で、Θ軸に直交する回転軸である。
また、試料室2内には、図示しないエネルギーフィルターにより2次電子検出器及び反射電子検出器として使用可能な走査電子顕微鏡用の電子検出器31、明視野観察用検出エリアと暗視野観察用検出エリアを持つ2分割された走査型透過電子顕微鏡用の電子検出器32が設置されている。電子検出器31はエネルギーフィルターを用いることにより、試料からの二次電子(試料に電子線を照射することにより試料から放出される電子)と、試料から反射した反射電子を分けて検出することが可能である。
また、試料室2は排気部18から排気系(不図示)に接続され、且つ、バルブを介してガス導入部19が設けられ、任意のガス雰囲気で、任意の真空度に維持することが可能な機構となっている。更に、試料室2には、試料13を導入する為の試料導入室39と、上述の電子光学鏡筒1が接続されている。電子光学鏡筒1の先端には、対物絞り用のオリフィス11が設置されており、試料室2と電子光学鏡筒1はオリフィス11で区切られている。
マニピュレータ30は先端に接続されたニードル35が、マニピュレータステージ36によって図示しないステッピングリニアモータ及びピエゾ素子を用いてXYZ方向に駆動され、更に、ガイドレール37に沿ってΦ方向に移動することが可能である。このようにマニピュレータ30のニードル35は外部から自由に操作でき、揮発性物質含有試料をサンプリングすることが可能である。
また、マニピュレータ30は図示しないペルチェ素子等を用いてニードル35の温度制御を行う温度制御機構40を含んでいる。ニードル35は上述のように外部からの操作が可能なマニピュレータ30の先端に接続され、金属製もしくは金属をコートしたガラス製である。温度制御機構40はペルチェ素子を用いてニードル先端の試料を冷却するのに用いられる。
次に、本実施形態による微小薄片試料のサンプリング方法を図3、図4を参照して説明する。まず、各部位の真空度を調節する。電子銃室4は、電子銃3により電子ビームを発生する必要がある為、10-3Pa程度の真空度に調節する。試料室2は排気部18からの真空排気とガス導入部19からの所望のガス(例えば、水、窒素等)の導入とフローコントロールにより、有機物や生物等の揮発性物質を含有した試料13を導入出来るように(試料が変質しないように)、1000Pa程度の真空度に調節する。試料室2と電子銃室4との間に位置するレンズ室9は、1Pa程度の真空度に調節する。
次に、微小薄片試料をサンプリングする為、揮発性物質含有試料13を試料室2内へ導入し、走査電子顕微鏡による観察を行う。試料13を導入するには、予め所定の真空度に排気された試料導入室39を介することによって試料13を搭載した試料ステージ38を試料室2内に導入し、その試料ステージ38により試料13が電子光学鏡筒1の光軸上に来るように置く。
試料13の走査電子顕微鏡観察を行うには、先ず、電子銃3より電子を放出させ、コンデンサレンズ5、非点補正装置7、対物レンズ8を動作させることにより、試料13上に細く絞った電子線を照射する。また、走査コイル6を駆動して電子線を偏向させ、試料13の表面上に走査する。
同時に、試料13からの反射電子を走査電子顕微鏡用の電子検出器31により測定し、この検出器31で検出した信号と電子線を走査させるための信号とを同期させて表示することで試料を観察することが出来る。
また、試料13から微小薄片試料をサンプリングするには、走査電子顕微鏡により試料13の像を観察してフォーカスを試料表面に合わせ、試料のサンプリングすべき部位を決定する。次いで、マニピュレータ30を操作して試料表面にニードル35を近づけ、試料13の必要な部分を剥ぎ取る。場合によっては、試料ステージ38を動作させて試料の一部を切断しても良い。最終的に、図4に示すように微小薄片試料34をニードル35の先端部に付着させる。微小薄片試料34を剥ぎ取った後の試料13は、試料ステージ38ごと試料導入室39へ退避させておく。
次に、図4を用いて微小薄片試料の電子顕微鏡による観察方法について説明する。ニードル35の先端にサンプリングした微小薄片試料34を電子顕微鏡で観察する場合において、高分解能観察及び透過電子顕微鏡観察を行う為には、高真空下において試料34への電子線照射を行わなければならない。
その為、先ず、ペルチェ素子を用いたマニピュレータ30の温度制御機構40によって微小薄片試料34を含有する揮発性物質が高真空下で揮発しない温度以下に冷却する。その後、ガス導入部19を閉じてガスフローを停止させ、排気部17及び18から電子光学鏡筒1のレンズ室9及び試料室2の高真空排気を行う(レンズ室9及び試料室2の真空度としては、例えば10-3Pa程度とする)。
ここで、電子顕微鏡観察を行う場合には、走査電子顕微鏡用の電子検出器31と走査型透過電子顕微鏡用の電子検出器32による電子顕微鏡像取得が同時に可能である。具体的には、微小薄片試料34のサンプリング時の電子顕微鏡観察を行う場合と同様に、微小薄片試料34の表面上に細く絞った電子線を走査し、その表面から放出される二次電子を走査電子顕微鏡用の電子検出器31によって測定し、同時に試料34を透過・散乱した電子を走査型透過電子顕微鏡用の電子検出器32の二つのエリアでそれぞれ測定する。そして、これら二つの電子検出器31、32によって測定した信号を、それぞれ電子線を走査させるための信号と同期させて表示することで、二次電子像と、明視野像及び暗視野像を取得することが出来る。尚、走査型透過電子顕微鏡像を得るために照射する電子線の加速電圧は、電子が試料を透過する加速電圧で観察する必要がある。この結果、二次電子像観察から微小薄片試料34の外形の形態観察、走査型透過電子顕微鏡の明視野像と暗視野像観察から微小薄片試料34の内部構造の情報を得ることが出来る。
なお、ここでは、電子検出器31で二次電子を検出して二次電子像を得ているが、これは、純粋に試料の外形を観察するためであり、試料のサンプリング時と同様に試料からの反射電子を検出しても試料の観察は可能である。
本実施形態では、第1、第2の実施形態と同様に有機物や生物等の揮発性物質含有試料の任意の部位を、変質することなく、透過電子顕微鏡観察が可能なサイズの微小薄片試料として容易にサンプリングできる。また、その場で、試料室2内において電子顕微鏡観察によってサンプリングした微小薄片試料の外形観察及び内部構造の観察を行うことができる。
(第4の実施形態)
図5は本発明の第4の実施形態を示す構成図である。第4の実施形態では、第3の実施形態の構成に、更に、特性X線を検出するEDS(Energy Dispersive X−ray Spectrometer)検出器41と、ニードルの回転及び温度制御機構43を有するマニピュレータ42を設けたものであり、ニードルの回転機構を用いた高傾斜電子顕微鏡観察によってニードル先端にサンプリングした微小薄片試料34の立体構造を観察できるようにしたものである。
本実施形態の基本的な構成は図3の第3の実施形態と同様であり、試料室2内には、EDS検出器27と、マニピュレータ30とは別のマニピュレータ42が設けられている。このマニピュレータ42はニードル35をその先端に有し、ニードル35をその軸を中心に回転させる回転機構とニードル35の温度制御を行う機構から成る回転及び温度制御機構43を備えている。
また、マニピュレータ42のニードル35はマニピュレータステージ36によってXYZ方向に駆動され、更にガイドレール37によってΦ方向に移動可能である。また、他方のマニピュレータ30のニードル35は微小薄片試料のサンプリングが容易に出来るように先端形状はカギ状になっている。このマニピュレータ30は微小薄片試料の作製専用として使用するため、温度制御機構は設けていない。それ以外の構成は図3と同様である。なお、ニードル先端のカギ状形状は微小であるため、図5、図6には不図示である。
尚、マニピュレータの形状としては、ニードルタイプだけでなく、例えば、はさみタイプや作動排気を利用した真空吸引ノズル等を利用してもよい。また、対象試料が小さい場合にはカーボンナノチューブをニードルとして使用できる。
次に、図5及び図6を参照して本実施形態による微小薄片試料のサンプリング方法を説明する。微小薄片試料の基本的なサンプリング方法は第3の実施形態と同様である。先ず、ニードルを先端に有するマニピュレータ30を用いて第3の実施形態と同じ操作によりニードル35の先端に微小薄片試料34をサンプリングする。次に、電子顕微鏡観察を行う為、この微小薄片試料34をマニピュレータ30のニードル先端から、回転及び温度制御機構を備えたニードルを先端に有するマニピュレータ42のニードル先端部に移動させてサンプリングを行う。
次に、微小薄片試料の電子顕微鏡観察方法について説明する。先ず、回転及び温度制御機構を備えたニードルを先端に有するマニピュレータ42の先端にサンプリングした微小薄片試料34の高分解能観察及び透過電子顕微鏡観察を行う為には、第3の実施形態と同様に高真空下において微小試料片28への電子線照射を行う必要がある。
従って、第3の実施形態と同様にマニピュレータ42におけるニードルの温度制御機構43によって微小薄片試料34の冷却を行い、更に、電子光学鏡筒1のレンズ室9及び試料室2の高真空排気を行う(例えば、真空度は10-3Pa程度とする)。その後、微小薄片試料34を様々な方向から電子顕微鏡観察を行うため、マニピュレータ42のニードル35をガイドレール37に沿って動かし、図6に示すようにマニピュレータ42のニードル35の回転軸を電子線と直交させる。
電子顕微鏡観察を行う場合には、第3の実施形態と同様の方法で、走査電子顕微鏡用の電子検出器31で試料からの二次電子を検出し、それと電子線を走査させるための信号とを同期させて二次電子像が得られる。なお、この場合にも、二次電子ではなく、反射電子を検出して試料を表示しても良い。同時に、第3の実施形態と同様に走査型透過電子顕微鏡用の電子検出器32により試料を透過、散乱した電子を検出し、それと電子線を走査させるための信号とを同期させて明視野像及び暗視野像が得られる。
また、この顕微鏡観察の際には、マニピュレータ42のニードルの回転及び温度制御機構43によりニードル先端の微小薄片試料34を図6に示すように様々な角度に回転させながら、同時に電子顕微鏡観察を行う。
従って、様々な方向からの二次電子像及び明視野像と暗視野像が得られ、これにコンピュータ(不図示)による画像処理を組み合わせることにより微小薄片試料34の立体的な外形構造及び内部構造の情報を得ることが出来る。更に、EDS検出器41による元素マッピングをこの情報と組み合わせることで、組成の立体分布を構築することも可能である。
本実施形態では、有機物や生物等の揮発性物質含有試料の任意の部位を、変質することなく、透過電子顕微鏡観察が可能なサイズの微小薄片として容易にサンプリングすることができる。また、その場での高傾斜電子顕微鏡観察によって微小薄片試料の立体的な外形観察及び内部構造の観察及び組成分析を行うことが可能である。
本発明の第1の実施形態を示す構成図である。 本発明の第2の実施形態を示す構成図である。 本発明の第3の実施形態を示す構成図である。 本発明の第3の実施形態の有機物微小薄片試料の電子顕微鏡観察方法を説明する図である。 本発明の第4の実施形態を示す構成図である。 本発明の第4の実施形態の有機物微小薄片試料の電子顕微鏡観察方法を説明する図である。
符号の説明
1 電子光学鏡筒
2 試料室(試料チャンバー)
3 電子銃
4 電子銃室
5 コンデンサレンズ
6 走査コイル
7 非点補正装置
8 対物レンズ
9 レンズ室
10、11 オリフィス
12 マニピュレータ
13 揮発性物質含有試料
14 試料ホルダー
15 透過電子顕微鏡用試料ホルダー
16、17、18 排気部
19 ガス導入部
20、21 予備排気室
22 反射電子検出器
30、42 マニピュレータ
31 走査電子顕微鏡用の電子検出器
32 走査型透過電子顕微鏡用の電子検出器
34 微小薄片試料
35 ニードル
36 マニピュレータステージ(XYZ)
37 ニードルのガイドレール(Φ)
38 試料ステージ(XYZΘ)
39 試料導入室
40 ニードルの温度制御機構
41 EDS検出器
43 ニードルの回転及び温度制御機構

Claims (11)

  1. 雰囲気制御が可能な試料チャンバーと、前記試料チャンバー内に揮発性物質含有試料を導入する第1の試料ホルダーと、前記試料ホルダーに保持された試料を観察するための走査電子顕微鏡と、前記第1の試料ホルダーに保持された試料をサンプリングするためのマニピュレータと、前記マニピュレータによってサンプリングされた試料を保持し、前記試料チャンバーの外部に取り出すための第2の試料ホルダーとを備えたことを特徴とする微小薄片作製装置。
  2. 前記マニピュレータは、前記試料チャンバーの外部からの操作が可能で、先端に試料をサンプリングするニードルを有することを特徴とする請求項1に記載の微小薄片作製装置。
  3. 前記走査電子顕微鏡は、電子銃を有する電子銃室と、レンズを有するレンズ室とを含む電子光学鏡筒を備え、前記二つの室がそれぞれ個別の排気系により所定の異なる真空度に調節されることを特徴とする請求項1に記載の微小薄片作製装置。
  4. 前記サンプリング時には、前記試料チャンバーを揮発性物質含有試料が変質しない程度の真空度に排気することを特徴とする請求項1に記載の微小薄片作製装置。
  5. 前記走査電子顕微鏡は、電子線を走査させるための信号と、前記試料に流れる試料電流とを同期させることで試料表面の像を表示することを特徴とする請求項1に記載の微小薄片作製装置。
  6. 前記走査電子顕微鏡は、前記試料、ニードル、第2の試料ホルダーの電流を検出する検出器を備え、前記検出器で検出された電流と前記電子線を走査させるための信号とをそれぞれ同期させることで前記試料、ニードル、第2の試料ホルダーの像を組み合わせた像を表示することを特徴とする請求項1に記載の微小薄片作製装置。
  7. 前記走査電子顕微鏡は、前記第1の試料ホルダーに保持された試料、ニードル、第2の試料ホルダーからの反射電子を検出する反射電子検出器を備え、前記反射電子検出器で検出された信号と電子線を走査させるための信号とを同期させることで試料表面、ニードル、第2の試料ホルダーの像を表示することを特徴とする請求項1に記載の微小薄片作製装置。
  8. 請求項1に記載の微小薄片作製装置において、前記マニピュレータは温度制御可能であり、さらにサンプリングした試料を前記走査電子顕微鏡による観察を行う為の電子検出器を備えたことを特徴とする微小薄片作製装置。
  9. 前記試料チャンバー内でサンプリングした試料を前記走査電子顕微鏡による観察を行う為の電子検出器として、走査電子顕微鏡像観察のための電子検出器と、走査型透過電子顕微鏡像の明視野像及び暗視野像観察のための一つ或いは複数の検出領域を有する電子検出器を備えたことを特徴とする請求項8に記載の微小薄片作製装置。
  10. 前記温度制御可能なマニピュレータは、一つ又は複数設けられ、サンプリングした試料を保持するマニピュレータにニードル軸を回転させる回転機構を有し、当該ニードル軸の回転操作によって微小薄片試料の立体的な形態観察を行うことを特徴とする請求項8に記載の微小薄片作製装置。
  11. 前記サンプリングされた試料の観察時には、マニピュレータの温度制御機構によって、サンプリングされた試料を含有する揮発性物質の揮発しない温度に冷却し、且つ、前記試料チャンパー内及び電子光学鏡筒内を更に高真空度に排気することを特徴とする請求項8に記載の微小薄片作製装置。

JP2003296327A 2003-08-20 2003-08-20 微小薄片作製装置 Pending JP2005062130A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003296327A JP2005062130A (ja) 2003-08-20 2003-08-20 微小薄片作製装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003296327A JP2005062130A (ja) 2003-08-20 2003-08-20 微小薄片作製装置

Publications (1)

Publication Number Publication Date
JP2005062130A true JP2005062130A (ja) 2005-03-10

Family

ID=34372268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003296327A Pending JP2005062130A (ja) 2003-08-20 2003-08-20 微小薄片作製装置

Country Status (1)

Country Link
JP (1) JP2005062130A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115677A (ja) * 2007-11-08 2009-05-28 Jeol Ltd 試料作製方法及びシステム
EP3082148A1 (en) * 2015-04-15 2016-10-19 FEI Company Method of manipulating a sample in an evacuated chamber of a charged particle apparatus
EP3432338A1 (en) * 2017-07-20 2019-01-23 FEI Company Specimen preparation and inspection in a dual-beam charged particle microscope

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5775554U (ja) * 1980-10-25 1982-05-10
JPS585505B2 (ja) * 1974-03-29 1983-01-31 ツエ− ライヘルト オプテイツシエ ウエルケ ア−ゲ− レイトウシリヨウヘンイドウソウチ
JPS59221955A (ja) * 1983-05-31 1984-12-13 Internatl Precision Inc 迅速クライオステ−ジによる試料観察方法
JPS61751U (ja) * 1984-06-07 1986-01-07 日本電子株式会社 走査電子顕微鏡における凍結試料観察装置
JPH03165435A (ja) * 1989-11-24 1991-07-17 Nippon Denshi Tekunikusu Kk 電子顕微鏡
JPH05208387A (ja) * 1992-01-29 1993-08-20 Shimadzu Corp マイクロマニピュレータ
JPH07280714A (ja) * 1994-04-13 1995-10-27 Jeol Ltd 走査電子顕微鏡用生物試料作製方法および生物試料観察方法並びに走査電子顕微鏡用生物試料作製装置
JPH10283962A (ja) * 1997-04-02 1998-10-23 Nikon Corp 環境制御型走査型透過電子線観察装置
JPH11271036A (ja) * 1998-03-23 1999-10-05 Advanced Display Inc マイクロサンプリング装置
JP2000036277A (ja) * 1998-07-21 2000-02-02 Hitachi Ltd 走査電子顕微鏡
JP2000155081A (ja) * 1998-11-24 2000-06-06 Hitachi Ltd 試料作成装置および方法
JP2001088100A (ja) * 1999-09-24 2001-04-03 Japan Science & Technology Corp マイクロマニピュレーション方法
JP2001141673A (ja) * 1999-11-16 2001-05-25 Canon Inc 時間分解型表面分析装置
JP2001198896A (ja) * 2000-01-19 2001-07-24 Hitachi Ltd 電子顕微鏡用マイクロマニピュレータ
JP2002062226A (ja) * 2000-08-18 2002-02-28 Jeol Ltd Fib試料作製装置
JP2002100316A (ja) * 2000-09-22 2002-04-05 Jeol Ltd 低真空走査電子顕微鏡
JP2002103298A (ja) * 2000-09-29 2002-04-09 National Institute Of Advanced Industrial & Technology 電子顕微鏡
JP2002150984A (ja) * 2000-11-09 2002-05-24 Jeol Ltd 試料ホルダー
JP2002289129A (ja) * 2001-03-26 2002-10-04 Jeol Ltd 低真空走査電子顕微鏡

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS585505B2 (ja) * 1974-03-29 1983-01-31 ツエ− ライヘルト オプテイツシエ ウエルケ ア−ゲ− レイトウシリヨウヘンイドウソウチ
JPS5775554U (ja) * 1980-10-25 1982-05-10
JPS59221955A (ja) * 1983-05-31 1984-12-13 Internatl Precision Inc 迅速クライオステ−ジによる試料観察方法
JPS61751U (ja) * 1984-06-07 1986-01-07 日本電子株式会社 走査電子顕微鏡における凍結試料観察装置
JPH03165435A (ja) * 1989-11-24 1991-07-17 Nippon Denshi Tekunikusu Kk 電子顕微鏡
JPH05208387A (ja) * 1992-01-29 1993-08-20 Shimadzu Corp マイクロマニピュレータ
JPH07280714A (ja) * 1994-04-13 1995-10-27 Jeol Ltd 走査電子顕微鏡用生物試料作製方法および生物試料観察方法並びに走査電子顕微鏡用生物試料作製装置
JPH10283962A (ja) * 1997-04-02 1998-10-23 Nikon Corp 環境制御型走査型透過電子線観察装置
JPH11271036A (ja) * 1998-03-23 1999-10-05 Advanced Display Inc マイクロサンプリング装置
JP2000036277A (ja) * 1998-07-21 2000-02-02 Hitachi Ltd 走査電子顕微鏡
JP2000155081A (ja) * 1998-11-24 2000-06-06 Hitachi Ltd 試料作成装置および方法
JP2001088100A (ja) * 1999-09-24 2001-04-03 Japan Science & Technology Corp マイクロマニピュレーション方法
JP2001141673A (ja) * 1999-11-16 2001-05-25 Canon Inc 時間分解型表面分析装置
JP2001198896A (ja) * 2000-01-19 2001-07-24 Hitachi Ltd 電子顕微鏡用マイクロマニピュレータ
JP2002062226A (ja) * 2000-08-18 2002-02-28 Jeol Ltd Fib試料作製装置
JP2002100316A (ja) * 2000-09-22 2002-04-05 Jeol Ltd 低真空走査電子顕微鏡
JP2002103298A (ja) * 2000-09-29 2002-04-09 National Institute Of Advanced Industrial & Technology 電子顕微鏡
JP2002150984A (ja) * 2000-11-09 2002-05-24 Jeol Ltd 試料ホルダー
JP2002289129A (ja) * 2001-03-26 2002-10-04 Jeol Ltd 低真空走査電子顕微鏡

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115677A (ja) * 2007-11-08 2009-05-28 Jeol Ltd 試料作製方法及びシステム
EP3082148A1 (en) * 2015-04-15 2016-10-19 FEI Company Method of manipulating a sample in an evacuated chamber of a charged particle apparatus
EP3082149A1 (en) * 2015-04-15 2016-10-19 FEI Company Method of manipulating a sample in an evacuated chamber of a charged particle apparatus
US11017980B2 (en) 2015-04-15 2021-05-25 Fei Company Method of manipulating a sample in an evacuated chamber of a charged particle apparatus
EP3432338A1 (en) * 2017-07-20 2019-01-23 FEI Company Specimen preparation and inspection in a dual-beam charged particle microscope
CN109283362A (zh) * 2017-07-20 2019-01-29 Fei 公司 双射束带电粒子显微镜中的样品制备和检查
US10629409B2 (en) 2017-07-20 2020-04-21 Fei Company Specimen preparation and inspection in a dual-beam charged particle microscope
CN109283362B (zh) * 2017-07-20 2022-09-27 Fei 公司 双射束带电粒子显微镜中的样品制备和检查

Similar Documents

Publication Publication Date Title
JP6418747B2 (ja) 試料調製ステージ
US8610060B2 (en) Charged particle beam device
JP5292348B2 (ja) 複合荷電粒子線装置
JP3897271B2 (ja) 加工観察装置及び試料加工方法
EP1921434A2 (en) Apparatus and method for preparing cross-sectional specimen using ion beam
KR102646113B1 (ko) 집속 이온 빔 장치
US20070187597A1 (en) Focused ion beam system and a method of sample preparation and observation
EP3432338B1 (en) Specimen preparation and inspection in a dual-beam charged particle microscope
JP5386453B2 (ja) 荷電粒子線装置および試料観察方法
JP7340363B2 (ja) 顕微鏡試料を作製する装置および方法
JP2010003617A (ja) 試料台,試料回転ホルダ,試料台作製方法,及び試料分析方法
JP4654216B2 (ja) 荷電粒子線装置用試料ホールダ
WO2014018693A1 (en) Ion beam sample preparation apparatus and methods
US20180286632A1 (en) Object preparation device and particle beam device with an object preparation device and methods of operating the particle beam device
US11215536B2 (en) Method and apparatus for capturing volume information of three-dimensional samples
JP2016100119A (ja) 試料ホルダー及び透過型電子顕微鏡による観察方法
US8642980B2 (en) Composite charged particle beam apparatus
US10319561B2 (en) Object preparation device and particle beam device with an object preparation device and method for operating the particle beam device
KR20150026970A (ko) 하전 입자 빔 장치
US20230326707A1 (en) Examining, analyzing and/or processing an object using an object receiving container
JP2006047206A (ja) 複合型顕微鏡
JP2005062130A (ja) 微小薄片作製装置
JP2010009943A (ja) 電子分光器を有する透過型電子顕微鏡装置,試料ホルダ,試料台及びスペクトル像の取得方法
US8008635B2 (en) Method for sample preparation
JP2004087214A (ja) 荷電粒子線装置用試料ホールダ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060609

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090109

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090512