JP2005060203A - Alumina cement composition and monolithic refractory using the same - Google Patents

Alumina cement composition and monolithic refractory using the same Download PDF

Info

Publication number
JP2005060203A
JP2005060203A JP2003296168A JP2003296168A JP2005060203A JP 2005060203 A JP2005060203 A JP 2005060203A JP 2003296168 A JP2003296168 A JP 2003296168A JP 2003296168 A JP2003296168 A JP 2003296168A JP 2005060203 A JP2005060203 A JP 2005060203A
Authority
JP
Japan
Prior art keywords
alumina cement
mass
parts
cement composition
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003296168A
Other languages
Japanese (ja)
Inventor
Kazuto Kushihashi
和人 串橋
Masaaki Umiga
正晃 海賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2003296168A priority Critical patent/JP2005060203A/en
Publication of JP2005060203A publication Critical patent/JP2005060203A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alumina cement composition which yields a high flow-property and a moderate pot-life and is excellent in strength developability, and a monolithic refractory using the same. <P>SOLUTION: The alumina cement composition has an average degree of sphericity of ≥0.8 and is prepared by adding 3-50 pts.mass α-Al<SB>2</SB>O<SB>3</SB>with an average particle size of 1-40 μm to 100 pts.mass alumina cement containing CaO-Al<SB>2</SB>O<SB>3</SB>, CaO-2Al<SB>2</SB>O<SB>3</SB>and/or 12CaO-7Al<SB>2</SB>O<SB>3</SB>. Here, the BET specific surface area of α-Al<SB>2</SB>O<SB>3</SB>is 0.2-10 m<SP>2</SP>/g. The monolithic refractory comprises the alumina cement composition and refractory aggregate. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明のアルミナセメント組成物、及びそれを用いた不定形耐火物は、高炉や電気炉を中心とした鉄鋼分野をはじめ、焼却炉、セメントキルン、及び化学プラント等、耐食性が要求される分野、及び土木建築分野等への利用が可能なアルミナセメント組成物及びそれを用いた不定形耐火物に関し、特に、従来にない高流動性と可使時間を確保できるアルミナセメント組成物及びそれを用いた不定形耐火物に関する。 Alumina cement composition of the present invention, and amorphous refractories using the same, including steel fields such as blast furnaces and electric furnaces, incinerators, cement kilns, chemical plants, and other fields where corrosion resistance is required, In particular, an alumina cement composition that can be used in the field of civil engineering and the like, and an amorphous refractory using the same, particularly, an alumina cement composition that can ensure unprecedented high fluidity and pot life and the use thereof It relates to irregular refractories.

従来、アルミナセメントを配合した不定形耐火物は、アルミナセメント、耐火骨材、及び水を混合した不定形耐火物材料を型枠へ流し込む、いわゆる流し込み施工が行われているが、流し込みの際の充填不良や鋳込み不良を防止しなければならないという課題があった。即ち、不定形耐火物材料の流動性を高め、充填性向上を図るため、棒状バイブレーター等で振動を加える加振作業が不十分な場合があり、不定形耐火物材料の充填不良が発生するという課題があった。 Conventionally, the amorphous refractory blended with alumina cement has been so-called pouring construction, in which an amorphous refractory material mixed with alumina cement, refractory aggregate, and water is poured into the formwork. There was a problem that poor filling and poor casting had to be prevented. In other words, in order to increase the fluidity of the irregular refractory material and improve the filling property, there is a case where the vibration work to apply vibration with a rod-like vibrator or the like may be insufficient, resulting in poor filling of the irregular refractory material. There was a problem.

また、夏場のような高温時には、作業性、充填性を確保するため、加水等により流動性を確保したり、添加剤の使用により作業性を確保することが行われていた。作業性や可使時間、硬化時間は、アルミナセメントと使用する骨材等による影響を受けやすく、結果として養生した後の強度発現が安定しなかったり、また、一定水量でもフロー等がばらつき、作業性が取れないという課題があった。特に溶鋼取鍋用不定形耐火物では、マグネシア等の骨材や乾燥時の爆裂を防止する為の有機繊維などの添加により、尚一層、作業性は悪化する傾向があった。そこで、これらの課題を解決するため、夏場は硬化遅延剤を添加し、作業性、可使時間、硬化時間、及び強度発現性のバランスを取ることが行われていた。しかしながら、作業性が取れなかったり、可使時間が短くなったり、場合によっては混練中、ミキサ内で硬化するという課題があった。 Moreover, in order to ensure workability | operativity and a filling property at the time of high temperature like the summer, fluidity | liquidity is ensured by the water etc., and workability | operativity is ensured by use of an additive. Workability, pot life, and setting time are easily affected by alumina cement and aggregates used. As a result, strength development after curing is not stable. There was a problem that sex could not be taken. In particular, in an irregular refractory for a molten steel ladle, workability tended to deteriorate even further due to the addition of aggregates such as magnesia and organic fibers for preventing explosion during drying. Therefore, in order to solve these problems, in the summer, a retarder was added to balance workability, pot life, curing time, and strength development. However, there are problems in that workability cannot be obtained, the pot life is shortened, and in some cases, curing occurs in the mixer during kneading.

本発明者は、前記課題を解決すべく鋭意研究を重ねた結果、特定のアルミナセメントに特定のα- Al2O3を配合したアルミナセメント組成物は、従来にない好適な作業性を確保できること、即ち、高流動性と適度な可使時間が得られ、しかも強度発現性に優れることを知見して本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the inventor of the present invention can ensure an unprecedented preferable workability when an alumina cement composition in which a specific α-Al 2 O 3 is blended with a specific alumina cement. That is, the inventors have found that high fluidity and an appropriate pot life can be obtained, and that the strength development is excellent, and the present invention has been completed.

即ち、本発明は、CaO・Al2O3、CaO・2Al2O3及び/または12CaO・7Al2O3を含有してなるアルミナセメント100質量部に対し、平均粒径1〜40μmのα- Al2O3を3〜50質量部添加することを特徴とする、平均球形度0.8以上のアルミナセメント組成物であり、α-Al2O3のBET比表面積が0.2〜10m2/gである該アルミナセメント組成物であり、さらに、該アルミナセメント組成物と耐火骨材を含有してなる不定形耐火物である。 That is, the present invention is to CaO · Al 2 O 3, CaO · 2Al 2 O 3 and / or 12CaO · 7Al 2 O 3 alumina cement 100 parts by weight comprising the average particle diameter 1~40μm of α- An alumina cement composition having an average sphericity of 0.8 or more, wherein 3 to 50 parts by mass of Al 2 O 3 is added, and the BET specific surface area of α-Al 2 O 3 is 0.2 to 10 m 2. The alumina cement composition is / g, and is an amorphous refractory containing the alumina cement composition and a refractory aggregate.

本発明のアルミナセメント組成物及びそれを用いた不定形耐火物は、従来にない高流動性と適度な可使時間が得られ、しかも、硬化特性と強度発現性に優れるものであり、耐火物分野で使用した場合、ポンプ施工や無振動施工などの省力化施工が可能で、従来の混練り時の硬化トラブルを防止することが可能である。 The alumina cement composition of the present invention and the amorphous refractory using the same have high fluidity and an appropriate pot life that are not obtained in the past, and are excellent in curing characteristics and strength development. When used in the field, labor-saving construction such as pump construction and non-vibration construction is possible, and it is possible to prevent curing problems during conventional kneading.

本発明に係るアルミナセメントは、アルミナ原料として赤ボーキサイト等の天然原料やバイヤープロセス等の精製法により精製して得られる、高アルミナ質、及び精製アルミナ等を、カルシア原料として、石灰石、生石灰、炭酸カルシウムなどを用い、電気炉、反射炉、平炉及びロータリーキルン等で溶融又は焼成して得られ、鉱物組成として、CaO・Al2O3、CaO・2Al2O3及び/または12CaO・7Al2O3を含有してなるものである。その他、2CaO・Al2O3・SiO2、4CaO・Al2O3・Fe2O3等を本発明の効果を損なわない程度に含むものの使用も可能である。焼成したアルミナセメントクリンカーの粉砕には、チューブミル、振動ミル、ジェットミル、及びローラーミル等の粉砕機が使用可能である。 The alumina cement according to the present invention is obtained by refining a natural raw material such as red bauxite as a raw material for alumina or a refined method such as a buyer process, and a high alumina material and a refined alumina as a raw material for calcia. using a calcium, an electric furnace, a reverberatory furnace, obtained by melting or firing at open hearth and rotary kiln, as mineral composition, CaO · Al 2 O 3, CaO · 2Al 2 O 3 and / or 12CaO · 7Al 2 O 3 It contains. Other use of those containing in limits that do not impair the effect of the present invention to 2CaO · Al 2 O 3 · SiO 2, 4CaO · Al 2 O 3 · Fe 2 O 3 or the like is also possible. For crushing the calcined alumina cement clinker, a crusher such as a tube mill, a vibration mill, a jet mill, or a roller mill can be used.

本発明に係るα- Al2O3は、水酸化アルミニウムや仮焼アルミナなどのアルミナ源をロータリーキルン等の焼成装置や電気炉等の溶融装置によって、焼成又は溶融したものであり、焼結アルミナ、仮焼アルミナ、又は昜焼結アルミナ等と呼ばれているものが一般的に使用可能である。 Α-Al 2 O 3 according to the present invention is obtained by firing or melting an alumina source such as aluminum hydroxide or calcined alumina by a firing device such as a rotary kiln or a melting device such as an electric furnace, sintered alumina, What is called calcined alumina or flame-sintered alumina can be generally used.

α- Al2O3の平均粒径は、1〜40μmが好ましい。平均粒子径が1μmより小さいと、可使時間が短くなったり、流動性が低下する場合があり、一方、平均粒子径が40μmを超えると粉砕に要する時間が長くなるとともに、高温下での強度発現性が劣る場合がある。 The average particle diameter of α-Al 2 O 3 is preferably 1 to 40 μm. If the average particle size is smaller than 1 μm, the pot life may be shortened or the fluidity may be reduced. On the other hand, if the average particle size exceeds 40 μm, the time required for pulverization becomes longer and the strength at high temperature is increased. The expression may be inferior.

さらに、α−Al2O3のBET比表面積は、0.2〜10m2/gが好ましく、0.5〜5m2/gがより好ましい。0.2m2/g未満では高温下での強度発現性が劣る場合があり、一方、10m2/gを超えると可使時間が短くなったり、流動性が低下する場合がある。 Further, BET specific surface area of α-Al 2 O 3 is preferably 0.2~10m 2 / g, 0.5~5m 2 / g is more preferable. If it is less than 0.2 m 2 / g, the strength development at high temperature may be inferior, whereas if it exceeds 10 m 2 / g, the pot life may be shortened or the fluidity may be lowered.

本発明では、前記アルミナセメントとα- Al2O3を混合してアルミナセメント組成物を調製する。 In the present invention, the alumina cement composition is prepared by mixing the alumina cement and α-Al 2 O 3 .

本発明においては、アルミナセメントクリンカーとα- Al2O3を各々粉砕後混合する方法、また、クリンカーとα- Al2O3を混合粉砕する方法のどちらも使用可能である。粉砕方法は特に限定されるものではないが、例えば、振動ミル、ローラーミル、チューブミル、ボールミル、タワーミル、ジェットミル及び衝撃式粉砕機等の使用が可能であり、セパレーター、アスピレーター及びサイクロン等の一般的な分級機等の併用が好ましい。 In the present invention, both the method of pulverizing and mixing the alumina cement clinker and α-Al 2 O 3 and the method of mixing and pulverizing the clinker and α-Al 2 O 3 can be used. The pulverization method is not particularly limited. For example, vibration mills, roller mills, tube mills, ball mills, tower mills, jet mills and impact pulverizers can be used, and separators, aspirators, cyclones, etc. A combined use of a typical classifier is preferred.

アルミナセメントクリンカーとα- Al2O3を各々粉砕してから行う混合方法は、特に限定されるものではないが、例えば、ナウターミキサー、オムニミキサー、傾動式ミキサー、パン型ミキサー、Vブレンダー、及びコーンブレンダー等の混合機を用いて均一混合することが可能である。 The mixing method performed after each pulverizing the alumina cement clinker and α-Al 2 O 3 is not particularly limited. For example, a nauter mixer, an omni mixer, a tilt mixer, a pan mixer, a V blender, In addition, it is possible to perform uniform mixing using a mixer such as a cone blender.

粉砕時の粉砕助剤として、水、エチレングリコール、ジエチレングリコール、及びポリエチレングリコールを併用してもよい。使用量は、特に限定されるものではないが、アルミナセメントクリンカーとα- Al2O3の合計100質量部に対し、0.05〜5質量部が好ましく、0.1〜1質量部がより好ましい。0.05質量部未満では粉砕助剤としての効果が期待できず、5質量部を超えると強度低下を引き起こす場合がある。 As a grinding aid during grinding, water, ethylene glycol, diethylene glycol, and polyethylene glycol may be used in combination. The amount is not particularly limited, a total of 100 parts by weight of alumina cement clinker and alpha-Al 2 O 3 with respect to, preferably 0.05 to 5 parts by mass, more 0.1 to 1 parts by weight preferable. If it is less than 0.05 part by mass, the effect as a grinding aid cannot be expected, and if it exceeds 5 parts by mass, strength reduction may be caused.

本発明におけるアルミナセメントとα- Al2O3の割合は、アルミナセメント100質量部に対してα- Al2O3は3〜50質量部が好ましく、5〜30質量部がより好ましい。3質量部未満では、α- Al2O3の添加効果が見られず、一方、50質量部を超えると強度低下が起きる場合がある。 The proportion of alumina cement and alpha-Al 2 O 3 in the present invention, alpha-Al 2 O 3 is preferably 3 to 50 parts by weight with respect to the alumina cement 100 parts by weight, more preferably 5 to 30 parts by weight. If it is less than 3 parts by mass, the effect of addition of α-Al 2 O 3 is not observed, whereas if it exceeds 50 parts by mass, strength may be lowered.

本発明において、アルミナセメント組成物の粒子形状が重要であり、球形に近い程、アルミナセメント組成物及びそれを用いた不定形耐火物の流動性が向上する。アルミナセメント組成物の平均球形度は0.8以上が好ましい。0.8未満では、可使時間が短くなったり、流動性が低下して、作業性が確保できない場合がある。 In the present invention, the particle shape of the alumina cement composition is important. The closer to a spherical shape, the better the fluidity of the alumina cement composition and the amorphous refractory using the same. The average sphericity of the alumina cement composition is preferably 0.8 or more. If it is less than 0.8, the pot life may be shortened or the fluidity may be lowered, and workability may not be ensured.

本発明では、平均球形度の指標として、例えば、シスメチック社製「FTIA-1000」等のフロー粒子像分析装置を用い、次のように測定することが出来る。 In the present invention, as an index of average sphericity, for example, a flow particle image analyzer such as “FTIA-1000” manufactured by Sysmetic can be used and measured as follows.

粒子像から粒子の投影面積(A)と周囲長(PM)を測定する。周囲長(PM)に対応する真円の面積を(B)とした場合、その粒子の球形度はA/Bとして表示できる。そこで、試料粒子の周囲長(PM)と同一の周囲長を持つ真円を想定するとPM=2πr、B=πrであるから、B=π×(PM/2π)2となり、個々の粒子の球形度は、球形度=A/B=A×4π/(PM)2として算出できる。
これを任意に選ばれた200個以上の粒子について測定し、その平均値を球形度とする。実際の測定では、数千個の粒子の体積基準平均値が自動測定される。
The projected area (A) and the perimeter (PM) of the particle are measured from the particle image. When the area of a perfect circle corresponding to the perimeter (PM) is (B), the sphericity of the particle can be displayed as A / B. Therefore, assuming a perfect circle having the same circumference as that of the sample particle (PM), PM = 2πr and B = πr 2 , so that B = π × (PM / 2π) 2 , and each particle The sphericity can be calculated as sphericity = A / B = A × 4π / (PM) 2 .
This is measured for 200 or more particles arbitrarily selected, and the average value is defined as sphericity. In actual measurement, volume-based average values of several thousand particles are automatically measured.

本発明ではさらに、クエン酸、グルコン酸、酒石酸、リンゴ酸、及びサリチル酸又はこれらのナトリウム、カリウム及びカルシウム塩等のヒドロキシカルボン酸又はその塩、ポリアクリル酸又はその塩、ポリメタクリル酸及びその塩、並びにメタクリル酸−アクリル酸共重合体又はその塩等からなる群より選ばれる一種又は二種以上の添加剤を使用することが可能である。添加剤の使用量は、アルミナセメント100質量部に対し、0.05〜5質量部が好ましく、0.2〜3質量部がより好ましい。0.05質量部未満では、添加効果がなく、5質量部を超えると硬化遅延する傾向がある。 Further in the present invention, citric acid, gluconic acid, tartaric acid, malic acid, and salicylic acid, or hydroxycarboxylic acids such as sodium, potassium and calcium salts thereof or salts thereof, polyacrylic acid or salts thereof, polymethacrylic acid and salts thereof, In addition, one or more additives selected from the group consisting of a methacrylic acid-acrylic acid copolymer or a salt thereof can be used. 0.05-5 mass parts is preferable with respect to 100 mass parts of alumina cement, and, as for the usage-amount of an additive, 0.2-3 mass parts is more preferable. If it is less than 0.05 parts by mass, there is no effect of addition, and if it exceeds 5 parts by mass, there is a tendency to delay the curing.

また、炭酸カリウム、炭酸ナトリウム、炭酸水素カリウム、及び炭酸水素ナトリウム等の炭酸塩、トリポリリン酸ナトリウム、ヘキサメタリン酸ナトリウム、酸性ヘキサメタリン酸ナトリウム、及びリン酸アルミニウム等のリン酸塩、並びにホウ酸ナトリウムやホウ酸などからなる群より選ばれる一種又は二種以上の無機塩類を使用することも可能である。無機塩類の使用量は、アルミナセメント100質量部に対し、0.05〜5質量部が好ましく、0.2〜3質量部がより好ましい。0.05質量部未満では添加効果がなく、5質量部を超えると硬化遅延や硬化促進を起こし作業性が確保できなくなる場合がある。 Also, carbonates such as potassium carbonate, sodium carbonate, potassium bicarbonate, and sodium bicarbonate, phosphates such as sodium tripolyphosphate, sodium hexametaphosphate, sodium acid hexametaphosphate, and aluminum phosphate, and sodium borate and boron It is also possible to use one or more inorganic salts selected from the group consisting of acids and the like. 0.05-5 mass parts is preferable with respect to 100 mass parts of alumina cement, and, as for the usage-amount of inorganic salt, 0.2-3 mass parts is more preferable. If the amount is less than 0.05 parts by mass, the effect of addition is not achieved.

本発明に係る耐火骨材は、通常の不定形耐火物に使用されている耐火骨材であれば特に限定されるものではない。具体的には、マグネシア質耐火骨材として、溶融マグネシア、焼結マグネシア、天然マグネシア、及び軽焼マグネシア等が、マグネシアスピネル質耐火骨材として、溶融マグネシアスピネル等が、さらには、アルミナ質耐火骨材として、溶融アルミナ、シリカフューム、非晶質シリカ、コロイダルシリカ、ボーキサイト等が挙げられ、その他、溶融シリカ、焼成ムライト、酸化クロム、アンダルサイト、シリコナイト、シャモット、ケイ石、ロー石、粘土、ジルコン、ジルコニア、ドロマイト、パーライト、バーミキュライト、煉瓦屑、陶器屑、窒化珪素、窒化ホウ素、炭化珪素、及び窒化珪素鉄等の使用が可能である。耐火骨材の使用量は、アルミナセメント組成物と耐火骨材からなる不定形耐火物100質量部中、80〜99質量部が好ましく、85〜97質量部がより好ましい。80質量部未満では充分な耐火性が得られない場合があり、一方、99質量部を超えると耐火骨材の接着が不十分となり、硬化不良や崩落などが発生する場合がある。 The refractory aggregate according to the present invention is not particularly limited as long as it is a refractory aggregate used in ordinary amorphous refractories. Specifically, as magnesia refractory aggregate, fused magnesia, sintered magnesia, natural magnesia, light-burned magnesia, etc., as magnesia spinel refractory aggregate, fused magnesia spinel, etc. Examples of the material include fused alumina, silica fume, amorphous silica, colloidal silica, bauxite, etc., fused silica, calcined mullite, chromium oxide, andalusite, siliconite, chamotte, wollastonite, rholite, clay, zircon, Zirconia, dolomite, pearlite, vermiculite, brick waste, earthenware waste, silicon nitride, boron nitride, silicon carbide, silicon nitride iron, and the like can be used. The amount of the refractory aggregate used is preferably 80 to 99 parts by mass and more preferably 85 to 97 parts by mass in 100 parts by mass of the amorphous refractory composed of the alumina cement composition and the refractory aggregate. If the amount is less than 80 parts by mass, sufficient fire resistance may not be obtained. On the other hand, if the amount exceeds 99 parts by mass, adhesion of the refractory aggregate may be insufficient, and curing failure or collapse may occur.

本発明の不定形耐火物の製造方法は特に限定されるものではないが、例えば、通常の不定形耐火物の製造方法に準じ、各構成原料を所定の配合になるように配合し、Vブレンダ−、コーンブレンダ−、ナウターミキサー、パン型ミキサー、及びオムにミキサー等の混合機を用いて均一混合する方法が可能である。 The method for producing the amorphous refractory according to the present invention is not particularly limited. For example, according to the usual method for producing an irregular refractory, each constituent raw material is blended so as to have a predetermined composition, and V blender -, A corn blender, a Nauter mixer, a bread type mixer, and a method of uniformly mixing om with a mixer such as a mixer.

本発明の不定形耐火物は、その硬化体を乾燥する際に生じやすい爆裂を防止する目的で、金属アルミニウムやシリコン合金などの金属粉末、ビニル繊維やポリプロピレンなどの有機繊維、窒素ガス発生分解繊維、乳酸アルミニウムなどの塩基性コロイド、並びに、フミン酸類等の爆裂防止材を必要に応じて配合することが可能である。爆裂防止剤の使用量は、目的とする耐爆裂性に応じて適宜決定するもので、一義的に決定することはできないが、一般的には、不定形耐火物100質量部に対し、0.05〜5質量部が好ましく、1〜4質量部がより好ましい。0.05質量部未満では爆裂防止効果がない場合があり、5質量部を超えると、流動性が低下する場合がある。 The amorphous refractory of the present invention is for the purpose of preventing explosions that are likely to occur when the cured product is dried, metal powder such as metal aluminum and silicon alloy, organic fiber such as vinyl fiber and polypropylene, and nitrogen gas generating decomposition fiber. Basic colloids such as aluminum lactate, and explosion-proofing materials such as humic acids can be blended as necessary. The amount of the explosion-preventing agent used is appropriately determined according to the intended explosion resistance and cannot be uniquely determined. Generally, however, the amount of the explosion-proofing agent is 0.1% relative to 100 parts by mass of the amorphous refractory. 05-5 mass parts is preferable, and 1-4 mass parts is more preferable. If the amount is less than 0.05 parts by mass, the explosion preventing effect may not be obtained. If the amount exceeds 5 parts by mass, the fluidity may be deteriorated.

また、従来からセメントの流動性、可使時間、硬化時間、及び強度発現性等の性状を改善する目的で使用されている、メラミン類、ナフタレンスルホン酸類、ポリカルボン酸類、及びホルムアルデヒドの縮合物等の界面活性剤、並びに、AE減水剤等を必要に応じて配合することも可能である。 In addition, condensates of melamines, naphthalene sulfonic acids, polycarboxylic acids, and formaldehyde, which have been used for the purpose of improving the properties of cement such as fluidity, pot life, setting time, and strength development. These surfactants, AE water reducing agents, and the like can be blended as necessary.

不定形耐火物が水分と耐火骨材に分離する、所謂、材料分離を避けるため、メチルセルロース、カルボキシルメチルセルロース、ポリアクリルアミド変性物又はその共重合体、及びポリビニルアルコールなどの増粘剤を配合することも可能である。 In order to avoid so-called material separation in which the amorphous refractory separates into moisture and refractory aggregate, it may be blended with a thickener such as methyl cellulose, carboxyl methyl cellulose, polyacrylamide modified product or copolymer thereof, and polyvinyl alcohol. Is possible.

不定形耐火物を製造する際に使用する水の量は、通常の流し込みが可能な程度に設定されるもので、アルミナセメント組成物の粒度構成や耐火骨材の気孔率等によって大きく影響を受けるが、通常、アルミナセメント組成物と耐火骨材の合計100質量部に対して、10質量部以下が好ましい。 The amount of water used to produce the amorphous refractory is set to a level that allows normal pouring, and is greatly affected by the particle size composition of the alumina cement composition and the porosity of the refractory aggregate. However, usually 10 parts by mass or less is preferable with respect to 100 parts by mass in total of the alumina cement composition and the refractory aggregate.

アルミナ源、カルシア源を用いて、ロータリーキルンを使用し、1700℃の焼成温度で、CaO・AlO、CaO・2AlO、12CaO・7AlOがそれぞれ45,20,5質量%、非晶質が30質量%のクリンカーを製造した。製造したクリンカー100質量部に対して、α−AlO及び調節剤としてクエン酸ナトリウム、炭酸ナトリウム、ポリアクリル酸ナトリウムをそれぞれ0.5質量部ずつ添加し、ボールミルで混合粉砕して、アルミナセメント組成物を製造した。製造したアルミナセメント組成物100質量部、細骨材200質量部、及び水60質量部を20℃で混合してモルタルとし、そのフロー値、可使時間、養生圧縮強度、及び乾燥圧縮強度を測定した。結果を表1に示す。 Alumina source, using a calcia source, using a rotary kiln, at a firing temperature of 1700 ℃, CaO · Al 2 O 3, CaO · 2Al 2 O 3, 12CaO · 7Al 2 O 3 , respectively 45,20,5 mass% A clinker having an amorphous content of 30% by mass was produced. 0.5 parts by mass of α-Al 2 O 3 and sodium citrate, sodium carbonate, and sodium polyacrylate as regulators are added to 100 parts by mass of the manufactured clinker, mixed and ground by a ball mill, and alumina. A cement composition was produced. 100 parts by mass of the produced alumina cement composition, 200 parts by mass of fine aggregate, and 60 parts by mass of water are mixed at 20 ° C. to obtain a mortar, and its flow value, pot life, curing compressive strength, and dry compressive strength are measured. did. The results are shown in Table 1.

〈使用材料〉
アルミナ源:高アルミナ質アルミナ
カルシア源:炭酸カルシウム
α−AlO:球状化アルミナ 市販品、平均粒径 20μm、BET 1.0m2/g
炭酸ナトリウム:市販品
クエン酸ナトリウム:市販品
ポリアクリル酸ナトリウム:市販品
細骨材:豊浦産珪砂
水:水道水
<Materials used>
Alumina source: High alumina alumina calcia source: Calcium carbonate α-Al 2 O 3 : Sphericalized alumina Commercial product, average particle size 20 μm, BET 1.0 m 2 / g
Sodium carbonate: Commercial product
Sodium citrate: Commercially available sodium polyacrylate: Commercially available fine aggregate: Toyoura quartz sand water: Tap water

〈測定方法〉
(1)平均球形度:シスメックス社製フロー式粒子像分析装置(商品名「FPIA-1000」)を用い、アルミナセメント組成物の球形度を測定した。
(2)平均粒径:エタノール溶媒中に超音波によりサンプルを分散後、島津社製レーザー回折装置で測定した。
(3)BET比表面積:ユアサアイオニクス社製(商品名カンタソープ「QS-19」)を用い、一点法で測定した。
(4)フロー値:JIS R2521に準じ測定。フローテーブル中央に所定の位置にフローコーンを置き、その中にモルタルを詰め、表面を平滑にする。次に、フローコーンを上方向に取り去り、モルタルの広がり直径を測定した。広がりの測定は、モルタルが広がった最大径とそれに直行する方向とをノギスで測定し、その平均値をフロー値とした。
(5)可使時間:20℃恒温室内に混練り物をポリエチレン製の袋に移し取り、接指にてモルタルが硬化するまでに要した時間を可使時間とした。
(6)養生圧縮強度:JIS R2521に準じて測定。4×4×16cmの型枠にモルタルを詰め、20℃60%RHで24時間養生後に圧縮強度を測定した。
(7)乾燥圧縮強度:養生圧縮強度測定用供試体を、さらに110℃で24時間乾燥して圧縮強度を測定した。
<Measuring method>
(1) Average sphericity: The sphericity of the alumina cement composition was measured using a flow particle image analyzer (trade name “FPIA-1000”) manufactured by Sysmex Corporation.
(2) Average particle diameter: The sample was dispersed with an ultrasonic wave in an ethanol solvent, and then measured with a Shimadzu laser diffraction apparatus.
(3) BET specific surface area: Measured by a one-point method using a product manufactured by Yuasa Ionics Co., Ltd. (trade name Kanta Soap “QS-19”).
(4) Flow value: Measured according to JIS R2521. A flow cone is placed at a predetermined position in the center of the flow table, and mortar is filled therein to smooth the surface. Next, the flow cone was removed upward, and the spread diameter of the mortar was measured. The spread was measured by measuring the maximum diameter in which the mortar spread and the direction perpendicular thereto with a vernier caliper, and taking the average value as the flow value.
(5) Pot life: The kneaded product was transferred into a polyethylene bag in a constant temperature room at 20 ° C., and the time required for the mortar to harden by finger contact was defined as pot life.
(6) Curing compressive strength: Measured according to JIS R2521. Mortar was packed in a 4 × 4 × 16 cm mold, and the compressive strength was measured after curing at 20 ° C. and 60% RH for 24 hours.
(7) Dry compressive strength: The specimen for curing compressive strength measurement was further dried at 110 ° C. for 24 hours to measure the compressive strength.

Figure 2005060203
Figure 2005060203

実施例1で作製したクリンカー100質量部に対してα−AlO25質量部、及び調節剤としてクエン酸ナトリウム、炭酸ナトリウム、ポリアクリル酸ナトリウムをそれぞれ0.5質量部ずつ添加したこと以外は実施例1と同様に行った。結果を表2に示す。 Except that 25 parts by mass of α-Al 2 O 3 was added to 100 parts by mass of the clinker produced in Example 1, and 0.5 parts by mass of sodium citrate, sodium carbonate, and sodium polyacrylate were added as regulators. Was carried out in the same manner as in Example 1. The results are shown in Table 2.

〈使用材料〉
α−AlO:イ 球状化アルミナ(市販品)、平均粒径40、20、10、5、1μm ロ 焼結アルミナ(市販品)、平均粒径45、5μm
<Materials used>
α-Al 2 O 3 : A Spheroidized alumina (commercial product), average particle size 40, 20, 10, 5, 1 μm B Sintered alumina (commercial product), average particle size 45, 5 μm

Figure 2005060203
Figure 2005060203

実施例2で製造したアルミナセメント組成物10質量部と下記に示す耐火骨材90質量部、並びに水6質量部を混合して不定形耐火物を作製し、フロー値、可使時間、養生圧縮強度、及び乾燥圧縮強度を測定した。結果を表3に示す。 An amorphous refractory was prepared by mixing 10 parts by mass of the alumina cement composition produced in Example 2, 90 parts by mass of the refractory aggregate shown below, and 6 parts by mass of water. The flow value, pot life, curing compression Strength and dry compressive strength were measured. The results are shown in Table 3.

〈使用材料〉
耐火骨材:電溶アルミナ1-5mm 34質量部、電溶アルミナ1mm下 25質量部、電溶アルミナ75μ下 20質量部、焼結マグネシア1-5mm 10質量部、シリカフューム 45μm 1質量部の混合品
<Materials used>
Refractory aggregate: Electrofused alumina 1-5mm 34 parts by weight, Electrofused alumina 1mm 25 parts by weight, Electrofused alumina 75μ parts 20 parts by weight, Sintered magnesia 1-5mm 10 parts by mass, Silica fume 45μm 1 part by weight

Figure 2005060203
Figure 2005060203

表3に示すように、本発明のアルミナセメント組成物を使用した不定形耐火物は流動性に優れ、可使時間が長く、高強度な硬化体を得ることが出来る。
As shown in Table 3, the amorphous refractory using the alumina cement composition of the present invention is excellent in fluidity, has a long pot life, and can obtain a high strength cured product.

Claims (3)

CaO・Al2O3、CaO・2Al2O3及び/または12CaO・7Al2O3を含有してなるアルミナセメント100質量部に対し、平均粒径1〜40μmのα- Al2O3を3〜50質量部添加することを特徴とする、平均球形度0.8以上のアルミナセメント組成物。 CaO · Al 2 O 3, CaO · 2Al 2 O 3 and / or to the 12CaO · 7Al 2 O 3 alumina cement 100 parts by weight comprising the average particle diameter 1~40μm of alpha-Al 2 O 3 of 3 An alumina cement composition having an average sphericity of 0.8 or more, characterized by adding ~ 50 parts by mass. α- Al2O3のBET比表面積が0.2〜10m2/gであることを特徴とする請求項1記載のアルミナセメント組成物。 The alumina cement composition according to claim 1, wherein the BET specific surface area of α-Al 2 O 3 is 0.2 to 10 m 2 / g. 請求項1または2記載のアルミナセメント組成物と耐火骨材を含有してなる不定形耐火物。
An amorphous refractory comprising the alumina cement composition according to claim 1 or 2 and a refractory aggregate.
JP2003296168A 2003-08-20 2003-08-20 Alumina cement composition and monolithic refractory using the same Pending JP2005060203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003296168A JP2005060203A (en) 2003-08-20 2003-08-20 Alumina cement composition and monolithic refractory using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003296168A JP2005060203A (en) 2003-08-20 2003-08-20 Alumina cement composition and monolithic refractory using the same

Publications (1)

Publication Number Publication Date
JP2005060203A true JP2005060203A (en) 2005-03-10

Family

ID=34372164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003296168A Pending JP2005060203A (en) 2003-08-20 2003-08-20 Alumina cement composition and monolithic refractory using the same

Country Status (1)

Country Link
JP (1) JP2005060203A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007303953A (en) * 2006-05-11 2007-11-22 Fujita Corp Concrete for radiation shielding
JP2008001566A (en) * 2006-06-23 2008-01-10 Denki Kagaku Kogyo Kk Alumina cement, alumina cement composition and monolithic refractory using the same
JP2008001548A (en) * 2006-06-21 2008-01-10 Kurosaki Harima Corp Monolithic refractory
JP2009078953A (en) * 2007-09-27 2009-04-16 Sumitomo Osaka Cement Co Ltd Cement grinding aid and cement grinding method
JP2013122028A (en) * 2011-12-12 2013-06-20 Sumitomo Bakelite Co Ltd Manufacturing method of composition for forming insulating layer, manufacturing method of film for forming insulating layer, and manufacturing method of substrate
US20130224066A1 (en) * 2012-02-29 2013-08-29 General Electric Company Mold and facecoat compositions and methods for casting titanium and titanium aluminide alloys
JP2014073603A (en) * 2012-10-03 2014-04-24 Hitachi Zosen Corp Method for producing refractory, and refractory
CN104968451A (en) * 2013-01-29 2015-10-07 通用电气公司 Calcium hexaluminate-containing mold and facecoat compositions and methods for casting titanium and titanium aluminide alloys
CN103889614B (en) * 2011-10-28 2016-07-27 通用电气公司 Foundry moulding composition and method for cast titanium and titanium aluminide alloy
US9511417B2 (en) 2013-11-26 2016-12-06 General Electric Company Silicon carbide-containing mold and facecoat compositions and methods for casting titanium and titanium aluminide alloys
KR20220000201A (en) * 2020-06-25 2022-01-03 한국생산기술연구원 Molding sand for 3d printing and method of manufacturing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257051A (en) * 1990-03-06 1991-11-15 Sumitomo Cement Co Ltd Multimode spherical hydraulic cement composition
JPH07237977A (en) * 1994-02-25 1995-09-12 Asahi Glass Co Ltd Composition for alumina spinel-based cast refractory
JPH09194248A (en) * 1996-01-16 1997-07-29 Denki Kagaku Kogyo Kk Alumina cement composition and monolithic refractory using the same
JP2000264685A (en) * 1999-01-12 2000-09-26 Denki Kagaku Kogyo Kk Calcium aluminate, alumina cement, alumina cement composition, and monolithic refractory material using the composition
JP2002187749A (en) * 2000-12-19 2002-07-05 Taiheiyo Cement Corp Spherical powder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257051A (en) * 1990-03-06 1991-11-15 Sumitomo Cement Co Ltd Multimode spherical hydraulic cement composition
JPH07237977A (en) * 1994-02-25 1995-09-12 Asahi Glass Co Ltd Composition for alumina spinel-based cast refractory
JPH09194248A (en) * 1996-01-16 1997-07-29 Denki Kagaku Kogyo Kk Alumina cement composition and monolithic refractory using the same
JP2000264685A (en) * 1999-01-12 2000-09-26 Denki Kagaku Kogyo Kk Calcium aluminate, alumina cement, alumina cement composition, and monolithic refractory material using the composition
JP2002187749A (en) * 2000-12-19 2002-07-05 Taiheiyo Cement Corp Spherical powder

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007303953A (en) * 2006-05-11 2007-11-22 Fujita Corp Concrete for radiation shielding
JP2008001548A (en) * 2006-06-21 2008-01-10 Kurosaki Harima Corp Monolithic refractory
JP2008001566A (en) * 2006-06-23 2008-01-10 Denki Kagaku Kogyo Kk Alumina cement, alumina cement composition and monolithic refractory using the same
JP2009078953A (en) * 2007-09-27 2009-04-16 Sumitomo Osaka Cement Co Ltd Cement grinding aid and cement grinding method
CN103889614B (en) * 2011-10-28 2016-07-27 通用电气公司 Foundry moulding composition and method for cast titanium and titanium aluminide alloy
JP2013122028A (en) * 2011-12-12 2013-06-20 Sumitomo Bakelite Co Ltd Manufacturing method of composition for forming insulating layer, manufacturing method of film for forming insulating layer, and manufacturing method of substrate
US8932518B2 (en) * 2012-02-29 2015-01-13 General Electric Company Mold and facecoat compositions
CN103286256A (en) * 2012-02-29 2013-09-11 通用电气公司 Mold and facecoat compositions and methods for casting titanium and titanium aluminide alloy
US20130224066A1 (en) * 2012-02-29 2013-08-29 General Electric Company Mold and facecoat compositions and methods for casting titanium and titanium aluminide alloys
US9802243B2 (en) 2012-02-29 2017-10-31 General Electric Company Methods for casting titanium and titanium aluminide alloys
JP2014073603A (en) * 2012-10-03 2014-04-24 Hitachi Zosen Corp Method for producing refractory, and refractory
CN104968451A (en) * 2013-01-29 2015-10-07 通用电气公司 Calcium hexaluminate-containing mold and facecoat compositions and methods for casting titanium and titanium aluminide alloys
US9592548B2 (en) 2013-01-29 2017-03-14 General Electric Company Calcium hexaluminate-containing mold and facecoat compositions and methods for casting titanium and titanium aluminide alloys
US9511417B2 (en) 2013-11-26 2016-12-06 General Electric Company Silicon carbide-containing mold and facecoat compositions and methods for casting titanium and titanium aluminide alloys
KR20220000201A (en) * 2020-06-25 2022-01-03 한국생산기술연구원 Molding sand for 3d printing and method of manufacturing same
KR102362587B1 (en) * 2020-06-25 2022-02-15 한국생산기술연구원 Molding sand for 3d printing and method of manufacturing same

Similar Documents

Publication Publication Date Title
JP2007303011A (en) Inorganic fiber and monolithic refractory using the same
JP2005060203A (en) Alumina cement composition and monolithic refractory using the same
JP2006282486A (en) Alumina cement, alumina cement composition, and monolithic refractory
JP2000016843A (en) Alumina cement, alumina cement composition, its amorphous refractory, and spay application using the same
JP5031239B2 (en) Alumina cement, alumina cement composition and amorphous refractory
JP2005154180A (en) Alumina cement composition and monolithic refractory
JP2008001566A (en) Alumina cement, alumina cement composition and monolithic refractory using the same
JP5019715B2 (en) Alumina cement and hardened alumina cement
JP4343127B2 (en) Alumina cement and alumina cement composition
JP2007210805A (en) Alumina cement, alumina cement composition and monolithic refractory
JPH11322380A (en) Alumina cement and castable refractory by using the same
JP2002234776A (en) Monolithic refractory composition for molten steel ladle
JP4459882B2 (en) Alumina cement composition and amorphous refractory using the same
JP4101162B2 (en) Alumina cement, alumina cement composition and amorphous refractory using the same
JP2604310B2 (en) Pouring refractories
JP4312190B2 (en) Calcium aluminate, alumina cement composition and amorphous refractory
JP4588239B2 (en) Alumina cement, alumina cement composition, and amorphous refractory using the same
JP2005162566A (en) Alumina cement, alumina cement composition and monolithic refractory using the same
JP4070709B2 (en) Setting / hardening modifier for alumina cement, alumina cement composition, and amorphous refractory using the same
JPH11157891A (en) Alumina cement and monolithic refractory using same
JPH0640774A (en) Castable refractory
JP2005067930A (en) Alumina cement, alumina cement composition, and monolithic refractory using it
JPH0952169A (en) Refractory for tuyere of molten steel container
JP2011047563A (en) Powder material composition for monolithic refractory and method of manufacturing refractory using the same
JP4588238B2 (en) Condensation / setting accelerator for alumina cement, alumina cement composition, and amorphous refractory using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070115

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070308

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070420