JP2005059979A - Circular vibrating feeder - Google Patents

Circular vibrating feeder Download PDF

Info

Publication number
JP2005059979A
JP2005059979A JP2003207777A JP2003207777A JP2005059979A JP 2005059979 A JP2005059979 A JP 2005059979A JP 2003207777 A JP2003207777 A JP 2003207777A JP 2003207777 A JP2003207777 A JP 2003207777A JP 2005059979 A JP2005059979 A JP 2005059979A
Authority
JP
Japan
Prior art keywords
vibration
feeder
rectilinear
bowl
circular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003207777A
Other languages
Japanese (ja)
Other versions
JP4477321B2 (en
Inventor
Kazuharu Kato
和治 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP2003207777A priority Critical patent/JP4477321B2/en
Publication of JP2005059979A publication Critical patent/JP2005059979A/en
Application granted granted Critical
Publication of JP4477321B2 publication Critical patent/JP4477321B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Jigging Conveyors (AREA)
  • Feeding Of Articles To Conveyors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems in a conventional circular feeder wherein when supplied parts are precise minute parts far smaller than the diameter of a bowl, the supplied parts are carried along the spiral of a track after being supplied to the bottom part of the bowl and, therefore, not only a supplied distance (time) is very long but also the small diameter of the bowl is not suitable for supplying the minute parts. <P>SOLUTION: This circular vibrating feeder comprises a rectilinear feeder, a vibrating member fixed to the rectilinear feeder and rectilinearly vibrated by the rectilinear feeder, a vibration direction converting mechanism converting the rectilinear vibration of a vibration transmitting member to a circumferential vibration, and a part carrying container rotatably fixed to the rotating shaft of the vibration direction converting mechanism. The rectilinear vibration of the rectilinear feeder as a drive source vibrates the part carrying container in the circumferential direction. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、部品搬出容器を周方向に振動させることにより、前記部品搬出容器内の複数の部品を整列させて連続的に送出する円形振動フィーダー(パーツフィーダー)に関するもので、特に直進振動フィーダーを駆動源に利用した円形振動フィーダーに関するものである。
【0002】
【従来の技術】
従来よりパーツフィーダーには、直進フィーダーと円形フィーダーとあり、その駆動方式も回転円盤式、電磁振動式、モーターカム式などがあることは良く知られている。
【0003】
前記直進フィーダーは、搬送トラックを進行方向に対して前後、及び上下に振動(直進振動)させて供給部品を前方に進めるものである。一方、一般的に一番多く使用されている前記円形フィーダーは、振動体上部に取り付けられたボウルといわれる螺旋状にトラックを設けた物が使われており、周方向、及び上下振動によってボウル底部の供給部品がトラックの螺旋に沿って搬送され、その間にさまざまなアタッチメントにより選別され供給されるもので、これらのパーツフィーダーに対しては従来より多くの出願を見るところである(例えば特許文献1、特許文献2参照。)。
【0004】
【特許文献1】
特開2001−114413号公報 (第2−3頁、図1)
【特許文献2】
特開2000−264420号公報 (第2−3頁、図1)
【0005】
前記電磁式の直進フィーダー及び円形フィーダーにおいて搬送トラックを振動させて供給部品を前方に進めるためには、その振動が前後方向(直進フィーダー)あるいは周方向(円形フィーダー)及び上下方向に定期的では無く、且つ往き方向と戻り方向の加速度が異なる必要がある。そこで、電磁式の直進フィーダー及び円形フィーダーでは両端を板バネなどで支持された上部鉄片を磁力で吸い付けたときの板バネの抵抗と、磁力を切ったときの板バネの反発力で加速度を異ならせ、前方あるいは周方向への推進力を得ている。
【発明が解決しようとする課題】
【0006】
しかしながら、上記のような電磁式の直進フィーダー及び円形フィーダーは、自動化ラインの部品供給に使用されることが多いが、パーツフィーダーの大型化に伴ってラインも大型化し、ラインスペースの増大を招いていた。また、その(共振)振動周波数はその構造上電源周波数とほぼ同じ50〜60Hzしか得ることができなかった。
【0007】
また、従来の円形フィーダーは螺旋状にトラックを設けたボウル構造のため、供給部品がボウル径に対し非常に小さい精密微小部品(例えば、腕時計部品)の場合、ボウル底部に供給された供給部品がトラックの螺旋に沿って搬送されて供給されるまでの距離が非常に長くなり、時間がかかっていた。従って、常に供給部品がトラック上につながるくらいの量の供給部品を、ボウル内に投入する必要があり、供給部品の無駄が多かった。又、腕時計部品のような極小部品を供給する場合、極小部品を供給するのに適したような径小のボウル径の振動体がなく(市販されているボウル径は、最小でも直径80mm程度)、供給部品に対し、大きすぎるボウル径の円形フィーダーが使用されていた。
【0008】
また、従来の電磁式以外の円形フィーダーは、駆動源にステッピングモーターあるいはサーボモーターを使用し、回転軸にカムあるいは偏芯体を取り付け、周方向の振動を取り出している。この為、回転数は振動数に比例するが、例え電気的信号を早くしても機械的に動作追従ができないばかりか、モーター寿命の低下にもつながるため、むやみに回転を上げる事もできず、振動数が少なく振動幅は大きいので、精密微小部品の搬送には使用できないという問題があった。
【0009】
本発明の目的は、時計など小型精密機器の構成部品である極小、極薄、あるいは極小径の部品にも適用ができ、多種少量生産自動化ラインにおいて、部品切り替え用として狭いピッチでかつ多くのパーツフィーダーの配置が可能な円形振動フィーダーを提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するために、本発明は、直進フィーダーと、該直進フィーダーに固着され前記直進フィーダーによって直進振動を行う振動部材と、該振動部材の直進振動を周方向の振動に変換させる振動方向変換機構と、該振動方向変換機構の回転軸に回転可能に固着された部品搬出容器とを有し、前記直進フィーダーの直進振動を駆動源として前記部品搬出容器を周方向に振動させることを特徴とする。
【0011】
この構成によれば、直進フィーダーを円形フィーダーの駆動源として使用することが可能となり、駆動源の前方にボウルを配置することができ、部品搬出容器の小型化を図ることができる。
【0012】
また、前記振動方向変換機構は、前記振動部材に固着され前記部品搬出容器の回転加速度を正逆で異ならせるための振動伝達部材と、前記部品搬出容器の回転軸に回転可能に軸支され前記振動伝達部材に固着される揺動部材からなることを特徴とする。
【0013】
この構成によれば、前記振動伝達部材の直進振動を前記部品搬出容器の周方向の振動に変換できる。
【0014】
また、前記振動伝達部材は板バネであることを特徴とする。
【0015】
この構成によれば、前記板バネによって前記部品搬出容器の周方向の細かな振動を作り出すことができる。
【0016】
また、前記振動伝達部材を複数枚の板バネから構成したことを特徴とする。
【0017】
この構成によれば、複数枚の板バネ特性を変化させることによって、振動の伝達時に正逆転の加速度の違いを正確に伝えることができる。
【0018】
【発明の実施の形態】
以下図面により本発明の実施の形態を詳述する。
図1は本発明の一実施形態を示す円形振動フィーダーの立体透視図、図2は図1の上面図、図3は図1の側面図である。
1はベース板、2は支柱、10は直進フィーダーであって、直進フィーダー10は、水平よりやや斜め方向に押し上げるような振動(前後の振動に上下振動が加わった振動)、すなわち直進振動を行うものであり、本実施例では直進フィーダーとしてボリュームで周波数が簡単に変えられる高周波型といわれる従来の電磁式直進フィーダー(例えば、寸法がH120mm×W35mm×D80mmの(株)ダイシン社のDL−30FF型)を使用しており、ベース板1の上に、直進フィーダー10、支柱2が取り付けられている。
【0019】
なお、前記電磁式直進フィーダー(DL−30FF型)は、フィーダーとして作用する板バネの他に、防振用の板バネを採用した2段構造になっているので、複数のパーツフィーダーを設置したときにパーツフィーダー間の互いの干渉を避けることができる。
【0020】
また、前記直進フィーダー10のコントローラとして(株)ダイシン社のIX−01を使用した。
該コントローラIX−01は周波数可変型のコントローラで、75Hz〜380Hzの周波数に設定でき、これによりボウルの大きさ、材質による重量の違い、板バネ枚数の違いによる共振点に合わせて周波数の設定変更が可能となっている。
【0021】
3は前記直進フィーダー10に固着され前記直進フィーダー10の前記直進振動によって直進振動を行う振動部材である振動伝えアーム、6はベアリング(又は無給油軸受け)、7はベアリング6を保持するためのホルダー、8はベアリング6によって軸支される回転軸である。
【0022】
9は回転軸8に回転可能に固着された部品搬出容器であるボウルで、アルミ、真鍮等から構成されており、前記直進フィーダー10の幅とほぼ等しい径(本実施例ではボウル9の直径は38mm)で、ボウル9には螺旋状にトラック9b(本実施例ではトラック巾3mmで、1周あたり2度〜3度の角度のピッチで3回転の螺旋)が加工されている。
【0023】
5は前記部品搬出容器9の回転加速度を正逆で異ならせるために前記振動伝えアーム3に固定される振動伝達部材である板バネで、本実施例では、直進フィーダー10の振動の伝達に正逆転の加速度の違いを正確に伝えるために複数枚の板バネから構成しているが、もちろん1枚でもかまわない。
【0024】
なお、本実施例では、板バネ5として、材質がSK6−M、平面サイズがH35mm×W9mm、厚さが0.3mm、0.4mm、0.5mm、0.6mmである4種類の板バネを用意し、ボウル9の材質、径、重さの違いによる共振周波数の制御にあたり、板バネを取捨選択できるように構成している。もちろん材質、平面サイズ、厚さはこれに限られるものではなく、材質、平面サイズ、厚さの異なるバネ材を組み合わせても実現できる。
【0025】
4はボウル9の回転軸8に回転可能に軸支され、板バネ5と固着され振動伝えアーム3によって揺動する揺動板で、回転軸8と板バネ5と共に振動方向変換機構14を構成しており、振動方向変換機構14と振動伝えアーム3は前記直進フィーダー10の幅の中に納まるように構成されている。
【0026】
支柱2の上部にホルダー7が固定されており、ホルダー7の上下にはベアリング6が回転軸8を軸支し、回転軸8上部にはボウル8がボルト11で取り付けられ、回転軸8の下部には揺動板4が側面より図示されていないボルトで回転軸8に固定されている。そして直進フィーダー10上部には振動伝えアーム3がボルト13で固定され、前記揺動板4と振動伝えアーム3とはボルト12を使って板バネ5で連結されて、円形振動フィーダー20が構成されている。
【0027】
以上のように本実施例ではボウル9の直径を含め、すべて直進フィーダー10の幅(本実施例ではW35mm)の中にほぼ納まるように構成することができ、従来にない、非常にコンパクトな幅の狭い円形振動フィーダー20を構成することができる。
【0028】
次に動作について説明する。まず、直進フィーダー10の直進振動(前後の振動に上下振動が加わった振動)によって振動伝えアーム3も直進振動し、振動伝えアーム3に固定された板バネ5が振動する。板バネ5の振動は揺動板4伝達され、こうして、振動伝えアーム3の直進振動は板バネ5を介して揺動板4に伝えられる。なお、板バネ5は、振動伝えアーム3の直進振動(斜め上下方向への振動)が遥動板4に直接伝わった時にベアリング6に無理な力が加わり軸受けの破損等になる危険があるために、振動伝えアーム3と揺動板4との間に介在させたものであり、板バネ5を介する事で直進フィーダー10の動作を無理なく正確に伝えることができている。
【0029】
ここで、揺動板4の一方は回転軸8に軸支されているため、揺動板4は斜め上下方向への直進振動から回転軸8を中心とする周方向の振動(上下振動が加わった振動)に変わり、回転軸8上部に取り付けられたボウル9も回転軸8を中心とする周方向の振動(上下振動が加わった振動)を行う。なお、回転軸8のラジアル方向の軸支はベアリング8(無給油軸受け)であり、回転軸8のスラスト方向の支持を板バネ5にすることにより上下振動を伝えることが可能となっている。
この周方向の振動により、ボウル9内に供給された部品はトラック下部9aより螺旋9bを上り、途中で選別されトラック上部9cに達することができる。
【0030】
このように、直進フィーダー10の斜め上方向への前後振動を回転軸8を中心とするボウル9の周方向の振動に上下振動が加わった振動に変換することができる。
【0031】
なお、本願の円形振動フィーダー20のボウル9がアルミ製の場合、板バネ5として0.6mmを2枚と0.3mmを1枚の合計3枚を使用することにより、共振周波数として184Hzの駆動周波数という細かな振動が得られた。
【0032】
また、本願の円形振動フィーダー20のボウル9が真鍮製の場合、板バネ5として0.6mmを5枚に0.5mmを1枚合計6枚を使用するすることにより、共振周波数として187Hzの駆動周波数という細かな振動が得られた。
【0033】
以上のように、本実施例では、板バネを複数枚組み合わせて使用することによって、ボウル9の重量、径、(大きさ、重さ)が変わることで生じるボウル9の慣性モーメントの変化に対する直進フィーダー10との振動のマッチングを取ることを可能とし、又、振動の伝達に正逆転の加速度の違いを正確に伝えることが可能となるばかりか、直進フィーダーを駆動源に使用した時に、細かな振動を出すことを可能としている。
【0034】
【発明の効果】
以上述べたように直進フィーダーを駆動源に使用し、振動の伝達に板バネを使用したので、細かな振動が得られ、微小精密部品の選別供給に使用できる。
しかも直進フィーダーの前方幅内に変換機構とボウルを取り付けたことで、ボウルの小径化、小スペース化とともに簡単な機構のため、低コストを実現できる。
【図面の簡単な説明】
【図1】本発明の実施形態の立体透視図
【図2】図1の上面図である。
【図3】図1の側面図である。
【符号の説明】
1 ベース板
2 支柱
3 振動伝えアーム
4 揺動板
5 板バネ
6 ベアリングまたは無給油軸受け
7 ホルダー
8 回転軸
9 ボウル
10 直進フィーダー
11、12、13 ボルト
14 振動方向変換機構
20 円形振動フィーダー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a circular vibration feeder (part feeder) that aligns a plurality of components in the component discharge container and continuously feeds them by vibrating the component discharge container in the circumferential direction. The present invention relates to a circular vibration feeder used as a drive source.
[0002]
[Prior art]
Conventionally, it is well known that parts feeders include linear feeders and circular feeders, and their drive systems include rotary disk type, electromagnetic vibration type, and motor cam type.
[0003]
The rectilinear feeder vibrates the conveyance truck forward and backward and vertically with respect to the traveling direction (straight forward vibration) to advance the supply component forward. On the other hand, the circular feeder that is most commonly used is a circular feeder with a spiral track called a bowl attached to the top of the vibrating body. The parts to be fed are transported along the spiral of the truck, and are selected and fed by various attachments between them. Many applications for these parts feeders are being seen (for example, Patent Document 1, (See Patent Document 2).
[0004]
[Patent Document 1]
JP 2001-114413 A (page 2-3, FIG. 1)
[Patent Document 2]
JP 2000-264420 A (page 2-3, FIG. 1)
[0005]
In the electromagnetic linear feeder and circular feeder, in order to vibrate the transport track and advance the supply component forward, the vibration is not periodically in the front-rear direction (straight forward feeder) or the circumferential direction (circular feeder) and the vertical direction. The acceleration in the forward direction and the return direction must be different. Therefore, in electromagnetic linear feeders and circular feeders, acceleration is achieved by the resistance of the leaf spring when the upper iron piece supported at both ends by a leaf spring is attracted by a magnetic force and the repulsive force of the leaf spring when the magnetic force is turned off. Differentiating, gaining forward or circumferential thrust.
[Problems to be solved by the invention]
[0006]
However, electromagnetic linear feeders and circular feeders as described above are often used to supply parts for automated lines. However, as the size of parts feeders increases, the lines become larger and the line space increases. It was. In addition, the (resonant) vibration frequency can be obtained only 50 to 60 Hz which is substantially the same as the power supply frequency due to its structure.
[0007]
In addition, since the conventional circular feeder has a bowl structure in which a spiral track is provided, if the supply component is a precision micro component that is very small relative to the bowl diameter (for example, a watch component), the supply component supplied to the bottom of the bowl is It took a long time for the distance to be fed along the track spiral and supplied. Therefore, it is necessary to always supply an amount of supply parts in the bowl so that the supply parts are connected to the truck, and the supply parts are wasteful. Also, when supplying extremely small parts such as wristwatch parts, there is no vibrating body with a small bowl diameter suitable for supplying extremely small parts (the commercially available bowl diameter is at least about 80 mm). A circular feeder with a bowl diameter that was too large for the supply parts was used.
[0008]
Further, a conventional circular feeder other than the electromagnetic type uses a stepping motor or a servo motor as a drive source, attaches a cam or an eccentric body to a rotating shaft, and extracts circumferential vibration. For this reason, the number of rotations is proportional to the number of vibrations, but even if the electrical signal is accelerated, not only the operation cannot be tracked mechanically, but also the life of the motor is shortened, so the rotation cannot be increased unnecessarily. Since the vibration frequency is small and the vibration width is large, there is a problem that it cannot be used for transporting precision minute parts.
[0009]
The object of the present invention can also be applied to components of ultra-small, ultra-thin, or ultra-small diameter, which are components of small precision equipment such as watches, and many parts with a narrow pitch for parts switching in a multi-volume production automation line. An object of the present invention is to provide a circular vibration feeder capable of arranging the feeder.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a linear feeder, a vibrating member fixed to the linear feeder and performing linear vibration by the linear feeder, and a vibration direction for converting the linear vibration of the vibrating member into a circumferential vibration. A conversion mechanism; and a component discharge container that is rotatably fixed to a rotation shaft of the vibration direction conversion mechanism, wherein the component discharge container is vibrated in the circumferential direction using the linear vibration of the linear feeder as a drive source. And
[0011]
According to this configuration, the linear feeder can be used as a drive source for the circular feeder, the bowl can be disposed in front of the drive source, and the component carry-out container can be downsized.
[0012]
In addition, the vibration direction conversion mechanism is fixed to the vibration member and is rotatably supported on a rotation shaft of the component carry-out container and a vibration transmission member for differentiating the rotational acceleration of the component carry-out container in the forward and reverse directions. It consists of a rocking | fluctuation member fixed to a vibration transmission member, It is characterized by the above-mentioned.
[0013]
According to this configuration, the straight vibration of the vibration transmitting member can be converted into the vibration in the circumferential direction of the component carry-out container.
[0014]
The vibration transmitting member is a leaf spring.
[0015]
According to this configuration, fine vibrations in the circumferential direction of the component carry-out container can be created by the leaf spring.
[0016]
Further, the vibration transmitting member is composed of a plurality of leaf springs.
[0017]
According to this configuration, by changing the characteristics of the plurality of leaf springs, it is possible to accurately convey the difference between forward and reverse accelerations when transmitting vibrations.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
1 is a three-dimensional perspective view of a circular vibration feeder showing an embodiment of the present invention, FIG. 2 is a top view of FIG. 1, and FIG. 3 is a side view of FIG.
Reference numeral 1 is a base plate, 2 is a support column, and 10 is a rectilinear feeder. The rectilinear feeder 10 performs vibration that pushes up slightly obliquely from the horizontal (vibration in which vertical vibration is added to the longitudinal vibration), that is, linear vibration. In this embodiment, a conventional electromagnetic linear feeder that is said to be a high frequency type whose frequency can be easily changed with a volume as a linear feeder (for example, DL-30FF model of Daishin Co., Ltd. having dimensions of H120 mm × W35 mm × D80 mm) ) And the linear feeder 10 and the support column 2 are mounted on the base plate 1.
[0019]
The electromagnetic linear feeder (DL-30FF type) has a two-stage structure that employs a plate spring for vibration isolation in addition to a plate spring that acts as a feeder, so a plurality of parts feeders are installed. Sometimes interference between parts feeders can be avoided.
[0020]
Further, IX-01 manufactured by Daishin Co., Ltd. was used as the controller of the linear feeder 10.
The controller IX-01 is a variable frequency controller that can be set to a frequency of 75 Hz to 380 Hz. This allows the frequency setting to be changed according to the resonance point due to the difference in weight due to the size and material of the bowl and the difference in the number of leaf springs. Is possible.
[0021]
Reference numeral 3 denotes a vibration transmitting arm which is a vibration member fixed to the linear feeder 10 and vibrates linearly by the linear vibration of the linear feeder 10. Reference numeral 6 denotes a bearing (or an oil-free bearing). Reference numeral 7 denotes a holder for holding the bearing 6. , 8 are rotating shafts supported by the bearing 6.
[0022]
Reference numeral 9 denotes a bowl which is a component carry-out container fixed to the rotary shaft 8 so as to be rotatable. The bowl 9 is made of aluminum, brass or the like, and has a diameter substantially equal to the width of the linear feeder 10 (in this embodiment, the diameter of the bowl 9 is 38 mm), and the bowl 9 has a spirally processed track 9b (in this embodiment, a track width of 3 mm, a spiral of 3 rotations at a pitch of 2 to 3 degrees per round).
[0023]
Reference numeral 5 denotes a leaf spring which is a vibration transmission member fixed to the vibration transmission arm 3 in order to vary the rotational acceleration of the component carrying container 9 in the forward and reverse directions. In order to accurately convey the difference in acceleration of reverse rotation, it is composed of a plurality of leaf springs, but of course it may be one.
[0024]
In this embodiment, the leaf spring 5 is made of four types of leaf springs having a material of SK6-M, a planar size of H35 mm × W9 mm, and a thickness of 0.3 mm, 0.4 mm, 0.5 mm, and 0.6 mm. Are prepared so that the leaf springs can be selected when controlling the resonance frequency depending on the material, diameter, and weight of the bowl 9. Of course, the material, the planar size, and the thickness are not limited to this, and can be realized by combining spring materials having different materials, planar sizes, and thicknesses.
[0025]
Reference numeral 4 denotes a swinging plate that is rotatably supported on the rotating shaft 8 of the bowl 9 and is fixed to the leaf spring 5 and is swung by the vibration transmitting arm 3. The vibrating direction changing mechanism 14 is configured together with the rotating shaft 8 and the leaf spring 5. The vibration direction changing mechanism 14 and the vibration transmitting arm 3 are configured to fit within the width of the linear feeder 10.
[0026]
A holder 7 is fixed to the upper part of the column 2, and a bearing 6 supports the rotating shaft 8 above and below the holder 7, and a bowl 8 is attached to the upper part of the rotating shaft 8 with bolts 11. The oscillating plate 4 is fixed to the rotary shaft 8 with bolts not shown from the side. A vibration transmission arm 3 is fixed to the upper part of the linear feeder 10 with a bolt 13, and the rocking plate 4 and the vibration transmission arm 3 are connected with a plate spring 5 using a bolt 12 to form a circular vibration feeder 20. ing.
[0027]
As described above, in this embodiment, all the diameters of the bowl 9 including the diameter of the bowl 9 can be substantially accommodated in the width of the linear feeder 10 (W35 mm in this embodiment). Narrow circular vibration feeder 20 can be configured.
[0028]
Next, the operation will be described. First, the vibration transmission arm 3 also vibrates linearly by the straight vibration of the linear feeder 10 (vibration obtained by adding vertical vibration to the front and rear vibrations), and the leaf spring 5 fixed to the vibration transmission arm 3 vibrates. The vibration of the leaf spring 5 is transmitted to the swing plate 4, and thus the straight vibration of the vibration transmitting arm 3 is transmitted to the swing plate 4 via the leaf spring 5. The leaf spring 5 has a risk that the bearing 6 may be damaged due to an excessive force applied to the bearing 6 when the straight vibration of the vibration transmitting arm 3 (vibration in the oblique vertical direction) is directly transmitted to the swing plate 4. Further, it is interposed between the vibration transmitting arm 3 and the swinging plate 4, and the operation of the rectilinear feeder 10 can be transmitted without difficulty through the leaf spring 5.
[0029]
Here, since one of the oscillating plates 4 is pivotally supported by the rotating shaft 8, the oscillating plate 4 is subjected to a vibration in the circumferential direction around the rotating shaft 8 (a vertical vibration is applied) from an obliquely moving vibration in a vertical direction. The bowl 9 attached to the upper portion of the rotating shaft 8 also vibrates in the circumferential direction around the rotating shaft 8 (vibration with vertical vibration added). In addition, the radial support of the rotating shaft 8 is a bearing 8 (oil-free bearing), and vertical vibrations can be transmitted by using the leaf spring 5 to support the rotating shaft 8 in the thrust direction.
Due to the vibration in the circumferential direction, the components supplied into the bowl 9 can go up the spiral 9b from the track lower portion 9a and be sorted in the middle to reach the track upper portion 9c.
[0030]
Thus, the longitudinal vibration of the linear feeder 10 in the diagonally upward direction can be converted into the vibration in which the vertical vibration is added to the vibration in the circumferential direction of the bowl 9 around the rotation shaft 8.
[0031]
In addition, when the bowl 9 of the circular vibration feeder 20 of the present application is made of aluminum, the plate spring 5 is driven with a resonance frequency of 184 Hz by using two pieces of 0.6 mm and one piece of 0.3 mm. A fine vibration of frequency was obtained.
[0032]
In addition, when the bowl 9 of the circular vibration feeder 20 of the present application is made of brass, the plate spring 5 can be driven with a resonance frequency of 187 Hz by using 6 pieces of 0.6 mm and 5 pieces of 0.5 mm. A fine vibration of frequency was obtained.
[0033]
As described above, in this embodiment, by using a combination of a plurality of leaf springs, the straight movement with respect to the change in the moment of inertia of the bowl 9 caused by the change in the weight, diameter, (size, weight) of the bowl 9 is achieved. This makes it possible to match the vibration with the feeder 10 and to accurately convey the difference between the forward and reverse accelerations to the transmission of vibration. It is possible to produce vibration.
[0034]
【The invention's effect】
As described above, the linear feeder is used as a drive source and the leaf spring is used for vibration transmission, so that fine vibration can be obtained and used for selecting and supplying minute precision parts.
Moreover, by attaching the conversion mechanism and the bowl within the front width of the linear feeder, the bowl can be reduced in diameter and space, and the simple mechanism can be realized at low cost.
[Brief description of the drawings]
FIG. 1 is a three-dimensional perspective view of an embodiment of the present invention. FIG. 2 is a top view of FIG.
FIG. 3 is a side view of FIG. 1;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Base plate 2 Support | pillar 3 Vibration transmission arm 4 Oscillation plate 5 Leaf spring 6 Bearing or oil-free bearing 7 Holder 8 Rotating shaft 9 Bowl 10 Linear feeder 11, 12, 13 Bolt 14 Vibration direction conversion mechanism 20 Circular vibration feeder

Claims (4)

直進フィーダーと、該直進フィーダーに固着され前記直進フィーダーによって直進振動を行う振動部材と、該振動部材の直進振動を周方向の振動に変換させる振動方向変換機構と、該振動方向変換機構の回転軸に回転可能に固着された部品搬出容器とを有し、前記直進フィーダーの直進振動を駆動源として前記部品搬出容器を周方向に振動させることを特徴とする円形振動フィーダー。A rectilinear feeder, a vibrating member fixed to the rectilinear feeder and performing rectilinear vibration by the rectilinear feeder, a vibration direction converting mechanism for converting the rectilinear vibration of the vibrating member into circumferential vibration, and a rotating shaft of the vibration direction converting mechanism A circular vibration feeder characterized in that the component discharge container is rotatably fixed to the component discharge container, and the component discharge container is vibrated in the circumferential direction using the linear vibration of the linear feeder as a drive source. 前記振動方向変換機構は、前記回転軸と前記振動部材に固着され前記部品搬出容器の回転加速度を正逆で異ならせるための振動伝達部材と、回転軸に回転可能に軸支され前記振動伝達部材に固着される揺動部材からなることを特徴とする請求項1に記載の円形振動フィーダー。The vibration direction changing mechanism includes a vibration transmission member fixed to the rotation shaft and the vibration member for differentiating the rotational acceleration of the component carry-out container in the forward and reverse directions, and the vibration transmission member rotatably supported by the rotation shaft. The circular vibration feeder according to claim 1, wherein the circular vibration feeder is formed of a swinging member fixed to the frame. 前記振動伝達部材は板バネであることを特徴とする請求項2に記載の円形振動フィーダー。The circular vibration feeder according to claim 2, wherein the vibration transmitting member is a leaf spring. 前記振動伝達部材を複数枚の板バネから構成したことを特徴とする請求項3に記載の円形振動フィーダー。The circular vibration feeder according to claim 3, wherein the vibration transmitting member is composed of a plurality of leaf springs.
JP2003207777A 2003-08-19 2003-08-19 Circular vibratory feeder Expired - Fee Related JP4477321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003207777A JP4477321B2 (en) 2003-08-19 2003-08-19 Circular vibratory feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003207777A JP4477321B2 (en) 2003-08-19 2003-08-19 Circular vibratory feeder

Publications (2)

Publication Number Publication Date
JP2005059979A true JP2005059979A (en) 2005-03-10
JP4477321B2 JP4477321B2 (en) 2010-06-09

Family

ID=34364122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003207777A Expired - Fee Related JP4477321B2 (en) 2003-08-19 2003-08-19 Circular vibratory feeder

Country Status (1)

Country Link
JP (1) JP4477321B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007086426A1 (en) * 2006-01-24 2009-06-18 日本電信電話株式会社 Acceleration generating device and pseudo force sense generating device
JP2011111245A (en) * 2009-11-24 2011-06-09 Nac Feeding Kk Conveying device
CN103249296A (en) * 2012-02-08 2013-08-14 Juki株式会社 Bowl type feeder unit, bowl type feeder combination and electronic component installation device
CN109018872A (en) * 2018-09-29 2018-12-18 榆林学院 A kind of uniform vibrating feeder

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007086426A1 (en) * 2006-01-24 2009-06-18 日本電信電話株式会社 Acceleration generating device and pseudo force sense generating device
JP4551448B2 (en) * 2006-01-24 2010-09-29 日本電信電話株式会社 Acceleration generating device and pseudo force sense generating device
US7868489B2 (en) 2006-01-24 2011-01-11 Nippon Telegraph And Telephone Corporation Acceleration generator and pseudo force sense generator
US7956498B2 (en) 2006-01-24 2011-06-07 Nippon Telegraph And Telephone Corporation Acceleration generator and pseudo force sense generator
JP2011111245A (en) * 2009-11-24 2011-06-09 Nac Feeding Kk Conveying device
CN103249296A (en) * 2012-02-08 2013-08-14 Juki株式会社 Bowl type feeder unit, bowl type feeder combination and electronic component installation device
JP2013162106A (en) * 2012-02-08 2013-08-19 Juki Corp Bowl feeder unit, bowl feeder assembly and electronic component mounting device
CN103249296B (en) * 2012-02-08 2018-03-09 Juki株式会社 Bowl formula feeder unit, bowl formula feeder assembly and electronic component mounting apparatus
CN109018872A (en) * 2018-09-29 2018-12-18 榆林学院 A kind of uniform vibrating feeder

Also Published As

Publication number Publication date
JP4477321B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
JP2007137674A (en) Vibration type conveyance device
JP4477321B2 (en) Circular vibratory feeder
JP2019064825A (en) Vibration feeder
JP2007168999A (en) Parts feeder
JP4555661B2 (en) Article conveying device
WO2013089055A1 (en) Drug dividing device feeder unit and trough thereof
JPH10203626A (en) Vibration feeder
JPH06312827A (en) Method for arranging fine work
JP2000142947A (en) Vibrating conveyor
JP2010538874A (en) Engraving head for engraving printing plates
KR101498421B1 (en) Vibratory Conveying Apparatus
JP2008141899A (en) Drive control method for actuator and conveyance control method therewith
CN212069438U (en) Eccentric vibration assembly and component sorting machine
JP2012096853A (en) Vibration type part feeder
JP2013047132A (en) Vibration feeder, vibration feeder driving device, and method of manufacturing the vibration feeder driving device
JP2012121658A (en) Vibration bowl feeder
JPH07196134A (en) Supply machine incorporating chute
JPH01226615A (en) Carrying device of oscillating drive type
JPH10129825A (en) Powder and granular material conveyance and supply device
JP3599212B2 (en) Swing-type part aligning machine and its vibration-proofing method
JP2008214011A (en) Parts feeder
JPH0439207A (en) Vibrating feeder
JPS641367B2 (en)
JP4433520B2 (en) Vibration alignment device
SU619407A1 (en) Vibrated feeder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090902

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100311

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150319

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees