JP2005059324A - Three-dimensional laminate shaping apparatus - Google Patents

Three-dimensional laminate shaping apparatus Download PDF

Info

Publication number
JP2005059324A
JP2005059324A JP2003290965A JP2003290965A JP2005059324A JP 2005059324 A JP2005059324 A JP 2005059324A JP 2003290965 A JP2003290965 A JP 2003290965A JP 2003290965 A JP2003290965 A JP 2003290965A JP 2005059324 A JP2005059324 A JP 2005059324A
Authority
JP
Japan
Prior art keywords
modeling
manufacturing apparatus
dimensional
additive manufacturing
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003290965A
Other languages
Japanese (ja)
Inventor
Hisayoshi Oshima
久慶 大島
Tarou Teru
太郎 照
Yusuke Taneda
裕介 種子田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2003290965A priority Critical patent/JP2005059324A/en
Publication of JP2005059324A publication Critical patent/JP2005059324A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a three-dimensional laminate shaping apparatus constituted so as to stably perform high quality shaping at a high speed by continuously performing respective shaping operations to omit the time required in acceleration and deceleration at the time of shaping, the conversion of an operating direction, stop or retraction and the like and also enhanced in its rate of operation. <P>SOLUTION: This three-dimensional laminate shaping apparatus is composed of a shaping material supply means 2 for supplying shaping materials 1, which are laminated to be formed into a three-dimensional shaped body, in a predetermined thickness, a lamination means 4 rotated centering around the rotary shaft parallel to a shaping surface 3a for repeatedly laminating the shaping materials 1 supplied from the shaping material supply means 2 to form a shaping layer 3 and a cross-sectional shape forming means 5 for repeatedly forming the cured regions 3b of the shaping materials 1 having a three-dimensional shape on the new shaping layer 3 of the shaping materials 1 on the shaping table 4a provided on the lamination means 4 based on the cross section data of the three-dimensional shape. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、3次元積層造形装置に関し、詳しくは、造形材を積層して形成される造形層に3次元形状の断面データをもとに断面形状の硬化領域を形成して三次元形状を造形する3次元積層造形装置に関する。   The present invention relates to a three-dimensional additive manufacturing apparatus, and more specifically, a three-dimensional shape is formed by forming a cross-sectional cured region based on cross-sectional data of a three-dimensional shape on a modeling layer formed by stacking modeling materials. The present invention relates to a three-dimensional additive manufacturing apparatus.

従来の3次元積層造形装置としては、光造形方法や、粉体を積層して造形する方法や、シート材を積層してカットする方法等、いろいろな方法が提案されて公知である。
例えば、造形範囲全体の1層分の造形層を形成して、その造形層を選択的に硬化させて造形を行う3次元積層造形方法としては、上下に移動が可能な造形テーブル上に造形材を供給して造形層を形成し、その造形層に3次元形状の断面硬化パターンを形成して、そして、造形テーブルを積層ピッチ分下降させて次の造形層の形成と断面硬化パターン形成を繰り返して造形するものであった。
造形層を形成する際に、光造形方法では、スキージと往復運動するリコータと呼ばれる供給装置で光硬化樹脂を1層分コートする。
粉体造形方法では、ロールやスキージ等の供給装置を往復動作させて粉体の層を形成している。
又、シート造形方法についても、供給したシートを1層下のシートに接着する際に往復動作するロール等で接着を行っていた。
これ等の従来方法では、供給装置を往復動作させて、造形層を形成するため、加減速、動作方向の転換等が必要で高速化には限界があった。
又、造形層を形成した後に、断面パターンを形成する際に、これら等の供給装置を退避する必要があり、退避時間も必要になっていた。
As a conventional three-dimensional layered modeling apparatus, various methods such as an optical modeling method, a method of stacking and modeling powders, and a method of stacking and cutting sheet materials are proposed and known.
For example, as a three-dimensional layered modeling method in which a modeling layer for one layer of the entire modeling range is formed, and the modeling layer is selectively cured, modeling is performed on a modeling table that can be moved up and down. Forming a modeling layer, forming a three-dimensional cross-section hardening pattern on the modeling layer, and then lowering the modeling table by the stacking pitch to repeat the formation of the next modeling layer and the cross-section hardening pattern formation It was something to model.
When forming a modeling layer, in the optical modeling method, one layer of photo-curing resin is coated with a supply device called a recoater that reciprocates with a squeegee.
In the powder modeling method, a powder layer is formed by reciprocating a supply device such as a roll or a squeegee.
Moreover, also about the sheet | seat shaping | molding method, when the supplied sheet | seat was adhere | attached on the sheet | seat of the lower layer, it was adhere | attached with the roll etc. which reciprocate.
In these conventional methods, since the forming device is formed by reciprocating the supply device, acceleration / deceleration, change of the operation direction, and the like are necessary, and speeding up is limited.
Moreover, after forming a modeling layer, when forming a cross-sectional pattern, it was necessary to evacuate these supply apparatuses, and the evacuation time was also required.

そこで、光硬化性の液を上塗手段が上塗りしつつ前進する時、上塗手段の後方直後の上塗りされた液面を光で走査して光硬化性の液を硬化させることにより、光硬化性の液の上塗りと断面パターンの形成である光走査が並行して行えるため、造形時間を短縮化することも公知である(特許文献1を参照)。
この例は、液体の造形材の例であるが、造形材が液体以外の場合でも造形層形成の直後に断面パターンの形成を追いかけるように行えば、造形時間の短縮化が可能である。
然し、上塗りと光走査がほぼ同時に行われるため工程がオーバーラップした分だけの時間の短縮化は出来るが、上塗手段と光走査手段が元の位置に戻るための動作が必要であるだけでなく、往復動作をする必要があり、造形時の加減速、動作方向の転換や停止にどうしても長時間を必要としていた。
又、平板状の光透過部を有し、水平面に沿って駆動可能に支持されたステージと、ステージを水平面に沿って駆動する水平駆動機構と、ステージの光透過部の表面に、未硬化の光硬化性樹脂を供給するための樹脂供給装置と、ステージの下方位置に、ステージの裏面に向けて配置され、前記等高線データに応じた領域に光を照射する光照射装置と、ステージの上方位置に、光照射装置と対向させて配置され、昇降可能に支持されたテーブル等で構成されて、樹脂供給装置から樹脂供給をステージの回転中に行って、積層工程と別のステーションで行うことで、樹脂供給のための往復運動を無くし、テーブルの上下動のストロークを短くして造形工程の高速化を行うことも公知である(特許文献2を参照)。
然し、樹脂供給時の往復動作は無くなっているが、積層用のテーブル位置が固定で上下動しかしないため、回転ステージを停止してからしか積層動作のテーブルの上下動の動作が出来ないので、回転ステージは間欠動作となり、造形時の加減速、動作方向の転換や停止等にどうしても長時間を必要として、造形時間が長くなっていた。
従って、従来の3次元積層造形装置は、造形材の供給や造形層の断面パターンの形成等が往復動作や間欠動作で行われて、造形時の加減速、動作方向の転換、停止や退避等に長時間を必要として、造形時間を短縮化することが困難で、造形時間が長くなると言う不具合が生じていた。
特開2000−225647公報 特開2001−347572公報
Therefore, when the photocoating liquid moves forward while the overcoating means overcoats, the photocurable liquid is scanned by light over the surface of the overcoated liquid immediately after the overcoating means to cure the photocurable liquid. It is also known to shorten the modeling time because the liquid overcoating and the optical scanning that is the formation of the cross-sectional pattern can be performed in parallel (see Patent Document 1).
Although this example is an example of a liquid modeling material, even when the modeling material is other than liquid, if the cross-sectional pattern formation is followed immediately after the modeling layer formation, the modeling time can be shortened.
However, since the overcoating and the optical scanning are performed almost simultaneously, the time can be shortened by the overlap of the processes, but not only the operation for returning the overcoating means and the optical scanning means to the original position is necessary. It was necessary to reciprocate, and it took a long time for acceleration / deceleration at the time of modeling, change of operation direction and stop.
In addition, a stage having a flat light transmitting portion, supported so as to be driven along a horizontal plane, a horizontal drive mechanism for driving the stage along the horizontal plane, and an uncured surface on the surface of the light transmitting portion of the stage A resin supply device for supplying a photocurable resin, a light irradiation device that is arranged at a lower position of the stage toward the back surface of the stage, and irradiates light to an area corresponding to the contour data, and an upper position of the stage In addition, it is composed of a table or the like that is arranged facing the light irradiation device and supported so as to be movable up and down, and the resin is supplied from the resin supply device while the stage is rotating, and is performed at a station separate from the laminating step. It is also known to speed up the modeling process by eliminating the reciprocating motion for resin supply and shortening the vertical movement stroke of the table (see Patent Document 2).
However, although the reciprocating operation at the time of resin supply is gone, the table position for stacking is fixed and only moves up and down, so the table can be moved up and down only after the rotary stage is stopped. The rotating stage is intermittently operated, and it takes a long time for acceleration / deceleration at the time of modeling, change of operation direction, stop, etc., and the modeling time is long.
Therefore, in the conventional three-dimensional additive manufacturing apparatus, the supply of the modeling material, the formation of the cross-sectional pattern of the modeling layer, and the like are performed by a reciprocating operation or an intermittent operation. It takes a long time, and it is difficult to shorten the modeling time, resulting in a problem that the modeling time becomes long.
JP 2000-225647 A JP 2001-347572 A

従来の3次元積層造形装置は、造形材の供給や造形層の断面パターンの形成等が往復動作や間欠動作で行われて、加減速、動作方向の転換、停止や退避等に長時間を必要として、造形時間を短縮化することが困難で、造形時間が長くなると言う問題が発生していた。
そこで本発明の課題は、このような問題点を解決するものである。即ち、各造形動作が連続して行われるようにして、造形時の加減速、動作方向の転換、停止や退避等にかかる所要時間を省き、高品質で安定した造形が高速で行われ稼働率も高い3次元積層造形装置を提供することを目的とする。
Conventional three-dimensional additive manufacturing equipment requires a long time for acceleration / deceleration, change of direction of operation, stop and retreat, etc., by supplying modeling materials and forming cross-sectional patterns of modeling layers by reciprocating or intermittent operations. As a result, it was difficult to shorten the modeling time, and the problem that the modeling time was long occurred.
Therefore, an object of the present invention is to solve such problems. In other words, each modeling operation is performed continuously, eliminating the time required for accelerating / decelerating, changing the operation direction, stopping and evacuating during modeling, and high quality and stable modeling is performed at high speed and the operation rate Another object of the present invention is to provide a high three-dimensional layered manufacturing apparatus.

上記目的を達成するために、請求項1の発明は、造形材を積層して形成される造形層に3次元形状の断面データをもとに断面形状の硬化領域を形成して三次元形状を造形する3次元積層造形装置において、積層して3次元造形体を形成する造形材を所定の厚みで供給する造形材供給手段と、上記造形材供給手段から供給される上記造形材を繰り返し積層して造形層を形成する造形面と平行な回転軸を中心に回転する積層手段と、上記積層手段に設けられた造形テーブル上の上記造形材の新たな上記造形層に3次元形状の断面データをもとに断面形状の上記造形材の硬化領域を繰り返し形成する断面形状形成手段とからなる3次元積層造形装置であることを最も主要な特徴とする。
請求項2の発明は、請求項1に記載の3次元積層造形装置において、断面形状形成手段が形成した造形層の硬化領域に3次元形状の断面着色データをもとに着色を行う着色手段とからなる次元積層造形装置であることを主要な特徴とする。
請求項3の発明は、請求項2に記載の3次元積層造形装置において、着色手段は、インクジェット式の印刷ユニットからなる3次元積層造形装置であることを主要な特徴とする。
請求項4の発明は、請求項2に記載の3次元積層造形装置において、着色手段は、静電複写式のカラー印刷ユニットからなる3次元積層造形装置であることを主要な特徴とする。
請求項5の発明は、請求項1、2、3又は4に記載の3次元積層造形装置において、造形材は、固体材である3次元積層造形装置であることを主要な特徴とする。
In order to achieve the above object, the invention of claim 1 is to form a three-dimensional shape by forming a cross-sectional cured region based on cross-sectional data of a three-dimensional shape on a modeling layer formed by stacking modeling materials. In the three-dimensional additive manufacturing apparatus for modeling, a modeling material supply unit that supplies a modeling material that is stacked to form a three-dimensional modeling object with a predetermined thickness, and the modeling material that is supplied from the modeling material supply unit is repeatedly stacked. The three-dimensional shape cross-sectional data is added to the new modeling layer of the modeling material on the modeling table provided in the stacking means, and the stacking means that rotates around the rotation axis parallel to the modeling surface forming the modeling layer. The most important feature is that it is a three-dimensional additive manufacturing apparatus comprising cross-sectional shape forming means for repeatedly forming a cured region of the cross-sectional shaped molding material.
The invention according to claim 2 is the three-dimensional additive manufacturing apparatus according to claim 1, wherein coloring means is used to color the cured region of the modeling layer formed by the cross-sectional shape forming means based on cross-sectional coloring data of the three-dimensional shape. The main feature is that it is a three-dimensional layered manufacturing apparatus.
The invention of claim 3 is characterized in that, in the three-dimensional additive manufacturing apparatus according to claim 2, the coloring means is a three-dimensional additive manufacturing apparatus comprising an ink jet printing unit.
According to a fourth aspect of the present invention, in the three-dimensional additive manufacturing apparatus according to the second aspect, the coloring means is a three-dimensional additive manufacturing apparatus including an electrostatic copying type color printing unit.
The invention of claim 5 is characterized in that, in the three-dimensional additive manufacturing apparatus according to claim 1, 2, 3 or 4, the forming material is a three-dimensional additive manufacturing apparatus which is a solid material.

請求項6の発明は、請求項1、2、3又は4に記載の3次元積層造形装置において、造形材は、粉体材である3次元積層造形装置であることを主要な特徴とする。
請求項7の発明は、請求項1、2、3又は4に記載の3次元積層造形装置において、造形材は、シート材である3次元積層造形装置であることを主要な特徴とする。
請求項8の発明は、請求項1、2、3、4、5、6又は7に記載の3次元積層造形装置において、造形材供給手段は、固定された造形材を積層手段の造形テーブル上の造形面に供給する造形材供給部材と造形材を積層手段の造形テーブル上に圧着する圧着部材からなる3次元積層造形装置であることを主要な特徴とする。
請求項9の発明は、請求項8に記載の3次元積層造形装置において、造形材供給部材は、固体材を溶融して供給する固体材供給ユニットからなる3次元積層造形装置であることを主要な特徴とする。
請求項10の発明は、請求項9に記載の3次元積層造形装置において、固体材供給ユニットは、冷却ユニットからなる3次元積層造形装置であることを主要な特徴とする。
請求項11の発明は、請求項8に記載の3次元積層造形装置において、造形材供給部材は、粉体材を供給する粉体ホッパーからなる3次元積層造形装置であることを主要な特徴とする。
The invention of claim 6 is characterized in that, in the three-dimensional additive manufacturing apparatus according to claim 1, 2, 3, or 4, the modeling material is a three-dimensional additive manufacturing apparatus that is a powder material.
The invention of claim 7 is characterized in that, in the three-dimensional additive manufacturing apparatus according to claim 1, 2, 3, or 4, the modeling material is a three-dimensional additive manufacturing apparatus that is a sheet material.
The invention according to claim 8 is the three-dimensional additive manufacturing apparatus according to claim 1, 2, 3, 4, 5, 6 or 7, wherein the modeling material supply means places the fixed modeling material on the modeling table of the lamination means. The three-dimensional additive manufacturing apparatus is mainly composed of a modeling material supply member to be supplied to the modeling surface and a crimping member that crimps the modeling material onto the modeling table of the lamination means.
The invention of claim 9 is the three-dimensional additive manufacturing apparatus according to claim 8, wherein the modeling material supply member is a three-dimensional additive manufacturing apparatus comprising a solid material supply unit that melts and supplies a solid material. Features.
The invention according to claim 10 is characterized in that, in the three-dimensional additive manufacturing apparatus according to claim 9, the solid material supply unit is a three-dimensional additive manufacturing apparatus including a cooling unit.
The invention of claim 11 is the three-dimensional additive manufacturing apparatus according to claim 8, wherein the forming material supply member is a three-dimensional additive manufacturing apparatus comprising a powder hopper for supplying a powder material. To do.

請求項12の発明は、請求項8に記載の3次元積層造形装置において、造形材供給部材は、シート材を供給する供給ロールからなる3次元積層造形装置であることを主要な特徴とする。
請求項13の発明は、請求項1乃至12の何れか一項に記載の3次元積層造形装置において、固定された断面形状形成手段は、レーザ光源からなる3次元積層造形装置であることを主要な特徴とする。
請求項14の発明は、請求項1乃至12の何れか一項に記載の3次元積層造形装置において、固定された断面形状形成手段は、液晶パネルからなる3次元積層造形装置であることを主要な特徴とする。
請求項15の発明は、請求項1乃至14の何れか一項に記載の3次元積層造形装置において、積層手段に設けられた造形テーブルの表面が、造形層の造形面の回転半径と等しい円筒形状である3次元積層造形装置であることを主要な特徴とする。
請求項16の発明は、請求項1乃至15の何れか一項に記載の3次元積層造形装置において、造形材供給手段と断面形状形成手段は、積層手段の回転軸を中心に囲むように配置した3次元積層造形装置であることを主要な特徴とする。
The invention of claim 12 is characterized in that, in the three-dimensional additive manufacturing apparatus according to claim 8, the modeling material supply member is a three-dimensional additive manufacturing apparatus including a supply roll for supplying a sheet material.
The invention of claim 13 is the three-dimensional additive manufacturing apparatus according to any one of claims 1 to 12, wherein the fixed cross-sectional shape forming means is a three-dimensional additive manufacturing apparatus comprising a laser light source. Features.
The invention of claim 14 is the three-dimensional additive manufacturing apparatus according to any one of claims 1 to 12, wherein the fixed cross-sectional shape forming means is a three-dimensional additive manufacturing apparatus comprising a liquid crystal panel. Features.
According to a fifteenth aspect of the present invention, in the three-dimensional additive manufacturing apparatus according to any one of the first to fourteenth aspects, the surface of the modeling table provided in the stacking unit is equal to the rotational radius of the modeling surface of the modeling layer. The main feature is that it is a three-dimensional additive manufacturing apparatus having a shape.
According to a sixteenth aspect of the present invention, in the three-dimensional additive manufacturing apparatus according to any one of the first to fifteenth aspects, the modeling material supply unit and the cross-sectional shape forming unit are arranged so as to surround the rotation axis of the stacking unit. The main feature is the three-dimensional additive manufacturing apparatus.

請求項17の発明は、請求項2乃至16の何れか一に記載の3次元積層造形装置において、着色手段は、積層手段の回転軸を中心に囲むように配置した3次元積層造形装置であることを主要な特徴とする。
請求項18の発明は、請求項1乃至17の何れか一項に記載の3次元積層造形装置において、断面形状形成手段は、3次元CADデータから造形層の造形面の回転半径の円筒面で3次元形状をカットした断面データを作成する断面データ作成手段からなる3次元積層造形装置であることを主要な特徴とする。
請求項19の発明は、請求項2乃至18の何れか一項に記載の3次元積層造形装置において、着色手段は、3次元CADデータから造形層の造形面の回転半径の円筒面で3次元形状をカットした断面の着色データを作成する断面着色データ作成手段からなる3次元積層造形装置であることを主要な特徴とする。
請求項20の発明は、請求項1乃至19の何れか一項に記載の3次元積層造形装置において、積層手段は、造形層の造形面の回転半径に沿って上記造形層を保持する造形層保持手段からなる3次元積層造形装置であることを主要な特徴とする。
請求項21の発明は、請求項1乃至20の何れか一項に記載の3次元積層造形装置において、積層手段は、回転軸を中心に囲むように複数の造形テーブルを配置した3次元積層造形装置であることを主要な特徴とする。
The invention of claim 17 is the three-dimensional additive manufacturing apparatus according to any one of claims 2 to 16, wherein the coloring means is disposed so as to surround the rotation axis of the additive means. This is the main feature.
The invention of claim 18 is the three-dimensional additive manufacturing apparatus according to any one of claims 1 to 17, wherein the cross-sectional shape forming means is a cylindrical surface having a rotational radius of the modeling surface of the modeling layer from the three-dimensional CAD data. The main feature is that it is a three-dimensional additive manufacturing apparatus comprising cross-sectional data creating means for creating cross-sectional data obtained by cutting a three-dimensional shape.
According to a nineteenth aspect of the present invention, in the three-dimensional additive manufacturing apparatus according to any one of the second to eighteenth aspects, the coloring means is a three-dimensional cylindrical surface having a rotational radius of the modeling surface of the modeling layer from the three-dimensional CAD data. The main feature is that it is a three-dimensional additive manufacturing apparatus comprising cross-section coloring data creating means for creating coloring data of a cross-section cut in shape.
The invention according to claim 20 is the three-dimensional layered manufacturing apparatus according to any one of claims 1 to 19, wherein the stacking unit holds the modeling layer along the rotation radius of the modeling surface of the modeling layer. The main feature is that it is a three-dimensional additive manufacturing apparatus comprising holding means.
The invention of claim 21 is the three-dimensional additive manufacturing apparatus according to any one of claims 1 to 20, wherein the additive means is a three-dimensional additive manufacturing device in which a plurality of formation tables are arranged so as to surround the rotation axis. The main feature is that it is a device.

請求項22の発明は、請求項1乃至21の何れか一項に記載の3次元積層造形装置において、積層手段は、連続回転させながら造形テーブルを造形層の造形面から新たに供給され造形材の厚みだけ離間させる離間手段からなる3次元積層造形装置であることを主要な特徴とする。
請求項23の発明は、請求項1乃至22の何れか一項に記載の3次元積層造形装置において、造形材供給手段は、積層手段の回転中に造形材を所定の厚みで造形層の造形面を形成する造形エリアに供給する3次元積層造形装置であることを主要な特徴とする。
請求項24の発明は、請求項1乃至23の何れか一項に記載の3次元積層造形装置において、断面形状形成手段は、積層手段の回転中に造形材からなる新たな造形層に3次元形状の断面データをもとに断面形状の硬化領域を繰り返し形成する3次元積層造形装置であることを主要な特徴とする。
請求項25の発明は、請求項2乃至24の何れか一項に記載の3次元積層造形装置において、着色手段は、積層手段の回転中に断面形状形成手段が形成した造形層の硬化領域に、3次元形状の断面着色データをもとに着色を行う3次元積層造形装置であることを主要な特徴とする。
According to a twenty-second aspect of the present invention, in the three-dimensional layered manufacturing apparatus according to any one of the first to twenty-first aspects, the stacking unit is newly supplied with the modeling table from the modeling surface of the modeling layer while continuously rotating the modeling material. The main feature is that it is a three-dimensional additive manufacturing apparatus comprising a separating means that separates the film by the thickness.
According to a twenty-third aspect of the present invention, in the three-dimensional additive manufacturing apparatus according to any one of the first to twenty-second aspects, the modeling material supply unit forms the modeling layer with a predetermined thickness while the stacking unit is rotating. The main feature is that it is a three-dimensional additive manufacturing apparatus that supplies a forming area that forms a surface.
According to a twenty-fourth aspect of the present invention, in the three-dimensional additive manufacturing apparatus according to any one of the first to twenty-third aspects, the cross-sectional shape forming unit is three-dimensionally formed on a new modeling layer made of a modeling material while the stacking unit is rotating. The main feature is a three-dimensional additive manufacturing apparatus that repeatedly forms a hardened region having a cross-sectional shape based on cross-sectional data of the shape.
According to a twenty-fifth aspect of the present invention, in the three-dimensional layered manufacturing apparatus according to any one of the second to twenty-fourth aspects, the coloring unit is formed in a cured region of the modeling layer formed by the cross-sectional shape forming unit during the rotation of the stacking unit. The main feature is a three-dimensional additive manufacturing apparatus that performs coloring based on cross-sectional coloring data of a three-dimensional shape.

請求項1の発明によれば、各造形動作が連続して行われて、造形時の加減速、動作方向の転換、停止や退避等にかかる所要時間を省き、高品質な造形が高速で行われる3次元積層造形装置を提供することが出来るようになった。
請求項2の発明によれば、各造形動作が連続して行われて、造形時の加減速、動作方向の転換、停止や退避等にかかる所要時間を省き、高品質な造形と着色が高速で行われる3次元積層造形装置を提供することが出来るようになった。
請求項3の発明によれば、各造形動作が連続して行われて、造形時の加減速、動作方向の転換、停止や退避等にかかる所要時間を省き、高品質な造形と着色が高速で行われる安価で簡単で小型の3次元積層造形装置を提供することが出来るようになった。
請求項4の発明によれば、各造形動作が連続して行われて、造形時の加減速、動作方向の転換、停止や退避等にかかる所要時間を省き、更に高品質な造形と着色が更に高速で行われる3次元積層造形装置を提供することが出来るようになった。
According to the first aspect of the present invention, each modeling operation is continuously performed, and the time required for acceleration / deceleration at the time of modeling, change of the operation direction, stop and retreat is omitted, and high-quality modeling is performed at high speed. 3D additive manufacturing apparatus can be provided.
According to invention of Claim 2, each modeling operation | movement is performed continuously, the time required for acceleration / deceleration at the time of modeling, a change of an operation direction, a stop, retreating, etc. is omitted, and high quality modeling and coloring are high-speed. 3D additive manufacturing apparatus can be provided.
According to invention of Claim 3, each modeling operation | movement is performed continuously, the time required for acceleration / deceleration at the time of modeling, a change of an operation direction, a stop, retreating, etc. is omitted, and high quality modeling and coloring are high-speed. It is now possible to provide an inexpensive, simple and small-sized three-dimensional additive manufacturing apparatus that is performed in
According to invention of Claim 4, each modeling operation | movement is performed continuously, the time required for acceleration / deceleration at the time of modeling, a change of an operation direction, a stop, retreating, etc. is omitted, and further high quality modeling and coloring are carried out. Furthermore, it has become possible to provide a three-dimensional additive manufacturing apparatus that is performed at high speed.

請求項5の発明によれば、各造形動作が連続して行われて、造形時の加減速、動作方向の転換、停止や退避等にかかる所要時間を省き、高品質な造形材が固体材である造形が高速で行われる3次元積層造形装置を提供することが出来るようになった。
請求項6の発明によれば、各造形動作が連続して行われて、造形時の加減速、動作方向の転換、停止や退避等にかかる所要時間を省き、高品質な造形材が粉体材である造形が高速で行われる3次元積層造形装置を提供することが出来るようになった。
請求項7の発明によれば、各造形動作が連続して行われて、造形時の加減速、動作方向の転換、停止や退避等にかかる所要時間を省き、高品質な造形材がシート材である造形が高速で行われる3次元積層造形装置を提供することが出来るようになった。
請求項8の発明によれば、造形材供給手段を固定したままで各造形動作が連続して行われて、造形時の加減速、動作方向の転換、停止や退避等にかかる所要時間を省き、高品質な造形が高速で行われる3次元積層造形装置を提供することが出来るようになった。
請求項9の発明によれば、造形材供給手段の固体材供給ユニットを固定したままで各造形動作が連続して行われて、造形時の加減速、動作方向の転換、停止や退避等にかかる所要時間を省き、高品質な造形が高速で行われる3次元積層造形装置を提供することが出来るようになった。
According to invention of Claim 5, each modeling operation | movement is performed continuously, the time required for acceleration / deceleration at the time of modeling, a change of an operation direction, a stop, retraction | saving, etc. is omitted, and a high quality modeling material is a solid material. It is now possible to provide a three-dimensional additive manufacturing apparatus in which modeling is performed at high speed.
According to the invention of claim 6, each modeling operation is continuously performed, and the time required for acceleration / deceleration at the time of modeling, change of the operation direction, stop and retreat, etc. is omitted, and the high-quality modeling material is powder. It has become possible to provide a three-dimensional additive manufacturing apparatus in which modeling that is a material is performed at high speed.
According to the invention of claim 7, each modeling operation is continuously performed, and the time required for acceleration / deceleration at the time of modeling, change of the operation direction, stop and retreat, etc. is omitted, and the high-quality modeling material is a sheet material. It is now possible to provide a three-dimensional additive manufacturing apparatus in which modeling is performed at high speed.
According to invention of Claim 8, each modeling operation | movement is performed continuously, with the modeling material supply means fixed, and the time required for acceleration / deceleration at the time of modeling, change of an operation direction, a stop, retreat, etc. is omitted. It is now possible to provide a three-dimensional additive manufacturing apparatus that can perform high-quality modeling at high speed.
According to the invention of claim 9, each modeling operation is continuously performed while the solid material supply unit of the modeling material supply means is fixed, for acceleration / deceleration at the time of modeling, change of the operation direction, stop, retreat, etc. It has become possible to provide a three-dimensional additive manufacturing apparatus in which high-quality modeling is performed at high speed while omitting such time required.

請求項10の発明によれば、造形材供給手段の固体材供給ユニットを固定したままで各造形動作が連続して行われて、造形時の加減速、動作方向の転換、停止や退避等にかかる所要時間を省き、高品質な造形が更に高速で行われる3次元積層造形装置を提供することが出来るようになった。
請求項11の発明によれば、造形材供給手段の粉体ホッパーを固定したままで各造形動作が連続して行われて、造形時の加減速、動作方向の転換、停止や退避等にかかる所要時間を省き、高品質な造形が高速で行われる3次元積層造形装置を提供することが出来るようになった。
請求項12の発明によれば、造形材供給手段の供給ロールを固定したままで各造形動作が連続して行われて、造形時の加減速、動作方向の転換、停止や退避等にかかる所要時間を省き、高品質な造形が高速で行われる3次元積層造形装置を提供することが出来るようになった。
請求項13の発明によれば、断面形状形成手段のレーザ光源を固定したままで各造形動作が連続して行われて、造形時の加減速、動作方向の転換、停止や退避等にかかる所要時間を省き、高品質な造形が高速で行われる3次元積層造形装置を提供することが出来るようになった。
各造形動作が連続して行われて、造形時の加減速、動作方向の転換、停止や退避等にかかる所要時間を省き、高品質な造形が高速で行われる3次元積層造形装置を提供することが出来るようになった。
According to invention of Claim 10, each modeling operation | movement is performed continuously, fixing the solid material supply unit of a modeling material supply means, and in acceleration / deceleration at the time of modeling, a change of an operation direction, a stop, retraction | saving, etc. It has become possible to provide a three-dimensional additive manufacturing apparatus that eliminates the time required and can perform high-quality modeling at a higher speed.
According to the invention of claim 11, each modeling operation is continuously performed with the powder hopper of the modeling material supply means fixed, and it takes acceleration / deceleration at the time of modeling, change of the operation direction, stop, retreat, etc. It has become possible to provide a three-dimensional additive manufacturing apparatus that saves time and performs high-quality modeling at high speed.
According to the invention of claim 12, each modeling operation is continuously performed with the supply roll of the modeling material supply means fixed, and required for acceleration / deceleration at the time of modeling, change of operation direction, stop, retreat, etc. It has become possible to provide a three-dimensional additive manufacturing apparatus that saves time and enables high-quality modeling at high speed.
According to the invention of claim 13, each modeling operation is performed continuously with the laser light source of the cross-sectional shape forming means fixed, and required for acceleration / deceleration at the time of modeling, change of operation direction, stop, retreat, etc. It has become possible to provide a three-dimensional additive manufacturing apparatus that saves time and enables high-quality modeling at high speed.
Provided is a three-dimensional additive manufacturing apparatus in which each modeling operation is performed continuously, omits the time required for acceleration / deceleration at the time of modeling, change of operation direction, stop and retreat, etc., and high-quality modeling is performed at high speed I was able to do it.

請求項15の発明によれば、各造形動作が連続して行われて、造形時の加減速、動作方向の転換、停止や退避等にかかる所要時間を省き、高品質で安定した造形が更に高速で行われる3次元積層造形装置を提供することが出来るようになった。
請求項16の発明によれば、造形材の供給と硬化領域の形成の各造形動作が連続して行われて、造形時の加減速、動作方向の転換、停止や退避等にかかる所要時間を省き、高品質で造形が更に高速で行われる3次元積層造形装置を提供することが出来るようになった。
請求項17の発明によれば、着色と各造形動作が連続して行われて、造形時の加減速、動作方向の転換、停止や退避等にかかる所要時間を省き、高品質で造形と着色が更に高速で行われる3次元積層造形装置を提供することが出来るようになった。
請求項18の発明によれば、各造形動作が連続して行われて、造形時の加減速、動作方向の転換、停止や退避等にかかる所要時間を省き、3次元CADデータを入力するだけで容易に高品質な積層造形が高速で行われる3次元積層造形装置を提供することが出来るようになった。
請求項19の発明によれば、各造形動作が連続して行われて、造形時の加減速、動作方向の転換、停止や退避等にかかる所要時間を省き、3次元CADデータを入力するだけで容易に高品質な積層造形と着色が高速で行われる3次元積層造形装置を提供することが出来るようになった。
請求項20の発明によれば、各造形動作が連続して行われて、造形時の加減速、動作方向の転換、停止や退避等にかかる所要時間を省き、高品質な造形が高速で行われ、造形層の各層間の剥離や欠落等を防止する3次元積層造形装置を提供することが出来るようになった。
According to the invention of claim 15, each modeling operation is continuously performed, and the time required for acceleration / deceleration at the time of modeling, change of the operation direction, stop and retreat is omitted, and high-quality and stable modeling is further performed. It has become possible to provide a three-dimensional additive manufacturing apparatus that is performed at high speed.
According to invention of Claim 16, each modeling operation of supply of modeling material and formation of a hardening field is performed continuously, and time required for acceleration / deceleration at the time of modeling, change of operation direction, stop, retreat, etc. It has become possible to provide a three-dimensional additive manufacturing apparatus that eliminates the need for high-quality modeling at a higher speed.
According to the invention of claim 17, coloring and each modeling operation are carried out continuously, omitting the time required for acceleration / deceleration at the time of modeling, change of operation direction, stop and retreat, etc., and modeling and coloring with high quality Can be provided at a higher speed.
According to the invention of claim 18, each modeling operation is continuously performed, and the time required for acceleration / deceleration at the time of modeling, change of the operation direction, stop and retreat is omitted, and only three-dimensional CAD data is input. Thus, it has become possible to provide a three-dimensional additive manufacturing apparatus in which high-quality additive manufacturing is easily performed at high speed.
According to the invention of claim 19, each modeling operation is performed continuously, omitting the time required for acceleration / deceleration at the time of modeling, switching of the operation direction, stopping and evacuation, etc., and only inputting three-dimensional CAD data Thus, it is possible to provide a three-dimensional additive manufacturing apparatus that can easily perform high-quality additive manufacturing and coloring at high speed.
According to the invention of claim 20, each modeling operation is performed continuously, omitting the time required for acceleration / deceleration at the time of modeling, switching of the operation direction, stopping and evacuation, etc., and high-quality modeling is performed at high speed. Therefore, it has become possible to provide a three-dimensional layered modeling apparatus that prevents peeling or missing between layers of the modeling layer.

請求項21の発明によれば、各造形動作が連続して行われて、造形時の加減速、動作方向の転換、停止や退避等にかかる所要時間を省き、高品質な造形が高速で行われ稼働率も高い3次元積層造形装置を提供することが出来るようになった。
請求項22の発明によれば、積層手段を連続回転させながら次の造形層となる造形材の厚み分だけ造形面から造形テーブルを離間させて下げ各造形動作が連続して行われて、造形時の加減速、動作方向の転換、停止や退避等にかかる所要時間を省き、高品質な造形が更に高速で行われる3次元積層造形装置を提供することが出来るようになった。
請求項23の発明によれば、積層手段を連続回転させながら造形材を供給し各造形動作が連続して行われて、造形時の加減速、動作方向の転換、停止や退避等にかかる所要時間を省き、高品質な造形が更に高速で行われる3次元積層造形装置を提供することが出来るようになった。
請求項24の発明によれば、積層手段を連続回転させながら造形層に硬化領域を形成し各造形動作が連続して行われて、造形時の加減速、動作方向の転換、停止や退避等にかかる所要時間を省き、高品質な造形が更に高速で行われる3次元積層造形装置を提供することが出来るようになった。
請求項25の発明によれば、積層手段を連続回転させながら造形層に着色し各造形動作が連続して行われて、造形時の加減速、動作方向の転換、停止や退避等にかかる所要時間を省き、高品質な造形が更に高速で行われる3次元積層造形装置を提供することが出来るようになった。
According to the invention of claim 21, each modeling operation is performed continuously, omitting the time required for acceleration / deceleration at the time of modeling, switching of the operation direction, stopping and evacuation, etc., and high-quality modeling is performed at high speed. It has become possible to provide a three-dimensional additive manufacturing apparatus with a high operating rate.
According to the invention of claim 22, each modeling operation is continuously performed by separating the modeling table from the modeling surface by a thickness corresponding to the thickness of the modeling material to be the next modeling layer while continuously rotating the laminating means. It has become possible to provide a three-dimensional additive manufacturing apparatus in which high-quality modeling is performed at a higher speed by omitting the time required for acceleration / deceleration, change of operation direction, stop and retreat.
According to the invention of claim 23, the modeling material is supplied while continuously rotating the laminating means, and each modeling operation is performed continuously, and it is necessary for acceleration / deceleration at the time of modeling, change of operation direction, stop, retreat, etc. It has become possible to provide a three-dimensional additive manufacturing apparatus that saves time and enables high-quality modeling at a higher speed.
According to the invention of claim 24, a hardening region is formed in the modeling layer while continuously rotating the laminating means, and each modeling operation is performed continuously, acceleration / deceleration during modeling, change of operation direction, stop, retreat, etc. Therefore, it is possible to provide a three-dimensional additive manufacturing apparatus that can perform high-quality modeling at a higher speed.
According to the invention of claim 25, the modeling layer is colored while continuously rotating the laminating means, and each modeling operation is continuously performed, and it is necessary for acceleration / deceleration at the time of modeling, change of operation direction, stop, retreat, etc. It has become possible to provide a three-dimensional additive manufacturing apparatus that saves time and enables high-quality modeling at a higher speed.

次に、本発明の実施の形態を図面を参照して詳細に説明する。
図1において、造形材を積層して形成される造形層に3次元形状の断面データをもとに断面形状の硬化領域を形成して三次元形状を造形する3次元積層造形装置0は、積層して3次元造形体を形成する対象物としての造形材1(熱可塑性樹脂、又は、光硬化性樹脂からなる常温では半固体、又は、固体である固体材1a)を所定の厚みで供給する造形材供給手段2(固定された造形材供給部材2aの固体材供給ユニット2aと圧着部材2bの圧着ロール)と、固体材供給ユニット2aと圧着部材2bの圧着ロールから供給される固体材1aを繰り返し積層することにより形成した積層物としての造形層3と、造形物3の外周面である造形面3aと平行な回転軸を中心に回転する積層手段4と、積層手段4に設けられた造形テーブル4a上の固体材1aの新たな造形層3に断面データ作成手段5cが作成した3次元形状の断面データをもとに断面形状の固体材1aの硬化領域3bを繰り返し形成する固定された断面形状形成手段5(レーザ光源5a、レーザ走査手段5a)からなる。これによれば、各造形動作が連続して行われて、造形時の加減速、動作方向の転換、停止や退避等にかかる所要時間を省き、高品質の造形が高速で行われる。
Next, embodiments of the present invention will be described in detail with reference to the drawings.
In FIG. 1, a three-dimensional additive manufacturing apparatus 0 that forms a three-dimensional shape by forming a cured region of a cross-sectional shape based on cross-sectional data of a three-dimensional shape on a modeling layer formed by stacking modeling materials. Then, a modeling material 1 (a semi-solid or a solid material 1a which is a semi-solid or a solid at a normal temperature made of a thermoplastic resin or a photocurable resin) as a target for forming a three-dimensional model is supplied at a predetermined thickness. Solid material supplied from modeling material supply means 2 (solid material supply unit 2a 1 of fixed modeling material supply member 2a and pressure bonding roll of pressure bonding member 2b) and solid material supply unit 2a 1 and pressure bonding roll of pressure bonding member 2b Provided in the laminating means 4, the laminating means 4 that rotates around a rotation axis parallel to the modeling surface 3 a that is the outer peripheral surface of the shaped object 3, and the laminating means 4. Modeling table 4a Fixed cross-sectional shape forming means for repeatedly forming the hardened region 3b of the solid material 1a having a cross-sectional shape based on the cross-sectional data of the three-dimensional shape created by the cross-sectional data generating means 5c on the new modeling layer 3 of the solid material 1a 5 (laser light source 5a, laser scanning means 5a 1 ). According to this, each modeling operation | movement is performed continuously, the time required for the acceleration / deceleration at the time of modeling, a change of an operation direction, a stop, retraction | saving, etc. is omitted, and high quality modeling is performed at high speed.

即ち、上記3次元積層造形装置0は、所定の厚みの上記造形材1(熱可塑性樹脂)、又は、光硬化性樹脂からなる常温では半固体、又は、固体である上記固体材1aを、造形テーブル4a上、又は、造形テーブル4a上に既に積層された造形層3上に供給する固体材供給ユニット2aと圧着部材2bと、上記造形層3に上記断面データ作成手段5cが作成した3次元形状の断面データをもとに断面形状の上記硬化領域3bを形成するレーザ光源5a及びレーザ走査手段5aと、次の新たな造形層3を形成する造形材1、又は、次の新たな固体材1aの供給が出来るように、断面形状の形成の済んだ造形層3の厚み分だけ、連続回転させながら造形テーブル4aを造形面3aに新たに供給された固体材1aの厚みだけ離間させる離間手段4cからなる積層手段4等から構成されており、造形材1、又は、固体材1aの供給、新たな硬化領域3bの形成動作と、造形層3の新たな厚み分だけ造形テーブル4aを離間させる積層動作を繰り返して3次元形状を一層ずつ造形する。
そして、上記3次元積層造形装置0における固定された着色手段6は、図示のインクジェット式の印刷ユニット6a、又は、図示しない静電複写式の印刷ユニット6bが搭載されて使用される。
上記インクジェット式の印刷ユニット6aは、液体のインクを選択的に飛ばして着色する構成だから、安価で簡単で小型の構成である。
又、上記インクジェット式の印刷ユニット6aでカラーの着色を行うためには、各シアン(C)のインクを印刷するシアン印刷ユニット6a、マジェンダ(M)のインクを印刷するマジェンタ印刷ユニット6a、イエロー(Y)のインクを印刷するイエロー印刷ユニット6a、ブラック(K)のインクを印刷するブラック印刷ユニット6aを、上記積層手段4の図示しない回転軸を中心に囲むように並べて配置すれば良い。
That is, the three-dimensional layered modeling apparatus 0 models the modeling material 1 (thermoplastic resin) having a predetermined thickness or the solid material 1a that is a semi-solid or solid at room temperature, which is made of a photocurable resin. on the table 4a, or, 3D solid material supply unit 2a 1 supplied onto the molding layer 3 which has already been stacked on the modeling table 4a and the crimping member 2b, which in the molding layer 3 the cross-section data generating means 5c has created Based on the cross-sectional data of the shape, the laser light source 5a and the laser scanning means 5a 1 for forming the cured region 3b having the cross-sectional shape, and the modeling material 1 for forming the next new modeling layer 3 or the next new solid Separation that separates the modeling table 4a by the thickness of the solid material 1a newly supplied to the modeling surface 3a while continuously rotating by the thickness of the modeling layer 3 on which the cross-sectional shape has been formed so that the material 1a can be supplied. means The stacking means 4 is composed of c, and the modeling table 4a is separated by the new thickness of the modeling layer 3 by supplying the modeling material 1 or the solid material 1a, forming the new hardened region 3b A three-dimensional shape is formed layer by layer by repeating the stacking operation.
The fixed coloring means 6 in the three-dimensional additive manufacturing apparatus 0 is used with an inkjet printing unit 6a (not shown) or an electrostatic copying printing unit 6b (not shown) mounted thereon.
Since the ink jet printing unit 6a is configured to selectively eject liquid ink and color, the ink jet printing unit 6a is inexpensive, simple, and compact.
Further, in order to perform color coloring with the ink jet printing unit 6a, a cyan printing unit 6a 1 for printing each cyan (C) ink, a magenta printing unit 6a 2 for printing magenta (M) ink, If the yellow printing unit 6a 3 that prints yellow (Y) ink and the black printing unit 6a 4 that prints black (K) ink are arranged side by side so as to surround the rotation axis (not shown) of the stacking means 4 good.

上記着色手段6の上記インクジェット式の印刷ユニット6aによって、上記断面形状形成手段5の上記レーザ光源5aと上記レーザ走査手段5aが形成した上記造形層3の上記造形面3aの上記硬化領域3bを、断面着色データ作成手段6cが作成した3次元形状の断面着色データをもとに容易に着色を行うことが出来るようになっている。
断面着色データ作成手段6cが作成した3次元形状の断面着色データをもとに造形面3aの硬化領域3bに着色を行う固定されたインクジェット式の印刷ユニット6aは、積層手段4の図示しない回転軸を中心に囲むように配置されているので、着色した3次元形状を高速に造形することが出来る。
造形材1、又は、固体材1aを積層する上記積層手段4が上記造形面3aと平行な図示しない回転軸を中心に回転手段で連続回転するようにすることで、固体材供給ユニット2aと圧着部材2bを固定したままで往復運動の動作をすることなく、造形テーブル4a上の造形面3aを形成する造形エリアへの所定の厚みで固体材1aの供給が制御部7によりスムーズに行われる。
又、造形テーブル4aを造形層3の新たに増加した厚み分だけ離間させて下げ、そのまま上記積層手段4を連続回転させることで、次の上記造形層3となる上記造形材1の上記固体材1aの供給もスムーズに行われる。
The cured region 3b of the modeling surface 3a of the modeling layer 3 formed by the laser light source 5a of the cross-sectional shape forming unit 5 and the laser scanning unit 5a 1 is formed by the inkjet printing unit 6a of the coloring unit 6. Coloring can be easily performed based on the cross-sectional coloring data of the three-dimensional shape created by the cross-sectional coloring data creating means 6c.
The fixed inkjet type printing unit 6a for coloring the hardened region 3b of the modeling surface 3a based on the three-dimensional cross-section coloring data created by the cross-section coloring data creating means 6c is a rotating shaft (not shown) of the laminating means 4 Is arranged so as to surround the center, so that a colored three-dimensional shape can be formed at high speed.
The solid material supply unit 2a 1 is formed by continuously rotating the modeling material 1 or the laminating means 4 for laminating the solid material 1a by a rotating means around a rotation axis (not shown) parallel to the modeling surface 3a. The solid material 1a is smoothly supplied by the control unit 7 with a predetermined thickness to the modeling area that forms the modeling surface 3a on the modeling table 4a without reciprocating while the crimping member 2b is fixed. .
Further, the solid material of the modeling material 1 to be the next modeling layer 3 is obtained by lowering the modeling table 4a by being separated by the newly increased thickness of the modeling layer 3 and continuously rotating the laminating means 4 as it is. Supply of 1a is also performed smoothly.

上記離間手段4cは、上記造形テーブル4aを、送り螺旋4cとモータ4cでタイミングベルト4cを介して図示の矢印(A)方向に上下移動が出来るようにして、上記造形層3の上記造形面3aから新たに供給された上記造形材1の上記固体材1aの厚みだけ、上記造形面3aから離間させる簡単な構成になっている。
上記積層手段4に設けられた上記造形テーブル4aの表面4aが、上記造形層3の上記造形面3aの回転半径と等しい円弧形状になっている。
従って、固体材1aの供給、造形層3への断面形状の上記硬化領域3bの形成、硬化領域3bの着色の際に、上記造形材供給手段2、上記断面形状形成手段5、上記着色手段6を上記積層手段4に設けられた上記造形テーブル4aに形成される上記造形層3の上記造形面3aに倣わせる必要がなくなり、高品質で安定した造形が出来ると共に、上記積層手段4の回転数を上げることが出来るために、より造形時間を短縮して、更に、高速に3次元形状を造形する上記3次元積層造形装置0を提供することが出来るようになった。
所定厚みの固体材1aを供給する上記造形材供給手段2と上記造形層3に3次元形状の断面データをもとに断面形状の上記硬化領域3bを形成する固定された上記断面形状形成手段5は、上記積層手段4の回転軸を中心に囲むように配置して、上記積層手段4を図示の矢印(B)方向に回転させることで、上記制御部7により一連の造形工程が連続的に行われ、造形時間を短縮化することが出来る造形が、更に、高速で行われる上記3次元積層造形装置0を提供することが出来るようになった。
The separation means 4c allows the modeling table 4a to be moved up and down in the direction of the arrow (A) shown in the drawing via the timing belt 4c 3 by the feed spiral 4c 1 and the motor 4c 2. The thickness of the solid material 1a of the modeling material 1 newly supplied from the modeling surface 3a is a simple configuration that is separated from the modeling surface 3a.
A surface 4 a 1 of the modeling table 4 a provided in the stacking means 4 has an arc shape that is equal to the rotation radius of the modeling surface 3 a of the modeling layer 3.
Therefore, when supplying the solid material 1a, forming the cured region 3b having a cross-sectional shape on the modeling layer 3, and coloring the cured region 3b, the modeling material supply unit 2, the cross-sectional shape forming unit 5, and the coloring unit 6 are used. It is no longer necessary to follow the modeling surface 3a of the modeling layer 3 formed on the modeling table 4a provided on the stacking means 4, and high quality and stable modeling can be performed, and the rotation of the stacking means 4 can be performed. Since the number can be increased, it is possible to provide the three-dimensional additive manufacturing apparatus 0 that further shortens the modeling time and further models a three-dimensional shape at high speed.
The cross-sectional shape forming means 5 fixed to form the cured region 3b having a cross-sectional shape in the modeling material supply means 2 for supplying the solid material 1a having a predetermined thickness and the cross-sectional data of the three-dimensional shape in the modeling layer 3. Is arranged so as to surround the rotation axis of the laminating means 4, and the laminating means 4 is rotated in the direction of the arrow (B) in the figure, so that a series of modeling steps are continuously performed by the control unit 7. It is possible to provide the above three-dimensional layered modeling apparatus 0 that is performed and can perform modeling that can shorten the modeling time at a high speed.

上記造形材供給手段2の構成は、上記造形材1の種類の各熱可塑性樹脂、又は、固体材1a、図示しない熱可塑性の粉体材1b、図示しないシート形状のシート材1cによって異なる。
図示のように、上記固体材1aの常温で固体あるいは半固体の熱可塑性樹脂や光硬化性樹脂を使う場合の上記造形材供給手段2の固定された上記造形材供給手段2aである上記固体材供給ユニット2aの溶融手段2a11で加熱溶融した樹脂を均一な厚みにするロールコーターやダイコーター等の塗工手段2a12と上記造形材1の上記固体材1aを上記積層手段4の上記造形テーブル4a上に圧着する圧着部材2bで構成されている。
直接、樹脂の上記固体材1aを上記造形テーブル4a上、又は、上記造形テーブル4a上に、既に、積層された上記造形層3上に塗工することが出来ない場合は、図示しない転写手段により転写するように構成しても良い。
更に、塗工した樹脂層の上記固体材1aを溶融温度以下に早く冷却する場合は、冷却ユニット2a13が配置される。
The configuration of the modeling material supply means 2 differs depending on the type of the thermoplastic resin of the modeling material 1, or the solid material 1a, the thermoplastic powder material 1b (not shown), and the sheet material 1c (not shown).
As shown in the figure, the solid material that is the modeling material supply means 2a fixed to the modeling material supply means 2 when using a solid or semi-solid thermoplastic resin or photo-curable resin at room temperature of the solid material 1a. Coating means 2a 12 such as a roll coater or die coater that makes the resin heated and melted by the melting means 2a 11 of the supply unit 2a 1 uniform, and the solid material 1a of the modeling material 1 are formed by the modeling of the stacking means 4. It is comprised by the crimping | compression-bonding member 2b crimped | bonded on the table 4a.
If the resin solid material 1a cannot be directly applied onto the modeling table 4a or the modeling table 4a already laminated, the solid material 1a can be transferred by a transfer means (not shown). You may comprise so that it may transcribe | transfer.
Furthermore, when cooling quickly the solid material 1a of the resin layer was applied below the melting temperature, the cooling unit 2a 13 is disposed.

上記断面形状形成手段5は、熱可塑性樹脂、又は、固体材1aを使う場合は、上記制御部7により、上記断面データ作成手段5cが作成した3次元形状の断面データをもとに、上記レーザー光源5aのレーザを上記レーザ走査手段5aで選択的に光硬化させて、上記造形層3の内部に硬化領域3bを形成する。
上記断面データ作成手段5cは、図示しない3次元CADデータから上記造形層3の上記造形面3aの回転半径の円筒面で3次元形状をカットした断面データを作成することで、図示しない3次元CADデータを入力するだけで、円筒形状の上記造形層3の上記造形面3aを持つ上記積層手段4の上記造形テーブル4aに上記硬化領域3bの積層造形が容易に形成される。
上記積層手段4における造形層保持手段4bは、造形面3aの回転半径に沿って積層された造形層3を保持するようになっている。
上記造形層保持手段4bは、上記造形層3の上記造形面3aに一定の圧力で接した複数個のローラー4bを配置し、又は、ベルト4bを上記ローラー4bの回転面に沿わす簡単な構成になっている。
従って、上記積層手段4の回転中に積層された上記造形層3にかかる負荷を低減し、上記造形層3の各層間の剥離、上記造形層3の欠落等を防止する上記3次元積層造形装置0を提供することが出来るようになった。
When the thermoplastic resin or the solid material 1a is used, the cross-sectional shape forming means 5 is based on the cross-sectional data of the three-dimensional shape created by the cross-sectional data creating means 5c by the control unit 7. The laser of the light source 5 a is selectively photocured by the laser scanning means 5 a 1 to form a cured region 3 b in the modeling layer 3.
The cross-sectional data creating means 5c creates cross-sectional data in which a three-dimensional shape is cut by a cylindrical surface having a rotational radius of the modeling surface 3a of the modeling layer 3 from three-dimensional CAD data (not shown), thereby not showing a three-dimensional CAD (not shown). By simply inputting data, the layered modeling of the cured region 3b is easily formed on the modeling table 4a of the stacking unit 4 having the modeling surface 3a of the cylindrical modeling layer 3.
The modeling layer holding means 4b in the stacking means 4 is configured to hold the modeling layer 3 stacked along the rotation radius of the modeling surface 3a.
The modeling layer holding means 4b arranges a plurality of rollers 4b 1 in contact with the modeling surface 3a of the modeling layer 3 with a constant pressure, or keeps the belt 4b 2 along the rotation surface of the roller 4b 1 . It has a simple configuration.
Therefore, the three-dimensional additive manufacturing apparatus that reduces the load applied to the modeling layer 3 stacked during the rotation of the stacking unit 4 and prevents the layering of the modeling layer 3 from being separated, the missing of the modeling layer 3, and the like. It became possible to provide 0.

図2のフローチャートにおいて、上記3次元積層造形装置0は、上記制御部7により、次のように、一連の造形動作が連続して行われ、造形時の加減速、動作方向の転換、停止や退避等にかかる所要時間を省き、高品質で安定した造形が高速で行われ稼働率も高く行われるようになっている(図1を参照)。
上記造形材供給手段2によって回転中の上記積層手段4の上記造形テーブル4aに形成される上記造形層3の一層目の上記造形面3aを形成する造形エリアへの所定の厚みで上記造形材1を供給して(ステップ1)、上記断面形状形成手段5によって回転中の上記積層手段4の上記造形テーブル4aに形成される上記造形層3の断面形状の上記硬化領域3bを形成して(ステップ2)、上記着色手段6によって上記断面形状形成手段5が形成した上記造形層3の断面形状の上記硬化領域3bを着色して(ステップ3)、造形が終了したかどうかを判断して(ステップ4)、造形が終了していなかったら、上記積層手段4の上記離間手段4cによって回転中の上記積層手段4の上記造形テーブル4aを上記造形層3の一層分を上記造形面3aから離間して下降し(ステップ5)、上記造形材供給手段2によって回転中の上記積層手段4の上記造形テーブル4aに形成された上記造形層3の断面形状の上記硬化領域3bへ新たな上記造形面3aを形成する造形エリアへの所定の厚みで上記造形材1を供給して(ステップ6)、(ステップ2)に戻るが、(ステップ4)で造形が終了していれば、取り出し手段8によって上記積層手段4の上記造形テーブル4aに形成された上記造形層3を上記造形テーブル4aから取り出して(ステップ7)、除去手段9で取り出された上記造形層3の未硬化領域3cの不要部分を溶融しながら除去して(ステップ8)、上記造形層3の上記未硬化領域3cの不要部分を除去した上記硬化領域3bを排出部10に移動排出して収納されて(ステップ9)、エンドで終了する。
In the flowchart of FIG. 2, the three-dimensional additive manufacturing apparatus 0 is configured such that a series of modeling operations are continuously performed by the control unit 7 as follows, acceleration / deceleration at the time of modeling, change of operation direction, stop, Time required for evacuation and the like is omitted, and high-quality and stable modeling is performed at a high speed and the operation rate is high (see FIG. 1).
The modeling material 1 with a predetermined thickness to the modeling area for forming the first modeling surface 3a of the modeling layer 3 formed on the modeling table 4a of the stacking unit 4 rotating by the modeling material supply unit 2. (Step 1) to form the cured region 3b having a cross-sectional shape of the modeling layer 3 formed on the modeling table 4a of the laminating means 4 being rotated by the cross-sectional shape forming unit 5 (step) 2) Coloring the cured region 3b of the cross-sectional shape of the modeling layer 3 formed by the cross-sectional shape forming unit 5 by the coloring unit 6 (step 3), and determining whether or not modeling has been completed (step) 4) If the modeling has not been completed, the modeling table 4a of the laminating means 4 being rotated by the separating means 4c of the laminating means 4 can be replaced with the modeling surface 3a for one layer of the modeling layer 3. Separated and lowered (step 5), the modeling is newly performed on the cured region 3b of the cross-sectional shape of the modeling layer 3 formed on the modeling table 4a of the stacking unit 4 being rotated by the modeling material supply unit 2. The modeling material 1 is supplied to the modeling area for forming the surface 3a with a predetermined thickness (step 6), and the process returns to (step 2). If the modeling is completed in (step 4), the take-out means 8 is used. The molding layer 3 formed on the modeling table 4a of the stacking means 4 is taken out from the modeling table 4a (step 7), and unnecessary portions of the uncured region 3c of the modeling layer 3 taken out by the removing means 9 are removed. Is removed while melting (step 8), and the cured region 3b from which the unnecessary portion of the uncured region 3c of the modeling layer 3 is removed is moved and discharged to the discharge unit 10 (step 9). It ends at the end.

図3は本発明の変形例の要部構成図であり、同図において、上記粉体材1bの熱可塑性の粉体、又は、熱可塑性樹脂でコーティングされた粉体を使う場合の造形材供給手段2aは、粉体材1bを供給する粉体ホッパー2aと粉体材1bを造形テーブル4a上に圧着する圧着部材2bからなる簡単な構成である。
熱可塑性の粉体、又は、熱可塑性樹脂でコーティングされた粉体の上記粉体材1bを使用する場合は、樹脂が一部溶融し仮固着する温度に加熱して、図示しないスキージやローラーで膜圧が一定になるように仮固着状態の、熱可塑性の一部が溶融結合した状態で振動や力を加えると分離する状態で供給される。
粉体材1bが常温で固体あるいは半固体の熱可塑性樹脂、熱可塑性の粉体、熱可塑性樹脂でコーティングされた粉体を使用する場合は、樹脂の溶融温度を変化させる、図示しない添加剤や接着剤を選択的に塗布して断面形状を形成することが出来る。
又、上記粉体材1bが熱可塑性である粉体、熱可塑性樹脂でコーティングされた粉体である場合は、レーザーを使って走査して仮固着状態の樹脂に選択的に加熱し溶融硬化させることも出来る。
図4と図5は本発明装置の他の構成例を示しており、シート材1cの、既に、成形されて積載されたシート状の材料を使う場合(図4を参照)、又は、ロール体2a31をカッター2a32で裁断したシート状の材料を使う場合(図5を参照)の造形材供給手段2の固定された造形材供給部材2aは、シート材1cを積層手段4の回転に合わせて送り供給するだけの供給ロール2aとシート材1cを上記積層手段4の上記造形テーブル4a上に圧着する圧着部材2bからなり、更に、簡単な構成である。
FIG. 3 is a block diagram of the principal part of a modification of the present invention, in which the molding material supply when using the thermoplastic powder of the powder material 1b or the powder coated with a thermoplastic resin is used. The means 2a has a simple configuration comprising a powder hopper 2a 2 for supplying the powder material 1b and a pressure-bonding member 2b for pressing the powder material 1b onto the modeling table 4a.
When using the powder material 1b made of thermoplastic powder or powder coated with a thermoplastic resin, the resin is heated to a temperature at which the resin is partially melted and temporarily fixed, and a squeegee or roller (not shown) is used. The film is supplied in a state where it is separated when a vibration or force is applied in a state where a part of the thermoplastic is melt-bonded in a temporarily fixed state so that the film pressure is constant.
When the powder material 1b uses a solid or semi-solid thermoplastic resin, a thermoplastic powder, or a powder coated with a thermoplastic resin at room temperature, an additive (not shown) that changes the melting temperature of the resin, A cross-sectional shape can be formed by selectively applying an adhesive.
When the powder material 1b is a thermoplastic powder or a powder coated with a thermoplastic resin, it is scanned with a laser and selectively heated to a temporarily fixed resin to be melt-cured. You can also
4 and 5 show another example of the configuration of the apparatus according to the present invention. In the case where a sheet-like material that is already formed and stacked is used as the sheet material 1c (see FIG. 4), or a roll body. In the case of using a sheet-like material obtained by cutting 2a 31 with the cutter 2a 32 (see FIG. 5), the modeling material supply member 2a to which the modeling material supply means 2 is fixed matches the rotation of the laminating means 4 with the sheet material 1c. the supply roll 2a 3 and the sheet material 1c only to feed supply consists crimping member 2b for crimping onto the modeling table 4a of the laminated unit 4 Te, a further simple configuration.

図6は他の実施形態を示しており、同図において、断面形状形成手段5は、熱可塑性樹脂、又は、固体材1aを使う場合は、上記制御部7により、上記断面データ作成手段5cが作成した3次元形状の断面データをもとに、液晶パネル5bをランプ5bで照射して選択的に光硬化させて上記造形層3の断面形状の上記硬化領域3bが形成される。
上記着色手段6の上記静電複写式の印刷ユニット6bによって、上記断面形状形成手段5の、上記液晶パネル5bを上記ランプ5bで照射して形成した上記造形層3の上記造形面3aの上記硬化領域3bを、上記断面着色データ作成手段6cが作成した3次元形状の断面着色データをもとに高品質の着色を、更に、高速で行うことが出来るようになっている。
又、上記静電複写式の印刷ユニット6bでカラーの着色を行うためには、各シアン(C)のトナーを印刷するシアン印刷ユニット6b、マジェンダ(M)のトナーを印刷するマジェンタ印刷ユニット6b、イエロー(Y)のトナーを印刷するイエロー印刷ユニット6b、ブラック(K)のトナーを印刷するブラック印刷ユニット6bを、上記積層手段4の図示しない回転軸を中心に囲むように並べて配置すれば良い。
FIG. 6 shows another embodiment. In the figure, the cross-sectional shape forming means 5 uses the thermoplastic resin or the solid material 1a. based on section data of a three-dimensional shape created, the liquid crystal panel 5b by irradiation by selectively photocured lamp 5b 1 is the curing area 3b of the cross-sectional shape of the shaping layer 3 is formed.
The modeling surface 3 a of the modeling layer 3 formed by irradiating the liquid crystal panel 5 b of the cross-sectional shape forming unit 5 with the lamp 5 b 1 by the electrostatic copying printing unit 6 b of the coloring unit 6. The hardened region 3b can be colored with high quality at a higher speed based on the cross-sectional coloring data of the three-dimensional shape created by the cross-sectional coloring data creating means 6c.
In order to color the electrostatic copying type printing unit 6b, a cyan printing unit 6b 1 for printing each cyan (C) toner and a magenta printing unit 6b for printing magenta (M) toner. 2. A yellow printing unit 6b 3 for printing yellow (Y) toner and a black printing unit 6b 4 for printing black (K) toner are arranged side by side so as to surround the rotation axis (not shown) of the stacking means 4 Just do it.

上記静電複写式の印刷ユニット6bの上記シアン印刷ユニット6b(上記マジェンタ印刷ユニット6b、上記イエロー印刷ユニット6b、上記ブラック印刷ユニット6bも同様に)は、シアン除電部6b15(同様にマジェンタ除電部6b25、上記イエロー除電部6b35、上記ブラック除電部6b45)で除電してシアン帯電部6b16(同様にマジェンタ帯電部6b26、上記イエロー帯電部6b36、上記ブラック帯電部6b46)で均一に帯電されたシアン感光体6b11(同様にマジェンタ感光体6b21、上記イエロー感光体6b31、上記ブラック感光体6b41)をシアンレーザー書き込み器6b12(同様にマジェンタレーザー書き込み器6b22、上記イエローレーザー書き込み器6b32、上記ブラックレーザー書き込み器6b42)で露光して、シアントナー付着部6b13(同様にマジェンタトナー付着部6b22、上記イエロートナー付着部6b33、上記ブラックトナー付着部6b43)でシアントナー(同様にマジェンタトナー、イエロートナー、ブラックトナー)を静電気吸着させて、上記造形層3の上記造形面3aの上記硬化領域3bに転写して、シアン加熱ローラー6b14(同様にマジェンタ加熱ローラー6b24、上記イエロー加熱ローラー6b34、上記ブラック加熱ローラー6b44)によって加熱して着色する。
図7は他の実施形態の構成例であり、同図において、上記積層手段4は、回転軸4Aを中心に囲むように複数の、例えば、図示のように3個の上記造形テーブル4aが120度の間隔で配置されている。
従って、上記造形材供給手段2、上記断面形状形成手段5、上記着色手段6等を図示のように並列に稼働させることが出来るため、複数の3個の3次元形状を稼働率も高く造形する上記3次元積層造形装置0を提供することが出来るようになった。
The cyan printing unit 6b 1 (same as the magenta printing unit 6b 2 , the yellow printing unit 6b 3 , and the black printing unit 6b 4 ) of the electrostatic copying type printing unit 6b is a cyan discharging unit 6b 15 (similarly). The neutralization unit 6b 25 , the yellow neutralization unit 6b 35 , and the black neutralization unit 6b 45 ) to neutralize the charge and the cyan charging unit 6b 16 (similarly the magenta charging unit 6b 26 , the yellow charging unit 6b 36 , and the black charging unit). 6b 46 ) and cyan photoreceptor 6b 11 (also magenta photoreceptor 6b 21 , yellow photoreceptor 6b 31 , black photoreceptor 6b 41 ) uniformly charged with cyan laser writer 6b 12 (also magenta laser writing) vessel 6b 22, the yellow laser writing unit b 32, and exposed by the black laser writing unit 6b 42), a cyan toner adhesion portion 6b 13 (likewise magenta toner adhesion portion 6b 22, the yellow toner adhesion portion 6b 33, cyan in the black toner adhesion portion 6b 43) toner (Similarly magenta toner, yellow toner, black toner) was allowed to electrostatically adsorbed, then transferred to the curing area 3b of the shaped surface 3a of the shaping layer 3, a cyan heat roller 6b 14 (likewise magenta heat roller 6b 24 , the yellow heating roller 6b 34 and the black heating roller 6b 44 ) are heated and colored.
FIG. 7 shows a configuration example of another embodiment. In the figure, the stacking means 4 includes a plurality of, for example, three, three modeling tables 4a as shown in the figure so as to surround the rotating shaft 4A. Arranged at intervals of degrees.
Therefore, since the modeling material supply means 2, the cross-sectional shape forming means 5, the coloring means 6 and the like can be operated in parallel as shown in the figure, a plurality of three three-dimensional shapes are modeled with a high operating rate. The three-dimensional additive manufacturing apparatus 0 can be provided.

本発明の実施の形態例を示す3次元積層造形装置を説明する説明図。Explanatory drawing explaining the three-dimensional layered modeling apparatus which shows the embodiment of this invention. 本発明の実施の形態例を示す3次元積層造形装置の主要部の動作を説明するフローチャート。The flowchart explaining operation | movement of the principal part of the three-dimensional additive manufacturing apparatus which shows the embodiment of this invention. 本発明の他の実施の形態例を示す3次元積層造形装置の主要部を説明する説明図。Explanatory drawing explaining the principal part of the three-dimensional additive manufacturing apparatus which shows the other embodiment of this invention. 本発明の他の実施の形態例を示す3次元積層造形装置の主要部を説明する説明図。Explanatory drawing explaining the principal part of the three-dimensional layered modeling apparatus which shows the other embodiment of this invention. 本発明の他の実施の形態例を示す3次元積層造形装置の主要部を説明する説明図。Explanatory drawing explaining the principal part of the three-dimensional additive manufacturing apparatus which shows the other embodiment of this invention. 本発明の他の実施の形態例を示す3次元積層造形装置の主要部を説明する説明図。Explanatory drawing explaining the principal part of the three-dimensional additive manufacturing apparatus which shows the other embodiment of this invention. 本発明の他の実施の形態例を示す3次元積層造形装置の主要部を説明する説明図。Explanatory drawing explaining the principal part of the three-dimensional additive manufacturing apparatus which shows the other embodiment of this invention.

符号の説明Explanation of symbols

0 3次元積層造形装置
1 造形材、
1a 固体材、
1b 粉体材、
1c シート材
2 造形材供給手段、
2a 造形材供給部材
2a 固体材供給ユニット、
2a11 溶融手段、
2a12 塗工手段、
2a13 冷却ユニット、
2a 粉体ホッパー、
2a 供給ロール、
2a31 ロール体、
2a32 カッター、
2b 圧着部材
3 造形層、
3a 造形面、
3b 硬化領域、
3c 未硬化領域
4 積層手段、
4a 造形テーブル、
4a 表面、
4b 造形層保持手段、
4b ローラー、
4b ベルト、
4c 離間手段、
4c 送り螺旋、
4c モータ、
4c タイミングベルト
5 断面形状形成手段、
5a レーザ光源、
5a レーザ走査手段、
5b 液晶パネル、
5b ランプ、
5c 断面データ作成手段
6 着色手段、
6a インクジェット式の印刷ユニット、
6a シアン印刷ユニット、
6a マジェンタ印刷ユニット、
6a イエロー印刷ユニット、
6a ブラック印刷ユニット、
6b 静電複写式の印刷ユニット、
6b シアン印刷ユニット、
6b11 シアン感光体、
6b12 シアンレーザー書き込み器、
6b13 シアントナー付着部、
6b14 シアン加熱ローラー、
6b15 シアン除電部、
6b16 シアン帯電部、
6b マジェンタ印刷ユニット、
6b21 マジェンタ感光体、
6b22 マジェンレーザータ書き込み器、
6b23 マジェンタトナー付着部、
6b24 マジェンタ加熱ローラー、
6b25 マジェンタ除電部、
6b26 マジェンタ帯電部、
6b イエロー印刷ユニット、
6b31 イエロー感光体、
6b32 イエローレーザー書き込み器、
6b33 イエロートナー付着部、
6b34 イエロー加熱ローラー、
6b35 イエロー除電部、
6b36 イエロー帯電部、
6b ブラック印刷ユニット、
6b41 ブラック感光体、
6b42 ブラックレーザー書き込み器、
6b43 ブラックトナー付着部、
6b44 ブラック加熱ローラー、
6b45 ブラック除電部、
6b46 ブラック帯電部、
6c 断面着色データ作成手段
7 制御部
8 取り出し手段
9 除去手段
10 排出部
0 3D additive manufacturing equipment 1 Modeling material,
1a solid material,
1b powder material,
1c sheet material 2 modeling material supply means,
2a modeling material supply member 2a 1 solid material supply unit,
2a 11 melting means,
2a 12 coating means,
2a 13 cooling unit,
2a 2 powder hopper,
2a 3 supply rolls,
2a 31 roll body,
2a 32 cutter,
2b pressure bonding member 3 modeling layer,
3a modeling surface,
3b curing area,
3c uncured region 4 lamination means,
4a modeling table,
4a 1 surface,
4b modeling layer holding means,
4b 1 roller,
4b 2 belts,
4c separation means,
4c 1- feed spiral,
4c 2 motor,
4c 3 timing belt 5 cross-sectional shape forming means,
5a Laser light source,
5a 1 laser scanning means,
5b LCD panel,
5b 1 lamp,
5c Sectional data creation means 6 Coloring means,
6a Inkjet printing unit,
6a 1 cyan printing unit,
6a 2 magenta printing unit,
6a 3 yellow printing unit,
6a 4 black printing unit,
6b Electrostatic copying type printing unit,
6b 1 cyan printing unit,
6b 11 cyan photoreceptor,
6b 12 cyan laser writer,
6b 13 cyan toner adhesion part,
6b 14 cyan heating roller,
6b 15 cyan neutralizer,
6b 16 cyan charging part,
6b 2 magenta printing unit,
6b 21 magenta photoreceptor,
6b 22 magenta laser writing device,
6b 23 magenta toner adhesion part,
6b 24 magenta heating roller,
6b 25 magenta static neutralizer,
6b 26 magenta charging part,
6b 3 yellow printing unit,
6b 31 yellow photoreceptor,
6b 32 yellow laser writer,
6b 33 yellow toner adhesion part,
6b 34 yellow heating roller,
6b 35 yellow static neutralizer,
6b 36 yellow charging part,
6b 4 black printing unit,
6b 41 black photoreceptor,
6b 42 black laser writer,
6b 43 black toner adhesion part,
6b 44 black heating roller,
6b 45 black discharger,
6b 46 black charging part,
6c Section coloring data creation means 7 Control section 8 Extraction means 9 Removal means 10 Discharge section

Claims (25)

造形材を積層して形成される造形層に3次元形状の断面データをもとに断面形状の硬化領域を形成して三次元形状を造形する3次元積層造形装置において、積層して3次元造形体を形成する造形材を所定の厚みで供給する造形材供給手段と、上記造形材供給手段から供給される上記造形材を繰り返し積層して造形層を形成する造形面と平行な回転軸を中心に回転する積層手段と、上記積層手段に設けられた造形テーブル上の上記造形材の新たな上記造形層に3次元形状の断面データをもとに上記造形材の硬化領域を繰り返し形成する断面形状形成手段とからなることを特徴とする3次元積層造形装置。   In a three-dimensional additive manufacturing apparatus for forming a three-dimensional shape by forming a cured region of a cross-sectional shape based on cross-sectional data of a three-dimensional shape on a modeling layer formed by stacking modeling materials, three-dimensional modeling is performed by stacking A modeling material supply means for supplying a modeling material for forming a body with a predetermined thickness, and a rotation axis parallel to a modeling surface for forming a modeling layer by repeatedly laminating the modeling material supplied from the modeling material supply means A cross-sectional shape that repeatedly forms a hardened region of the modeling material on the new modeling layer of the modeling material on the modeling table provided in the stacking means based on cross-sectional data of a three-dimensional shape A three-dimensional layered manufacturing apparatus comprising: a forming unit. 請求項1に記載の3次元積層造形装置において、断面形状形成手段が形成した造形層の硬化領域に3次元形状の断面着色データをもとに着色を行う着色手段を備えたことを特徴とする3次元積層造形装置。   The three-dimensional additive manufacturing apparatus according to claim 1, further comprising a coloring unit that performs coloring on a cured region of the modeling layer formed by the cross-sectional shape forming unit based on cross-sectional coloring data of the three-dimensional shape. 3D additive manufacturing equipment. 請求項2に記載の3次元積層造形装置において、着色手段は、インクジェット式の印刷ユニットからなることを特徴とする3次元積層造形装置。   3. The three-dimensional additive manufacturing apparatus according to claim 2, wherein the coloring means is an ink jet printing unit. 請求項2に記載の3次元積層造形装置において、着色手段は、静電複写式のカラー印刷ユニットからなることを特徴とする3次元積層造形装置。   3. The three-dimensional additive manufacturing apparatus according to claim 2, wherein the coloring means comprises an electrostatic copying type color printing unit. 請求項1、2、3又は4に記載の3次元積層造形装置において、造形材は、固体材であることを特徴とする3次元積層造形装置。   5. The three-dimensional additive manufacturing apparatus according to claim 1, wherein the forming material is a solid material. 請求項1、2、3又は4に記載の3次元積層造形装置において、造形材は、粉体材であることを特徴とする3次元積層造形装置。   5. The three-dimensional additive manufacturing apparatus according to claim 1, wherein the forming material is a powder material. 6. 請求項1、2、3又は4に記載の3次元積層造形装置において、造形材は、シート材であることを特徴とする3次元積層造形装置。   5. The three-dimensional additive manufacturing apparatus according to claim 1, wherein the forming material is a sheet material. 6. 請求項1、2、3、4、5、6又は7に記載の3次元積層造形装置において、造形材供給手段は、固定された造形材を積層手段の造形テーブル上の造形面に供給する造形材供給部材と、造形材を積層手段の造形テーブル上に圧着する圧着部材からなることを特徴とする3次元積層造形装置。   8. The three-dimensional additive manufacturing apparatus according to claim 1, wherein the modeling material supply means supplies the fixed modeling material to the modeling surface on the modeling table of the lamination means. A three-dimensional additive manufacturing apparatus comprising: a material supply member; and a crimping member that crimps a modeling material onto a modeling table of a stacking unit. 請求項8に記載の3次元積層造形装置において、造形材供給部材は、固体材を溶融して供給する固体材供給ユニットからなることを特徴とする3次元積層造形装置。   The three-dimensional additive manufacturing apparatus according to claim 8, wherein the modeling material supply member includes a solid material supply unit that melts and supplies the solid material. 請求項9に記載の3次元積層造形装置において、固体材供給ユニットは、冷却ユニットを備えることを特徴とする3次元積層造形装置。   The three-dimensional additive manufacturing apparatus according to claim 9, wherein the solid material supply unit includes a cooling unit. 請求項8に記載の3次元積層造形装置において、造形材供給部材は、粉体材を供給する粉体ホッパーからなることを特徴とする3次元積層造形装置。   9. The three-dimensional additive manufacturing apparatus according to claim 8, wherein the modeling material supply member is a powder hopper that supplies a powder material. 請求項8に記載の3次元積層造形装置において、造形材供給部材は、シート材を供給する供給ロールを備えることを特徴とする3次元積層造形装置。   The three-dimensional additive manufacturing apparatus according to claim 8, wherein the modeling material supply member includes a supply roll for supplying a sheet material. 請求項1乃至12の何れか一項に記載の3次元積層造形装置において、固定された断面形状形成手段は、レーザ光源を備えることを特徴とする3次元積層造形装置。   The three-dimensional layered manufacturing apparatus according to any one of claims 1 to 12, wherein the fixed cross-sectional shape forming unit includes a laser light source. 請求項1乃至12の何れか一項に記載の3次元積層造形装置において、固定された断面形状形成手段は、液晶パネルを備えることを特徴とする3次元積層造形装置。   The three-dimensional additive manufacturing apparatus according to any one of claims 1 to 12, wherein the fixed cross-sectional shape forming unit includes a liquid crystal panel. 請求項1乃至14の何れか一項に記載の3次元積層造形装置において、積層手段に設けられた造形テーブルの表面が、造形層の造形面の回転半径と等しい円弧面形状であることを特徴とする3次元積層造形装置。   15. The three-dimensional additive manufacturing apparatus according to claim 1, wherein the surface of the modeling table provided in the stacking unit has an arcuate surface shape that is equal to the rotation radius of the modeling surface of the modeling layer. A three-dimensional additive manufacturing apparatus. 請求項1乃至15の何れか一項に記載の3次元積層造形装置において、造形材供給手段と断面形状形成手段を、積層手段の回転軸を中心に囲むように配置したことを特徴とする3次元積層造形装置。   The three-dimensional layered manufacturing apparatus according to any one of claims 1 to 15, wherein the modeling material supply unit and the cross-sectional shape forming unit are arranged so as to surround a rotation axis of the stacking unit. Dimensional additive manufacturing equipment. 請求項2乃至16の何れか一に記載の3次元積層造形装置において、着色手段を、積層手段の回転軸を中心に囲むように配置したことを特徴とする3次元積層造形装置。   The three-dimensional additive manufacturing apparatus according to any one of claims 2 to 16, wherein the coloring means is disposed so as to surround the rotation axis of the additive means. 請求項1乃至17の何れか一項に記載の3次元積層造形装置において、断面形状形成手段は、3次元CADデータから造形層の造形面の回転半径の円弧面で3次元形状をカットした断面データを作成する断面データ作成手段からなることを特徴とする3次元積層造形装置。   18. The three-dimensional additive manufacturing apparatus according to claim 1, wherein the cross-sectional shape forming unit is a cross-section obtained by cutting a three-dimensional shape from a three-dimensional CAD data with an arc surface having a rotation radius of a modeling surface of the modeling layer. A three-dimensional additive manufacturing apparatus comprising cross-section data creating means for creating data. 請求項2乃至18の何れか一項に記載の3次元積層造形装置において、着色手段は、3次元CADデータから造形層の造形面の回転半径の円弧面で3次元形状をカットした断面の着色データを作成する断面着色データ作成手段からなることを特徴とする3次元積層造形装置。   The three-dimensional additive manufacturing apparatus according to any one of claims 2 to 18, wherein the coloring means colorizes a cross-section obtained by cutting a three-dimensional shape with an arc surface having a rotation radius of a modeling surface of a modeling layer from three-dimensional CAD data. A three-dimensional additive manufacturing apparatus comprising cross-section coloring data creating means for creating data. 請求項1乃至19の何れか一項に記載の3次元積層造形装置において、積層手段は、造形層の造形面の回転半径に沿って上記造形層を保持する造形層保持手段を備えることを特徴とする3次元積層造形装置。   The three-dimensional additive manufacturing apparatus according to any one of claims 1 to 19, wherein the stacking unit includes a modeling layer holding unit that holds the modeling layer along a rotation radius of a modeling surface of the modeling layer. A three-dimensional additive manufacturing apparatus. 請求項1乃至20の何れか一項に記載の3次元積層造形装置において、積層手段は、回転軸を中心に囲むように複数の造形テーブルを配置したことを特徴とする3次元積層造形装置。   21. The three-dimensional additive manufacturing apparatus according to claim 1, wherein the additive means includes a plurality of forming tables so as to surround the rotation axis. 請求項1乃至21の何れか一項に記載の3次元積層造形装置において、積層手段は、連続回転させながら造形テーブルを造形層の造形面から新たに供給され造形材の厚みだけ離間させる離間手段を備えることを特徴とする3次元積層造形装置。   The three-dimensional additive manufacturing apparatus according to any one of claims 1 to 21, wherein the stacking unit is a separation unit that separates the modeling table by the thickness of the modeling material newly supplied from the modeling surface of the modeling layer while continuously rotating. A three-dimensional additive manufacturing apparatus comprising: 請求項1乃至22の何れか一項に記載の3次元積層造形装置において、造形材供給手段は、積層手段の回転中に造形材を所定の厚みで造形層の造形面を形成する造形エリアに供給することを特徴とする3次元積層造形装置。   The three-dimensional additive manufacturing apparatus according to any one of claims 1 to 22, wherein the modeling material supply unit is configured to form a modeling surface of the modeling layer with a predetermined thickness during the rotation of the stacking unit. A three-dimensional additive manufacturing apparatus characterized by supplying. 請求項1乃至23の何れか一項に記載の3次元積層造形装置において、断面形状形成手段は、積層手段の回転中に造形材からなる新たな造形層に3次元形状の断面データをもとに断面形状の硬化領域を繰り返し形成することを特徴とする3次元積層造形装置。   The three-dimensional layered manufacturing apparatus according to any one of claims 1 to 23, wherein the cross-sectional shape forming means is based on cross-sectional data of a three-dimensional shape in a new modeling layer made of a modeling material during the rotation of the stacking means. A three-dimensional layered manufacturing apparatus characterized by repeatedly forming a cross-sectionally cured region. 請求項2乃至24の何れか一項に記載の3次元積層造形装置において、着色手段は、積層手段の回転中に断面形状形成手段が形成した造形層の硬化領域に、3次元形状の断面着色データをもとに着色を行うことを特徴とする3次元積層造形装置。
25. The three-dimensional additive manufacturing apparatus according to any one of claims 2 to 24, wherein the coloring means is a three-dimensional cross-sectional coloring in a cured region of the modeling layer formed by the cross-sectional shape forming means during rotation of the lamination means. A three-dimensional additive manufacturing apparatus characterized by coloring based on data.
JP2003290965A 2003-08-08 2003-08-08 Three-dimensional laminate shaping apparatus Pending JP2005059324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003290965A JP2005059324A (en) 2003-08-08 2003-08-08 Three-dimensional laminate shaping apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003290965A JP2005059324A (en) 2003-08-08 2003-08-08 Three-dimensional laminate shaping apparatus

Publications (1)

Publication Number Publication Date
JP2005059324A true JP2005059324A (en) 2005-03-10

Family

ID=34368803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003290965A Pending JP2005059324A (en) 2003-08-08 2003-08-08 Three-dimensional laminate shaping apparatus

Country Status (1)

Country Link
JP (1) JP2005059324A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012106437A (en) * 2010-11-18 2012-06-07 Sony Corp 3-dimensional modeling apparatus, 3-dimensional modeling method and modeled object
JP2013540629A (en) * 2010-10-27 2013-11-07 ユージーン ギラー 3D object modeling process and modeling equipment
JP2015112751A (en) * 2013-12-10 2015-06-22 セイコーエプソン株式会社 Molding material, molding method, molding object, and molding apparatus
JP2015522450A (en) * 2012-06-04 2015-08-06 イフォクレール ヴィヴァデント アクチェンゲゼルシャフトIvoclar Vivadent AG How to build a 3D compact
JP2015143032A (en) * 2015-04-02 2015-08-06 ソニー株式会社 Three-dimensional molding apparatus
KR20170048975A (en) * 2015-10-27 2017-05-10 엘지전자 주식회사 Laser sintering apparatus capable of continously laser sintering
US9694542B2 (en) 2014-09-12 2017-07-04 Ricoh Company, Ltd. Method and apparatus for molding three-dimensional object and molding data generation method for three-dimensional object
US9919475B2 (en) 2014-09-16 2018-03-20 Ricoh Company, Ltd. Three-dimensional printing apparatus, three-dimensional object forming method, and three-dimensional object
US10029440B2 (en) 2015-02-19 2018-07-24 Ricoh Company, Ltd. Method and apparatus for fabricating three-dimensional object and recording medium
US10207326B2 (en) 2014-06-02 2019-02-19 Ricoh Company, Ltd. Apparatus for fabricating three-dimensional object
JP2019505422A (en) * 2015-12-31 2019-02-28 エヴォルブ・アディティブ・ソリューションズ・インコーポレーテッド Construction using cylindrical layers in additive manufacturing.
US10265769B2 (en) 2015-11-04 2019-04-23 Ricoh Company, Ltd. Apparatus for fabricating three-dimensional object
US11364544B2 (en) 2017-02-24 2022-06-21 Mitsubishi Heavy Industries Compressor Corporation Method and device for performing additive manufacturing while rotating a spindle
JP2022541108A (en) * 2019-06-29 2022-09-22 浙江大学 3D printing method of air core configuration of complex curved surface

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10265910B2 (en) 2010-10-27 2019-04-23 Rize Inc. Process and apparatus for fabrication of three-dimensional objects
JP2013540629A (en) * 2010-10-27 2013-11-07 ユージーン ギラー 3D object modeling process and modeling equipment
US11148354B2 (en) 2010-10-27 2021-10-19 Rize, Inc. Process and apparatus for fabrication of three dimensional objects
US10357918B2 (en) 2010-10-27 2019-07-23 Rize Inc. Process and apparatus for fabrication of three dimensional objects
JP2012106437A (en) * 2010-11-18 2012-06-07 Sony Corp 3-dimensional modeling apparatus, 3-dimensional modeling method and modeled object
JP2015522450A (en) * 2012-06-04 2015-08-06 イフォクレール ヴィヴァデント アクチェンゲゼルシャフトIvoclar Vivadent AG How to build a 3D compact
JP2015112751A (en) * 2013-12-10 2015-06-22 セイコーエプソン株式会社 Molding material, molding method, molding object, and molding apparatus
US9849632B2 (en) 2013-12-10 2017-12-26 Seiko Epson Corporation Mold material, molding method, mold object, and molding apparatus
US10207326B2 (en) 2014-06-02 2019-02-19 Ricoh Company, Ltd. Apparatus for fabricating three-dimensional object
US9694542B2 (en) 2014-09-12 2017-07-04 Ricoh Company, Ltd. Method and apparatus for molding three-dimensional object and molding data generation method for three-dimensional object
US9919475B2 (en) 2014-09-16 2018-03-20 Ricoh Company, Ltd. Three-dimensional printing apparatus, three-dimensional object forming method, and three-dimensional object
US10029440B2 (en) 2015-02-19 2018-07-24 Ricoh Company, Ltd. Method and apparatus for fabricating three-dimensional object and recording medium
JP2015143032A (en) * 2015-04-02 2015-08-06 ソニー株式会社 Three-dimensional molding apparatus
KR102290893B1 (en) 2015-10-27 2021-08-19 엘지전자 주식회사 Laser sintering apparatus capable of continously laser sintering
KR20170048975A (en) * 2015-10-27 2017-05-10 엘지전자 주식회사 Laser sintering apparatus capable of continously laser sintering
US10265769B2 (en) 2015-11-04 2019-04-23 Ricoh Company, Ltd. Apparatus for fabricating three-dimensional object
JP2019505422A (en) * 2015-12-31 2019-02-28 エヴォルブ・アディティブ・ソリューションズ・インコーポレーテッド Construction using cylindrical layers in additive manufacturing.
US11364544B2 (en) 2017-02-24 2022-06-21 Mitsubishi Heavy Industries Compressor Corporation Method and device for performing additive manufacturing while rotating a spindle
JP2022541108A (en) * 2019-06-29 2022-09-22 浙江大学 3D printing method of air core configuration of complex curved surface

Similar Documents

Publication Publication Date Title
RU2602895C1 (en) Method for producing a structures body and device for producing thereof
JP2005059324A (en) Three-dimensional laminate shaping apparatus
EP0633129B1 (en) Sheet laminate molding method and apparatus
JP3152326B2 (en) Additive manufacturing method and additive manufacturing apparatus
US9141015B2 (en) Electrophotography-based additive manufacturing system with transfer-medium service loops
JPH08297432A (en) Apparatus and method for manufacture of prototype inclusive of part and support
CN110884116B (en) Photocuring 3D printing system and printing method
CN108367464B (en) Method of printing on a 3D jet printer
US9446558B2 (en) Three-dimensional printing apparatus and printing head module
CN105026125A (en) Continuous feed 3D manufacturing
EP3219470B1 (en) Three dimensional printing apparatus
TW201801897A (en) Slot die manufacturing apparatus and manufacturing method
KR102222469B1 (en) 3D Printer
US11806926B2 (en) Apparatus for continuous high-speed 3D printing
JP2021530384A (en) How to build up objects layer by layer and 3D printing equipment to perform such methods
JPH08294742A (en) Method and device for making prototype containing part and support
JP6758349B2 (en) 3D printing method
JPH0857967A (en) Three-dimensional shaping method
JPH09216291A (en) Three-dimensional matter and method and apparatus for forming the same
CN108068310B (en) Three-dimensional printing method
KR20190100540A (en) 3d printing apparatus comprising cleansing module and 3d printing method
JPWO2019058515A1 (en) Method for forming semi-cured layer and apparatus for forming semi-cured layer
KR101628164B1 (en) 3d printing system using block type structure combined with fdm technology and this hybrid data generation method for 3d printing
JP2000177016A (en) Manufacture of three-dimensionally shaped article
JP2002292749A (en) Three-dimensions forming method