JP2005054512A - Water-retentive brick having strength compatible with water retentivity - Google Patents

Water-retentive brick having strength compatible with water retentivity Download PDF

Info

Publication number
JP2005054512A
JP2005054512A JP2003288263A JP2003288263A JP2005054512A JP 2005054512 A JP2005054512 A JP 2005054512A JP 2003288263 A JP2003288263 A JP 2003288263A JP 2003288263 A JP2003288263 A JP 2003288263A JP 2005054512 A JP2005054512 A JP 2005054512A
Authority
JP
Japan
Prior art keywords
water
brick
retaining
sludge
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003288263A
Other languages
Japanese (ja)
Other versions
JP4220854B2 (en
Inventor
Kozo Yokota
耕三 横田
Tsutomu Onishi
力 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiichi Ceramic Kogyo Kk
Kagawa Prefectural Government
Original Assignee
Daiichi Ceramic Kogyo Kk
Kagawa Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Ceramic Kogyo Kk, Kagawa Prefectural Government filed Critical Daiichi Ceramic Kogyo Kk
Priority to JP2003288263A priority Critical patent/JP4220854B2/en
Publication of JP2005054512A publication Critical patent/JP2005054512A/en
Application granted granted Critical
Publication of JP4220854B2 publication Critical patent/JP4220854B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/60Planning or developing urban green infrastructure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Treatment Of Sludge (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Road Paving Structures (AREA)
  • Finishing Walls (AREA)
  • Floor Finish (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water-retentive brick for inhibiting the heat island phenomenon of an urban section. <P>SOLUTION: In the water-retentive brick and its manufacturing method, in which the coagulated particles of high melting-point waste such as water purification sludge are used as a water retention material and the water retention material is dispersed to blended clay as the base of the brick in 5 to 80 wt. %, which is manufactured by an extrusion molding method and baked and in which a bending strength is 10 MPa or more, a natural water absorption at a time when the thickness of the brick is 9 L/m<SP>2</SP>or more, the mean pore diameter of the brick is 1 to 20 μm and a strength and a water retentivity are made compatible. In the water retention material, a maximum particle size is 3 mm or less, and a particle content of 50 μm or less is occupied by the coagulated particles of 50% or less. The component of sludge is composed of the composition of Si0<SB>2</SB>/Al<SB>2</SB>0<SB>3</SB>=0.5 to 2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、強度と保水性を両立させた保水煉瓦に関する。   The present invention relates to a water retaining brick having both strength and water retention.

都市部のヒートアイランド現象を抑制するひとつの方法として、保水機能を有する建材の利用が活発に検討されている。これは、保水材料が水を蒸発放水する際の気化熱を利用したものである。保水材料としては、コンクリート製品、煉瓦、ハイドロサーマル固化体、炭酸固化体など各メーカーから様々提案され、保水材料を施工した舗道等の温度低下も既に報告されている。
煉瓦は耐候性に優れた材料であり、歩道等に多く用いられているが、一般的な煉瓦は吸水率7%以下であり、大きな保水機能は有していない。近年、ガラスや長石等の低融点結合材を使用した比較的大きな気孔を有する保水煉瓦も商品化されているが、プレス成形品であり、焼き物特有の風合いに欠ける。保水機能を発現させるためには、適度な気孔径を有する多孔質材料とする必要があるが、材料の気孔率を高めると機械的強度が低下する問題があり、両者を満足する保水煉瓦は少なく、中でも従来の押出成形により製造される保水煉瓦は極めて少ない。
As one method for suppressing urban heat island phenomenon, the use of building materials having a water retention function is being actively studied. This utilizes the heat of vaporization when the water retention material evaporates and discharges water. Various water-retaining materials such as concrete products, bricks, hydrothermal solidified bodies, carbonized solid bodies have been proposed by various manufacturers, and the temperature drop of pavements and the like where water-retaining materials have been constructed has already been reported.
Brick is a material with excellent weather resistance and is often used for sidewalks, etc., but general brick has a water absorption rate of 7% or less and does not have a large water retention function. In recent years, water retaining bricks having relatively large pores using low melting point binders such as glass and feldspar have been commercialized, but they are press-formed products and lack the texture peculiar to ceramics. In order to express the water retention function, it is necessary to use a porous material having an appropriate pore size. However, there is a problem that increasing the porosity of the material decreases the mechanical strength, and there are few water retention bricks that satisfy both. In particular, very few water retaining bricks are produced by conventional extrusion.

浄水場の濾過工程等で発生する浄水汚泥は、香川県においても年間約3000トン(含水率約70%含有)排出されており、そのほとんどが埋め立て処分されている。一般的な浄水汚泥には凝集剤としてポリ塩化アルミニウムが使用されており、煉瓦用原料粘土と比較してアルミニウム成分が多いものの、有害な物質は含まれておらず、窯業原料として使用できる。   Purified water sludge generated in the filtration process of the water purification plant is discharged about 3000 tons (containing a water content of about 70%) annually in Kagawa Prefecture, most of which is disposed of in landfills. In general water purification sludge, polyaluminum chloride is used as a flocculant, and although it contains more aluminum components than brick raw clay, it does not contain harmful substances and can be used as a ceramic raw material.

保水煉瓦を製造する方法として最も多く採用されているのは、溶融温度の高い原料あるいはそれを仮焼して作製した多孔質材料と、低融点結合材例えばガラス、長石、フリット、溶融スラグなどの結合材とを混合し、プレス成形後焼成して作製する方法である。例えば、特許文献1、2などがあり、保水性だけでなく透水性にも優れた保水材を提供している。
しかし、基本的にこれら保水煉瓦はプレス成形であり、寸法精度など均一性には優れるものの、いわゆる焼き物独特の風合いには欠けるものであり、外見上コンクリート製品との差別化が図れない場合がある。また、これら保水煉瓦の機械的強度は曲げ強さでいえば、10MPa以下であり、床タイルのJISの強度をクリアーしているものの十分な強度であるとは言い難く、歩道に使用したとしても重量車両の横断により破壊される恐れがある。
一方、従来から保水能力のある煉瓦として、通常の煉瓦よりも焼成温度を低くした素焼き煉瓦があるが、これも機械的強度が10MPa以下と低く、また、一般的に平均気孔径が1μm以下と小さいため、毛管力は大きいものの吸水速度は遅く、降雨後、水が内部にしみ込みにくく煉瓦表面に水が溜まりやすくなる。
浄水汚泥には一般的にポリ塩化アルミニウムや硫酸バンドなどの凝集剤が含まれており、乾燥すると強固に凝集する。また、煉瓦用原料粘土と比較してアルミニウム成分が多く、耐火度が高いため、通常の煉瓦用原料粘土の焼成温度で焼成した場合、焼き締まりが悪くなり多孔質材となる。しかし、粒子径3mm以上の凝集した浄水汚泥が混入した煉瓦は、その混入率が数%であっても、煉瓦の強度は低下し、特に含水率30%以上の乾燥浄水汚泥を添加した場合は、強度が著しく低下する。これは、含水率30%以上の乾燥浄水汚泥の焼成収縮率は20%以上と大きく、ベースとなる煉瓦素地と浄水汚泥との間に収縮率の差による大きな空隙が生じるためであり、この効果は汚泥の粒子径が大きいほど大きくなる。逆に高温まで汚泥を焼成し、収縮率を無くしたものは、ベースの煉瓦素地と浄水汚泥との間の空隙が無く、機械的強度は高いが、煉瓦の気孔径は、素地と汚泥焼結体おのおのの気孔径に支配され、気孔径が1μm以下になる場合が多い。
特開平10−72270号公報 特開平2003−146772号公報
The most widely used method for producing water retaining bricks is a raw material with a high melting temperature or a porous material prepared by calcining it and a low melting point binder such as glass, feldspar, frit, molten slag, etc. In this method, a binder is mixed and fired after press molding. For example, there are Patent Documents 1 and 2 and the like, and a water retention material that is excellent not only in water retention but also in water permeability is provided.
However, these water-retaining bricks are basically press-molded and have excellent uniformity such as dimensional accuracy, but lack the unique texture of so-called pottery and may not be able to differentiate from concrete products in appearance. . In addition, the mechanical strength of these water retaining bricks is 10MPa or less in terms of bending strength, and although it is clear that the floor tiles are JIS, it is difficult to say that they are sufficient. There is a risk of being destroyed by crossing heavy vehicles.
On the other hand, as a brick having a water retention capacity, there is an unglazed brick whose firing temperature is lower than that of a normal brick, which has a mechanical strength as low as 10 MPa or less and generally has an average pore diameter of 1 μm or less. Since it is small, the capillary force is large, but the water absorption speed is slow, and after raining, it is difficult for water to soak into the interior and water tends to accumulate on the brick surface.
Purified water sludge generally contains a flocculant such as polyaluminum chloride or sulfuric acid band, and when dried, it coagulates firmly. Moreover, since there are many aluminum components compared with the raw material clay for bricks, and a fire resistance is high, when it bakes at the baking temperature of the normal raw material clay for bricks, baking becomes worse and it becomes a porous material. However, bricks mixed with agglomerated purified water sludge with a particle diameter of 3 mm or more will have a reduced brick strength even if the mixing rate is only a few percent, especially when dry purified sludge with a moisture content of 30% or more is added. , The strength is significantly reduced. This is because the dry shrinkage of the purified water sludge with a moisture content of 30% or more has a large firing shrinkage of 20% or more, and a large gap is generated between the base brick body and the purified water sludge due to the difference in shrinkage. Increases as the particle size of the sludge increases. On the contrary, the sludge baked to a high temperature without shrinkage has no gap between the base brick substrate and the purified water sludge, and the mechanical strength is high, but the pore size of the brick is sintered between the substrate and the sludge. It is governed by the pore diameter of each body, and the pore diameter is often 1 μm or less.
Japanese Patent Laid-Open No. 10-72270 Japanese Patent Application Laid-Open No. 2003-146772

本発明の目的は、浄水汚泥等高融点廃棄物を利用して、都市部のヒートアイランド現象を抑制するための強度と保水性を両立させた保水煉瓦を提供することにある。   An object of the present invention is to provide a water-retaining brick that uses both high-melting-point waste such as purified water sludge to achieve both strength and water retention for suppressing urban heat island phenomena.

本発明は、以下の(1)ないし(7)の保水煉瓦を要旨としている。
(1) 浄水汚泥等高融点廃棄物の凝集粒子を保水材として用い、該保水材を煉瓦のベースとなる配合粘土に5〜80重量%分散させ、押出し成形法により作製し、焼成した、曲げ強さが10MPa以上で、煉瓦の厚みを60mmとしたときの自然吸水量が9L/m2以上、かつ、煉瓦の平均気孔径が1〜20μmである、強度と保水性を両立させた保水煉瓦。
(2) 浄水汚泥等高融点廃棄物の凝集粒子を保水材として用い、該保水材を煉瓦のベースとなる配合粘土に10〜50重量%分散させ、押出し成形法により作製し、焼成した、曲げ強さが15MPa以上で、煉瓦の厚みを60mmとしたときの自然吸水量が12L/m2以上、かつ、煉瓦の平均気孔径が1〜20μmである、強度と保水性を両立させた保水煉瓦。
(3) 上記の保水材が、最大粒子径が3mm以下で、かつ、50μm以下の粒子含有量は50%以下の凝集粒子である上記の(1)または(2)の保水煉瓦。
(4) 上記の保水材が、
1) 煉瓦のベースとなる配合粘土より溶融温度が少なくとも50℃以上高く、
2) 含水率30%以下であり、
3) 配合粘土成形体素地との焼成後の収縮率の差が1〜15%であり、かつ、気孔率が焼成後の配合粘土成形体素地より5%以上大きくなる、
浄水汚泥等高融点廃棄物の凝集粒子である上記の(3)の保水煉瓦。
(5) 上記の保水材が、最大粒子径が1mm以下で、かつ、50μm以下の粒子含有量は50%以下の凝集粒子である上記の(1)または(2)の保水煉瓦。
(6) 上記の保水材が、
1) 煉瓦のベースとなる配合粘土より溶融温度が50℃〜100℃高く、
2) 含水率10%以下であり、
3) 配合粘土成形体素地との焼成後の収縮率の差が5〜10%であり、かつ、気孔率が焼成後の配合粘土成形体素地より5%以上大きくなる、
浄水汚泥等高融点廃棄物の凝集粒子である上記の(5)の保水煉瓦。
(7) 上記の汚泥の成分がSiO2/Al23=0.5〜2の組成からなる上記の(1)ないし(6)のいずれかの保水煉瓦。
The gist of the present invention is the following water-retaining bricks (1) to (7).
(1) Using aggregated particles of high melting point waste such as purified water sludge as a water retentive material, 5-80% by weight of the water retentive material is dispersed in a blended clay as a base of a brick, produced by extrusion, and baked Water-retaining brick that has both strength and water-retaining capacity, with a natural water absorption of 9 L / m 2 or more when the strength is 10 MPa or more and the brick thickness is 60 mm, and the average pore diameter of the brick is 1 to 20 μm. .
(2) Using aggregated particles of high melting point waste such as purified water sludge as a water retention material, the water retention material is dispersed in a blended clay as a base of brick in an amount of 10 to 50% by weight, prepared by extrusion, and baked. Water-retaining brick that has both strength and water-retaining capacity, with a strength of 15 MPa or more, a natural water absorption of 12 L / m 2 or more when the thickness of the brick is 60 mm, and an average pore diameter of the brick of 1 to 20 μm .
(3) The water retaining brick according to (1) or (2), wherein the water retaining material is an aggregated particle having a maximum particle diameter of 3 mm or less and a particle content of 50 μm or less of 50% or less.
(4) The above water retaining material
1) The melting temperature is at least 50 ° C higher than the blended clay used as the base of the brick,
2) Moisture content is 30% or less,
3) The difference in shrinkage after firing with the blended clay body is 1 to 15%, and the porosity is 5% or more larger than that of the blended clay body after firing.
The water-retaining brick as described in (3) above, which is agglomerated particles of high melting point waste such as purified water sludge.
(5) The water retaining brick according to (1) or (2), wherein the water retaining material is an aggregated particle having a maximum particle size of 1 mm or less and a particle content of 50 μm or less of 50% or less.
(6) The above water retaining material
1) The melting temperature is 50 ° C to 100 ° C higher than the blended clay used as the base of the brick,
2) Moisture content is 10% or less,
3) The difference in shrinkage after firing with the blended clay molded body is 5 to 10%, and the porosity is 5% or more larger than that of the blended clay molded body after firing.
The water-retaining brick as described in (5) above, which is agglomerated particles of high melting point waste such as purified water sludge.
(7) The water retaining brick according to any one of the above (1) to (6), wherein the sludge component is composed of SiO 2 / Al 2 O 3 = 0.5-2.

本発明は、以下の(8)ないし(9)の保水煉瓦の製造方法を要旨とし、(10)ないし(14)をその好ましい実施態様とする。
(8) 保水煉瓦の製造方法であって、浄水汚泥等高融点廃棄物の凝集粒子を保水材として用い、該保水材を煉瓦のベースとなる配合粘土に5〜80重量%分散させ、押出し成形法により作製し、当該成形品を焼成して、曲げ強さが10MPa以上で、煉瓦の厚みを60mmとしたときの自然吸水量が9L/m2以上、かつ、煉瓦の平均気孔径が1〜20μmである、強度と保水性を両立させた保水煉瓦を得ることを特徴とする製造方法。
(9) 保水煉瓦の製造方法であって、浄水汚泥等高融点廃棄物の凝集粒子を保水材として用い、該保水材を煉瓦のベースとなる配合粘土に10〜50重量%分散させ、押出し成形法により作製し、当該成形品を焼成して、曲げ強さが15MPa以上で、煉瓦の厚みを60mmとしたときの自然吸水量が12L/m2以上、かつ、煉瓦の平均気孔径が1〜20μmである、強度と保水性を両立させた保水煉瓦を得ることを特徴とする製造方法。
(10) 上記の保水材が、最大粒子径が3mm以下で、かつ、50μm以下の粒子含有量は50%以下の凝集粒子である上記の(8)または(9)の保水煉瓦の製造方法。
(11) 上記の保水材が、
1) 煉瓦のベースとなる配合粘土より溶融温度が少なくとも50℃以上高く、
2) 含水率30%以下であり、
3) 配合粘土成形体素地との焼成後の収縮率の差が1〜15%であり、かつ、気孔率が焼成後の配合粘土成形体素地より5%以上大きくなる、
浄水汚泥等高融点廃棄物の凝集粒子である上記の(10)の保水煉瓦の製造方法。
(12) 上記の保水材が、最大粒子径が1mm以下で、かつ、50μm以下の粒子含有量は50%以下の凝集粒子である上記の(8)または(9)の保水煉瓦の製造方法。
(13) 上記の保水材が、
1) 煉瓦のベースとなる配合粘土より溶融温度が50℃〜100℃高く、
2) 含水率10%以下であり、
3) 配合粘土成形体素地との焼成後の収縮率の差が5〜10%であり、かつ、気孔率が焼成後の配合粘土成形体素地より5%以上大きくなる、
浄水汚泥等高融点廃棄物の凝集粒子である上記の(12)の保水煉瓦の製造方法。
(14) 上記の汚泥の成分がSiO2/Al23=0.5〜2の組成からなる上記の(8)ないし(13)のいずれかの保水煉瓦の製造方法。
The gist of the present invention is the following methods (8) to (9) for producing water retaining bricks, and (10) to (14) are preferred embodiments thereof.
(8) A method for producing water-retaining bricks, which uses agglomerated particles of high-melting-point waste such as purified water sludge as a water retentive material, disperses the water retentive material in a blended clay as a base of the brick, and extrudes it The molded article is fired, the molded article is fired, the bending strength is 10 MPa or more, the natural water absorption is 9 L / m 2 or more when the brick thickness is 60 mm, and the average pore diameter of the brick is 1 to The manufacturing method characterized by obtaining the water-retaining brick which is 20 micrometers, and made the strength and water retention compatible.
(9) A method for producing water-retaining bricks, which uses agglomerated particles of high-melting-point waste such as purified water sludge as a water retentive material, and the water retentive material is dispersed in blended clay as a base of the brick by 10 to 50% by weight, followed by extrusion molding. The molded article is fired and the molded article is fired. When the bending strength is 15 MPa or more and the brick thickness is 60 mm, the natural water absorption is 12 L / m 2 or more, and the average pore diameter of the brick is 1 to 2. The manufacturing method characterized by obtaining the water-retaining brick which is 20 micrometers, and made the strength and water retention compatible.
(10) The method for producing a water-retaining brick according to (8) or (9), wherein the water retention material is an aggregated particle having a maximum particle diameter of 3 mm or less and a particle content of 50 μm or less of 50% or less.
(11) The above water retaining material
1) The melting temperature is at least 50 ° C higher than the blended clay used as the base of the brick,
2) Moisture content is 30% or less,
3) The difference in shrinkage after firing with the blended clay body is 1 to 15%, and the porosity is 5% or more larger than that of the blended clay body after firing.
(10) The method for producing a water-retaining brick according to (10) above, which is an agglomerated particle of high melting point waste such as purified water sludge.
(12) The method for producing a water-retaining brick according to (8) or (9), wherein the water-retaining material is an aggregated particle having a maximum particle size of 1 mm or less and a particle content of 50 μm or less of 50% or less.
(13) The water retaining material is
1) The melting temperature is 50 ° C to 100 ° C higher than the blended clay used as the base of the brick,
2) Moisture content is 10% or less,
3) The difference in shrinkage after firing with the blended clay molded body is 5 to 10%, and the porosity is 5% or more larger than that of the blended clay molded body after firing.
(12) The method for producing water-retaining bricks according to (12) above, which is agglomerated particles of high melting point waste such as purified water sludge.
(14) The method for producing a water-retaining brick according to any one of (8) to (13), wherein the sludge component has a composition of SiO 2 / Al 2 O 3 = 0.5-2.

浄水汚泥等高融点廃棄物を原料(保水材)として活用し、既存製造設備を使用することにより、都市部のヒートアイランド現象抑制に効果のある土木・建築資材である強度と保水性を両立させた保水煉瓦を提供することができる。   Utilizing high-melting-point waste such as purified water sludge as a raw material (water-retaining material), and using existing manufacturing equipment, both strength and water retention, both civil engineering and building materials effective in suppressing urban heat island phenomena Water retaining bricks can be provided.

煉瓦のベースとなる配合粘土について説明する。
煉瓦のベースとなる配合粘土はいわゆる煉瓦用粘土であり、一般的な鉱物組成は、石英、長石、粘土からなる。石英(SiO2)は煉瓦の骨材の働きをもつ。長石は主にカリ長石(K2O・Al23・6SiO2)、ソーダ長石(K2O・Al23・6SiO2)であり、融材として働く。粘土は主にカオリン、すなわちカオリナイト(Al23・2SiO2・2H2O)あるいはハロイサイト(Al23・2SiO2・4H2O)であり、可塑材としての働きをもつ。これら3つの組成がバランスよく含まれていることにより、押出成形が可能となり、焼成中に緻密化し、煉瓦となる。したがって一般的には、煉瓦用粘土の化学成分SiO2/Al23比は2以上である。
The blended clay used as the base of the brick will be described.
The blended clay used as the base of the brick is so-called brick clay, and the general mineral composition is composed of quartz, feldspar, and clay. Quartz (SiO 2 ) functions as a brick aggregate. Feldspar mainly potash feldspar (K 2 O · Al 2 O 3 · 6SiO 2), a soda feldspar (K 2 O · Al 2 O 3 · 6SiO 2), acts as a fusing material. Clay is mainly kaolin, that is, kaolinite (Al 2 O 3 .2SiO 2 .2H 2 O) or halloysite (Al 2 O 3 .2SiO 2 .4H 2 O), and functions as a plasticizer. When these three compositions are contained in a well-balanced manner, extrusion molding is possible, and densification occurs during firing, resulting in a brick. Therefore, in general, the ratio of chemical component SiO 2 / Al 2 O 3 of brick clay is 2 or more.

浄水汚泥等高融点廃棄物の凝集粒子について説明する。
上水場の浄水処理プロセスには濁質を除去するために緩速ろ過システムと急速ろ過システムがある。緩速ろ過システムは、比較的粒子径の大きい浮遊物を自然沈降によりろ過するシステムである。一方、急速ろ過システムはコロイドのような自然沈降しにくい不純物を、薬剤(凝集剤)を加えて沈殿除去するシステムである。濁質の主な成分としては、砂、粘土、鉄、有機物などである。また、凝集剤として主に使用されているものは、硫酸アルミニウム(硫酸バンド)やポリ塩化アルミニウム(PAC)である。したがって、急速ろ過システムにおいて発生する沈殿物(浄水汚泥)はアルミニウム分の多い組成となり、これは、通常煉瓦に使用されている粘土と比較してもその量は多くなっている。
例えば、通常の粘土はSiO2/Al23比が2以上であるが、浄水汚泥はその比が0.5〜2となっている。SiO2に対してAl23が多くなると焼成により耐火物原料であるムライトが生成しやすくなり、通常の粘土と比較して耐火度(溶融温度)が高い高融点原料となる。また、浄水汚泥は凝集剤が含まれているため、乾燥すると強固に凝集し、十分な粉砕・解砕処理をしない限り、凝集2次粒子として残存する。
The agglomerated particles of high melting point waste such as purified water sludge will be described.
There are two types of water purification processes in waterworks: slow filtration system and rapid filtration system to remove turbidity. The slow filtration system is a system for filtering a suspended matter having a relatively large particle diameter by natural sedimentation. On the other hand, the rapid filtration system is a system for removing impurities such as colloids, which are difficult to settle naturally, by adding a chemical (flocculant). The main components of turbidity are sand, clay, iron and organic matter. Moreover, what is mainly used as a flocculant is aluminum sulfate (sulfuric acid band) and polyaluminum chloride (PAC). Therefore, the precipitate (purified water sludge) generated in the rapid filtration system has a composition containing a large amount of aluminum, and this amount is larger than that of clay normally used for bricks.
For example, normal clay has a SiO 2 / Al 2 O 3 ratio of 2 or more, but purified water sludge has a ratio of 0.5-2. When Al 2 O 3 is increased with respect to SiO 2 , mullite, which is a refractory material, is likely to be generated by firing, and a high melting point material having a higher fire resistance (melting temperature) than ordinary clay. Further, since the purified water sludge contains a flocculant, it is strongly agglomerated when dried, and remains as agglomerated secondary particles unless it is sufficiently pulverized and crushed.

保水煉瓦の製造方法について説明する。
煉瓦用粘土に、粒子径、気孔率、焼成収縮率等を制御した浄水汚泥等高融点廃棄物の凝集粒子を保水材として分散させ、押出成形し、焼成して作製した保水煉瓦を提供する。製造工程は、原料を混合し、押出成形により成形後、従来粘土瓦や赤煉瓦などの焼成に使用されてきたトンネル炉等を使用して焼成するものであり、既存の工程とほぼ同じである。 すなわち、上記の保水材として
(i) 最大粒子径が3mm以下望ましくは1mm以下で、かつ、50μm以下の粒子含有量は50%以下で、
(ii) 煉瓦のベースとなる配合粘土より耐火度(溶融温度)が少なくとも50℃以上、好ましくは50℃〜100℃高く、
(iii) 含水率30%以下望ましくは10%以下であり、
(iv) 配合粘土成形体素地との焼成後の収縮率の差が1〜15%、好ましくは5〜10%であり、かつ、気孔率が焼成後の配合粘土成形体素地より5%以上大きく、
(v) 成分がSiO2/Al23=0.5〜2の組成からなる
浄水汚泥等高融点廃棄物の凝集粒子を用い、
該保水材を5〜80重量%、好ましくは10〜50重量%分散させ、押出し成形法により作製し、その後焼成した、
曲げ強さが10MPa以上、望ましくは15MPa以上で、煉瓦の厚みを60mmとしたときの自然吸水量が9L/m2以上、望ましくは12L/m2以上、かつ、煉瓦の平均気孔径が1〜20μmである、
強度と保水性を両立させた保水煉瓦を提供する。
The manufacturing method of a water retaining brick is demonstrated.
Disclosed is a water-retaining brick produced by dispersing aggregated particles of high-melting-point waste such as purified water sludge with controlled particle diameter, porosity, firing shrinkage, etc. as a water-retaining material, extrusion molding, and firing. The manufacturing process involves mixing raw materials, forming by extrusion, and then firing using a tunnel furnace that has been used for firing clay bricks and red bricks, and is almost the same as existing processes. . That is, as the above water retaining material
(i) The maximum particle size is 3 mm or less, desirably 1 mm or less, and the particle content of 50 μm or less is 50% or less,
(ii) The fire resistance (melting temperature) is at least 50 ° C. or more, preferably 50 ° C. to 100 ° C. higher than the blended clay used as the base of the brick;
(iii) Moisture content of 30% or less, desirably 10% or less,
(iv) The difference in shrinkage after firing with the blended clay molded body is 1 to 15%, preferably 5 to 10%, and the porosity is 5% or more larger than that of the blended clay molded body after firing. ,
(v) using agglomerated particles of high melting point waste such as purified water sludge having a composition of SiO 2 / Al 2 O 3 = 0.5-2,
5 to 80% by weight, preferably 10 to 50% by weight, of the water retaining material is dispersed, prepared by an extrusion method, and then fired.
When the bending strength is 10 MPa or more, preferably 15 MPa or more, the natural water absorption is 9 L / m 2 or more, preferably 12 L / m 2 or more when the brick thickness is 60 mm, and the average pore diameter of the brick is 1 to 20 μm,
Providing water-retaining bricks that balance strength and water retention.

本発明により作製した保水煉瓦は、図1に示すように、保水材として粘土素地に分散させた高融点廃棄物の凝集粒子が上記処理により粘土素地との間に生じる適度な空隙、すなわち5〜50μmの比較的大きな気孔によりすばやく吸水することができ、かつ気孔径0.1〜5μmの多孔質保水材で水を保水することができる。高融点廃棄物の凝集粒子と粘土素地間との間に生じる空隙を制御することにより、強度と保水性を両立した保水煉瓦とすることができる。   As shown in FIG. 1, the water-retaining brick produced according to the present invention has moderate voids formed between the high-melting-point waste particles dispersed in the clay base as a water-holding material and the clay base by the above treatment, that is, 5 to 5 Water can be quickly absorbed by a relatively large pore of 50 μm, and water can be retained by a porous water retaining material having a pore diameter of 0.1 to 5 μm. By controlling the voids formed between the aggregated particles of the high melting point waste and the clay base, it is possible to obtain a water retaining brick having both strength and water retention.

煉瓦用粘土に比較して保水材の耐火度が低いと、焼成後、粘土素地より保水材の気孔率が低くなってしまい、保水材として機能しない。保水材として使用する浄水汚泥等高融点廃棄物の凝集粒子は粘土素地より耐火度(溶融温度)が少なくとも50℃以上必要であり、好ましくは50〜100℃が良く、これにより、保水材の気孔率が焼成後の配合粘土成形体素地より5%以上大きくなる。一方、両者の耐火度差が大きすぎると、粘土素地の焼結温度において保水材が焼結せず、保水材は高気孔率となるが強度が著しく低く、煉瓦の強度低下を招く。   If the water resistance of the water retaining material is lower than that of the clay for bricks, the porosity of the water retaining material is lower than that of the clay base after firing, and it does not function as a water retaining material. Agglomerated particles of high-melting-point waste such as purified water sludge used as a water-retaining material must have a fire resistance (melting temperature) of at least 50 ° C., preferably 50 to 100 ° C., more preferably than the clay base. The rate is 5% or more larger than the blended clay body after firing. On the other hand, if the fire resistance difference between the two is too large, the water retaining material does not sinter at the sintering temperature of the clay base, and the water retaining material has a high porosity but is extremely low in strength, leading to a decrease in the strength of the brick.

浄水汚泥等高融点廃棄物の凝集粒子は、最大粒子径が3mm以下望ましくは1mm以下かつ50μm以下の粒子含有量は30%以下で、含水率30%以下望ましくは10%以下であり、配合粘土成形体素地との焼成後の収縮率の差が1〜15%好ましくは5〜10%がよい。これは、高融点廃棄物の凝集粒子と粘土素地間に適度な空隙を生じさせることにより、吸水量及び吸水速度と煉瓦の機械的強度を高めるために必要な条件である。
例えば、高融点廃棄物の凝集粒子の含水率が30%以上であると、凝集粒子自体の焼成後の収縮率が極めて大きくなり、高融点廃棄物の凝集粒子と粘土素地間との間に大きな空隙が生じ、煉瓦の機械的強度を著しく低下させることとなる。同様に浄水汚泥等高融点廃棄物の凝集粒子の粒子径が3mm以上になると収縮量が大きくなり、大きな空隙が生じる。
Agglomerated particles of high melting point waste such as purified water sludge have a maximum particle size of 3 mm or less, preferably 1 mm or less and 50 μm or less. The content of particles is 30% or less, and the water content is 30% or less, preferably 10% or less. The difference in shrinkage ratio after firing with the green body is 1 to 15%, preferably 5 to 10%. This is a necessary condition for increasing the water absorption amount, the water absorption speed, and the mechanical strength of the brick by generating appropriate voids between the aggregated particles of the high melting point waste and the clay base.
For example, when the moisture content of the aggregated particles of the high melting point waste is 30% or more, the shrinkage rate after the firing of the aggregated particles themselves becomes extremely large, and the large amount of space between the aggregated particles of the high melting point waste and the clay base is large. A space | gap will arise and the mechanical strength of a brick will be reduced remarkably. Similarly, when the particle size of high-melting-point waste particles such as purified water sludge becomes 3 mm or more, the amount of shrinkage increases and large voids are generated.

また、浄水汚泥等高融点廃棄物の凝集粒子と配合粘土成形体素地との焼成後の収縮率の差は1〜15%、好ましくは5〜10%がよく、収縮率の差が15%以上になると、これも高融点廃棄物の凝集粒子と粘土素地との間に大きな空隙が生じる。収縮率の差が逆に1%以下になると高融点廃棄物の凝集粒子と粘土素地間との間空隙ができず、吸水速度が遅くなる。   Further, the difference in shrinkage ratio after firing between the aggregated particles of the high melting point waste such as purified water sludge and the blended clay molded body is 1 to 15%, preferably 5 to 10%, and the difference in shrinkage ratio is 15% or more. Then, a large void is generated between the agglomerated particles of the high melting point waste and the clay base. On the contrary, if the difference in shrinkage rate is 1% or less, there is no gap between the aggregated particles of the high melting point waste and the clay body, and the water absorption speed becomes slow.

浄水汚泥等高融点廃棄物の凝集粒子の配合比は全体の5〜80重量%、好ましくは10〜50重量%がよい。5重量%より配合比が低いと、煉瓦の吸水量が低くなり、逆に80重量%より配合比が高いと押出し成形が困難になる。   The mixing ratio of the agglomerated particles of the high melting point waste such as purified water sludge is 5 to 80% by weight, preferably 10 to 50% by weight. If the blending ratio is lower than 5% by weight, the water absorption amount of the brick becomes low. Conversely, if the blending ratio is higher than 80% by weight, extrusion molding becomes difficult.

表1(浄水汚泥及び粘土の化学組成)に示す組成を有する香川県産浄水汚泥Aを含水率10%になるように水分調整し、粉砕して汚泥凝集2次粒子の粒子径を840μm以下かつ53〜840μmの含有量を85%以上に調整した。これを20重量%と、表1に示す組成を有する粘土80重量%を混合して配合土を調製した。これに水を適量加え真空押出成形機で約1×5×10cmに成形した。乾燥後、大気雰囲気で1140〜1175℃に焼成した。なお、1140〜1175℃焼成における粘土素地の収縮率は5.2〜5.5%、汚泥凝集2次粒子の収縮率は17.0〜17.8%で、両者の収縮率の差は11.8〜12.3%であった。
各焼成温度における焼結体の吸水率、かさ密度、開気孔率、焼結体の厚みを60mmとしたときの自然吸水量、平均気孔径、曲げ強さを測定した。結果を表2(煉瓦焼結体の物性I)に示す。
Water content of Kagawa Prefecture purified water sludge A having the composition shown in Table 1 (Chemical composition of purified water sludge and clay) is adjusted to a water content of 10%, pulverized, and the particle diameter of the sludge-aggregated secondary particles is 840 μm or less and The content of 53 to 840 μm was adjusted to 85% or more. 20% by weight of this and 80% by weight of clay having the composition shown in Table 1 were mixed to prepare a blended soil. An appropriate amount of water was added to this and formed into about 1 × 5 × 10 cm with a vacuum extrusion molding machine. After drying, it was fired at 1140 to 1175 ° C. in an air atmosphere. In addition, the shrinkage ratio of the clay body in 1140-1175 degreeC baking is 5.2-5.5%, the shrinkage ratio of the sludge aggregation secondary particle is 17.0-17.8%, and the difference of both shrinkage ratios is 11 0.8-12.3%.
The water absorption, bulk density, open porosity, natural water absorption, average pore diameter, and bending strength when the sintered body thickness was 60 mm at each firing temperature were measured. The results are shown in Table 2 (Physical properties I of brick sintered body).

表2によると、焼成温度が高くなるにしたがって、気孔率が低くなり、曲げ強さが高くなっている。焼成温度1140℃において、曲げ強さ14.8MPa、吸水量14.7L/m2、焼成温度1150℃において、曲げ強さ16.8MPa、吸水量13.0L/m2、焼成温度1160℃において、曲げ強さ16.7MPa、吸水量12.3L/m2となっており、いずれも吸水量が12L/m2と高い保水能力を示している。また、曲げ強さは、JIS A5209における床タイルの幅1cm当たりの破壊荷重より算出した曲げ強さ7.5MPaの約2倍の強度を有している。一方、焼成温度1175℃においては曲げ強さは22.6MPaと極めて高い値を示しているが、吸水量は9.9L/m2とやや低下している。なお、煉瓦の平均気孔径はいずれも約3.5μmであった。これらのことから、浄水汚泥に本発明の処理を施すことにより、強度と保水性を併せ持つ保水煉瓦を作製することができる。 According to Table 2, as the firing temperature increases, the porosity decreases and the bending strength increases. At a firing temperature of 1140 ° C., a bending strength of 14.8 MPa, a water absorption of 14.7 L / m 2 and a firing temperature of 1150 ° C., a bending strength of 16.8 MPa, a water absorption of 13.0 L / m 2 and a firing temperature of 1160 ° C. bending strength 16.7 MPa, and a water absorption 12.3L / m 2, both water absorption indicates a higher water retention capacity and 12L / m 2. Further, the bending strength is approximately twice as strong as the bending strength 7.5 MPa calculated from the breaking load per 1 cm width of the floor tile in JIS A5209. On the other hand, at the firing temperature of 1175 ° C., the bending strength shows an extremely high value of 22.6 MPa, but the water absorption is slightly reduced to 9.9 L / m 2 . The average pore diameter of the bricks was about 3.5 μm. From these things, the water retention brick which has both intensity | strength and water retention property can be produced by performing the process of this invention to purified water sludge.

表1に示す組成を有する香川県産浄水汚泥Bを含水率1%以下になるように水分調整し、粉砕して汚泥凝集2次粒子の粒子径を840μm以下かつ53〜840μmの含有量を90%以上に調整した。これら30重量%に、表1に示す組成を有する粘土70重量%を混合して配合土を調製した。これらに水を適量加え真空押出成形機で約1×5×10cmに成形した。乾燥後、大気雰囲気で1100℃及び1120℃で焼成した。なお、1100℃及び1120℃焼成における粘土素地の収縮率はそれぞれ、5.0、5.1%、汚泥凝集2次粒子の収縮率はそれぞれ12.8、13.1%で、両者の収縮率の差はそれぞれ7.8、8.0%であった。
各焼成温度における焼結体の吸水率、かさ密度、開気孔率、焼結体の厚みを60mmとしたときの自然吸水量、平均気孔径、曲げ強さを測定した。結果を表3(煉瓦焼結体の物性II)に示す。
The water content of Kagawa Prefecture purified water sludge B having the composition shown in Table 1 is adjusted to a moisture content of 1% or less, and pulverized to make the sludge aggregated secondary particles have a particle size of 840 μm or less and a content of 53 to 840 μm. % Adjusted. These 30% by weight were mixed with 70% by weight of clay having the composition shown in Table 1 to prepare a blended soil. An appropriate amount of water was added to these and formed into about 1 × 5 × 10 cm with a vacuum extrusion molding machine. After drying, it was fired at 1100 ° C. and 1120 ° C. in an air atmosphere. In addition, the shrinkage ratios of the clay body in 1100 ° C and 1120 ° C firing were 5.0 and 5.1%, respectively, and the shrinkage ratios of the sludge aggregation secondary particles were 12.8 and 13.1%, respectively. The differences were 7.8 and 8.0%, respectively.
The water absorption, bulk density, open porosity, natural water absorption, average pore diameter, and bending strength when the sintered body thickness was 60 mm at each firing temperature were measured. The results are shown in Table 3 (Physical properties II of the brick sintered body).

表3によると、焼成温度が高くなるにしたがって、気孔率が低くなり、曲げ強さが高くなっている。焼成温度1100℃において、曲げ強さ15.4MPa、吸水量15.4L/m2、焼成温度1120℃において、曲げ強さ21.5MPa、吸水量12.8L/m2となっており、いずれも吸水量が12L/m2と高い保水能力を示している。また、曲げ強さは、JIS A5209における床タイルの幅1cm当たりの破壊荷重より算出した曲げ強さ7.5MPaの約2〜3倍の強度を有している。なお、煉瓦の平均気孔径はいずれも約3.0μmであった。これらのことから、浄水汚泥に本発明の処理を施すことにより、強度と保水性を併せ持つ保水煉瓦を作製することができる。 According to Table 3, as the firing temperature increases, the porosity decreases and the bending strength increases. At a firing temperature of 1100 ° C., the bending strength is 15.4 MPa and the water absorption is 15.4 L / m 2. At the firing temperature of 1120 ° C., the bending strength is 21.5 MPa and the water absorption is 12.8 L / m 2. Water absorption is 12L / m 2 , indicating high water retention capacity. Further, the bending strength is about 2 to 3 times the bending strength 7.5 MPa calculated from the breaking load per 1 cm width of the floor tile in JIS A5209. The average pore diameter of the bricks was about 3.0 μm. From these things, the water retention brick which has both intensity | strength and water retention property can be produced by performing the process of this invention to purified water sludge.

[比較例1]
赤煉瓦用粘土に水を適量加えて真空押出成形機で約1×5×10cmに成形した。乾燥後、大気雰囲気で1050及び1150℃に焼成した。各焼成温度における焼結体の吸水率、かさ密度、開気孔率、焼結体の厚みを60mmとしたときの自然吸水量、平均気孔径、曲げ強さを測定した。結果を表4(煉瓦焼結体の物性III)に示す。
[Comparative Example 1]
An appropriate amount of water was added to the red brick clay and molded into a size of about 1 × 5 × 10 cm with a vacuum extruder. After drying, it was fired at 1050 and 1150 ° C. in an air atmosphere. The water absorption, bulk density, open porosity, natural water absorption, average pore diameter, and bending strength when the sintered body thickness was 60 mm at each firing temperature were measured. The results are shown in Table 4 (Physical properties III of the brick sintered body).

表4によると、1050℃焼成において、吸水量は11.7L/m2と十分の保水量を有しているが、曲げ強さは8.9MPaと低い値になっている。一方、1150℃焼成では逆に、曲げ強さは16.8MPaと十分な強度を確保しているが、吸水量は6.4L/m2と小さくなっている。また、両焼結体とも平均気孔径は0.7μmと小さい。すなわち、既存の焼成煉瓦では、平均気孔径が3μm以上で、強度と吸水量を同時に確保するのは困難である。 According to Table 4, in calcination at 1050 ° C., the water absorption amount is 11.7 L / m 2 and the water retention amount is sufficient, but the bending strength is a low value of 8.9 MPa. On the other hand, with 1150 ° C. firing, on the contrary, the bending strength is 16.8 MPa and sufficient strength is secured, but the water absorption is as small as 6.4 L / m 2 . Further, both sintered bodies have an average pore diameter as small as 0.7 μm. That is, in the existing fired brick, the average pore diameter is 3 μm or more, and it is difficult to ensure the strength and the water absorption amount at the same time.

[比較例2]
表1に示す組成を有する香川県産浄水汚泥Aを含水率10%になるように水分調整し、粉砕して汚泥凝集2次粒子の粒子径を3〜5mmに調整した。これを20重量%と、表1に示す組成を有する粘土80重量%を混合して配合土を調製した。これに水を適量加え真空押出成形機で約1×5×10cmに成形した。乾燥後、大気雰囲気で1150℃に焼成した。なお、1150℃焼成における粘土素地の収縮率は5.3%、汚泥凝集2次粒子の収縮率は17.3%で、両者の収縮率の差は12.0%であった。
各焼成温度における焼結体の吸水率、かさ密度、開気孔率、焼結体の厚みを60mmとしたときの自然吸水量、曲げ強さを測定した。結果を表5(煉瓦焼結体の物性IV)に示す。
[Comparative Example 2]
The water content of Kagawa Prefecture purified water sludge A having the composition shown in Table 1 was adjusted to a water content of 10% and pulverized to adjust the particle diameter of the sludge aggregated secondary particles to 3 to 5 mm. 20% by weight of this and 80% by weight of clay having the composition shown in Table 1 were mixed to prepare a blended soil. An appropriate amount of water was added to this and formed into about 1 × 5 × 10 cm with a vacuum extrusion molding machine. After drying, it was fired at 1150 ° C. in an air atmosphere. In addition, the shrinkage ratio of the clay body in 1150 degreeC baking was 5.3%, the shrinkage ratio of the sludge aggregation secondary particle was 17.3%, and the difference of both shrinkage ratios was 12.0%.
The water absorption, bulk density, open porosity, natural water absorption and bending strength when the sintered body thickness was 60 mm at each firing temperature were measured. The results are shown in Table 5 (physical properties IV of brick sintered body).

表5によると、吸水量は13L/m2と高い保水能力を示しているが、曲げ強さは、6.3MPaとJIS A5209における床タイルの幅1cm当たりの破壊荷重より算出した曲げ強さ7.5MPaより低い値を示している。したがって、粘土素地と汚泥の収縮率の差を10%以下に調整しても汚泥凝集2次粒子の粒子径が3mm以上の場合、汚泥の収縮量は大きくなるため、焼結体中の汚泥と粘土素地との間に大きな空隙が発生し、これが欠陥となって焼結体の強度を著しく低下させる。したがって、強度と吸水性を両立する煉瓦を作製する場合、汚泥凝集2次粒子の粒子径を3mm以下好ましくは1mm以下にする必要がある。 According to Table 5, the water absorption is 13 L / m 2 , indicating a high water retention capacity, but the flexural strength is 6.3 MPa and JIS A5209 flexural strength calculated from the breaking load per 1 cm width of floor tile 7 It shows a value lower than 5 MPa. Therefore, even if the difference in shrinkage between the clay base and the sludge is adjusted to 10% or less, if the particle diameter of the sludge aggregated secondary particles is 3 mm or more, the amount of sludge shrinkage increases. A large void is generated between the clay base and this becomes a defect, which significantly reduces the strength of the sintered body. Therefore, when producing a brick having both strength and water absorption, the particle diameter of the sludge-aggregated secondary particles needs to be 3 mm or less, preferably 1 mm or less.

[比較例3]
表1に示す組成を有する香川県産浄水汚泥Aを含水率40%以下になるように水分調整し、粉砕して汚泥凝集2次粒子の粒子径840μm以下かつ53〜840μmの含有量を85%以上に調整した。これを20重量%と、表1に示す組成を有する粘土80重量%を混合して配合土を調製した。これに水を適量加え真空押出成形機で約1×5×10cmに成形した。乾燥後、大気雰囲気で1150℃に焼成した。なお、1150℃焼成における粘土素地の収縮率は5.3%、汚泥凝集2次粒子の収縮率は24.5%で、両者の収縮率の差は19.5%であった。
各焼成温度における焼結体の吸水率、かさ密度、開気孔率、焼結体の厚みを60mmとしたときの自然吸水量、曲げ強さを測定した。結果を表6(煉瓦焼結体の物性V)に示す。
[Comparative Example 3]
The water content of Kagawa Prefecture purified water sludge A having the composition shown in Table 1 is adjusted to a water content of 40% or less, pulverized, and the particle size of sludge aggregated secondary particles is 840 μm or less and the content of 53 to 840 μm is 85%. Adjusted to above. 20% by weight of this and 80% by weight of clay having the composition shown in Table 1 were mixed to prepare a blended soil. An appropriate amount of water was added to this and formed into about 1 × 5 × 10 cm with a vacuum extrusion molding machine. After drying, it was fired at 1150 ° C. in an air atmosphere. In addition, the shrinkage ratio of the clay body in 1150 degreeC baking was 5.3%, the shrinkage ratio of the sludge aggregation secondary particle was 24.5%, and the difference of both shrinkage ratio was 19.5%.
The water absorption, bulk density, open porosity, and natural water absorption and bending strength when the sintered body thickness was 60 mm at each firing temperature were measured. The results are shown in Table 6 (physical properties V of brick sintered body).

表6によると、吸水量は12.8L/m2と高い保水能力を示しているが、曲げ強さは、9.7MPaとやや低い値を示している。したがって、汚泥凝集2次粒子の粒子径を1mm以下に調整しても、汚泥凝集2次粒子の含水率が30%以上の場合、汚泥の収縮量が大きくなり、焼結体中の汚泥と粘土素地との間に大きな空隙が発生し、これが欠陥となって焼結体の強度を低下させる。したがって、強度と吸水性を両立する煉瓦を作製する場合、汚泥の含水率を30%以下にする必要がある。 According to Table 6, the water absorption amount is 12.8 L / m 2 and the water retention capacity is high, but the bending strength is a little lower value of 9.7 MPa. Therefore, even if the particle size of the sludge agglomerated secondary particles is adjusted to 1 mm or less, if the water content of the sludge agglomerated secondary particles is 30% or more, the amount of sludge shrinkage increases, and the sludge and clay in the sintered body A large gap is generated between the substrate and this becomes a defect, which reduces the strength of the sintered body. Therefore, when producing a brick having both strength and water absorption, the moisture content of the sludge needs to be 30% or less.

浄水汚泥等高融点廃棄物を原料(保水材)として製造した保水煉瓦が、都市部のヒートアイランド現象抑制に効果を発揮する土木・建築資材として有効に利用できる可能性がある。   Water retaining bricks manufactured using high melting point waste such as purified water sludge as a raw material (water retaining material) may be effectively used as civil engineering and building materials that are effective in suppressing the heat island phenomenon in urban areas.

本発明により作製した保水煉瓦の構造。The structure of the water retaining brick produced by this invention.

Claims (9)

浄水汚泥等高融点廃棄物の凝集粒子を保水材として用い、該保水材を煉瓦のベースとなる配合粘土に5〜80重量%分散させ、押出し成形法により作製し、焼成した、曲げ強さが10MPa以上で、煉瓦の厚みを60mmとしたときの自然吸水量が9L/m2以上、かつ、煉瓦の平均気孔径が1〜20μmである、強度と保水性を両立させた保水煉瓦。 Aggregated particles of high-melting-point waste such as purified water sludge are used as a water retentive material, the water retentive material is dispersed in a blended clay as a base for bricks in an amount of 5 to 80% by weight, prepared by extrusion, and fired. A water-retaining brick that is 10 MPa or more, has a natural water absorption of 9 L / m 2 or more when the thickness of the brick is 60 mm, and has an average pore diameter of 1 to 20 μm. 浄水汚泥等高融点廃棄物の凝集粒子を保水材として用い、該保水材を煉瓦のベースとなる配合粘土に10〜50重量%分散させ、押出し成形法により作製し、焼成した、曲げ強さが15MPa以上で、煉瓦の厚みを60mmとしたときの自然吸水量が12L/m2以上、かつ、煉瓦の平均気孔径が1〜20μmである、強度と保水性を両立させた保水煉瓦。 Aggregated particles of high-melting-point waste such as purified water sludge are used as a water retentive material, and the water retentive material is dispersed by 10 to 50% by weight in blended clay as a base of a brick, produced by an extrusion molding method, and fired. A water-retaining brick that is 15 MPa or more, has a natural water absorption of 12 L / m 2 or more when the brick thickness is 60 mm, and has an average pore diameter of 1 to 20 μm. 上記の保水材が、最大粒子径が3mm以下で、かつ、50μm以下の粒子含有量は50%以下の凝集粒子である請求項1または2の保水煉瓦。   The water retaining brick according to claim 1 or 2, wherein the water retaining material is an aggregated particle having a maximum particle size of 3 mm or less and a particle content of 50 µm or less and 50% or less. 上記の保水材が、
(1) 煉瓦のベースとなる配合粘土より溶融温度が少なくとも50℃以上高く、
(2) 含水率30%以下であり、
(3) 配合粘土成形体素地との焼成後の収縮率の差が1〜15%であり、かつ、気孔率が焼成後の配合粘土成形体素地より5%以上大きくなる、
浄水汚泥等高融点廃棄物の凝集粒子である請求項3の保水煉瓦。
The above water retaining material
(1) The melting temperature is at least 50 ° C higher than the blended clay used as the base of the brick,
(2) Moisture content is 30% or less,
(3) The difference in shrinkage after firing with the blended clay body is 1 to 15%, and the porosity is 5% or more larger than that of the blended clay body after firing.
4. The water retaining brick according to claim 3, wherein the water retaining brick is agglomerated particles of high melting point waste such as purified water sludge.
上記の保水材が、最大粒子径が1mm以下で、かつ、50μm以下の粒子含有量は50%以下の凝集粒子である請求項1または2の保水煉瓦。   The water-retaining brick according to claim 1 or 2, wherein the water-retaining material is aggregated particles having a maximum particle size of 1 mm or less and a particle content of 50 µm or less and 50% or less. 上記の保水材が、
(1) 煉瓦のベースとなる配合粘土より溶融温度が50℃〜100℃高く、
(2) 含水率10%以下であり、
(3) 配合粘土成形体素地との焼成後の収縮率の差が5〜10%であり、かつ、気孔率が焼成後の配合粘土成形体素地より5%以上大きくなる、
浄水汚泥等高融点廃棄物の凝集粒子である請求項5の保水煉瓦。
The above water retaining material
(1) The melting temperature is 50 ° C to 100 ° C higher than the blended clay used as the base of the brick,
(2) Moisture content is 10% or less,
(3) The difference in shrinkage after firing with the blended clay body is 5 to 10%, and the porosity is 5% or more larger than that of the blended clay body after firing.
6. The water retaining brick according to claim 5, wherein the water retaining brick is agglomerated particles of high melting point waste such as purified water sludge.
上記の汚泥の成分がSiO2/Al23=0.5〜2の組成からなる請求項1ないし6のいずれかの保水煉瓦。 Either water retention bricks 6 to components of the sludge can claims 1 a composition of SiO 2 / Al 2 O 3 = 0.5~2. 保水煉瓦の製造方法であって、浄水汚泥等高融点廃棄物の凝集粒子を保水材として用い、該保水材を煉瓦のベースとなる配合粘土に5〜80重量%分散させ、押出し成形法により作製し、当該成形品を焼成して、曲げ強さが10MPa以上で、煉瓦の厚みを60mmとしたときの自然吸水量が9L/m2以上、かつ、煉瓦の平均気孔径が1〜20μmである、強度と保水性を両立させた保水煉瓦を得ることを特徴とする製造方法。 A method for producing water-retaining bricks, which uses agglomerated particles of high-melting-point waste such as purified water sludge as a water retentive material, disperses the water retentive material in the blended clay that serves as the base of the brick, and is produced by an extrusion molding method. The molded article is fired, the bending strength is 10 MPa or more, the natural water absorption is 9 L / m 2 or more when the brick thickness is 60 mm, and the average pore diameter of the brick is 1 to 20 μm. A method for producing water-retaining bricks that achieves both strength and water retention. 保水煉瓦の製造方法であって、浄水汚泥等高融点廃棄物の凝集粒子を保水材として用い、該保水材を煉瓦のベースとなる配合粘土に10〜50重量%分散させ、押出し成形法により作製し、当該成形品を焼成して、曲げ強さが15MPa以上で、煉瓦の厚みを60mmとしたときの自然吸水量が12L/m2以上、かつ、煉瓦の平均気孔径が1〜20μmである、強度と保水性を両立させた保水煉瓦を得ることを特徴とする製造方法。

A method for producing water-retaining bricks, which uses agglomerated particles of high-melting-point waste such as purified water sludge as a water retentive material, and the water retentive material is dispersed in a blended clay as a base of the brick by 10 to 50% by weight and produced by an extrusion molding method. The molded article is fired, the bending strength is 15 MPa or more, the natural water absorption is 12 L / m 2 or more when the thickness of the brick is 60 mm, and the average pore diameter of the brick is 1 to 20 μm. A method for producing water-retaining bricks that achieves both strength and water retention.

JP2003288263A 2003-08-06 2003-08-06 Water retaining brick that balances strength and water retention Expired - Fee Related JP4220854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003288263A JP4220854B2 (en) 2003-08-06 2003-08-06 Water retaining brick that balances strength and water retention

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003288263A JP4220854B2 (en) 2003-08-06 2003-08-06 Water retaining brick that balances strength and water retention

Publications (2)

Publication Number Publication Date
JP2005054512A true JP2005054512A (en) 2005-03-03
JP4220854B2 JP4220854B2 (en) 2009-02-04

Family

ID=34366978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003288263A Expired - Fee Related JP4220854B2 (en) 2003-08-06 2003-08-06 Water retaining brick that balances strength and water retention

Country Status (1)

Country Link
JP (1) JP4220854B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103088742A (en) * 2011-11-07 2013-05-08 北京仁创科技集团有限公司 Water permeable brick and its making method
JP2016172673A (en) * 2015-03-18 2016-09-29 三協立山株式会社 Diatomaceous earth brick
CN107285732A (en) * 2016-04-05 2017-10-24 李心海 Making brick from sludge technology
CN109796172A (en) * 2019-02-20 2019-05-24 陕西朗正环保科技有限公司 It is a kind of using waterworks sludge as brick of raw material and the preparation method and application thereof
CN110820462A (en) * 2019-11-28 2020-02-21 苟洪斌 Multifunctional floor tile for sponge city

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108947483B (en) * 2018-09-06 2020-10-02 西安墙体材料研究设计院有限公司 Method for preparing wall brick from sludge composite mineralized garbage

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103088742A (en) * 2011-11-07 2013-05-08 北京仁创科技集团有限公司 Water permeable brick and its making method
CN103088742B (en) * 2011-11-07 2016-02-03 北京仁创科技集团有限公司 A kind of water-permeable brick and preparation method thereof
JP2016172673A (en) * 2015-03-18 2016-09-29 三協立山株式会社 Diatomaceous earth brick
CN107285732A (en) * 2016-04-05 2017-10-24 李心海 Making brick from sludge technology
CN109796172A (en) * 2019-02-20 2019-05-24 陕西朗正环保科技有限公司 It is a kind of using waterworks sludge as brick of raw material and the preparation method and application thereof
CN110820462A (en) * 2019-11-28 2020-02-21 苟洪斌 Multifunctional floor tile for sponge city
CN110820462B (en) * 2019-11-28 2021-08-03 上海筱启新能源科技有限公司 Multifunctional floor tile for sponge city

Also Published As

Publication number Publication date
JP4220854B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
JP6312169B2 (en) Manufacturing method for lightweight ceramic materials
Vieira et al. Incorporation of granite waste in red ceramics
KR20180065675A (en) Method for manufacturing ceramic composition with excellent durability
JP6055419B2 (en) Porous ceramics and method for producing the same
KR100729677B1 (en) Porous ceramic and method for manuracturing the same
TW201313657A (en) Porous ceramics sintered body and method for producing the same
JPH072536A (en) Fire brick as bed of tin bath
EP2738148B1 (en) Interlocking block
JP4220854B2 (en) Water retaining brick that balances strength and water retention
US3312558A (en) Calcium hexaluminate articles
JP5927121B2 (en) Porous ceramic sintered body and method for producing the same
KR100678365B1 (en) Low temperature sintering porous and hollow light weight clay brick and method of producing it using solid industrial waste
JP2018165224A (en) Porous ceramic
JP4129695B2 (en) Method for producing porous water-absorbing ceramics
JP4488404B2 (en) Porous sintered pavement material and manufacturing method thereof
JP2002097062A (en) Method for manufacturing ceramic product by using service water sludge waste material as main raw material
JP2003020265A (en) Method for producing multicolored brick
JP2007186367A (en) Lightweight tile
JPH11246279A (en) Lightweight ceramics and its production
KR20050081544A (en) Preparation method of fired brick
JP4275381B2 (en) Tile manufacturing method using molten slag
JP2001039780A (en) Production of water permeable ceramic block
JP3983156B2 (en) Manufacturing method of recycled fired products
JP2004059371A (en) Pore-imparting material, porous material forming raw material consisting of pore-imparting material, and porous member
JP2006001815A (en) Reinforced porcelain and its manufacturing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20030827

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20031007

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060804

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees