JP2005053765A - Method of composting starch manufacture waste water sludge and method of treating starch manufacture waste water - Google Patents

Method of composting starch manufacture waste water sludge and method of treating starch manufacture waste water Download PDF

Info

Publication number
JP2005053765A
JP2005053765A JP2003316054A JP2003316054A JP2005053765A JP 2005053765 A JP2005053765 A JP 2005053765A JP 2003316054 A JP2003316054 A JP 2003316054A JP 2003316054 A JP2003316054 A JP 2003316054A JP 2005053765 A JP2005053765 A JP 2005053765A
Authority
JP
Japan
Prior art keywords
sludge
waste water
composting
starch production
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003316054A
Other languages
Japanese (ja)
Inventor
Tetsuo Yoshida
哲夫 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Parchitec Inc
Original Assignee
Parchitec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Parchitec Inc filed Critical Parchitec Inc
Priority to JP2003316054A priority Critical patent/JP2005053765A/en
Publication of JP2005053765A publication Critical patent/JP2005053765A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)
  • Fertilizers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of composting starch manufacture waste water sludge which is suitable for starch manufacture waste water and a method of treating the starch manufacture waste water. <P>SOLUTION: Before the composting of the sludge separated by a starch manufacture waste water treatment, the sludge is dried to contain ≤20% water and the resultant dried sludge is stored . A biogas obtained by the biological treatment of a liquid separated from the sludge is used as a fuel for the drying of the sludge. The dried sludge is mixed with other agriculture/livestock farming waste and composted through a long time. In the starch manufacture waste water treatment, a solid substance is separated from heated starch manufacture waste water, the residual liquid is flashed under a reduced pressure to be cooled and the steam produced by the flashing is brought into contact with freshly supplied starch manufacture waste water to increase the temperature of the starch manufacture waste water. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

発明の詳細な説明Detailed Description of the Invention

本発明は、馬鈴薯等から澱粉が製造される過程で排出される澱粉製造廃水、特に高濃度の分散質を含むデカンタ廃水造廃水から分離された高水分の汚泥の堆肥化処理方法及び澱粉製造廃水処理方法に関する。  The present invention relates to a method for composting high-moisture sludge separated from starch production wastewater discharged in the process of producing starch from potato and the like, particularly decanter wastewater production wastewater containing a high concentration of dispersoids, and starch production wastewater. It relates to the processing method.

例えば馬鈴薯からの澱粉の製造は図4に示すように行なわれている。すなわち、原料の馬鈴薯はフリューム(流送水)及びロータリワッシャによって水洗され、付着した畑の土が除去される。次いでウルトララスプによって細かく磨り潰される。その細かく磨り潰された馬鈴薯は水中に分散されたうえ、デカンタで靜置されることによって固形分が沈降し、分離する。その固形分はハイスクリーンを何度も通過させられるうちに粕が分離される。その粕が分離された固形分(澱粉乳)は、セパレータで洗浄、分級されることによって、蛋白質その他の不純物が除去され、さらに真空ろ過、乾燥等によって水分が除去されることによって純度の高い澱粉となる。  For example, starch is produced from potato as shown in FIG. That is, the raw potatoes are washed with flume (flowing water) and a rotary washer to remove the soil in the field. It is then finely ground with ultra rasps. The finely ground potatoes are dispersed in water and placed in a decanter to cause solids to settle and separate. The solids are separated as the solid is passed through the high screen many times. The solids (starch milk) from which the koji has been separated are washed and classified by a separator to remove proteins and other impurities, and further, moisture is removed by vacuum filtration, drying, etc., and high-purity starch. It becomes.

上記過程で排出される主たる廃水は、上述のようにデカンタ廃水とセパレータ廃水の2種類であるが、これらは真の溶液ではなく、分散質である巨大粒子がコロイド状に分散したものである。そのうち、セパレータ廃水はBODが1,000〜2,000ppmと分散質が少なく、生物処理も可能であるが、デカンタ廃水はBODが2×10〜4×10ppmと分散質がセパレータ廃水に較べて一桁多く、しかも生物処理の障害となる蛋白質を多量に含んでいる。As described above, there are two types of main wastewater discharged in the above process, but these are not true solutions but are dispersoids of giant particles dispersed in a colloidal form. Among them, separator wastewater has a BOD of 1,000 to 2,000 ppm and low dispersibility, and biological treatment is possible, but decanter wastewater has a BOD of 2 × 10 4 to 4 × 10 4 ppm and the dispersoid becomes separator wastewater. Compared to an order of magnitude more, it contains a large amount of proteins that interfere with biological processing.

従って、このデカンタ廃水は、生物処理に先立って、例えば70℃に加温され、それによってデカンタ廃水中の分散質のうち、蛋白質分の一部が熱変性し、凝結し、汚泥として沈殿し、残りの液(中間排水)と分離される。なお、その中間排水からは生物処理によってもさらに汚泥が沈殿分離される。  Accordingly, this decanter wastewater is heated to, for example, 70 ° C. prior to biological treatment, whereby a part of the protein content in the decanter wastewater is thermally denatured, condensed, and precipitated as sludge. Separated from the remaining liquid (intermediate drainage). Further, sludge is further separated from the intermediate wastewater by biological treatment.

これらの汚泥は、その有効利用のため、一般に堆肥化されている。例えば農業・畜産の盛んな北海道では、牛糞や畑生ごみ等の廃棄物と混合されたうえ、堆肥化されている。  These sludges are generally composted for their effective use. For example, in Hokkaido, where agriculture and livestock are prosperous, they are mixed with waste such as cow dung and field waste and composted.

しかしながら、澱粉製造とその廃水処理とは若干時期的にずれはあるものの、8月中旬から11月中旬の約三ヶ月間に限られていて、規模にもよるが、短期間に大量の汚泥(例えば水分80%で数万t)が発生する。それはそのまま放置されることが許されず、特に腐敗対策が必要で直ちに堆肥化される必要があり、限定された僅かの期間しか稼動しない、大規模の堆肥化設備が必要となると言う問題点がある。  However, although there is a slight time lag between starch production and its wastewater treatment, it is limited to about three months from mid-August to mid-November. For example, tens of thousands of tons are generated when the moisture is 80%. It is not allowed to be left as it is, and there is a problem that it is necessary to take measures against corruption, and it needs to be composted immediately, which requires a large-scale composting facility that operates for a limited period of time. .

また、例え前述のように農業・畜産廃棄物(例えば水分80%で年間数万t)に添加され、同時処理される場合も、デカンタ廃水汚泥の発生量が小さければ、それ程でもないが、その量が大きく(例えば農業・畜産廃棄物の堆肥化設備を大きく上回るように)なれば、それだけ設備の増強が必要となる。しかも、澱粉廃水汚泥が添加される期間とそうでない期間では、堆肥の品質に著しい相違が生じ、N分の不足も懸念される。その他、汚泥、廃棄物はいずれも水分80%程度を含むため、外部からの熱の供給がなされるか、又は堆肥の一部が戻されるかしなければ、発酵熱だけではその水分が十分除去されず、良質の堆肥が得られないと言う問題点もある。  In addition, as described above, when added to agricultural / livestock waste (for example, 80% moisture and tens of thousands of tons per year) and processed simultaneously, if the amount of decanter wastewater sludge is small, it is not so much. If the amount is large (for example, greatly exceeding the composting facilities for agricultural and livestock waste), it is necessary to increase the facilities accordingly. In addition, there is a significant difference in compost quality between the period in which the starch wastewater sludge is added and the period in which the starch wastewater sludge is not added. In addition, sludge and waste both contain about 80% moisture, so if heat is supplied from the outside or a part of the compost is not returned, the fermentation heat alone will remove the moisture sufficiently. There is also a problem that high-quality compost cannot be obtained.

前述のように、澱粉製造廃水処理に当って、澱粉製造デカンタ廃水は例えば70℃に加温され、多量の蛋白質を含む分散質が沈殿分離され、残った液は中間排水として生物処理されることになるが、その好適温度は50℃以下の低い温度であって、冷却が必要である。また、上記澱粉製造デカンタ廃水の70℃への加温に通常スチームが使われている。このことから、固形分が分離され、残った液の持つ熱量の回収によってそれ自身が減温されると共に、その回収熱が、新しく供給される低温の澱粉製造廃液の一部の加温に使用され、スチーム消費量が低減されることが望ましいという問題点がある。  As described above, in the starch production wastewater treatment, the starch production decanter wastewater is heated to, for example, 70 ° C., the dispersoid containing a large amount of protein is precipitated and separated, and the remaining liquid is biologically treated as an intermediate wastewater. However, the preferred temperature is a low temperature of 50 ° C. or lower, and cooling is necessary. Further, steam is usually used for heating the starch production decanter waste water to 70 ° C. From this, the solids are separated and the temperature of the remaining liquid is recovered by itself, and the recovered heat is used to heat a part of the newly supplied low-temperature starch production waste liquid. However, it is desirable that the steam consumption is reduced.

発明が解決しようとする課題Problems to be solved by the invention

そこで本発明は、上記した従来技術の欠点を除くためになされたものであって、その目的とするところは、馬鈴薯等から澱粉が製造される過程で排出される澱粉製造廃水、特に高濃度の分散質を含むデカンタ廃水に適した、澱粉製造廃水汚泥の堆肥化方法及び澱粉製造廃水処理方法を提供することにある。  Therefore, the present invention has been made to eliminate the above-mentioned drawbacks of the prior art, and the object of the present invention is to produce starch production wastewater discharged in the process of producing starch from potato, etc., particularly high concentration. An object of the present invention is to provide a method for composting starch production wastewater sludge and a method for treating starch production wastewater suitable for decanter wastewater containing dispersoids.

課題を解決するための手段Means for solving the problem

上記の目的を達するために、請求項1の発明の澱粉製造廃水汚泥の堆肥化方法は、澱粉製造廃水処理によって分離された高水分の汚泥の堆肥化に先立って、汚泥が水分20%以下に乾燥される。  In order to achieve the above object, the composting method for starch production wastewater sludge according to the invention of claim 1 is such that the sludge has a water content of 20% or less prior to composting of the high moisture sludge separated by the starch production wastewater treatment. Dried.

請求項1の発明によれば、水分20%以下に乾燥された乾燥汚泥は、減量され、運搬容易であり、また、腐敗やかびの発生がなく、悪臭を発することもなく、長期の貯蔵保管も可能である。また、乾燥汚泥はそれだけでは堆肥化に必要な水分が低過ぎるため、水分の添加が必要となるが、得られた堆肥の戻しは不要となる。  According to the first aspect of the present invention, the dried sludge dried to a moisture content of 20% or less is reduced in volume, is easy to transport, does not cause spoilage or mold, does not emit bad odor, and is stored for a long time. Is also possible. Moreover, since the moisture required for composting is too low for dried sludge, it is necessary to add moisture, but it is not necessary to return the obtained compost.

請求項2の発明は、請求項1に記載の発明の構成に加えて、前記汚泥の乾燥によって得られた乾燥汚泥が貯蔵される。  In the invention of claim 2, in addition to the structure of the invention of claim 1, dry sludge obtained by drying the sludge is stored.

請求項2の発明によれば、請求項1に記載の発明の作用効果に加えて、澱粉製造時期に限定されず、堆肥化の時間的自由度が増大され、任意の時期、しかも任意の期間、堆肥の需要に合わせて堆肥化可能となり、それに伴って堆肥化設備の規模も小さくなり、その設備負担が低減される。  According to the invention of claim 2, in addition to the action and effect of the invention of claim 1, it is not limited to the starch production time, the time freedom of composting is increased, any time, and any time Composting can be made according to the demand for compost, and the scale of composting equipment is reduced accordingly, and the equipment burden is reduced.

請求項3の発明は、請求項2に記載の発明の構成に加えて、前記澱粉製造廃水処理によって汚泥を分離された中間排水の生物処理で得られる主としてメタンガスよりなるバイオガスが前記汚泥の乾燥の燃料として使用される。  In addition to the constitution of the invention of claim 2, the invention of claim 3 is characterized in that biogas mainly composed of methane gas obtained by biological treatment of intermediate wastewater separated from the sludge by the starch production wastewater treatment is dried of the sludge. Used as fuel.

請求項3の発明によれば、請求項1又は2に記載の発明の作用効果に加えて、乾燥設備は必要であるが、それに要する燃料が前記中間排水の生物処理で副生するバイオガスによって賄われるため、乾燥に伴なう燃料負担増は皆無である。  According to the invention of claim 3, in addition to the effects of the invention of claim 1 or 2, a drying facility is necessary, but the fuel required for it is produced by biogas generated as a by-product in the biological treatment of the intermediate waste water. There is no increase in fuel burden due to drying.

請求項4の発明は、請求項1乃至3に記載のいずれかの発明の構成に加えて、前記乾燥された汚泥が他の農業・畜産の廃棄物に混合されたうえ、堆肥化される。  According to a fourth aspect of the present invention, in addition to the structure of any one of the first to third aspects, the dried sludge is mixed with other agricultural / livestock waste and composted.

請求項4の発明によれば、請求項1乃至3に記載のいずれかの発明の作用効果に加えて、堆肥の品質が安定化し、Nの不足の懸念も解消される。また、水分の高い農業・畜産の廃棄物に乾燥汚泥が添加され、水分調整がなされるため、堆肥の戻しは不要となる。  According to invention of Claim 4, in addition to the effect of the invention of any one of Claims 1 thru | or 3, the quality of compost is stabilized and the fear of lack of N is also eliminated. Moreover, since dried sludge is added to agricultural and livestock waste with high water content and the water content is adjusted, it is not necessary to return the compost.

請求項5の発明の澱粉製造廃水処理方法は、加温された澱粉製造廃水からが固形分が分離されて、残った液が、減圧されることによって断熱的にフラッシュし、蒸発潜熱を奪われて降温すると共に、そのフラッシュによって生じた水蒸気が、新しく供給される、好ましくはバロメトリックコンデンサ内で加温前の澱粉製造廃水と接触、凝縮し、その澱粉製造廃水に凝縮潜熱を与えて昇温させる。  In the starch production wastewater treatment method according to the invention of claim 5, the solid content is separated from the heated starch production wastewater, and the remaining liquid is adiabatically flushed by depressurization, and the latent heat of evaporation is taken away. The water vapor generated by the flushing is brought into contact with the newly-produced barometric condenser, preferably in contact with the starch production wastewater before heating, and condensed to give latent heat of condensation to the starch production wastewater. Let

請求項5の発明によれば、新しく供給される供給される澱粉製造廃水が昇温し、それに必要なスチームの消費量が低減されると共に、前記残った液が生物処理に適した温度又はそれに近い温度まで降温する。なお、バロメトリックコンデンサは構造簡単で安価であり、デカンタ廃水の性状の変動に対しても安定して作動する。  According to the invention of claim 5, the supplied starch production wastewater to be newly supplied is heated to reduce the consumption of steam necessary for it, and the remaining liquid is set to a temperature suitable for biological treatment or to it. Lower the temperature to a near temperature. The barometric capacitor has a simple structure and is inexpensive, and operates stably against fluctuations in the properties of decanter wastewater.

本発明の実施の形態例として、澱粉製造廃水のうち、特にデカンタ廃水からの汚泥の堆肥化方法について図1により説明すると、先ず前記デカンタ廃水がその加温処理され、次のように汚泥が分離される。すなわち、澱粉製造が行なわれる8月中旬から11月中旬の約三ヶ月間、その間に次々と排出されるデカンタ廃水は、60℃以上、好ましくは70℃以下に加温される。その加温は簡単であるという理由からスチームの吹き込みによって行なわれるが、これに限定されるものではなく、スチームとの間接熱交換されてもよく、また、固形分離後の残りの液との間接熱交換又はそれの減圧フラッシュによって生じた水蒸気との直接接触(後述)によって補われてもよい。  As an embodiment of the present invention, a composting method of sludge from starch production wastewater, in particular, from decanter wastewater will be described with reference to FIG. 1. First, the decanter wastewater is heated and the sludge is separated as follows. Is done. That is, during about three months from mid-August to mid-November when starch production is performed, decanter wastewater discharged one after another is heated to 60 ° C. or higher, preferably 70 ° C. or lower. The heating is performed by blowing steam for the reason that it is simple, but is not limited to this, indirect heat exchange with steam may be performed, and indirect with the remaining liquid after solid separation It may be supplemented by direct contact (described below) with water vapor generated by heat exchange or its vacuum flush.

それによってデカンタ廃水中の分散質のうち、蛋白質分の一部が熱変性し、凝結し、固形分として沈殿し、遠心分離機CFその他の手段によって水分約80%の汚泥が残りの液と分離される。  As a result, a part of the protein in the decanter wastewater is thermally denatured, condensed and precipitated as a solid, and the sludge with about 80% water is separated from the remaining liquid by the centrifuge CF or other means. Is done.

残りの液は、例えば重力によって凝縮水を大気中に放出することによって内部を減圧に維持するよう構成されたバロメトリックコンデンサBCに連通、減圧されたフラッシュドラムFDに送られる。そのフラッシュドラムFDでは液が断熱的にフラッシュするため減温されたうえ、中間排水として後述のように生物処理される。なお、そのフラッシュによって生じたスチームは、前記バロメトリックコンデンサFC内で新しく供給されたデカンタ排水と接触、凝縮し、その潜熱をそのデカンタ排水に与え、昇温させると共に、それによって生じた凝縮水とデカンタ廃水との混合液は、大気圧とバランスする高い液柱よりなる大気脚BLを通じ、その重力によって前記フラッシュドラムFD内の減圧を維持しながら大気圧下に放出される。これについての詳細は後述する。  The remaining liquid communicates with a barometric condenser BC configured to maintain the inside at a reduced pressure, for example, by discharging condensed water into the atmosphere by gravity, and is sent to the reduced-pressure flash drum FD. In the flash drum FD, since the liquid is adiabatically flushed, the temperature is reduced, and biological treatment is performed as intermediate drainage as described later. Note that the steam generated by the flash contacts and condenses with the decanter wastewater newly supplied in the barometric condenser FC, gives the latent heat to the decanter wastewater, raises the temperature, and causes the condensed water generated thereby. The liquid mixture with the decanter waste water is discharged under atmospheric pressure while maintaining the reduced pressure in the flash drum FD by the gravity through the air leg BL made of a high liquid column that balances with the atmospheric pressure. Details of this will be described later.

生物処理について説明すると、前記中間排水は河川等に放流可能にその分散質が、図に示すように以下の処理を受けることによって固形分、BOD、窒素分、硫黄分が許容値以下に低減浄化されると共に、メタンを主成分とする高い発熱量のバイオガスが副生するよう構成されている。  Explaining biological treatment, the intermediate wastewater can be discharged into rivers, etc. The dispersoid is subjected to the following treatment as shown in the figure, so that the solid content, BOD, nitrogen content, and sulfur content are reduced to an allowable value or less. At the same time, a high calorific biogas mainly composed of methane is formed as a by-product.

詳細説明すると、中間排水の分散質は先ず嫌気性条件下で酸生成菌によって酸発酵し、低級のアルコール、脂肪酸、アミノ酸にまで分解、可溶化される。さらにそのアルコール、脂肪酸、アミノ酸は嫌気性条件下でメタン生成細菌によってメタン発酵し、メタン、炭酸ガス及びアンモニア,硝酸形態の窒素を生成する。それらは、大半が液中に溶解残留するアンモニア,硝酸形態の窒素を除き、バイオガスとして液から離脱する。そのバイオガスは硫黄分を含んでいるため、脱硫され、後述のように、汚泥の乾燥だけでなく、デカンタ排水加温用スチーム発生その他の燃料として利用される。  More specifically, the intermediate wastewater dispersoid is first acid-fermented by acid-producing bacteria under anaerobic conditions, and then decomposed and solubilized to lower alcohols, fatty acids and amino acids. Furthermore, the alcohol, fatty acid and amino acid are methane-fermented by methanogenic bacteria under anaerobic conditions to produce methane, carbon dioxide, ammonia, and nitrogen in the form of nitric acid. Most of them are removed from the liquid as biogas, except for ammonia and nitric acid in the form of nitric acid, which remain dissolved in the liquid. Since the biogas contains sulfur, it is desulfurized and used not only for drying sludge but also for generating steam for heating decanter wastewater and other fuels, as will be described later.

上記メタン発酵を終わった、残りの液中の各形態の窒素分は僅少であるため、先ず硝酸形態の窒素が硝化を経ずに、そのまま嫌気性条件下で脱窒菌によって還元され、窒素ガスとなって液から分離される。それによってもなお液中に残っている(アンモニア形態の)窒素分は好気性条件下で酸化され、硝酸形態の窒素に変換されたうえ、BODが除去され、シックナ等によって汚泥が分離(固液分離)され、得られた浄化水は河川等にそのまま放流される。なお、これらの処理の過程で分離された汚泥は全て加温処理によって分離された汚泥に加えられたうえ、乾燥処理される。  Since the nitrogen content of each form in the remaining liquid after the above methane fermentation is very small, first the nitrogen in the form of nitric acid is reduced by denitrifying bacteria under anaerobic conditions without passing through nitrification, Separated from the liquid. As a result, nitrogen (ammonia form) remaining in the liquid is oxidized under aerobic conditions and converted to nitric form nitrogen, BOD is removed, and sludge is separated by thickener (solid liquid). The purified water obtained is separated and discharged directly into rivers. In addition, all the sludge separated in the course of these treatments is added to the sludge separated by the heating treatment and then dried.

次に汚泥の乾燥処理について説明する。上述の汚泥(水分約80%)は、先ず上述のバイオガスの燃焼によって得られた熱によって、加熱され、水分20%以下に乾燥され、得られた乾燥汚泥はサイロ等に貯蔵保管される。乾燥機としては、ロータリドライヤ、攪拌翼式ドライヤ、流動式ドライヤ等が用いられる。熱交換方式としては、燃焼ガスとの直接熱交換方式やスチームとの間接熱交換式があり、そのいずれでもよい。以上の処理は、時間的に若干の遅れはあるが、澱粉製造と略並行して行なわれる。  Next, the sludge drying process will be described. The above-mentioned sludge (water content of about 80%) is first heated by the heat obtained by the combustion of the above-described biogas, dried to a water content of 20% or less, and the obtained dry sludge is stored and stored in a silo or the like. As the dryer, a rotary dryer, a stirring blade dryer, a fluid dryer, or the like is used. As a heat exchange system, there are a direct heat exchange system with combustion gas and an indirect heat exchange system with steam, either of which may be used. The above processing is performed substantially in parallel with starch production, although there is a slight delay in time.

汚泥の堆肥化処理について説明する。堆肥化処理は乾燥汚泥単独でも可能であるが、農業・畜産の盛んな北海道等で、それらの廃棄物と併せて、年間を通じて行なわれることが好ましい。  The sludge composting process will be described. Composting treatment can be carried out with dried sludge alone, but it is preferable to be carried out throughout the year together with such wastes in Hokkaido and other areas where agriculture and livestock are thriving.

すなわち、サイロ等に貯蔵保管された乾燥汚泥が、高水分(約80%)の農業・畜産廃棄物と適当な割合で混合され、それによって水分調整が行なわれると共に、必要な空気が吹き込まれれば、発酵し、堆肥化が進む。その際、乾燥汚泥によって水分調整が行なわれているため、これらの混合物は、生成した堆肥の戻しや外からの熱補給を殆ど又は全く受けることなしに、発酵熱のみで適温に保持され、堆肥化が順調に進む。また、年間を通じて、乾燥汚泥の組成・性状が均等化されるため、堆肥の品質も安定し、N分が不足するおそれは全く無い。  That is, dry sludge stored and stored in a silo or the like is mixed with high-moisture (about 80%) agricultural / livestock waste at an appropriate ratio, so that moisture adjustment is performed and necessary air is blown. Fermented and composted. At that time, since moisture adjustment is performed by dry sludge, these mixtures are kept at an appropriate temperature only by fermentation heat with little or no return of the generated compost or external heat supply, and compost Progressing smoothly. In addition, since the composition and properties of the dried sludge are equalized throughout the year, the quality of the compost is stable and there is no possibility that the N content is insufficient.

例えば澱粉製造が8月中旬から11月中旬までの三ヶ月間行なわれ、その間10t/hのデカンタ廃水から発生する汚泥(1.13t/h,水分80%)と,年間を通じて発生する農業・畜産廃棄物(8,000t(1.0t/h),水分80%)と,が組み合わされた場合の従来例と本発明との物質・熱の流れを比較すると、図1及び図2の通りである。    For example, starch production is carried out for three months from mid-August to mid-November, during which sludge (1.13 t / h, moisture 80%) generated from decanter wastewater of 10 t / h, and agricultural and livestock production that occurs throughout the year. A comparison of material and heat flow between the conventional example and the present invention when waste (8,000 t (1.0 t / h), moisture 80%) is combined is shown in FIGS. 1 and 2. is there.

なお、従来例と本発明との違いは、デカンタ廃水汚泥が高水分(例えば80%)の農業・畜産廃棄物と混合されるに当って、乾燥されず、高水分のままであるのに対して、本発明では、生物処理によって副生するバイオガスを燃料として、デカンタ廃水汚泥が水分20%まで乾燥されたものでり、しかも貯蔵され、例えば2倍の6ヶ月又はそれ以上の期間に亘って分散して使用されることである。なお、水分20%以下の乾燥汚泥は、長期の貯蔵によっても腐敗することはない。  The difference between the conventional example and the present invention is that, when decanter wastewater sludge is mixed with high moisture (for example, 80%) agricultural / livestock waste, it is not dried and remains high moisture. In the present invention, decanter wastewater sludge is dried to a moisture content of 20% using biogas produced as a by-product of biological treatment as a fuel, and is stored and, for example, doubled for 6 months or more. Are distributed and used. In addition, dry sludge with a moisture of 20% or less will not rot even after long-term storage.

従来例では、通常の場合、農業・畜産廃棄物の処理量が1.0t/hであるのに対して、澱粉製造の行なわれる3ヶ月間は、処理量が2.13Tt/hと倍増し、水分調整のための戻し堆肥が0.44t/hとなるため、設備能力の増強が必要であるが、本発明では、澱粉製造の行なわれる3ヶ月間の2倍の6ヶ月間、減容された乾燥汚泥が使用されるため、処理量が1.28t/hと僅かに増大するだけであり、しかも、水分調整のための戻しが不要であって、設備能力の増強は不要である。  In the conventional example, the processing amount of agricultural and livestock waste is 1.0 t / h in the normal case, but the processing amount doubles to 2.13 Tt / h during the three months when starch production is performed. Since the return compost for moisture adjustment is 0.44 t / h, it is necessary to increase the facility capacity. However, in the present invention, the volume is reduced for 6 months, which is twice the 3 months in which starch production is performed. Since the dried sludge thus used is used, the throughput is only slightly increased to 1.28 t / h, and there is no need for return for moisture adjustment, and no increase in equipment capacity is required.

しかも、副生するバイオガスの総発熱量が4.0MJ/h(9.68×10kcal/h)に達し、デカンタ廃水汚泥の乾燥に必要な熱量をやや多めに見て、水蒸気潜熱の約2倍としても、その3.77MJ/h(9.02×10kcal/h)を上回り、それによって乾燥に必要な熱は十分賄なわれる。In addition, the total calorific value of the by-product biogas reaches 4.0 MJ / h (9.68 × 10 5 kcal / h), and the amount of heat necessary for drying the decanter wastewater sludge is slightly increased. Even if it is about 2 times, it exceeds the 3.77 MJ / h (9.02 × 10 5 kcal / h), thereby sufficiently providing the heat necessary for drying.

最後に前述のフラッシュドラムとバロメトリックコンデンサとを備え、固形分と分離された残りの液の減温と新しく供給されるデカンタ廃水の昇温とを可能にする澱粉製造廃水処理方法について、図3により詳述する。  Finally, a starch production wastewater treatment method comprising the above-described flash drum and barometric condenser, and capable of reducing the temperature of solids and the remaining separated liquid and raising the temperature of newly supplied decanter wastewater is shown in FIG. Will be described in detail.

デカンタ廃水が70℃に加温されると、上述のように分散質が凝結し、固形分として沈殿、遠心分離機CFによって水分約80%の汚泥が残りの液と分離される。70℃の残りの液はポンプ(図示省略)によってバロメトリックコンデンサBCに連通し、減圧されたフラッシュドラムFDに導かれ、断熱的にフラッシュし、蒸発潜熱を奪われて降温する(45℃)。前記降温した残りの液は、中間排水として、適温又はそれに近い温度となって生物処理される。  When the decanter waste water is heated to 70 ° C., the dispersoid is condensed as described above, and the solid is settled and the sludge having a water content of about 80% is separated from the remaining liquid by the centrifugal separator CF. The remaining liquid at 70 ° C. is communicated to the barometric condenser BC by a pump (not shown), led to the decompressed flash drum FD, flushed adiabatically, and the temperature is lowered by taking away latent heat of evaporation (45 ° C.). The remaining liquid having the lowered temperature is subjected to biological treatment at an appropriate temperature or a temperature close thereto as intermediate drainage.

フラッシュによって生じた水蒸気は、長い大気脚BLを備えたバロメトリックコンデンサBCに進み、ポンプ(図示省略)によつて新しく供給される、15℃のデカンタ廃液と接触、凝縮し、それに蒸発潜熱を与えて昇温させる(42℃)。この昇温したデカンタ廃液はさらにスチームによってさらに加温されることによつて70℃に達し、分散質が沈殿する。以上、残りの液の熱回収によってデカンタ廃液の15℃から70℃への加温に必要なスチームの量が略半減される。  The water vapor generated by the flash travels to a barometric condenser BC with a long atmospheric leg BL, contacts and condenses with a 15 ° C. decanter waste liquid newly supplied by a pump (not shown), and gives latent heat of evaporation to it. The temperature is raised (42 ° C.). The heated decanter waste liquid is further heated by steam and reaches 70 ° C., and the dispersoid is precipitated. As described above, the amount of steam required for heating the decanter waste liquid from 15 ° C. to 70 ° C. is substantially halved by heat recovery of the remaining liquid.

なお、その際凝縮水とデカンタ廃水との混合液が大気脚BLを経て大気圧下に放出され、それによって上記フラッシュドラムFD内の減圧が確保される。また、デカンタ廃水等に含まれていたり、漏入したりする非凝縮性ガスがフラッシュドラムFD内に蓄積し、減圧が損われることがないよう、図示されないスチームエジェクタや真空ポンプVP等のよって吸引除去される。  At that time, the mixed liquid of the condensed water and the decanter waste water is discharged to the atmospheric pressure through the atmospheric leg BL, thereby ensuring the decompression in the flash drum FD. In addition, a non-condensable gas contained in decanter waste water or leaking is accumulated in the flash drum FD and sucked by a steam ejector (not shown) or a vacuum pump VP so that the decompression is not impaired. Removed.

前記フラッシュによって生じた水蒸気の、新しく供給されるデカンタ排水との接触による凝縮は、別の形式によってもよいが、バロメトリックコンデンサは構造簡単で安価であり、デカンタ廃水の性状の変動に対しても安定して作動する。また、フラッシュと凝縮とが繰り返し複数段行なわれれば、残りの液の降温と新しく供給されるデカンタ廃水の昇温とがさらに進む(多段フラッシュ)。  Condensation of the water vapor generated by the flash by contact with the newly supplied decanter wastewater may be in another form, but the barometric condenser is simple in structure and inexpensive, and it is also resistant to fluctuations in the properties of decanter wastewater. Operates stably. In addition, if flushing and condensation are repeated for a plurality of stages, the temperature of the remaining liquid is further lowered and the temperature of newly supplied decanter waste water is further increased (multistage flushing).

発明の効果The invention's effect

以上のとおり請求項1の発明によれば、水分20%以下に乾燥された乾燥汚泥は、減量され、運搬容易であり、また、腐敗やかびの発生がなく、悪臭を発することもなく、長期の貯蔵保管も可能である。また、乾燥汚泥はそれだけでは堆肥化に必要な水分が低過ぎるため、水分の添加が必要となるが、得られた堆肥の戻しは不要となる。  As described above, according to the invention of claim 1, the dried sludge dried to a moisture content of 20% or less is reduced in weight, is easy to transport, does not cause spoilage and mold, does not emit bad odors, and is long-term. Can also be stored. Moreover, since the moisture required for composting is too low for dried sludge, it is necessary to add moisture, but it is not necessary to return the obtained compost.

請求項2の発明によれば、請求項1に記載の発明の効果に加えて、澱粉製造時期に限定されず、堆肥化の時間的自由度が増大され、任意の時期、しかも任意の期間、堆肥の需要に合わせて堆肥化可能となり、それに伴って堆肥化設備の規模も小さくなり、その設備負担が低減される。  According to the invention of claim 2, in addition to the effect of the invention of claim 1, it is not limited to the starch production time, the time freedom of composting is increased, any time, and any time period, Composting is possible according to the demand for compost, and the scale of composting equipment is reduced accordingly, and the equipment burden is reduced.

請求項3の発明によれば、請求項1又は2に記載の発明の効果に加えて、乾燥設備は必要であるが、それに要する燃料が前記中間排水の生物処理で副生するバイオガスによって賄われるため、乾燥に伴なう燃料負担増は皆無である。  According to the invention of claim 3, in addition to the effect of the invention of claim 1 or 2, a drying facility is necessary, but the fuel required for it is covered by biogas produced as a by-product in the biological treatment of the intermediate waste water. Therefore, there is no increase in fuel burden accompanying drying.

請求項4の発明によれば、請求項1乃至3に記載のいずれかのの効果に加えて、堆肥の品質が安定化し、Nの不足の懸念も解消される。また、水分の高い農業・畜産の廃棄物に乾燥汚泥が添加され、水分調整がなされるため、農業・畜産の廃棄物のみの堆肥化で必要であった堆肥の戻しも不要となる。  According to the invention of claim 4, in addition to the effect of any one of claims 1 to 3, the quality of the compost is stabilized, and the concern about the shortage of N is solved. In addition, since dry sludge is added to agricultural and livestock waste with high water content and the water content is adjusted, it is not necessary to return compost, which was necessary for composting only agricultural and livestock waste.

請求項5の発明によれば、新しく供給される供給される澱粉製造廃水が昇温し、それに必要なスチームの消費量が低減されると共に、前記残った液が生物処理に適した温度又はそれに近い温度まで降温する。  According to the invention of claim 5, the supplied starch production wastewater to be newly supplied is heated to reduce the consumption of steam necessary for it, and the remaining liquid is set to a temperature suitable for biological treatment or to it. Lower the temperature to a near temperature.

本発明の澱粉製造廃水処理汚泥の堆肥化方法の実施の形態例を示すブロックフローダイアグラムである。  It is a block flow diagram which shows the embodiment of the composting method of the starch manufacture wastewater treatment sludge of this invention. 澱粉製造廃水処理汚泥の堆肥化方法の従来例を示すブロックフローダイアグラムである。  It is a block flow diagram which shows the prior art example of the composting method of starch manufacture wastewater treatment sludge. 本発明の澱粉製造廃水処理方法の実施の形態例を示すフローダイアグラムである。  It is a flow diagram which shows the embodiment of the starch manufacturing wastewater processing method of this invention.

符号の説明Explanation of symbols

BC バロメトリックコンデンサ
BL 大気脚
CF 遠心分離(機)
FD フラッシュダイアグラム
VP 真空ポンプ
BC Barometric capacitor BL Atmospheric leg CF Centrifugation (machine)
FD Flash diagram VP Vacuum pump

Claims (5)

澱粉製造廃水処理によって分離された高水分の汚泥の堆肥化に先立って、汚泥が水分20%以下に乾燥される
ことを特徴とする澱粉製造廃水汚泥の堆肥化方法。
A method for composting starch production wastewater sludge, wherein the sludge is dried to a moisture content of 20% or less prior to composting of the high moisture sludge separated by the starch production wastewater treatment.
前記汚泥の乾燥によって得られた乾燥汚泥が貯蔵される
ことを特徴とする、請求項1に記載の澱粉製造廃水汚泥の堆肥化方法。
The method for composting starch production wastewater sludge according to claim 1, characterized in that the dried sludge obtained by drying the sludge is stored.
前記澱粉製造廃水処理によって汚泥を分離された中間排水の生物処理で得られるバイオガスが前記汚泥の乾燥の燃料として使用される
ことを特徴とする、請求項1又は2に記載の澱粉製造廃水汚泥の堆肥化方法。
3. The starch production wastewater sludge according to claim 1, wherein biogas obtained by biological treatment of intermediate wastewater from which sludge has been separated by the starch production wastewater treatment is used as a fuel for drying the sludge. Composting method.
前記乾燥された汚泥が他の農業・畜産の廃棄物に混合されたうえ、堆肥化される
ことを特徴とする、請求項1乃至3のいずれかに記載の澱粉製造廃水汚泥の堆肥化方法。
The method for composting starch production wastewater sludge according to any one of claims 1 to 3, wherein the dried sludge is mixed with other agricultural and livestock waste and then composted.
加温された澱粉製造廃水からが固形分が分離されて、残った液が、減圧されることによって断熱的にフラッシュし、蒸発潜熱を奪われて降温すると共に、そのフラッシュによって生じた水蒸気が、新しく供給される、加温前の澱粉製造廃水と接触、凝縮し、その澱粉製造廃水に凝縮潜熱を与えて昇温させる
ことを特徴とする、澱粉製造廃水処理方法。
The solid content is separated from the heated starch production wastewater, and the remaining liquid is adiabatically flushed by being depressurized, deprived of latent heat of evaporation and cooled, and the water vapor generated by the flushing is A method for treating starch production wastewater, comprising the steps of contacting and condensing with newly supplied starch production wastewater before heating, and condensing latent heat to the starch production wastewater to raise the temperature.
JP2003316054A 2003-08-05 2003-08-05 Method of composting starch manufacture waste water sludge and method of treating starch manufacture waste water Pending JP2005053765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003316054A JP2005053765A (en) 2003-08-05 2003-08-05 Method of composting starch manufacture waste water sludge and method of treating starch manufacture waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003316054A JP2005053765A (en) 2003-08-05 2003-08-05 Method of composting starch manufacture waste water sludge and method of treating starch manufacture waste water

Publications (1)

Publication Number Publication Date
JP2005053765A true JP2005053765A (en) 2005-03-03

Family

ID=34372534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003316054A Pending JP2005053765A (en) 2003-08-05 2003-08-05 Method of composting starch manufacture waste water sludge and method of treating starch manufacture waste water

Country Status (1)

Country Link
JP (1) JP2005053765A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021300A (en) * 2005-07-13 2007-02-01 Toshiba Plant Systems & Services Corp Liquid warming/temperature-reducing system
JP2008188533A (en) * 2007-02-05 2008-08-21 Toshiba Corp Water treatment apparatus
KR100862579B1 (en) * 2007-01-12 2008-10-09 아트세이버 주식회사 Main Current Detection ? Analysis Recurrence System
CN104803724A (en) * 2015-05-22 2015-07-29 浦北县科学技术开发中心 Method for treating processing waste liquid and waste residues of banana leaf sheathes for knotting artwork
US10366882B2 (en) * 2009-09-14 2019-07-30 Shin-Etsu Chemical Co., Ltd. System for producing polycrystalline silicon, apparatus for producing polycrystalline silicon, and process for producing polycrystalline silicon

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021300A (en) * 2005-07-13 2007-02-01 Toshiba Plant Systems & Services Corp Liquid warming/temperature-reducing system
KR100862579B1 (en) * 2007-01-12 2008-10-09 아트세이버 주식회사 Main Current Detection ? Analysis Recurrence System
JP2008188533A (en) * 2007-02-05 2008-08-21 Toshiba Corp Water treatment apparatus
US10366882B2 (en) * 2009-09-14 2019-07-30 Shin-Etsu Chemical Co., Ltd. System for producing polycrystalline silicon, apparatus for producing polycrystalline silicon, and process for producing polycrystalline silicon
CN104803724A (en) * 2015-05-22 2015-07-29 浦北县科学技术开发中心 Method for treating processing waste liquid and waste residues of banana leaf sheathes for knotting artwork

Similar Documents

Publication Publication Date Title
US10239776B2 (en) Organics and nutrient recovery from anaerobic digester residues
EP2675770B1 (en) Organics and nutrient recovery from anaerobic digester residues
US9481611B2 (en) System and method for producing fertilizer from organic waste
Hait et al. Vermistabilization of primary sewage sludge
US6291232B1 (en) Anaerobic digestion system and process
US20090032458A1 (en) Biogas Producing Facility With Anaerobic Hydrolysis
US10793483B2 (en) Method and system for compounding fertilizer from manure without nutrient emission
JP6240508B2 (en) Process for treating treated water from plants for hydrothermal carbonization of renewable raw materials and organic residue materials
CA2611292C (en) Method and system for the production of biofertilisers
US20150299635A1 (en) Method for organic waste hydrolysis and acidification and an apparatus thereof
JP3651836B2 (en) Organic waste treatment methods
JP2005013909A (en) Method of treating fermented product derived from organic waste and method of producing fodder
US20190119179A1 (en) Method and system for compounding fertilizer from manure without nutrient emission
US10683239B2 (en) Method and system for compounding fertilizer from manure without nutrient emission
JP2005053765A (en) Method of composting starch manufacture waste water sludge and method of treating starch manufacture waste water
JPS5992098A (en) Disposal of waste liquor containing organic substance
JP2000167595A (en) Treatment of organic waste
NL2003086C2 (en) METHOD AND DEVICE FOR HANDLING AMMONIUM WASTE WATER.
CA3023341A1 (en) Method and system for compounding fertilizer from manure without nutrient emission
JPH0536393B2 (en)
JP3939108B2 (en) Method for producing seeding agent for membrane separation activated sludge
CA2860031C (en) Organics and nutrient recovery from anaerobic digester residues
CH672634A5 (en) Organic fertiliser produced from pig slurry - with addn. of poultry and/or cow manure and horse manure
Milazzo Energetics and technology of biological elimination of wastes: proceedings of the International Colloquium, held in Rome, October 17-19, 1979
JPS594496A (en) Treatment of organic sludge