JP2005053032A - Multilayered resin film, resin coated metal sheet, method for manufacturing multilayered resin film and method for manufacturing resin coated metal sheet - Google Patents

Multilayered resin film, resin coated metal sheet, method for manufacturing multilayered resin film and method for manufacturing resin coated metal sheet Download PDF

Info

Publication number
JP2005053032A
JP2005053032A JP2003285005A JP2003285005A JP2005053032A JP 2005053032 A JP2005053032 A JP 2005053032A JP 2003285005 A JP2003285005 A JP 2003285005A JP 2003285005 A JP2003285005 A JP 2003285005A JP 2005053032 A JP2005053032 A JP 2005053032A
Authority
JP
Japan
Prior art keywords
resin
manifold
die
film
resin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003285005A
Other languages
Japanese (ja)
Inventor
Yasuhiro Matsubara
康洋 松原
Tomomasa Maida
知正 毎田
Takushi Nakamura
琢司 中村
Hiroshi Inasawa
弘志 稲沢
Harunori Kojo
治則 古城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP2003285005A priority Critical patent/JP2005053032A/en
Publication of JP2005053032A publication Critical patent/JP2005053032A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multilayered resin film reduced in surface unevenness, a resin coated metal sheet wherein the multilayered resin film is laminated on a metal sheet, a method for manufacturing the multilayered resin film and a method for manufacturing the resin coated metal sheet wherein the multilayered resin film is laminated on the metal sheet. <P>SOLUTION: The temperatures of extruders 6a and 6b provided so as to be continued to respective manifolds 2a and 2b, the temperatures of the respective manifolds 2a and 2b and the temperatures of the parts of the dies 1 adjacent to the respective manifolds are controlled. The temperature of the extruder 6a, the manifold 2a and the part of the die adjacent to the manifold through which a resin high in melt viscosity is passed is kept higher than that of the extruder 6b, the manifold 2b and the part of the die adjacent to the manifold through which the resin low in melt viscosity is passed to set the difference between the melt viscosities of adjacent resin layers to 3,000 poise or below at a shearing speed of 20-500 sec<SP>-1</SP>so that the thickness of the resin with a melt tension of 1g or above becomes 1/3 the total thickness to laminate the respective molten resins. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、溶融張力および溶融粘度が互いに相違する複数の樹脂層からなる表面の凹凸が小さい多層樹脂フィルム、その多層樹脂フィルムを被覆してなる樹脂被覆金属板、多層樹脂フィルムの製造方法、および樹脂被覆金属板の製造方法に関する。   The present invention is a multilayer resin film having a small surface irregularity composed of a plurality of resin layers having different melt tension and melt viscosity, a resin-coated metal plate coated with the multilayer resin film, a method for producing the multilayer resin film, and The present invention relates to a method for producing a resin-coated metal plate.

飲料缶などの分野においては、樹脂フィルム被覆金属板を絞り加工や絞りしごき加工を施してなる缶が多用されている。これは、樹脂フィルムが加工時における金属板に対する優れた接着性と、内容物に対する優れた耐透過性を兼備していることによる。これらの樹脂フィルム被覆金属板を成形加工してなる缶においては、近年、缶に充填する内容物の多様化、および缶コストの削減を目的としたさらなる缶体の軽量化のための加工度の上昇に伴って、優れた耐透過性および優れた加工接着性を単層の樹脂フィルムで両立させることが困難になってきている。そのため、加工接着性と耐透過性をそれぞれの特性に優れた単層の樹脂フィルムを用いてそれぞれ別個に担わせ、それらの個々の単層フィルムを多層化したフィルムを金属板に被覆することにより、従来よりさらに優れた加工接着性と耐透過性を有する、樹脂フィルム被覆金属板に用いる樹脂フィルムとして適用することが試みられている。   In the field of beverage cans and the like, a can obtained by drawing or squeezing and squeezing a resin film-coated metal plate is frequently used. This is because the resin film has excellent adhesion to the metal plate during processing and excellent permeation resistance to the contents. In recent years, the cans formed by molding these resin film-coated metal plates have a processing degree for diversifying the contents to be filled in the cans and further reducing the weight of the cans for the purpose of reducing can costs. Along with the rise, it has become difficult to achieve both excellent permeation resistance and excellent work adhesion with a single-layer resin film. For this reason, by using a single-layer resin film having excellent properties and processing adhesion and permeation resistance separately, and by coating a metal plate with a film obtained by multilayering those individual single-layer films. Attempts have been made to apply it as a resin film used for a resin film-coated metal plate, which has even better work adhesion and permeation resistance than before.

しかし、上記のように物性の異なる樹脂フィルムを多層化して用いる場合、融点が異なり同一温度で加熱溶融させた場合の溶融粘度がそれぞれ異なる樹脂を加熱溶融し共押出してフィルムに製膜しなくてはならないが、融点が異なる樹脂を加熱溶融させる場合、同一温度で加熱溶融させると融解温度の高い樹脂の溶融粘度が高く、融解温度の低い樹脂の溶融粘度が低くなる場合が多い。そして、マルチマニフォルドダイを用いて同一温度でこのような樹脂を加熱溶融させた樹脂を多層化して積層する場合、隣接する樹脂の溶融粘度が異なると、個々のマニフォルドを通った個々の加熱溶融樹脂を多層樹脂として合流させる際に、樹脂層同士の界面において加熱溶融樹脂の流れに乱れが生じ、フィルム表面に厚みムラ(凹凸)が生じてしまうことがある。フィルム表面に生じる厚みムラはフローマークと呼ばれ、目視的に不良であるばかりでなく、缶体に成形するための絞り加工や絞りしごき加工、缶上部の開口部のネックイン(小径化)加工を実施する際に均一な加工が不可能となり、破胴などの原因となる。また、生産速度を向上させるために高速で溶融樹脂を押し出すと幅方向における寸法の差、すなわち耳の発生が大きくなったり、ダイリップから押し出された樹脂が均一に落下せず脈動しながら落下するようになり、均一な厚さのフィルムが得られなくなる。このような耳やフィルムの厚みムラ(凹凸、フローマーク)の発生を抑制するため、上記の公報に開示された方法が試みられている。   However, when resin films having different physical properties are used in multiple layers as described above, resins having different melting points and different melt viscosities when heated and melted at the same temperature are heated and melted and coextruded to form a film. However, when resins having different melting points are heated and melted, if they are heated and melted at the same temperature, the melt viscosity of a resin having a high melting temperature is high, and the melt viscosity of a resin having a low melting temperature is often low. And when multi-manifold dies are used to laminate and laminate a resin in which such resins are heated and melted at the same temperature, if the melt viscosity of adjacent resins is different, individual heated and melted resins that have passed through individual manifolds When the materials are joined together as a multilayer resin, the flow of the heated molten resin may be disturbed at the interface between the resin layers, resulting in uneven thickness (unevenness) on the film surface. The uneven thickness on the film surface is called a flow mark and is not only visually defective, but also draw processing and drawing ironing to form a can body, neck-in (small diameter) processing of the upper opening of the can When carrying out the process, uniform processing becomes impossible, which may cause broken bodies. Also, if the molten resin is extruded at a high speed in order to improve the production speed, the difference in dimensions in the width direction, that is, the generation of ears will increase, or the resin extruded from the die lip will fall without pulsating uniformly. Thus, a film having a uniform thickness cannot be obtained. In order to suppress the occurrence of such unevenness in thickness of the ears and film (unevenness, flow mark), the method disclosed in the above publication has been attempted.

特許文献1においては、互いの融点や加熱溶融時の粘度の相違が小さい樹脂を選択して用いることにより、フローマークの発生を防止する方法が開示されているが、樹脂フィルムに要求される物性によっては、互いの融点や加熱溶融時の粘度が大きく相違する樹脂を選択せざるを得ない場合が多く、この公報に開示された方法は、極く限られた用途にしか適用できない。   Patent Document 1 discloses a method for preventing the occurrence of a flow mark by selecting and using a resin having a small difference in melting point and viscosity at the time of heating and melting. However, physical properties required for a resin film are disclosed. Depending on the case, it is often necessary to select resins having mutually different melting points or viscosities when heated and melted, and the method disclosed in this publication can be applied only to extremely limited applications.

特許文献2は、加熱溶融させた複数の樹脂層をTダイの前で合流させるフィードブロック法を用い、フィードブロックと、フィードブロックに接続して多層樹脂フィルムを成形するTダイを組み合わせた多層押出成型方法において、フィードブロックに設けた加熱ヒータを温度制御することにより、多層に合流する積層境界面におけるずれ(フローマーク)などの不良現象を低減させる方法を開示している。図2にその多層押出成形装置の一例の概略を示す。多層押出成形装置は複数のマニフォルド14a〜14gを有するフィードブロック10と、マニフォルド14a〜14gからの樹脂の合流部16の下方に、フィードブロック10に接続して設けられたTダイ12とで構成されている。それぞれのマニフォルド14a〜14gからの樹脂通路の合流部の周辺に、例えばマニフォルド14bの出側の樹脂通路に加熱ヒータ20b、22b、温度計28bなど(説明の簡略のため、マニフォルド14bにのみ言及)を設け、各マニフォルドから供給される各溶融樹脂材料の温度/粘度を制御して温度/粘度を均一化することにより、多層樹脂に合流する積層境界面における不良現象を低減させる。   Patent Document 2 uses a feed block method in which a plurality of heat-melted resin layers are joined in front of a T die, and a multilayer extrusion that combines a feed block and a T die that is connected to the feed block to form a multilayer resin film. In the molding method, a method is disclosed in which the temperature of a heater provided in a feed block is controlled to reduce a defective phenomenon such as a shift (flow mark) at a laminated boundary surface joining multiple layers. FIG. 2 shows an outline of an example of the multilayer extrusion molding apparatus. The multilayer extrusion molding apparatus includes a feed block 10 having a plurality of manifolds 14a to 14g, and a T die 12 provided in connection with the feed block 10 below the junction 16 of the resin from the manifolds 14a to 14g. ing. Around the junction of the resin passages from the manifolds 14a to 14g, for example, the heaters 20b and 22b, the thermometer 28b, etc. in the resin passage on the outlet side of the manifold 14b (for the sake of simplicity, only the manifold 14b is mentioned) And controlling the temperature / viscosity of each molten resin material supplied from each manifold to equalize the temperature / viscosity, thereby reducing the defective phenomenon at the laminated interface joining the multilayer resin.

しかし、フィードブロック法においては、多層に合流した後に樹脂が流入するTダイの内部が単層構造であり、合流して多層化した樹脂が合流部16からダイリップ32の出口開口部34までに至る距離が大きくなり、その距離を溶融樹脂が移動する間、Tダイは全体として加熱されるのみであるために、各樹脂層が同一粘度となる合流直後の各樹脂層のそれぞれ異なる加熱温度を温度差を有したままで保つことが不可能であり、出口開口部34においては各樹脂層の加熱温度が変化することによって、各樹脂層の溶融粘度を同一に保てなくなるので、フローマークの発生を防止することが困難になる。このように、この公報による方法も、同一の溶融粘度が得られる融点の差がそれ程大きく相違しない樹脂を用いるような、限られた用途にしか適用できない。また、これらの公報に開示された方法においても、溶融樹脂の張力が小さい場合は製膜速度を増大することができない。   However, in the feed block method, the inside of the T die into which the resin flows after joining the multilayers has a single layer structure, and the joined and multilayered resin reaches from the joining part 16 to the outlet opening 34 of the die lip 32. Since the T die is only heated as a whole while the distance increases and the molten resin moves through the distance, the heating temperature of each resin layer immediately after merging is increased. Since it is impossible to keep the difference and the heating temperature of each resin layer is changed at the outlet opening 34, the melt viscosity of each resin layer cannot be kept the same. It becomes difficult to prevent. As described above, the method according to this publication can be applied only to a limited use such as using a resin that does not differ so much in melting point that the same melt viscosity is obtained. Also, in the methods disclosed in these publications, the film forming speed cannot be increased when the tension of the molten resin is small.

本出願に関する先行技術文献情報として次のものがある。
特開平08−290532号公報 特開平11−309770号公報
Prior art document information relating to the present application includes the following.
Japanese Patent Application Laid-Open No. 08-290532 Japanese Patent Laid-Open No. 11-309770

本発明は、溶融粘度が互いに相違する複数の樹脂層からなる多層フィルムにおいて、表面の凹凸が小さい多層樹脂フィルム、多層樹脂フィルムを金属板に積層してなる樹脂被覆金属板、および溶融粘度が互いに相違する複数の溶融樹脂を、高速でかつフィルム表面に凹凸を形成させずに積層して多層樹脂フィルムとする多層樹脂フィルムの製造方法、ならびに多層樹脂フィルムを金属板に積層する樹脂被覆金属板の製造方法を提供することを目的とする。   The present invention relates to a multilayer film composed of a plurality of resin layers having different melt viscosities, a multilayer resin film having small surface irregularities, a resin-coated metal plate obtained by laminating a multilayer resin film on a metal plate, and a melt viscosity of each other A method for producing a multilayer resin film by laminating a plurality of different molten resins at high speed without forming irregularities on the film surface, and a resin-coated metal plate for laminating a multilayer resin film on a metal plate An object is to provide a manufacturing method.

本発明の目的を達成するため、本発明の多層樹脂フィルムは、2種類以上の樹脂から構成される多層樹脂フィルムにおいて、そのうちの少なくとも1種類の樹脂の押出温度における溶融張力が1g以上でかつ厚さが全厚さの3分の1以上であることを特徴とする多層樹脂フィルム(請求項1)であり、
上記(請求項1)の多層樹脂フィルムにおいて、多層樹脂フィルム表面における凹凸の差が5.0μm以下であること(請求項2)を特徴とする。
また、本発明の樹脂被覆金属板は、上記(請求項1または2)のいずれかの多層樹脂フィルムを金属板に積層してなる樹脂被覆金属板である。
In order to achieve the object of the present invention, the multilayer resin film of the present invention is a multilayer resin film composed of two or more kinds of resins, wherein the melt tension at the extrusion temperature of at least one of the resins is 1 g or more and is thick. Is a multilayer resin film (claim 1), characterized in that is a third or more of the total thickness,
In the multilayer resin film of the above (Claim 1), the unevenness difference on the surface of the multilayer resin film is 5.0 μm or less (Claim 2).
Moreover, the resin-coated metal plate of the present invention is a resin-coated metal plate obtained by laminating the multilayer resin film of any of the above (Claim 1 or 2) on a metal plate.

さらに、本発明の多層樹脂フィルムの製造方法は、押出温度における溶融張力が1g以上である樹脂を少なくとも1種類含む2種類以上の樹脂を、マルチマニフォルドダイを用いて、それぞれのマニフォルドに連続して設けられた押出機、それぞれのマニフォルド、およびそれぞれのマニフォルドに隣接するダイの部分のそれぞれの温度を制御し、溶融粘度の高い樹脂が通る押出機、マニフォルド、およびマニフォルドに隣接するダイの部分の温度を、溶融粘度の低い樹脂が通る押出機、マニフォルド、およびマニフォルドに隣接するダイの部分の温度より高温に保持して、隣接する樹脂層の溶融粘度の差を、20〜500秒−1の剪断速度において3000ポアズ以下とした後、溶融張力が1g以上である樹脂の厚さが全厚さの3分の1以上となるようにして、それぞれの溶融樹脂を積層して多層フィルムとすることを特徴とする、多層樹脂フィルムの製造方法である(請求項4)。 Furthermore, in the method for producing a multilayer resin film of the present invention, two or more types of resins including at least one type of resin having a melt tension of 1 g or more at an extrusion temperature are continuously added to each manifold using a multi-manifold die. The temperature of the extruder, manifold, and die portion adjacent to the manifold through which the high melt resin passes is controlled by controlling the temperature of the provided extruder, each manifold, and the die portion adjacent to each manifold. Is kept above the temperature of the extruder, manifold, and die portion adjacent to the manifold through which the low melt viscosity resin passes, and the difference in melt viscosity of adjacent resin layers is sheared between 20 and 500 seconds −1 After the speed is set to 3000 poise or less, the thickness of the resin having a melt tension of 1 g or more is 1/3 or more of the total thickness. As a, characterized by a multi-layer film by laminating each molten resin, a method of manufacturing a multilayer resin film (claim 4).

さらにまた、本発明の樹脂被覆金属板の製造方法は、押出温度における溶融張力が1g以上である樹脂を少なくとも1種類含む2種類以上の樹脂を、マルチマニフォルドダイを用いて、それぞれのマニフォルドに連続して設けられた押出機、それぞれのマニフォルド、およびそれぞれのマニフォルドに隣接するダイの部分のそれぞれの温度を制御し、溶融粘度の高い樹脂が通る押出機、マニフォルド、およびマニフォルドに隣接するダイの部分の温度を、溶融粘度の低い樹脂が通る押出機、マニフォルド、およびマニフォルドに隣接するダイの部分の温度より高温に保持して、隣接する樹脂層の溶融粘度の差が20〜500秒−1の剪断速度において3000ポアズ以下とした後、溶融張力が1g以上である樹脂の厚さが全厚さの3分の1以上となるようにして、それぞれの溶融樹脂を積層して多層化した後、金属板上に押し出すことを特徴とする、樹脂被覆金属板の製造方法(請求項5)である。 Furthermore, in the method for producing a resin-coated metal sheet of the present invention, two or more types of resins including at least one type of resin having a melt tension of 1 g or more at the extrusion temperature are continuously connected to each manifold using a multi-manifold die. Extruder, each manifold, and a portion of the die adjacent to the manifold that controls the temperature of each of the manifold and the portion of the die adjacent to each manifold through which the high melt viscosity resin passes. Is maintained at a temperature higher than the temperature of the extruder, manifold, and die portion adjacent to the manifold through which the low melt viscosity resin passes, and the difference in melt viscosity of the adjacent resin layers is 20 to 500 seconds −1 . After setting the shear rate to 3000 poise or less, the thickness of the resin having a melt tension of 1 g or more is 1/3 or more of the total thickness. As the after multilayered by laminating each molten resin, characterized in that the extruded onto a metal plate, a method for producing a resin coated metal sheet (claim 5).

本発明においては、押出温度における溶融張力が1g以上である樹脂を少なくとも1種類含み、20〜500秒−1の剪断速度における溶融粘度の差が3000〜20000ポアズである2種類以上の樹脂を、マルチマニフォルドダイを用いて、それぞれのマニフォルドに連続して設けられた押出機、それぞれのマニフォルド、およびそれぞれのマニフォルドに隣接するダイの部分のそれぞれの温度を制御し、溶融粘度の高い樹脂が通る押出機、マニフォルド、およびマニフォルドに隣接するダイの部分の温度を、溶融粘度の低い樹脂が通る押出機、マニフォルド、およびマニフォルドに隣接するダイの部分の温度より高温に保持して、隣接する樹脂層の溶融粘度の差を、20〜500秒−1の剪断速度において3000ポアズ以下とした後、溶融張力が1g以上である樹脂の厚さが全厚さの3分の1以上となるようにして、それぞれの溶融樹脂を積層して多層フィルムとするものであり、高速度で製膜しても脈動や耳発生が増大することがなく、得られた樹脂フィルムの厚みムラは極めて小さい。また、このようにして得られる多層フィルムは表面における凹凸の差が5μm以下であるので、目視的な平滑性に優れているのみならず、樹脂フィルム中に通常の多層フィルムにおけるような溶融粘度に基づく応力が生じることがないので、多層樹脂フィルムを金属板に積層被覆して多層樹脂フィルム被覆金属板とした場合に、樹脂フィルムに疵が付いても樹脂フィルムが金属板から捲れ上がって剥離することがない。 In the present invention, at least one type of resin having a melt tension of 1 g or more at an extrusion temperature is included, and two or more types of resins having a difference in melt viscosity at a shear rate of 20 to 500 seconds −1 are 3000 to 20000 poises, Using a multi-manifold die, control the temperature of each extruder continuously provided in each manifold, each manifold, and the portion of the die adjacent to each manifold, and extrusion through which resin with high melt viscosity passes The temperature of the machine, the manifold, and the portion of the die adjacent to the manifold is maintained above the temperature of the extruder, manifold, and die portion adjacent to the manifold through which the low melt viscosity resin passes, after a difference in melt viscosity was 3000 poise or less at a shear rate of 20 to 500 sec -1 The melt tension is 1 g or more and the thickness of the resin is 1/3 or more of the total thickness, and the respective melt resins are laminated to form a multilayer film. However, pulsation and ear generation do not increase, and the thickness unevenness of the obtained resin film is extremely small. In addition, since the multilayer film obtained in this way has a difference of unevenness on the surface of 5 μm or less, it not only has excellent visual smoothness but also has a melt viscosity as in a normal multilayer film in a resin film. No stress is generated, so when a multilayer resin film is laminated and coated on a metal plate to form a multilayer resin film-coated metal plate, the resin film will roll up and peel off from the metal plate even if the resin film has wrinkles. There is nothing.

以下、図面を参照しながら本発明を説明する。図1は、溶融粘度が互いに相違する複数の樹脂層からなる本発明の多層フィルムの製造方法の一例を示す概略図である。説明を簡略にするため、2層樹脂フィルムの製膜に用いる場合を例示する。2個のマニフォルド2aおよび2bを有するマルチマニフォルドダイ1には、溶融粘度が高い方の樹脂を加熱溶融して押し出す押出機6aと溶融粘度が低い方の樹脂を加熱溶融して押し出す押出機6bが、それぞれ樹脂通路を介して2aおよび2bと接続して設けられている。マニフォルド2aおよび2bは、マルチマニフォルドダイ1の下方で合体してリップランド5となり、マルチマニフォルドダイ1の最下部のダイリップに設けられた吐出口7に連なっている。   The present invention will be described below with reference to the drawings. FIG. 1 is a schematic view showing an example of a method for producing a multilayer film of the present invention comprising a plurality of resin layers having different melt viscosities. In order to simplify the explanation, a case of using for forming a two-layer resin film is illustrated. The multi-manifold die 1 having two manifolds 2a and 2b includes an extruder 6a that heats and melts a resin having a higher melt viscosity and an extruder 6b that heats and melts a resin having a lower melt viscosity. Are respectively connected to 2a and 2b via resin passages. The manifolds 2a and 2b are combined below the multi-manifold die 1 to form a lip land 5, and are connected to a discharge port 7 provided in the lowermost die lip of the multi-manifold die 1.

マルチマニフォルドダイ1には、ダイ本体の溶融粘度が高い方の樹脂が通る側を加熱するためのヒータ11aと溶融粘度が低い方の樹脂が通る側を加熱するためのヒータ11bと、マニフォルド2aおよび2bを加熱するためにそれぞれのマニフォルドに隣接して設けられたヒータ3aおよび3b、ならびにヒータ4aと4bが設けられ、さらに、押出機6aおよび押出機6bとマルチマニフォルド2aおよび2bをそれぞれ接続する樹脂通路を加熱するためのヒータ10aおよび10bが設けられている。これらのそれぞれのヒータを設けた部位付近には、図示しない熱電対などの温度測定手段を設けてそれぞれの部位の温度を測定しながら加熱温度を一定に制御し、マニフォルド2aおよび2b内のそれぞれの加熱溶融樹脂の粘度の差が一定範囲以内となるように個別にそれぞれのヒータの温度を制御する。   The multi-manifold die 1 includes a heater 11a for heating the side through which the higher melt viscosity of the die body passes, a heater 11b for heating the side through which the lower melt viscosity passes, a manifold 2a, Heaters 3a and 3b provided adjacent to the respective manifolds for heating 2b and heaters 4a and 4b are provided, and the extruder 6a and the extruder 6b are connected to the multi-manifolds 2a and 2b, respectively. Heaters 10a and 10b for heating the passage are provided. A temperature measuring means such as a thermocouple (not shown) is provided in the vicinity of the portion where each of these heaters is provided, and the heating temperature is controlled to be constant while measuring the temperature of each portion, and each of the manifolds 2a and 2b is controlled. The temperature of each heater is individually controlled so that the difference in viscosity of the heated molten resin is within a certain range.

押出機6aおよび押出機6bで加熱溶融された溶融粘度の差が20〜500秒−1の剪断速度において3000〜20000ポアズである2種類の樹脂は、それぞれマルチマニフォルドダイ1内に設けられたマニフォルド2aおよび2bを通り、マルチマニフォルドダイ1の下方で合体したリップランド5の入口で積層され、ダイ1の最下部のダイリップに設けられた吐出口7から、吐出口7の下方に設けられた内部を水などの冷媒が循環するように構成された冷却ロール9上に吐出され、冷却固化した多層樹脂フィルム8となり、連続的にコイル状に巻き取るコイラーなどの巻取手段12に巻き取られる。 Two types of resins having a melt viscosity difference of 3000 to 20000 poise at a shear rate of 20 to 500 seconds −1 heated and melted by the extruder 6a and the extruder 6b are manifolds provided in the multi-manifold die 1, respectively. 2a and 2b, stacked at the inlet of the lip land 5 combined below the multi-manifold die 1, and from the outlet 7 provided on the lowermost die lip of the die 1 to the inside provided below the outlet 7 The refrigerant is discharged onto a cooling roll 9 configured to circulate a coolant such as water, and becomes a cooled and solidified multilayer resin film 8, which is continuously wound around a winding means 12 such as a coiler.

このように構成された多層樹脂フィルムの製造装置を用いて、本発明の多層樹脂フィル
ムは以下のようにして製膜することができる。適用可能な上記樹脂フィルムとしては、特に限定されるものではないが、例えば下記のポリエステル樹脂が適用できる。ポリエステル樹脂が誘導される酸成分としては、テレフタル酸、イソフタル酸、オルソフタール酸、P−β−オキシエトキシ安息香酸、ナフタレン−2,6−ジカルボン酸、ジフェノキシエタン−4,4’−ジカルボン酸、5−ナトリウムスルホイソフタル酸等の2塩基性芳香族ジカルボン酸、ヘキサヒドロテレフタル酸、シクロヘキサンジ酢酸等の脂環族ジカルボン酸、アジピン酸、セバシン酸、ダイマー酸等の脂肪族ジカルボン酸、トリメット酸、ピロメリット酸、ヘミメリット酸、1,1,2,2−エタンテトラカルボン酸、1,1,2−エタントリカルボン酸、1,3,5−ペンタントリカルボン酸、1,2,3,4−シクロペンタンテトラカルボン酸、ビフェニルー3,4,3’,4’−テトラカルボン酸等の多塩基酸等が挙げられる。勿論、これらは、単独でも或いは2種以上の組み合わせでも使用される。ポリエステルが誘導されるアルコール成分としては、エチレングリコール、プロピレングリコ−ル、1,4−ブタンジオール、ネオペンチルグリコール、1,6−へキシレングリコール、ジエチレングリコール、トリエチレングリコール、シクロヘキサンジメタノール等のジオール類や、ペンタエリスリトール、グリセロール、トリメチロールプロパン、1,2,6−へキサントリオール、ソルビトール、1,1,4,4−テトラキス(ヒドロキシメチル)シクロヘキサン等の多価アルコール等が挙げられる。勿論、これらは、単独でも或いは2種以上の組み合わせでも使用できる。
溶融粘度が上記のように20〜500秒−1の剪断速度において3000〜20000ポアズの範囲でそれぞれ異なり、かつそのうちの1種の樹脂の溶融張力が1g以上である樹脂(図1の場合は2種であり、説明を容易にするため、以下、図1に示す押出機6aで加熱溶融する方の樹脂の溶融張力が1g以上で有る場合を想定して説明する)のそれぞれのペレットを押出機6aおよび6bで加熱溶融し、それぞれの押出機の下方に設けられたマルチマニフォルドダイ1内のそれぞれの樹脂通路を介して接続されたマニフォルド2aおよび2bに導かれ、合体部に向かって進んでいく。このとき、それぞれの樹脂はヒータ10aおよび10b、ヒータ11aおよび11b、ヒータ3aおよび3b、ヒータ4aおよび4bにより、それぞれの樹脂の溶融粘度の差が、20〜500秒−1の剪断速度において3000ポアズ以下となるように、それぞれのヒータの加熱温度をそれぞれのヒータ付近に設けられた熱電対などの温度測定手段で測定しながら制御する。
Using the multilayer resin film manufacturing apparatus configured as described above, the multilayer resin film of the present invention can be formed as follows. Although it does not specifically limit as said applicable resin film, For example, the following polyester resin is applicable. Examples of the acid component from which the polyester resin is derived include terephthalic acid, isophthalic acid, orthophthalic acid, P-β-oxyethoxybenzoic acid, naphthalene-2,6-dicarboxylic acid, diphenoxyethane-4,4′-dicarboxylic acid, Dibasic aromatic dicarboxylic acids such as 5-sodiumsulfoisophthalic acid, alicyclic dicarboxylic acids such as hexahydroterephthalic acid and cyclohexanediacetic acid, aliphatic dicarboxylic acids such as adipic acid, sebacic acid and dimer acid, trimet acid, Pyromellitic acid, hemimellitic acid, 1,1,2,2-ethanetetracarboxylic acid, 1,1,2-ethanetricarboxylic acid, 1,3,5-pentanetricarboxylic acid, 1,2,3,4-cyclo And polybasic acids such as pentanetetracarboxylic acid and biphenyl-3,4,3 ′, 4′-tetracarboxylic acid. Of course, these may be used alone or in combination of two or more. Examples of the alcohol component from which the polyester is derived include diols such as ethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, 1,6-hexylene glycol, diethylene glycol, triethylene glycol, and cyclohexanedimethanol. And polyhydric alcohols such as pentaerythritol, glycerol, trimethylolpropane, 1,2,6-hexanetriol, sorbitol, 1,1,4,4-tetrakis (hydroxymethyl) cyclohexane, and the like. Of course, these can be used alone or in combination of two or more.
Resins having different melt viscosities in the range of 3000 to 20000 poises at a shear rate of 20 to 500 seconds- 1 as described above, and one kind of resin having a melt tension of 1 g or more (in the case of FIG. In order to facilitate the explanation, each pellet of the resin to be heated and melted by the extruder 6a shown in FIG. 1 will be described below assuming that the melt tension of the resin is 1 g or more). 6a and 6b are heated and melted, guided to the manifolds 2a and 2b connected through the respective resin passages in the multi-manifold die 1 provided below the respective extruders, and proceed toward the combined portion. . At this time, the respective resins have a difference in melt viscosity of 3000 poise at a shear rate of 20 to 500 seconds −1 by the heaters 10a and 10b, the heaters 11a and 11b, the heaters 3a and 3b, and the heaters 4a and 4b. As described below, the heating temperature of each heater is controlled while being measured by temperature measuring means such as a thermocouple provided in the vicinity of each heater.

次いで、以上のようにしてそれぞれの溶融粘度の差が20〜500秒−1の剪断速度において3000ポアズ以下とされた溶融樹脂はマニフォルド2aおよび2bの合体部で合体したリップランド5の入口で積層され、吐出口7から冷却ロール9上に吐出されて固化し、多層(2層)フィルム8となるが、特に高速度で溶融樹脂を押し出した場合、押出温度における樹脂の溶融張力が1g未満であると押し出されるフィルム状の溶融樹脂が脈動して長手方向の厚さが不均一になったり幅方向で耳が発生するようになる。樹脂の少なくともいずれか1種に溶融張力が1g以上の樹脂を用い、押し出された多層フィルムの全厚さに対してこの溶融張力が1g以上の樹脂の厚さが3分の1以上となるように押出量を制御することにより、脈動や耳の発生を防止することができる。そのため、より高速で製膜することができる。 Next, the molten resin having a difference in melt viscosity of 3000 poise or less at a shear rate of 20 to 500 seconds −1 as described above is laminated at the entrance of the lip land 5 merged at the merged portion of the manifolds 2a and 2b. Then, it is discharged from the discharge port 7 onto the cooling roll 9 and solidified to form a multilayer (two-layer) film 8. Especially when the molten resin is extruded at a high speed, the melt tension of the resin at the extrusion temperature is less than 1 g. If there is, the film-like molten resin to be extruded pulsates, the thickness in the longitudinal direction becomes non-uniform, and ears are generated in the width direction. A resin having a melt tension of 1 g or more is used for at least one of the resins, and the thickness of the resin having a melt tension of 1 g or more is 1/3 or more of the total thickness of the extruded multilayer film. Further, by controlling the extrusion amount, it is possible to prevent the occurrence of pulsation and ears. Therefore, the film can be formed at a higher speed.

以上のようにして、溶融粘度の差を調整し、樹脂の少なくともいずれか1種に溶融張力が1g以上の樹脂を用いて吐出量を調整した後、吐出口7から冷却ロール9上に吐出されて固化した多層(2層)フィルム8は、巻取手段12に巻き取られる。このようにして本発明の多層樹脂フィルムが製造される。   As described above, after adjusting the difference in melt viscosity and adjusting the discharge amount using a resin having a melt tension of 1 g or more for at least one of the resins, the resin is discharged from the discharge port 7 onto the cooling roll 9. The multilayered (two-layer) film 8 solidified in this way is wound up by the winding means 12. In this way, the multilayer resin film of the present invention is produced.

上記のようにして得られる本発明の多層樹脂フィルムは、多層樹脂フィルム表面における凹凸の差が5μm以下であることが好ましい。凹凸の差が5μmを超えると目視的に不良であるばかりでなく、多層樹脂フィルムを金属板に積層被覆して多層樹脂フィルム被覆金属板とした後、この多層樹脂フィルム被覆金属板を缶体に成形するために絞り加工や絞りしごき加工を実施したり、缶上部の開口部のネックイン加工を実施する際に樹脂フィルムが金属板から剥離したり、加工度が局所的に異なるのために、絞り加工や絞りしごき加工において破胴したり、ネックイン加工においてクラッシュしたりして缶体に成形加工できない。   The multilayer resin film of the present invention obtained as described above preferably has a difference in unevenness on the surface of the multilayer resin film of 5 μm or less. When the unevenness difference exceeds 5 μm, it is not only visually inferior, but also after the multilayer resin film is laminated and coated on a metal plate to form a multilayer resin film-coated metal plate, the multilayer resin film-coated metal plate is applied to a can body. To perform drawing or drawing ironing to form, when the neck-in processing of the opening at the top of the can, the resin film peels from the metal plate, because the degree of processing is locally different, Cans cannot be molded into cans due to breaking in drawing and ironing and crashing in neck-in processing.

また、本発明の多層樹脂フィルムは、上記の多層樹脂フィルムの製造方法を用いてダイリップの吐出部から加熱溶融した多層樹脂を、直接金属板にフィルム状に吐出して積層被覆して多層樹脂フィルム被覆金属板とすることができる。また、上記の多層樹脂フィルムの製造方法を用いて作成した多層樹脂フィルムを公知の積層方法を用いて、金属板に直接、または接着剤を介して積層して多層樹脂フィルム被覆金属板とすることもできる。なお、加熱溶融した多層樹脂を、直接金属板にフィルム状に吐出して積層被覆する場合、積層被覆後の多層樹脂フィルムの表面における凹凸の差は、上記と同様の理由で5μm以下であることが好ましい。
なお、以上の説明においては2種類の樹脂を用いる2層の樹脂フィルムを製膜する場合を説明したが、マニフォルド3個以上を設けたマルチマニフォルドダイとそれぞれのマニフォルドに接続して押出機を3個以上設けることにより、3層以上の樹脂フィルムを製膜可能であることはいうまでもない。
Further, the multilayer resin film of the present invention is a multilayer resin film in which the multilayer resin heated and melted from the discharge part of the die lip using the above-described method for producing a multilayer resin film is directly discharged onto a metal plate in a film form and coated. It can be a coated metal plate. In addition, a multilayer resin film prepared using the above-described multilayer resin film production method is laminated on a metal plate directly or via an adhesive to form a multilayer resin film-coated metal plate using a known lamination method. You can also. In addition, when the multilayer resin melted by heating is directly discharged onto a metal plate in the form of a film, the difference in unevenness on the surface of the multilayer resin film after the layer coating is 5 μm or less for the same reason as described above. Is preferred.
In the above description, the case where a two-layer resin film using two kinds of resins is formed has been described. However, a multi-manifold die provided with three or more manifolds and an extruder 3 connected to each manifold. Needless to say, it is possible to form a resin film having three or more layers by providing more than one.

以下、実施例を示し、本発明を詳細に説明する。
(実施例1)
耐透過性に優れたポリエステル樹脂A(エチレンテレフタレート/エチレンイソフタレート共重合体(エチレンイソフタレート5モル%)、融点:230℃、固有粘度:0.92、270℃、剪断速度:100秒−1における溶融粘度:10000ポアズ、溶融張力:0.8g)(以下、簡略に樹脂Aという。溶融張力は、キャピログラフ3A(商品名:東洋精機(株)製)を用い、樹脂温度:260℃、押出速度:10mm/分、巻取速度:10m/分、ノズル径:1mm、ノズル長さ:10mmの条件で測定した)と、加工接着性に優れたポリエステル樹脂B(エチレンテレフタレート/エチレンイソフタレート共重合体(エチレンイソフタレート15モル%)をトリメリット酸(0.3モル%)で変性したもの、融点:215℃、固有粘度:0.9、融点:215℃、温度270℃でかつ剪断速度:100秒−1における溶融粘度:8000ポアズ、溶融張力:1.2g)(以下、簡略に樹脂Bという)を、それぞれ押出機を用いて樹脂Aおよび樹脂Bをともに270℃加熱して溶融させた。次いで、2台の押出機に2個のマニフォルドが樹脂通路を介して連接し、それらのマニフォルドに隣接した個別に温度制御するヒータを設けたマルチマニフォルドダイのそれぞれのマニフォルドに、2層フィルムに製膜した後の樹脂Aの厚さと樹脂Bの厚さの比が2:1であり2層樹脂フィルムの厚さが16μmとなるように吐出量を調整して溶融樹脂Aおよび溶融樹脂Bを導いた。マルチマニフォルドダイの溶融樹脂Aが通る側と溶融樹脂Aが通る樹脂通路およびマニフォルド、およびマルチマニフォルドダイの溶融樹脂Bが通る側と溶融樹脂Bが通る樹脂通路およびマニフォルドはそれぞれに隣接するヒータでいずれも260℃に予め加熱しておき、溶融樹脂Aおよび溶融樹脂Bをそれぞれのマニフォルドを通過させた。このようにして溶融樹脂Aと溶融樹脂Bを加熱した後、溶融樹脂Aと溶融樹脂Bをマニフォルドの合体部で合体させて積層し、マニフォルドの合体点からリップランドを経て150m/分の速度で吐出口から2層樹脂として吐出したところ、吐出樹脂は脈動せず、フィルムの幅方向に耳は生じなかった。吐出した後、吐出口の下方に設けた内部に水を循環させた冷却ロールに落下させて冷却固化し、幅約1mの2層樹脂フィルムとしてコイラーに巻き取った。
EXAMPLES Hereinafter, an Example is shown and this invention is demonstrated in detail.
(Example 1)
Polyester resin A (ethylene terephthalate / ethylene isophthalate copolymer (ethylene isophthalate 5 mol%) excellent in permeation resistance, melting point: 230 ° C., intrinsic viscosity: 0.92, 270 ° C., shear rate: 100 sec −1 Melt viscosity: 10000 poise, melt tension: 0.8 g) (hereinafter simply referred to as resin A. Melt tension was measured using Capillograph 3A (trade name: manufactured by Toyo Seiki Co., Ltd.), resin temperature: 260 ° C., extrusion Speed: 10 mm / min, winding speed: 10 m / min, nozzle diameter: 1 mm, nozzle length: measured at 10 mm) and polyester resin B (ethylene terephthalate / ethylene isophthalate copolymer) excellent in work adhesion Copolymer (ethylene isophthalate 15 mol%) modified with trimellitic acid (0.3 mol%), melting point: 215 ° C, inherent Degrees: 0.9, melting point: 215 ° C., a temperature of 270 ° C. and a shear rate: the melt viscosity at 100 sec -1: 8000 poises, melt tension: 1.2 g) (hereinafter, briefly referred to resin B), extruded respectively Both the resin A and the resin B were heated and melted at 270 ° C. using a machine. Next, two manifolds are connected to the two extruders via resin passages, and two-layer film is produced on each manifold of the multi-manifold die provided with heaters for individually controlling the temperature adjacent to the manifolds. The molten resin A and the molten resin B are guided by adjusting the discharge amount so that the ratio of the thickness of the resin A and the thickness of the resin B after the film formation is 2: 1 and the thickness of the two-layer resin film is 16 μm. It was. The side of the multi-manifold die through which the molten resin A passes and the resin passage and manifold through which the molten resin A passes, and the side of the multi-manifold die through which the molten resin B passes and the resin passage through which the molten resin B passes and the manifold are respectively adjacent to the heater. Was previously heated to 260 ° C., and the molten resin A and the molten resin B were passed through the respective manifolds. After the molten resin A and the molten resin B are heated in this way, the molten resin A and the molten resin B are united and laminated at the united portion of the manifold, and at a speed of 150 m / min through the lip land from the united point of the manifold. When the two-layer resin was discharged from the discharge port, the discharge resin did not pulsate, and no ears were generated in the width direction of the film. After discharging, it was dropped on a cooling roll in which water was circulated inside the discharge port and solidified by cooling, and wound around a coiler as a two-layer resin film having a width of about 1 m.

(比較例1)
実施例1と同様の樹脂Aと樹脂Bを、実施例1と同様の押出機とマルチマニフォルドダイを用い、2層フィルムに製膜した後の樹脂Aの厚さと樹脂Bの厚さの比が2.5:1となるように吐出量を調整した以外は実施例1と同様の条件で樹脂Aと樹脂Bを加熱溶融してマニフォルドの合体点からリップランドを経て150m/分の速度で吐出口から2層樹脂として吐出したところ、吐出樹脂は脈動してフィルムの幅方向に耳が生じた。吐出した後、吐出口の下方に設けた内部に水を循環させた冷却ロールに落下させて冷却固化し、幅約1mの2層樹脂フィルムとしてコイラーに巻き取った。
(Comparative Example 1)
The ratio between the thickness of the resin A and the thickness of the resin B after forming the resin A and the resin B as in Example 1 into a two-layer film using the same extruder and multi-manifold die as in Example 1. Resin A and resin B were heated and melted under the same conditions as in Example 1 except that the discharge amount was adjusted to 2.5: 1, and discharged at a speed of 150 m / min from the manifold coalescence point through the lip land. When discharged from the outlet as a two-layer resin, the discharged resin pulsated and an ear was generated in the width direction of the film. After discharging, it was dropped on a cooling roll in which water was circulated inside the discharge port and solidified by cooling, and wound around a coiler as a two-layer resin film having a width of about 1 m.

(比較例2)
実施例1と同様の樹脂Aと樹脂Bを、実施例1と同様の押出機とマルチマニフォルドダイを用い、2層フィルムに製膜した後の樹脂Aの厚さと樹脂Bの厚さの比が2.5:1となるように吐出量を調整した以外は比較例1と同様の条件で樹脂Aと樹脂Bを加熱溶融してマニフォルドの合体点からリップランドを経て80m/分の速度で吐出口から2層樹脂として吐出したところ、吐出樹脂は脈動せず、フィルムの幅方向に耳は生じなかった。吐出した後、吐出口の下方に設けた内部に水を循環させた冷却ロールに落下させて冷却固化し、幅約1mの2層樹脂フィルムとしてコイラーに巻き取った。
(Comparative Example 2)
The ratio between the thickness of the resin A and the thickness of the resin B after forming the resin A and the resin B as in Example 1 into a two-layer film using the same extruder and multi-manifold die as in Example 1. Resin A and resin B were heated and melted under the same conditions as in Comparative Example 1 except that the discharge amount was adjusted to 2.5: 1, and discharged at a speed of 80 m / min from the manifold merge point through the lip land. When discharged as a two-layer resin from the outlet, the discharged resin did not pulsate and no ears were generated in the width direction of the film. After discharging, it was dropped on a cooling roll in which water was circulated inside the discharge port and solidified by cooling, and wound around a coiler as a two-layer resin film having a width of about 1 m.

(比較例3)
実施例1と同様の樹脂Aと加工接着性に優れたポリエステル樹脂C(エチレンテレフタレート/エチレンイソフタレート共重合体(エチレンイソフタレート15モル%)、融点:215℃、固有粘度:0.9、融点:215℃、温度270℃でかつ剪断速度:100秒−1における溶融粘度:9000ポアズ、溶融張力:0.7g)(以下、簡略に樹脂Cという)を、実施例1と同様に2層フィルムに製膜した後の樹脂Aの厚さと樹脂Cの厚さの比が2:1となるように吐出量を調整して実施例1と同様の条件で樹脂Aと樹脂Cを加熱溶融してマニフォルドの合体点からリップランドを経て150m/分の速度で吐出口から2層樹脂として吐出したところ、吐出樹脂は脈動してフィルムの幅方向に耳が生じた。吐出した後、吐出口の下方に設けた内部に水を循環させた冷却ロールに落下させて冷却固化し、幅約1mの2層樹脂フィルムとしてコイラーに巻き取った。
(Comparative Example 3)
Resin A similar to Example 1 and polyester resin C (ethylene terephthalate / ethylene isophthalate copolymer (ethylene isophthalate 15 mol%) excellent in processing adhesiveness, melting point: 215 ° C., intrinsic viscosity: 0.9, melting point : 215 ° C., temperature 270 ° C. and shear rate: 100 seconds −1 melt viscosity: 9000 poise, melt tension: 0.7 g) (hereinafter simply referred to as “resin C”) The resin A and the resin C were heated and melted under the same conditions as in Example 1 by adjusting the discharge amount so that the ratio of the thickness of the resin A and the thickness of the resin C after film formation was 2: 1. When the two-layer resin was discharged from the discharge port at a speed of 150 m / min through the lip land from the uniting point of the manifold, the discharge resin pulsated and an ear was generated in the width direction of the film. After discharging, it was dropped on a cooling roll in which water was circulated inside the discharge port and solidified by cooling, and wound around a coiler as a two-layer resin film having a width of about 1 m.

(実施例2)
実施例1と同様の樹脂Aと加工接着性に優れたポリエステル樹脂D(エチレンテレフタレート/エチレンイソフタレート共重合体(エチレンイソフタレート15モル%)をトリメリット酸(0.2モル%)で変性したもの、融点:215℃、固有粘度:0.7、融点:215℃、温度270℃でかつ剪断速度:100秒−1における溶融粘度:7500ポアズ、溶融張力:1.0g)(以下、簡略に樹脂Dという)を、それぞれ押出機を用い、樹脂Aを280℃、樹脂Dを260℃加熱して溶融させた。次いで、2台の押出機に2個のマニフォルドが樹脂通路を介して連接し、それらのマニフォルドに隣接した個別に温度制御するヒータを設けたマルチマニフォルドダイのそれぞれのマニフォルドに、2層フィルムに製膜した後の樹脂Aの厚さと樹脂Dの厚さの比が2.0:1であり2層樹脂フィルムの厚さが16μmとなるように吐出量を調整して溶融樹脂Aおよび溶融樹脂Dを導いた。マルチマニフォルドダイの溶融樹脂Aが通る側と溶融樹脂Aが通る樹脂通路およびマニフォルドはそれに隣接するヒータで280℃に、マルチマニフォルドダイの溶融樹脂Dが通る側と溶融樹脂Dが通る樹脂通路およびマニフォルドはそれぞれに隣接するヒータで260℃に予め加熱しておき、溶融樹脂Aおよび溶融樹脂Dをそれぞれのマニフォルドを通過させた。なお、樹脂Aの温度280℃でかつ剪断速度100秒−1における溶融粘度は7500ポアズ、樹脂Dの温度260℃でかつ剪断速度100秒−1における溶融粘度は7000ポアズである。このようにして溶融樹脂Aと溶融樹脂Dを加熱した後、溶融樹脂Aと溶融樹脂Dをマニフォルドの合体部で合体させて積層し、マニフォルドの合体点からリップランドを経て150m/分の速度で吐出口から2層樹脂として吐出したところ、吐出樹脂は脈動せず、フィルムの幅方向に耳は生じなかった。吐出した後、吐出口の下方に設けた内部に水を循環させた冷却ロールに落下させて冷却固化し、幅約1mの2層樹脂フィルムとしてコイラーに巻き取った。
(Example 2)
Resin A similar to Example 1 and polyester resin D (ethylene terephthalate / ethylene isophthalate copolymer (ethylene isophthalate 15 mol%)) excellent in work adhesion were modified with trimellitic acid (0.2 mol%). Melting point: 215 ° C., intrinsic viscosity: 0.7, melting point: 215 ° C., temperature 270 ° C. and shear rate: 100 sec −1 melt viscosity: 7500 poise, melt tension: 1.0 g) (hereinafter simply) Resin D) was melted by heating the resin A at 280 ° C. and the resin D at 260 ° C. using an extruder, respectively. Next, two manifolds are connected to the two extruders via resin passages, and two-layer film is produced on each manifold of the multi-manifold die provided with heaters for individually controlling the temperature adjacent to the manifolds. The molten resin A and the molten resin D were adjusted by adjusting the discharge amount so that the ratio of the thickness of the resin A after the film formation to the thickness of the resin D was 2.0: 1 and the thickness of the two-layer resin film was 16 μm. Led. The side of the multi-manifold die through which the molten resin A passes, the resin passage through which the molten resin A passes, and the manifold are heated to 280 ° C. by the heater adjacent thereto, and the side of the multi-manifold die through which the molten resin D passes and the resin passage through which the molten resin D passes. Were preheated to 260 ° C. with heaters adjacent to each, and the molten resin A and the molten resin D were passed through the respective manifolds. The melt viscosity of the resin A at a temperature of 280 ° C. and a shear rate of 100 seconds −1 is 7500 poise, and the resin D of the resin D at a temperature of 260 ° C. and a shear rate of 100 seconds −1 is 7000 poise. After the molten resin A and the molten resin D are heated in this way, the molten resin A and the molten resin D are merged at the merged portion of the manifold and laminated, and the lip land is passed from the manifold merged point at a speed of 150 m / min. When the two-layer resin was discharged from the discharge port, the discharge resin did not pulsate, and no ears were generated in the width direction of the film. After discharging, it was dropped on a cooling roll in which water was circulated inside the discharge port and solidified by cooling, and wound around a coiler as a two-layer resin film having a width of about 1 m.

[特性評価]
上記のようにして作成した実施例1〜2、比較例1〜3の樹脂フィルムの特性を、下記のように評価した。
<厚みムラ>
実施例1、比較例1〜4の樹脂フィルムを、製膜開始5分後の樹脂フィルムの長手方向の15mの部分で1m毎(16箇所)に全幅方向(約1m)の厚さを連続測定し、長さ方向16箇所の全幅方向で測定した全ての測定値の最大厚さと最小厚さの差を厚みムラとして求めた。
評価結果を表1に示す。

Figure 2005053032
[Characteristic evaluation]
The characteristics of the resin films of Examples 1-2 and Comparative Examples 1-3 created as described above were evaluated as follows.
<Thickness unevenness>
The thickness of the full width direction (about 1 m) is continuously measured for every 1 m (16 places) in the longitudinal direction of the resin film of the resin film of Example 1 and Comparative Examples 1 to 4 after 5 minutes from the start of film formation. And the difference of the maximum thickness of all the measured values measured in the full width direction of 16 length directions and the minimum thickness was calculated | required as thickness nonuniformity.
The evaluation results are shown in Table 1.
Figure 2005053032

表1に示すように、少なくとも1種類の樹脂の溶融張力が1g以上である複数の樹脂を用い、フィルム製膜に際して溶融樹脂の溶融粘度の差が20〜500秒−1の剪断速度において3000ポアズ以下となるようにして樹脂フィルムを製膜した場合は、高速度で製膜しても脈動や耳発生が増大することがなく、得られた樹脂フィルムの厚みムラは極めて小さい。 As shown in Table 1, a plurality of resins having a melt tension of 1 g or more of at least one kind of resin are used, and a difference in melt viscosity of the melt resin is 3000 poise at a shear rate of 20 to 500 sec −1 during film formation. When the resin film is formed in the following manner, even if the film is formed at a high speed, pulsation and ear generation do not increase, and the thickness unevenness of the obtained resin film is extremely small.

本発明の多層樹脂フィルムを金属板に積層してなる樹脂被覆金属板は、絞り缶や絞りしごき缶への成形に適しており、絞り加工や絞りしごき加工を実施したり、缶上部の開口部のネックイン加工を実施しても、樹脂フィルムが金属板から剥離することがなく、また局所的に加工度が異なる部位がないので、絞り加工や絞りしごき加工において破胴したり、ネックイン加工においてクラッシュしたりすることがなく、安定して缶体に成形加工することができる。   The resin-coated metal plate obtained by laminating the multilayer resin film of the present invention on a metal plate is suitable for forming into a drawn can and a drawn and ironed can. Even if the neck-in processing is performed, the resin film does not peel from the metal plate, and there are no parts with locally different processing degrees. Can be stably formed into a can without crashing.

本発明の多層フィルムの製造方法の一例を示す概略図。Schematic which shows an example of the manufacturing method of the multilayer film of this invention. 従来の多層フィルムの製造方法の一例を示す概略図。Schematic which shows an example of the manufacturing method of the conventional multilayer film.

符号の説明Explanation of symbols

1 : マルチマニフォルドダイ
2a: マニフォルド
2b: マニフォルド
3a: ヒータ
3b: ヒータ
4a: ヒータ
4b: ヒータ
5: リップランド
6a: 押出機
6b: 押出機
7: 吐出口
8: 多層樹脂フィルム
9: 冷却ロール
10a: ヒータ
10b: ヒータ
11a: ヒータ
11b: ヒータ
12: 巻き取り手段
14a: マニフォルド
14b: マニフォルド
14c: マニフォルド
14d: マニフォルド
14e: マニフォルド
14f: マニフォルド
14g: マニフォルド
16: 合流部
20b: 加熱ヒータ
22b: 加熱ヒータ
28: 温度計
32: ダイリップ
34: 出口開口部
1: Multi-manifold die 2a: Manifold 2b: Manifold 3a: Heater 3b: Heater 4a: Heater 4b: Heater 5: Lip land 6a: Extruder 6b: Extruder 7: Discharge port 8: Multilayer resin film 9: Cooling roll 10a: Heater 10b: Heater 11a: Heater 11b: Heater 12: Winding means 14a: Manifold 14b: Manifold 14c: Manifold 14d: Manifold 14e: Manifold 14f: Manifold 14g: Manifold 16: Junction heater 20b: Heating heater 22b: Heating heater 22b Thermometer 32: Die lip 34: Exit opening

Claims (5)

2種類以上の樹脂から構成される多層樹脂フィルムにおいて、そのうちの少なくとも1種類の樹脂の押出温度における溶融張力が1g以上でかつ厚さが全厚さの3分の1以上であることを特徴とする、多層樹脂フィルム。   In the multilayer resin film composed of two or more kinds of resins, the melt tension at the extrusion temperature of at least one of the resins is 1 g or more and the thickness is one third or more of the total thickness. A multilayer resin film. 多層樹脂フィルム表面における凹凸の差が5.0μm以下である、請求項1に記載の多層樹脂フィルム。   The multilayer resin film according to claim 1, wherein the unevenness difference on the surface of the multilayer resin film is 5.0 μm or less. 請求項1または2に記載の多層樹脂フィルムを金属板に積層してなる樹脂被覆金属板。   A resin-coated metal plate obtained by laminating the multilayer resin film according to claim 1 or 2 on a metal plate. 押出温度における溶融張力が1g以上である樹脂を少なくとも1種類含む2種類以上の樹脂を、マルチマニフォルドダイを用いて、それぞれのマニフォルドに連続して設けられた押出機、それぞれのマニフォルド、およびそれぞれのマニフォルドに隣接するダイの部分のそれぞれの温度を制御し、溶融粘度の高い樹脂が通る押出機、マニフォルド、およびマニフォルドに隣接するダイの部分の温度を、溶融粘度の低い樹脂が通る押出機、マニフォルド、およびマニフォルドに隣接するダイの部分の温度より高温に保持して、隣接する樹脂層の溶融粘度の差を、20〜500秒−1の剪断速度において3000ポアズ以下とした後、溶融張力が1g以上である樹脂の厚さが全厚さの3分の1以上となるようにして、それぞれの溶融樹脂を積層して多層フィルムとすることを特徴とする、多層樹脂フィルムの製造方法。 Two or more types of resins including at least one type of resin having a melt tension of 1 g or more at the extrusion temperature, using a multi-manifold die, an extruder provided continuously in each manifold, each manifold, and each Extruder that controls the temperature of the part of the die adjacent to the manifold and passes the resin having a high melt viscosity, the manifold, and the extruder that passes the temperature of the part of the die adjacent to the manifold and the manifold that passes the resin having a low melt viscosity , And the die viscosity adjacent to the manifold is maintained at a temperature higher than that of the die, and the difference in melt viscosity of the adjacent resin layer is set to 3000 poise or less at a shear rate of 20 to 500 sec- 1 , and then the melt tension is 1 g. Laminate each molten resin so that the thickness of the resin is at least one third of the total thickness. Characterized by a multilayer film, method of manufacturing a multilayer resin film. 押出温度における溶融張力が1g以上である樹脂を少なくとも1種類含む2種類以上の樹脂を、マルチマニフォルドダイを用いて、それぞれのマニフォルドに連続して設けられた押出機、それぞれのマニフォルド、およびそれぞれのマニフォルドに隣接するダイの部分のそれぞれの温度を制御し、溶融粘度の高い樹脂が通る押出機、マニフォルド、およびマニフォルドに隣接するダイの部分の温度を、溶融粘度の低い樹脂が通る押出機、マニフォルド、およびマニフォルドに隣接するダイの部分の温度より高温に保持して、隣接する樹脂層の溶融粘度の差を、20〜500秒−1の剪断速度において3000ポアズ以下とした後、溶融張力が1g以上である樹脂の厚さが全厚さの3分の1以上となるようにして、それぞれの溶融樹脂を積層して多層化した後、金属板上に押し出すことを特徴とする、樹脂被覆金属板の製造方法。 Two or more types of resins including at least one type of resin having a melt tension of 1 g or more at the extrusion temperature, using a multi-manifold die, an extruder provided continuously in each manifold, each manifold, and each Extruder that controls the temperature of the part of the die adjacent to the manifold and passes the resin having a high melt viscosity, the manifold, and the extruder that passes the temperature of the part of the die adjacent to the manifold and the manifold that passes the resin having a low melt viscosity , And the die viscosity adjacent to the manifold is maintained at a temperature higher than that of the die, and the difference in melt viscosity of the adjacent resin layer is set to 3000 poise or less at a shear rate of 20 to 500 sec- 1 , and then the melt tension is 1 g. Laminate each molten resin so that the thickness of the resin is at least one third of the total thickness. After multilayered, characterized in that the extruded onto a metal plate, method for producing a resin-coated metal sheet.
JP2003285005A 2003-08-01 2003-08-01 Multilayered resin film, resin coated metal sheet, method for manufacturing multilayered resin film and method for manufacturing resin coated metal sheet Pending JP2005053032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003285005A JP2005053032A (en) 2003-08-01 2003-08-01 Multilayered resin film, resin coated metal sheet, method for manufacturing multilayered resin film and method for manufacturing resin coated metal sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003285005A JP2005053032A (en) 2003-08-01 2003-08-01 Multilayered resin film, resin coated metal sheet, method for manufacturing multilayered resin film and method for manufacturing resin coated metal sheet

Publications (1)

Publication Number Publication Date
JP2005053032A true JP2005053032A (en) 2005-03-03

Family

ID=34364773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003285005A Pending JP2005053032A (en) 2003-08-01 2003-08-01 Multilayered resin film, resin coated metal sheet, method for manufacturing multilayered resin film and method for manufacturing resin coated metal sheet

Country Status (1)

Country Link
JP (1) JP2005053032A (en)

Similar Documents

Publication Publication Date Title
EP1721723B1 (en) Process for producing multilayered unstretched film, process for producing multilayered-resin-coated metal sheet, and apparatus for producing multilayered unstretched film
EP1724094B1 (en) Process for producing unstretched film and process for producing resin-coated metal sheet
US20100319842A1 (en) Multilayer resin film, a resin-coated metal sheet, a method of manufacturing a multilayer resin film and a method of manufacturing a resin-coated metal sheet
US6676793B2 (en) Method and apparatus for manufacturing laminated material
EP2033762B1 (en) Production method and production device of organic resin coated metal plate
JP3470527B2 (en) Manufacturing method of resin metal laminate
JP2005053032A (en) Multilayered resin film, resin coated metal sheet, method for manufacturing multilayered resin film and method for manufacturing resin coated metal sheet
KR101022266B1 (en) Multilayer resin film, resin-coated metal plate, multilayer resin film producing method, and resin-coated metal plate producing method
JP5186426B2 (en) Multilayer resin film, resin-coated metal plate, method for producing multilayer resin film, and method for producing resin-coated metal plate
JP4006574B2 (en) Method and apparatus for extruding molten resin
WO2006061919A1 (en) Process for producing nonstretched film, process for producing resin coated metal plate, and apparatus for producing nonstretched film
WO2006061920A1 (en) Process for producing nonstretched film, process for producing resin coated metal plate, and apparatus for producing nonstretched film
WO2006038252A1 (en) Multilayer resin film and method for producing multilayer resin film
JP2006130744A (en) Manufacturing method of non-stretched film, manufacturing method of resin coated metal sheet and manufacturing apparatus of non-stretched film
JP3470526B2 (en) Production method of double-sided resin-coated metal laminate
JP2004276432A (en) Multi-layer resin film and method for producing multi-layer resin film
KR20070062519A (en) Multilayer resin film and method for producing multilater resin film

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050913

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051025

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070116