JP2005052988A - On-the-spot composite material mixing apparatus - Google Patents

On-the-spot composite material mixing apparatus Download PDF

Info

Publication number
JP2005052988A
JP2005052988A JP2003205924A JP2003205924A JP2005052988A JP 2005052988 A JP2005052988 A JP 2005052988A JP 2003205924 A JP2003205924 A JP 2003205924A JP 2003205924 A JP2003205924 A JP 2003205924A JP 2005052988 A JP2005052988 A JP 2005052988A
Authority
JP
Japan
Prior art keywords
composite material
material mixing
stirring blade
mixing
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003205924A
Other languages
Japanese (ja)
Other versions
JP4169654B2 (en
Inventor
Yasuo Yoneda
安夫 米田
Takayoshi Nakayama
隆義 中山
Tetsuya Hironaka
哲也 廣中
Katsuo Kimata
克夫 木全
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okumura Corp
Original Assignee
Okumura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okumura Corp filed Critical Okumura Corp
Priority to JP2003205924A priority Critical patent/JP4169654B2/en
Publication of JP2005052988A publication Critical patent/JP2005052988A/en
Application granted granted Critical
Publication of JP4169654B2 publication Critical patent/JP4169654B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an on-the-spot composite material mixing apparatus for manufacturing a composite material of good quality by efficiently mixing a material produced on the spot or a plurality of materials having different particle sizes with cement. <P>SOLUTION: This on-the-spot composite material mixing apparatus 1 is constituted of a flow-down feed body 2 equipped with an upper end feed-in port 3 and a lower end feed-out port 6 and installed in an inclined state, a plurality of stirring blades 4 parallelly arranged so as to cross the flow-down feed body 2 at a right angle and comprising radially providing paddles 4-2 in the periphery of a rotary shaft at a predetermined interval in the axial and peripheral directions of the rotary shaft, flow-down weir plates 5 installed corresponding to the stirring blades 4 at the rear position in the inclined direction and a stirring blade driver 9 for rotating a plurality of the stirring blades in the direction opposite to the inclined direction while connecting them. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、現地複合材料混合装置に関し、特に、現地で発生した砂礫、土砂等の現地発生材料もしくは現地発生材料に他の複数の異粒径材を混合した材料にセメント等の硬化剤や地盤改良用の固化剤を添加して現地複合材料を生成する際に、混合を効率化して良質の現地複合材料を製造する現地複合材料混合装置に関する。
【0002】
【従来の技術】
近年のダム工事における堤体構築等では、硬化後の築堤材料の圧縮強度が1.0〜3.0N/mm程度しか必要としない場合に骨材の粒度を調整する製造工程を省いて、河床砂礫等の現地発生材料にセメントを混合した材料を用いる工法(以下、CSG工法という)が採用されつつある。このCSG工法は、砂礫、土砂等の現地発生材料にセメント等の硬化剤を混合してからブルドーザ等で敷き均し、振動ローラ等で転圧して構造物を築造することから、残土となる現地発生材料の活用によって経済性や施工性、環境保全性に優れ、セメントを混合することで材料強度の増加が図れているので、法勾配が急な構造物の施工が可能である等の利点があることから注目されている。
【0003】
又、軟弱地盤上に建造物を構築したり道路を形成する場合、その軟弱な土壌を掘削除去し、除去した部分に強度のある土壌を入れることが行われているが、その際に環境問題や運送コスト等の問題から、掘削した現地発生土壌に固化剤を混合して土壌改良を行い、該改良土壌を掘削除去した部分に入れ替えて再度地盤として使用する地盤改良工法が行われている。
【0004】
しかるに、前者CSG工法は、上記のように現地発生材料をそのまま使用することで粒度調整がなされていないために、硬化後の築堤材料の圧縮強度に安定性がなく、大規模工事等では広範囲のヤードの確保や多くの施工機械等を要してコスト上の問題等を生じていたが、その改善策として河床砂礫等の含水砂礫を骨材にするに際して、骨材の最大粒径を150mm、細骨材率16%以上にする分粒手段を施しながら、水セメント比を35〜100%の範囲に配合するようにセメント量を調整しながら混合するCSG工法も提案されている。(たとえば、特許文献1、2を参照)
【0005】
ところが、これらの提案も分粒手段やセメント調整装置等の設備類を必要とすることで嵩高のコストを要しながら、混合手段としては、通常のものを採用しているためにセメントと骨材との混合等が十分でなく築堤材料としては、その品質において安定性を欠いているのではとの危惧を抱かせていた。
【0006】
一方、硬化後の築堤材料の圧縮強度を1.0〜3.0N/mm程度しか必要としない場合には、上記のように河床砂礫等の現地発生材を用いるばかりでなく、骨材の粒度を調整する製造工程を省いて、複数の異粒径材を用いながらセメントと混合させるCSG工法を採用するものであり、コスト削減を図りながら効率よく混合でき築堤材料としての品質を確保できる混合手段が嘱望されていた。
【0007】
又、後者の地盤改良工法は、掘削した土壌を容器に入れ、そこに固化剤を添加して混合して、それを再度取り出して掘削除去した部分に埋め戻せばよいので、容器と攪拌機さえあれば事足りるが、これではバッチ式となり連続作業ができないために作業効率が悪いので、掘削土壌を移動させながら添加した固化剤と連続して混合できる混合手段が嘱望されていた。
【0008】
【特許文献1】
特開平6−305795号公報(段落符号「0020」〜「0028」末行、図1、2)
【特許文献2】
特許第3202099号公報(段落符号「0021」〜「0023」末行、図1、2)
【0009】
【発明が解決しようとする課題】
本発明は、以上の現状に鑑みてその改善策を提案するものであり、砂礫、土砂等の現地発生材料もしくは該現地発生材料に複数の異粒径材を混合した材料にセメント等の硬化剤や地盤改良用の固化剤を混合して現地複合材料を生成する際に、コスト削減を図れるとともに、該現地発生材料を移動させながら添加した硬化剤或いは固化剤と連続して効率よく混合して、硬化或いは固化後には高品質の確保された現地複合材料混合装置の提供を目的にしている。
【0010】
【課題を解決するための手段】
請求項1に記載の発明である現地複合材料混合装置は、上端の搬入口と下端の搬出口とを備えて傾斜状に設置される流下搬送体、流下搬送体に直交させて並行に複数個配置し、回転軸の周辺にパドルを軸方向と周辺方向に所定の間隔で放射状に植設して成る攪拌翼、攪拌翼に対応させて傾斜方向の後方位置に設置される流下堰板及び複数の攪拌翼を連結しながら傾斜方向と反対の方向に回転させる攪拌翼駆動機から構成されており、上端の搬入口から投入した現地発生材料もしくはこれに複数の異粒径材を混合した材料にセメント等の硬化剤或いは固化剤を添加して、材料の混合を確実かつ効率よく行って良質の現地複合材料を製造している。
【0011】
請求項2に記載の発明である現地複合材料混合装置は、請求項1に記載の現地複合材料混合装置において、流下堰板をパドル先端の回転円弧との間に所定の間隔を確保して配置することを特徴としており、上記機能に加えて、攪拌翼の下流側に形成する平坦な合流部で的確かつ効率よく合流・混合させることで現地複合材料の混合性を増長している。
【0012】
請求項3に記載の発明である現地複合材料混合装置は、請求項1又は2に記載の現地複合材料混合装置において、流下搬送体を、単一の攪拌翼と攪拌翼の後方位置に設置される流下堰板とから構成される部分ブロックを形成し、部分ブロックを適宜に組み立てて構成することを特徴としており、上記機能に加えて、部分ブロックを取り付けもしくは取り外すだけで撹拌翼を取り付けた適切な長さの流下搬送体を形成して材料の混合性を調整できると共にブロック単位に分割して清掃も容易にできるよう構成している。
【0013】
請求項4に記載の発明である現地複合材料混合装置は、請求項1乃至3のいずれかに記載の現地複合材料混合装置において、部分ブロックに、流下堰板の上端に連続させる平坦な流下案内板を底板部に設置して構成される所定長の混合調整ブロックを、適宜に付属させることを特徴としており、上記機能に加えて、混合調整ブロックを入れ替えて平坦部の長さを現地発生材料に合わせた適切な長さに設定して流下案内板における現地複合材料の混合性を増長させている。
【0014】
請求項5に記載の発明である現地複合材料混合装置は、請求項1乃至4のいずれかに記載の現地複合材料混合装置において、攪拌翼のパドルを、隣接する攪拌翼との関連で軸方向の間隔を相互に変更することを特徴としており、上記機能に加えて、材料の流下方向に並列配置される攪拌翼間のパドル配置を多様化することで、効率よく掻き混ぜられるようにして現地複合材料の混合性をさらに増長させている。
【0015】
請求項6に記載の発明である現地複合材料混合装置は、請求項1乃至5のいずれかに記載の現地複合材料混合装置において、攪拌翼を相互間の回転速度を適宜に変更させながら設定できることを特徴としており、上記機能に加えて、攪拌翼間に亘る混合状態を多様化することで現地複合材料の混合性をさらに増長させている。
【0016】
請求項7に記載の発明である現地複合材料混合装置は、請求項1乃至6のいずれかに記載の現地複合材料混合装置において、流下搬送体が攪拌翼の上方で傾斜方向の後方位置に飛散防止堰板を具備していることを特徴としており、上記機能に加えて、攪拌翼のパドルで掻き揚げた材料の移動方向を飛散防止堰板で制御して、流下搬送体内を流下してきた材料と的確且つ効果的に再合流混合させることで現地複合材料の混合性をさらに増長させている。
【0017】
請求項8に記載の発明である現地複合材料混合装置は、請求項1乃至7のいずれかに記載の現地複合材料混合装置において、流下搬送体に具備した飛散防止堰板を流下搬送体の傾斜角度もしくは攪拌翼の回転速度に対応させて、流下搬送体に対する設置角度を調整可能に設置することを特徴としており、上記機能に加えて、掻き揚げた分を飛散防止堰板で再び流下するに戻す状態を傾斜角度もしくは攪拌翼の回転速度に対応させて適宜に調整することで、現地複合材料の混合性をさらに増長させている。
【0018】
請求項9に記載の発明である現地複合材料混合装置は、請求項1乃至8のいずれかに記載の現地複合材料混合装置において、流下搬送体に具備した飛散防止堰板を複数の短冊板から構成し、各短絡板の回動角度を適宜に調整可能に設置させることを特徴としており、上記機能に加えて、攪拌翼のパドルで掻き揚げた材料の分散形態を飛散防止堰板の複数の短冊板でさらに緻密に制御して流下搬送体内を流下してきた材料と的確かつ効果的に再合流させることで、現地複合材料の混合性をさらに増長させている。
【0019】
請求項10に記載の発明である現地複合材料混合装置は、請求項1乃至9のいずれかに記載の現地複合材料混合装置において、流下搬送体を長さの調整可能な支持部材で適宜の傾斜形態に支持することを特徴としており、上記機能に加えて、様々な粒径から成る現地発生材料等或いはこれに複数の異粒径材を混合した材料に合わせて流下搬送体を傾斜させ、流下速度を調整しながらの混合性を変化させている。
【0020】
請求項11に記載の発明である現地複合材料混合装置は、請求項1乃至10のいずれかに記載の現地複合材料混合装置において、流下搬送体を弾性体で揺動可能に支持することを特徴としており、上記機能に加えて、流下搬送体が、材料の移動や攪拌翼の回転等の動作によって振動し、流下しながら混合している現地複合材料に振動を加えることで現地複合材料の混合性をさらに増長させている。
【0021】
【発明の実施の形態】
本発明による現地複合材料混合装置は、上端の搬入口と下端の搬出口とを備えて傾斜状に設置される流下搬送体、該流下搬送体に直交させて並行に複数個配置し、回転軸の周辺にパドルを軸方向と周辺方向に所定の間隔で放射状に植設して成る攪拌翼、該攪拌翼に対応させて傾斜方向の後方位置に設置される流下堰板及び複数の攪拌翼を連結しながら傾斜方向と反対の方向に回転させる攪拌翼駆動機から成る構成を基本にしている。
以下に、本発明による現地複合材料混合装置の実施の形態を図面に基づいて詳細に説明する。
【0022】
図1に示す実施の形態は、本発明の現地複合材料混合装置に関する基本形を示しており、図1(a)は、側断面図であり、図1(b)は、前平面図である。
本実施の形態における現地複合材料混合装置1は、図1(a)のように上部を開放している樋状の流下搬送体2を傾斜状に設置させて、上端に装備している搬入口3から投入される現地発生材料もしくはこれに複数の異粒径材を混合した材料とセメント等の硬化剤又は固化剤等の材料を自重で流下させながら、複数の攪拌翼4を連結して傾斜方向と反対の方向に回転させる攪拌翼駆動機9によって、材料の流下方向と反対の方向に回転する攪拌翼4で掻き揚げながら混合しており、十分な混合を経て搬送体2の下端に装備している搬出口6から所望の現地複合材料として排出している。
【0023】
本実施の形態における流下搬送体2は、複数の部分ブロック2−1、2−2を組み立てて一体物として構成しており、ハンドル16−1の操作で長さを調整できる支持部材16で任意の傾斜角度に設置している。又、流下搬送体2は、支持部材16の先端及び基礎7に対してばね等の弾性体8、8’を介在させながら支持されており、これによって、上記の流下速度を調整しながら混合の度合いを適宜に設定すると共に、弾性体8、8’による揺動によって混合状態を加速させて、排出される現地複合材料の品質を確立させている。
【0024】
しかして、部分ブロック2−1、2−2は、樋状の流下搬送体ブロック2−3とこれに単体で配置されている攪拌翼4と流下堰板5とから構成されており、部分ブロック2−1と部分ブロック2−2との相違は、流下搬送体ブロック2−3に対する攪拌翼4の軸支位置を一方端側に偏らせた形態と中央部にする形態の相違と、これに対峙している流下堰板5の対応形態のみである。
【0025】
攪拌翼4は、流下搬送体2の側面に軸支されて傾斜方向、つまり流下方向に直行させて配置されており、その回転軸4−1の周辺には、所定の間隔の下に複数のパドル4−2を放射状に植設している。パドル4−2は、流下してくるの中に潜り込んで部分的な掻き揚げを可能にするように短冊形状の薄板に構成されているものであり、放射状に植設された複数のパドル4−2は回転軸4−1の軸方向に所定の間隔で配列されている。
【0026】
又、短冊形状の薄板に構成されたパドル4−2は、回転軸4−1に回転可能に植設されており、短冊状の薄板面の向きを適宜の方向に変化させて、流下する材料を効率よく混合できるようにしている。
本実施の形態では、パドル4−2を短冊形状の薄板に構成しているが、材料を掻き揚げ攪拌することができる限り、これを断面多角形或いは半月系の棒状体としてもよい。
【0027】
しかして、攪拌翼4の相互間における放射状に植設された複数のパドル4−2に関する軸方向の配列関連については、図2において詳細に説明する。
図1(b)に示すように、攪拌翼4の回転軸4−1には、一方の軸端にスプロケット4−3が装備されており、各攪拌翼4は、傾斜方向と反対の方向に回転させる攪拌翼駆動機9によって回転しているチェーンによって一斉に駆動されているが、各スプロケット4−3の歯数を適宜に変更させることによって、各攪拌翼4の回転速度は夫々に異ならしめたり同一にしたり設定することを可能にしている。
【0028】
図2は、図1(a)に示す流下搬送体2の各攪拌翼4を矢視(a)〜(c)する断面図(a)、(b)及び(c)であり、攪拌翼4における各パドル4−2の配列関連を明らかにしている。
即ち、本実施の形態における攪拌翼4は、相互間において放射状に植設された複数のパドル4−2の軸方向の配列数を異にしており、流下搬送体2の下方と上方とに配置されている図2(a)と図2(c)に示されている攪拌翼4は、パドル4−2の配列数を3とし、図2(b)に示されている攪拌翼4のパドル配列数は4にしている。パドル配列数の変更は、流下してくる材料に対してパドル4−2を潜り込ませる位置を交互に変えることで、材料の流下する形態を混練状態に攪拌することになって、上流の攪拌翼4に在って軸方向に所定間隔で配列されたパドル4−2の隙間を流下してくる材料が後続の攪拌翼のパドル4−2に当って効率よく掻き混ぜられ、現地複合材料に対する混合率を向上させるように機能している。
【0029】
尚、以上の配列数は、流下搬送体2の傾斜角や攪拌翼4のパドル本数と回転速度との兼ね合いによっても異なってくるものであり、配列数の具体的な決定に当たっては、与えられた情況に応じて上記の各要素の条件を勘案しながら総合的な視点からの選択と決定をしている。
【0030】
又、流下堰板5は、流下してくる材料を減速させながら攪拌翼4によって攪拌混合を加えると共に、攪拌翼4のパドル4−2が材料に円滑に潜り込めるように、攪拌翼4に対峙させてパドル4−2の先端の回転円弧との間に所定の間隔5−1を確保している。
【0031】
この間隔5−1は、攪拌翼4の上流側又は下流側のいずれの側にも設けられるものであり、上流側、下流側における間隔5−1の長さを同じもしくは異にすることも可能であるが、本実施の形態では、間隔5−1を上流、下流の両側にほぼ同じ長さを確保している。
【0032】
本間隔5−1は、現地複合材料の製造過程において述べるように、傾斜方向の後方位置に設置される流下堰板5によって堰き止められた材料14と攪拌翼とで、流下する材料に形成される円弧状の凹部と、この凹部の端から流下堰板5までの区間に所定長さの略平坦な合流部5−2を形成することになる。
【0033】
この円弧状の凹部は、その形成によって、材料が平滑面を流下する場合に比べて混合距離を長くすることを確立するものであり、現地複合材料の混合性をさらに増長させている。又、この円弧状の凹部は、堰き止められた材料14で形成されるが、製造過程にあることで未硬化或いは硬化していても比較的強度の弱い段階にあることから、パドル4−2が円弧状の凹部との間に粒径の大きな材料を噛み込んだとしても材料14は容易に崩れることによって、攪拌翼4の回転には何らの支障を来さないものである。
さらに、間隔5−1と流下堰板5の高さを適切に設定することによって、円弧状の凹部の円弧の長さを隣接するパドル4−2、4−2の先端間に形成される開脚円弧長より大きく形成することが可能である。
【0034】
従って、攪拌翼を回転させた時にも、回転軸4−1のパドル4−2の一つが円弧状の凹部から離れる際には、それに後続するパドル4−2は常に円弧状の凹部の円弧長内に位置するように設定されており、先に凹部から離れたパドルの隙間を通過する材料があっても、パドル4−2と円弧状の凹部との間に砂礫、土砂等の種々様々な粒径から成る現地発生材料が噛み込まれることを極力少なくするように構成している。
【0035】
さらに、間隔5−1において堰き止められた材料14の表面には、図4で後述するように、現地複合材料を製造する過程で略平坦な合流部が5−2が形成されて、円弧状の凹部を流下してきた材料14とパドル4−2で掻き揚げられた一部の材料15とを、合流部5−2において確実かつ効果的に再合流させることができるので、現地複合材料の混合をさらに促進している。
【0036】
従って、流下してくる材料14は、パドル4−2が潜り込んで掻き揚げた一部を、回転される時間差を経過させた後に、流下して堰き止められている材料と自然落下力を加味しながら再び衝撃的に合体させており、これによって現地複合材料における混合力を強化している。
【0037】
上述した支持部材16は、ハンドル16−1の操作で長さを調整できる伸縮部16−2と基礎7に固定されている脚部16−3とから構成されており、脚部16−3の上に配置されている伸縮部16−2は、これを構成している雌ねじ部16−4、16−4と雌ねじ部に螺合している雄ねじ部16−5とによる相互回動によって自由に伸縮できるものである。
【0038】
尚、支持部材16は、流下搬送体2に傾斜を付加することのみを目的にしているものであるので、本実施の形態のように構成する必要は無く、流下搬送体2を傾斜させるという目的を達成できる機構であれば十分であることから、勾配を調整できる法面を持った構造体や櫓等であっても採用できるものである。
【0039】
図3に示す他の実施の形態は、本発明の現地複合材料混合装置において流下する材料の一部を掻き揚げながら流下する材料と再び合体させる形態を変えることで、その混合性をさらに向上させたものである。
【0040】
本実施の形態における現地複合材料混合装置10は、図3に示す側断面図のように、図1(a)の樋状の流下搬送体2に代えて筒状に形成した流下搬送体11とし、流下搬送体11において、部分ブロック2−1、2−2に所定長の混合調整ブロック12を付属させることで構成することを一つの特徴にしており、その他の特徴としては、筒状の流下搬送体11に対して、飛散防止堰板13を攪拌翼4の上方で傾斜方向の後方位置に配置する点にある。
そして、流下搬送体11を傾斜状に設置させて、上端に装備している搬入口3から投入される現地発生材料もしくはこれに複数の異粒径材を混合した材料とセメント等の硬化剤又は固化剤等の材料を自重で流下させながら、複数の攪拌翼4を連結して傾斜方向と反対の方向に回転させる攪拌翼駆動機9によって、材料の流下方向と反対の方向に回転させる構成は、上記実施の形態と同様である。
【0041】
混合調整ブロック12は、流下搬送体ブロック12−1と、部分ブロック2−1、2−2の流下堰板5の上端に連続させる形態に、流下案内板である平坦な混合板12−3を流下搬送体ブロック12−1の底板部12−2上に設置することで構成されている。
【0042】
この混合調整ブロック12は、種々な長さの混合調整ブロック12を予め準備しておけば、様々な粒径から成る現地発生材料等或いはこれに複数の異粒径材を混合した材料等とセメント等の硬化剤又は固化剤とを、平坦な混合部12−3において確実かつ効果的に合流混合できるように、平坦な混合板12−3の長さを混合調整ブロック12の入れ替えで調整できる。
【0043】
従って、平坦な混合板12−3の長さを現地発生材料に合わせた適切な長さに設定することが容易であり、これによって現地複合材料の混合性が増長することができる。
【0044】
しかして、本実施の形態では、混合板12−3を流下搬送体ブロック12−1と平行な平坦にしているが、このような限定は特別なものでなく、図3中に一点鎖線で記載しているように傾斜させた混合板12−3’を流下搬送体ブロック12−1に配置することも可能であり、これによって、材料14の流下速度を効率よい混合速度に調整し、現地複合材料の混合性を増長させることもできるものである。
【0045】
又、図1に示した上記実施の形態では、流下してくる材料に対してパドル4−2を潜り込ませて掻き揚げた一部の材料15を、回転される時間差を経た後に、攪拌翼4の下を流下している材料14と再び衝撃的に合体させて混合力を強化していたが、本実施の形態における攪拌翼4は、一部の材料15をパドル4−2で掻き揚げると同時に、パドル4−2上に掻き揚げられた後に回転力で放出される一部の材料15を飛散防止堰板13に衝突させさせると共に材料15の移動方向を制御して平坦な混合板12−3に確実に案内しており、攪拌翼4の下を経由しながら流下して来る材料14と時間差を経て再び衝撃的に合体させることで、飛散防止堰板13による落下力によって混合力を更に強化すると共に、混合調整ブロック12の平坦な混合板12−3において、一部の材料15と合体した材料14の混合を継続させることで、現地複合材料の混合性を高揚させている。
【0046】
そして、飛散防止堰板12を流下搬送体10に装備する形態は任意であるが、流下搬送体10に対する設置角度は、流下搬送体10の傾斜角度もしくは攪拌翼4の回転速度に対応させて適宜に調整しており、掻き揚げた一部の材料15を流下する材料14に再び戻す状態を選択することで現地複合材料の混合性をさらに増長できる。
【0047】
さらに、飛散防止堰板13の他の実施の形態としては、飛散防止堰板13を複数の短冊板から構成して、設置する各短冊板の回動角度を適宜に調整することで、掻き揚げた一部の材料15の分散形態を飛散防止堰板13の複数の短冊板によってさらに緻密に制御しながら流下する材料14に戻す状態を適宜に調整して、その混合性を増長させることも可能である。
【0048】
以上のように、本実施の形態では、部分ブロックに所定長の混合調整ブロックを付属させ、攪拌翼と流下堰板との関連において流下搬送体に飛散防止堰板を設けことで、材料の混合性を更に向上させているものであるが、流下搬送体と混合調整ブロックの形態や飛散防止堰板の取り付け方等については上記実施の形態に何ら限定されるものでない。
【0049】
次に、本発明による現地複合材料混合装置の働きについて説明する。
図4は、材料を混合する状態を示す概要図であって、側断面図(a)と平面図(b)とによって表している。
【0050】
搬入口3から投入される複数の材料14は、自重で流下しながら攪拌翼4のパドル4―2の隙間と間隔5−1を経て流下堰板5に到達しており、流下堰板5の手前では材料14の一部が堰き止められて滞留するが、大半は流下堰板5を乗り越えてさらに流下して行く。
即ち、材料14は、流下方向と反対方向に回転する攪拌翼4で一部の材料15を掻き揚げられると共に、流下堰板5によって堰き止められることによって流下速度を抑制されながら、流下搬送体2の底板部上に材料14から成る円弧状の凹部を攪拌翼4に対峙させて形成すると同時に、流下堰板5とパドル4−2の先端の回転円弧との間に所定の間隔5−1が確保されていることから、円弧状の凹部の端から流下堰板までの区間に所定長さの略平坦な合流部5−2が攪拌翼の下流側に形成されている。
【0051】
しかして、円弧状の凹部は、堰き止められた材料14の一部で形成され、しかも、製造過程にあることから未硬化或いは硬化していても比較的強度も弱い段階にあるので、円弧状の凹部とパドル4−2との間に粒径の大きな材料が噛み込んだとしても容易に除去されることになり、攪拌翼4の回転に支障をきたすことが少ない。
【0052】
又、間隔5−1と流下堰板5の高さとを適切に設定することによって、材料14から成る円弧状の凹部における円弧の長さを、隣接するパドル4−2、4−2の先端間に形成される開脚円弧長より大きくなる関係に形成することを可能にしていることから、攪拌翼を回転させた時に、回転軸4−1の周方向に放射状に植設したパドル4−2の一つが円弧状の凹部から離れる際には、それに後続するパドル4−2は、常に円弧状の凹部の円弧長内に位置するようにしている。
【0053】
従って、先に凹部から離れたパドルの隙間を通過する材料もあるが、円弧状の凹部や合流部5−2とパドル4−2との間に砂礫、土砂等の種々様々な粒径から成る現地発生材料を噛み込むことを極力少なくしている。
【0054】
さらに、略平坦な合流部5−2では、円弧状の凹部を流下してきた材料14とパドル4−2で掻き揚げられてきた一部の材料15とを再び合流させて確実かつ効果的に混合させることを可能にしており、現地複合材料の混合を促進している。
即ち、パドル4−2に掻き揚げられた一部の材料15は、パドル4−2から円弧状に放出されながら自重落下すると同時に、飛散防止堰板12によって平坦部5−2側に仕向けられており、間隙5−1を経て流下してくる材料14と合体しているものであるから、材料14は、合流部5−2もしくは混合調整ブロック12の平坦な混合板12−3において攪拌混合を継続させながら、次段階の攪拌翼4と流下堰板5とに流下して行くものであり、同様の攪拌混合を反復させている。
【0055】
従って、材料14に対する攪拌混合は、攪拌翼4と流下堰板5とから構成される単位ブロックにおいて所定の混合性を確立すると共に、混合性が不足の場合には攪拌翼4と流下堰板5とを上記実施の形態のように複数段に亘って配置することで所望の混合性を確立できるものである。
【0056】
以上のように、本発明による現地複合材料混合装置は、各実施の形態で説明したように構成されているので、上端の搬入口から投入される現地発生材料もしくはこれに複数の異粒径材を混合した材料とセメント等の硬化剤又は固化剤等を加えた複数の材料は、その混合を効率化しながら確実にすることで良質の現地複合材料として製造されている。
【0057】
以上、本発明を実施の形態に基づいて詳細に説明してきたが、本発明による 現地複合材料混合装置は、上記実施の形態に何ら限定されるものでなく、流下搬送体、攪拌翼、流下堰板及び飛散防止堰板に関する具体的な構造や材質については、本発明の趣旨を逸脱しない範囲において種々の変更が可能であることは当然のことである。
【0058】
【発明の効果】
請求項1に記載の現地複合材料混合装置は、上端の搬入口と下端の搬出口とを備えて傾斜状に設置される流下搬送体、流下搬送体に直交させて並行に複数個配置し、回転軸の周辺にパドルを軸方向と周辺方向に所定の間隔で放射状に植設して成る攪拌翼、攪拌翼に対応させて傾斜方向の後方位置に設置される流下堰板及び複数の攪拌翼を連結しながら傾斜方向と反対の方向に回転させる攪拌翼駆動機から構成されているので、上端の搬入口から投入した現地発生材料もしくはこれに複数の異粒径材を混合した材料にセメント等の硬化剤或いは固化剤を添加した材料の混合を確実かつ効率よく行って良質の現地複合材料を製造できる効果を発揮している。
【0059】
請求項2に記載の現地複合材料混合装置は、請求項1に記載の現地複合材料混合装置において、流下堰板をパドル先端の回転円弧との間に所定の間隔を確保して配置することを特徴としているので、上記効果に加えて、攪拌翼の下流側に形成する平坦な合流部で的確かつ効率よく合流・混合させることで現地複合材料の混合性を増長できる効果を発揮している。
【0060】
請求項3に記載の現地複合材料混合装置は、請求項1又は2に記載の現地複合材料混合装置において、流下搬送体を、単一の攪拌翼と該攪拌翼の後方位置に設置される流下堰板とから構成される部分ブロックを形成し、部分ブロックを適宜に組み立てて構成することを特徴としているので、上記効果に加えて、部分ブロックを取り付けもしくは取り外すだけで撹拌翼を取り付けた適切な長さの流下搬送体を形成して材料の混合性を調整できると共にブロック単位に分割して清掃も容易にできる効果を発揮している。
【0061】
請求項4に記載の現地複合材料混合装置は、請求項1乃至3のいずれかに記載の現地複合材料混合装置において、部分ブロックに流下堰板に連続させる平坦な流下堰案内板を底板部上に設置して構成される所定長の混合調整ブロックを適宜に付属させることを特徴としているので、上記効果に加えて、混合調整ブロックを入れ替えて平坦部の長さを現地発生材料に合わせた適切な長さに設定して流下案内板における現地複合材料の混合性を増長できる効果を発揮している。
【0062】
請求項5に記載の現地複合材料混合装置は、請求項1乃至4のいずれかに記載の現地複合材料混合装置において、攪拌翼のパドルを、隣接する攪拌翼との関連で軸方向の間隔を相互に変更することを特徴としているので、上記効果に加えて、材料の流下方向に並列配置される攪拌翼間のパドル配置を多様化することで、効率よく掻き混ぜられるようにして現地複合材料の混合性をさらに増長できる効果を発揮している。
【0063】
請求項6に記載の現地複合材料混合装置は、請求項1乃至5のいずれかに記載の現地複合材料混合装置において、攪拌翼を相互間の回転速度を適宜に変更させながら設定できることを特徴としているので、上記効果に加えて、攪拌翼間に亘る混合状態を多様化することで現地複合材料の混合性をさらに増長できる効果を発揮している。
【0064】
請求項7に記載の現地複合材料混合装置は、請求項1乃至6のいずれかに記載の現地複合材料混合装置において、流下搬送体が、攪拌翼の上方で傾斜方向の後方位置に飛散防止堰板を具備していることを特徴としているので、上記効果に加えて、攪拌翼のパドルで掻き揚げた材料の移動方向を飛散防止堰板で制御して、流下搬送体内を流下してきた材料と的確且つ効果的に再合流混合させることで現地複合材料の混合性をさらに増長できる効果を発揮している。
【0065】
請求項8に記載の現地複合材料混合装置は、請求項1乃至7のいずれかに記載の現地複合材料混合装置において、飛散防止堰板を流下搬送体の傾斜角度もしくは攪拌翼の回転速度に対応させて、流下搬送体に対する設置角度を調整可能に設置されることを特徴としているので、上記効果に加えて、掻き揚げた分を飛散防止堰板で再び流下する材料に戻す状態を傾斜角度もしくは攪拌翼の回転速度に対応させて適宜に調整することで、現地複合材料の混合性をさらに増長できる効果を発揮している。
【0066】
請求項9に記載の現地複合材料混合装置は、請求項1乃至8のいずれかに記載の現地複合材料混合装置において、飛散防止堰板を複数の短冊板から構成し、各短絡板の回動角度を適宜に調整可能に設置されることを特徴としているので、上記効果に加えて、攪拌翼のパドルで掻き揚げた材料の分散形態を飛散防止堰板の複数の短冊板でさらに緻密に制御して流下搬送体内を流下してきた材料と的確かつ効果的に再合流させることで、現地複合材料の混合性をさらに増長できる効果を発揮している。
【0067】
請求項10に記載の現地複合材料混合装置は、請求項1乃至9のいずれかに記載の現地複合材料混合装置において、流下搬送体を長さの調整可能な支持部材で適宜の傾斜形態に支持することを特徴としているので、上記効果に加えて、様々な粒径から成る現地発生材料等或いはこれに複数の異粒径材を混合した材料に合わせて流下搬送体を傾斜させ、流下速度を調整しながらの混合性を変化できる効果を発揮している。
【0068】
請求項11に記載の現地複合材料混合装置は、請求項1乃至10のいずれかに記載の現地複合材料混合装置において、流下搬送体を弾性体で揺動可能に支持することを特徴としているので、上記効果に加えて、流下搬送体が、材料の移動や攪拌翼の回転等の動作によって振動し、流下しながら混合している現地複合材料に振動を加えることで現地複合材料の混合性をさらに増長できる効果を発揮している。
【図面の簡単な説明】
【図1】本発明による現地複合材料混合装置の実施の形態図
【図2】図1の各攪拌翼と流下堰板を矢視した断面図
【図3】本発明による現地複合材料混合装置の他の実施形態図
【図4】本発明による現地複合材料混合装置の混合形態図
【符号の説明】
1、10 現地複合材料混合装置、 2、11 流下搬送体、
3 搬入口、 4 攪拌翼、 5 流下堰板、 6 搬出口、 7 基礎、
8、8’ 弾性体、 9 攪拌翼駆動機、 12 混合調整ブロック、
13 飛散防止堰板、 14 材料、 15 一部の材料、
16 支持部材、 2−1、2−2 部分ブロック、
2−3 流下搬送体ブロック、 4−1 回転軸、 4−2 パドル、
4−3 スプロケット、 5−1 間隙、 5−2 合流部、
12−1 流下搬送体ブロック、 12−2 底板部、
12−3 平坦な混合板、 12−3’ 傾斜した混合板、
16−1 ハンドル、 16−2 伸縮部、 16−3 脚部、
16−4 雌ねじ部、 16−5 雄ねじ部、
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an on-site composite material mixing device, and in particular, a locally generated material such as gravel and earth and sand generated locally, or a material in which a plurality of other different particle size materials are mixed with a locally generated material and a hardener such as cement or ground. The present invention relates to an on-site composite material mixing apparatus for producing a high-quality on-site composite material by improving mixing efficiency when an on-site composite material is produced by adding a solidifying agent for improvement.
[0002]
[Prior art]
In the construction of dam bodies in recent dam construction, etc., omitting the manufacturing process of adjusting the particle size of the aggregate when the compressive strength of the embankment material after hardening requires only about 1.0 to 3.0 N / mm 2 , A construction method (hereinafter referred to as CSG construction method) using a material in which cement is mixed with locally generated materials such as riverbed gravel is being adopted. This CSG construction method mixes hardeners such as cement with locally generated materials such as gravel, earth and sand, then spreads them with a bulldozer, etc., and rolls them with a vibrating roller to build a structure. By using the generated material, it is excellent in economic efficiency, workability, and environmental conservation, and the material strength can be increased by mixing cement, so it is possible to construct a structure with a steep slope. It is attracting attention because it is.
[0003]
In addition, when constructing a building or forming a road on soft ground, the soft soil is excavated and removed, and strong soil is put into the removed part. In view of problems such as transportation costs and the like, soil improvement is performed by mixing a solidifying agent with excavated locally generated soil, replacing the improved soil with a portion excavated and removed, and using it as the ground again.
[0004]
However, the former CSG method is not stable in the compressive strength of the embankment material after curing because the particle size is not adjusted by using the locally generated material as described above. Securing of the yard and many construction machines etc. required cost problems, etc., but as a measure for improvement, when using water-containing gravel such as riverbed gravel as an aggregate, the maximum particle size of the aggregate is 150 mm, There has also been proposed a CSG method in which mixing is performed while adjusting the amount of cement so that the water-cement ratio is in the range of 35 to 100% while applying a sizing means to make the fine aggregate ratio 16% or more. (For example, see Patent Documents 1 and 2)
[0005]
However, these proposals also require bulky costs due to the need for equipment such as a sizing means and a cement adjusting device, and the cement and aggregate are used because the usual mixing means are adopted. There was a concern that the quality of the embankment material would be lacking in stability as the embankment material was not sufficiently mixed.
[0006]
On the other hand, when only about 1.0 to 3.0 N / mm 2 of compressive strength of the embankment material after hardening is required, not only the locally generated materials such as riverbed gravel as described above but also the aggregate It eliminates the manufacturing process to adjust the particle size, adopts CSG method that mixes with cement while using multiple different particle size materials, and can mix efficiently while ensuring cost reduction and ensure the quality as embankment material Means were envyed.
[0007]
In the latter ground improvement method, the excavated soil is put into a container, a solidifying agent is added and mixed there, and it is taken out again and backfilled in the excavated part, so there is even a container and a stirrer. This is sufficient, but since it is a batch system and continuous work is not possible, work efficiency is poor. Therefore, a mixing means that can continuously mix with the added solidifying agent while moving the excavated soil has been desired.
[0008]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 6-305595 (paragraphs “0020” to “0028” end lines, FIGS. 1 and 2)
[Patent Document 2]
Japanese Patent No. 3202099 (paragraphs “0021” to “0023”, FIGS. 1 and 2)
[0009]
[Problems to be solved by the invention]
The present invention proposes an improvement measure in view of the above situation, and a hardener such as cement in a locally generated material such as gravel, earth and sand or a material obtained by mixing a plurality of different particle size materials in the locally generated material. In addition, it is possible to reduce costs when mixing on-site and solidifying agents for ground improvement to produce on-site composite materials, and to continuously and efficiently mix with hardeners or solidifying agents added while moving the on-site generated materials. The purpose is to provide an on-site composite material mixing device that ensures high quality after curing or solidification.
[0010]
[Means for Solving the Problems]
The on-site composite material mixing apparatus according to the first aspect of the present invention includes a lower transporting port provided at an upper end and a lower transporting port, and a plurality of in-flowing transport bodies that are installed in an inclined manner and perpendicular to the downstream transport body. A stirrer blade which is arranged and radially padded with paddles around the rotation axis at predetermined intervals in the axial direction and the peripheral direction, a falling weir plate installed in a rearward position in an inclined direction corresponding to the stirrer blade, and a plurality of It is composed of a stirring blade drive that rotates in a direction opposite to the tilting direction while connecting the stirring blades, and is made from a locally generated material introduced from the top inlet or a material mixed with a plurality of different particle size materials. A hardener or solidifying agent such as cement is added to mix the materials reliably and efficiently to produce a high quality local composite material.
[0011]
The on-site composite material mixing device according to claim 2 is the on-site composite material mixing device according to claim 1, wherein the flow-down barrier plate is arranged with a predetermined interval between the rotating arc at the tip of the paddle. In addition to the above functions, the mixing property of the local composite material is increased by accurately and efficiently joining and mixing at a flat joining portion formed on the downstream side of the stirring blade.
[0012]
The on-site composite material mixing device according to claim 3 is the on-site composite material mixing device according to claim 1 or 2, wherein the falling transport body is installed at a position behind the single agitating blade and the agitating blade. It is characterized by forming a partial block composed of a falling weir plate, and assembling and configuring the partial block appropriately. A flow-down conveyance body having a sufficient length can be formed to adjust the mixing property of the materials, and can be divided into blocks to facilitate cleaning.
[0013]
The on-site composite material mixing device according to claim 4 is the on-site composite material mixing device according to any one of claims 1 to 3, wherein the flow guide is a flat flow that is continued to the upper end of the flow-down dam plate in the partial block. In addition to the above functions, the mixing adjustment block is appropriately attached to the mixing adjustment block of a predetermined length that is configured by installing a plate on the bottom plate. The mixing length of the in-situ composite material in the flow guide plate is increased by setting an appropriate length according to the flow.
[0014]
An on-site composite material mixing apparatus according to claim 5 is the on-site composite material mixing apparatus according to any one of claims 1 to 4, wherein the paddle of the stirring blade is axially related to the adjacent stirring blade. In addition to the above function, the paddle arrangement between the stirring blades arranged in parallel in the material flow direction is diversified, so that the mixing can be performed efficiently. This further increases the mixing properties of the composite material.
[0015]
The on-site composite material mixing device according to claim 6 is an on-site composite material mixing device according to any of claims 1 to 5, wherein the stirring blades can be set while appropriately changing the rotational speed between them. In addition to the above functions, the mixing state of the local composite material is further increased by diversifying the mixing state between the stirring blades.
[0016]
The on-site composite material mixing device according to claim 7 is the on-site composite material mixing device according to any one of claims 1 to 6, wherein the falling transport body is scattered above the stirring blade at a rearward position in an inclined direction. In addition to the above functions, the material that has flowed down the transporting body by controlling the moving direction of the material swirled by the paddle of the stirring blade with the scattering barrier plate in addition to the above function. The recombination mixing is performed accurately and effectively to further enhance the mixability of the on-site composite material.
[0017]
The on-site composite material mixing apparatus according to claim 8 is the in-situ composite material mixing apparatus according to any one of claims 1 to 7, wherein the shatter-preventing weir plate provided in the down-flowing carrier is provided with an inclination of the down-flowing carrier. It is characterized in that the installation angle with respect to the descending carrier can be adjusted according to the angle or the rotation speed of the stirring blade. By appropriately adjusting the returning state according to the inclination angle or the rotation speed of the stirring blade, the mixing property of the on-site composite material is further increased.
[0018]
The on-site composite material mixing device according to claim 9 is the on-site composite material mixing device according to any one of claims 1 to 8, wherein the scattering prevention weir plate provided on the falling transport body is formed from a plurality of strip plates. The rotation angle of each short-circuit plate is configured to be adjusted appropriately, and in addition to the above function, the dispersion form of the material swirled by the paddle of the stirring blade is changed to a plurality of scattering prevention weir plates. The mixing ability of the local composite material is further increased by precisely and effectively re-merging with the material that has flowed down in the flow-down carrier by controlling the strip plate more precisely.
[0019]
The on-site composite material mixing device according to claim 10 is the on-site composite material mixing device according to any one of claims 1 to 9, wherein the downflow carrier is appropriately inclined with a support member whose length can be adjusted. In addition to the above functions, the flow carrier is inclined according to the locally generated material having various particle sizes or a material in which a plurality of different particle size materials are mixed. The mixing property is changed while adjusting the speed.
[0020]
An on-site composite material mixing apparatus according to an eleventh aspect of the present invention is the on-site composite material mixing apparatus according to any one of the first to tenth aspects, wherein the falling transport body is supported by an elastic body so as to be swingable. In addition to the above functions, the falling transport body vibrates due to movement of the material, rotation of the stirring blade, etc., and the local composite material is mixed by applying vibration to the local composite material being mixed while flowing down. The sex is further increased.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
An on-site composite material mixing apparatus according to the present invention includes a downstream transport body that is provided with an upper-end transport inlet and a lower-end transport outlet, and is disposed in parallel in a direction orthogonal to the downstream transport body, with a rotating shaft A stirrer blade in which paddles are radially planted at predetermined intervals in the axial direction and the peripheral direction, a falling weir plate and a plurality of stirrer blades installed at a rear position in an inclined direction corresponding to the stirrer blade It is basically composed of a stirring blade drive that rotates in the direction opposite to the tilting direction while being connected.
Embodiments of an on-site composite material mixing apparatus according to the present invention will be described below in detail with reference to the drawings.
[0022]
The embodiment shown in FIG. 1 shows a basic form relating to the on-site composite material mixing apparatus of the present invention, FIG. 1 (a) is a side sectional view, and FIG. 1 (b) is a front plan view.
The on-site composite material mixing apparatus 1 according to the present embodiment has a bowl-shaped flow-down conveyance body 2 that is open at the top as shown in FIG. Inclined by connecting a plurality of stirring blades 4 while the material generated from 3 or a material mixed with a plurality of different particle size materials and a hardening agent such as cement or a solidifying agent flowing down under its own weight. The mixing blade is swirled by the stirring blade 4 that rotates in the direction opposite to the flow direction of the material by the stirring blade drive 9 that rotates in the direction opposite to the direction of the material. It is discharged as a desired on-site composite material from the carry-out port 6.
[0023]
The flow-down carrier 2 in the present embodiment is configured by assembling a plurality of partial blocks 2-1 and 2-2 as an integrated object, and is arbitrarily supported by the support member 16 whose length can be adjusted by operating the handle 16-1. It is installed at an inclination angle of. Further, the flow-down conveyance body 2 is supported on the tip of the support member 16 and the base 7 with elastic bodies 8 and 8 'such as springs interposed therebetween, thereby mixing the flow while adjusting the flow-down speed. In addition to setting the degree appropriately, the mixed state is accelerated by the swinging of the elastic bodies 8 and 8 'to establish the quality of the discharged local composite material.
[0024]
Thus, the partial blocks 2-1 and 2-2 are composed of a bowl-shaped flow-down conveying body block 2-3, a stirring blade 4 and a flow-down weir plate 5 arranged alone on the block, The difference between 2-1 and the partial block 2-2 is the difference between the form in which the shaft support position of the stirring blade 4 with respect to the falling transport block 2-3 is biased to one end side and the form in the center part. Only the corresponding form of the falling weir plate 5 facing each other is shown.
[0025]
The agitating blade 4 is pivotally supported on the side surface of the descending transport body 2 and is arranged so as to be orthogonal to the inclined direction, that is, the descending direction. A plurality of stirring blades 4 are arranged around the rotating shaft 4-1 at a predetermined interval. Paddles 4-2 are planted radially. The paddles 4-2 are formed in a strip-shaped thin plate so as to sink into the flowing down and allow partial lifting, and a plurality of paddles 4- 2 are arranged at predetermined intervals in the axial direction of the rotating shaft 4-1.
[0026]
Further, the paddle 4-2 configured in a strip-shaped thin plate is rotatably installed on the rotating shaft 4-1, and the material flows down by changing the direction of the strip-shaped thin plate surface in an appropriate direction. Can be mixed efficiently.
In the present embodiment, the paddle 4-2 is formed in a strip-shaped thin plate. However, as long as the material can be stirred and stirred, it may be a polygonal cross-section or a rod-shaped body having a meniscal shape.
[0027]
Thus, the axial arrangement related to the plurality of paddles 4-2 radially arranged between the stirring blades 4 will be described in detail with reference to FIG.
As shown in FIG. 1B, the rotating shaft 4-1 of the stirring blade 4 is equipped with a sprocket 4-3 at one shaft end, and each stirring blade 4 is in a direction opposite to the tilt direction. Although they are driven all at once by the rotating chain by the rotating stirring blade drive 9, the rotational speed of each stirring blade 4 is made different by changing the number of teeth of each sprocket 4-3 as appropriate. It is possible to set the same.
[0028]
2 are cross-sectional views (a), (b), and (c) in which the respective stirring blades 4 of the descending carrier 2 shown in FIG. The sequence relationship of each paddle 4-2 in FIG.
That is, the stirring blades 4 in the present embodiment have different numbers of axial arrangements of the plurality of paddles 4-2 that are radially planted between each other, and are arranged below and above the downstream transport body 2. 2 (a) and 2 (c), the number of arrangements of the paddles 4-2 is 3, and the paddles of the stirring blades 4 shown in FIG. The number of arrays is 4. The number of paddle arrangements is changed by alternately changing the position where the paddle 4-2 is inserted into the flowing-down material, thereby stirring the flowing-down form of the material into a kneaded state. 4, the material flowing down the gaps of the paddles 4-2 arranged at predetermined intervals in the axial direction strikes the paddles 4-2 of the subsequent agitating blades and is efficiently agitated and mixed with the local composite material It works to improve the rate.
[0029]
The number of arrangements described above varies depending on the inclination angle of the flow-down carrier 2 and the balance between the number of paddles of the stirring blades 4 and the rotation speed, and is given in the specific determination of the number of arrangements. Depending on the situation, selection and decision are made from a comprehensive perspective, taking into account the conditions of each of the above factors.
[0030]
Further, the flow-down dam plate 5 is mixed with the stirring blade 4 while decelerating the material flowing down, and opposed to the stirring blade 4 so that the paddle 4-2 of the stirring blade 4 can smoothly enter the material. Thus, a predetermined interval 5-1 is ensured between the paddle 4-2 and the rotating arc at the tip of the paddle 4-2.
[0031]
This interval 5-1 is provided on either the upstream side or the downstream side of the stirring blade 4, and the length of the interval 5-1 on the upstream side or the downstream side can be the same or different. However, in the present embodiment, the interval 5-1 is ensured to have substantially the same length on both the upstream and downstream sides.
[0032]
This interval 5-1 is formed in the material that flows down by the material 14 and the stirring blades blocked by the flow-down dam plate 5 installed at the rear position in the inclined direction, as will be described in the manufacturing process of the on-site composite material. And a substantially flat joining portion 5-2 having a predetermined length is formed in a section from the end of the concave portion to the falling weir plate 5.
[0033]
This arcuate recess establishes that the mixing distance is increased as compared with the case where the material flows down the smooth surface, and further enhances the mixing property of the local composite material. The arc-shaped recess is formed of the dammed material 14, but is in a relatively weak stage even though it is uncured or hardened due to the manufacturing process, so the paddle 4-2 However, even if a material having a large particle size is caught between the circular arc-shaped concave portion, the material 14 is easily broken, so that the rotation of the stirring blade 4 is not hindered.
Further, by appropriately setting the interval 5-1 and the height of the flow-down dam plate 5, the length of the arc of the arc-shaped recess is opened between the tips of the adjacent paddles 4-2 and 4-2. It can be formed larger than the leg arc length.
[0034]
Therefore, even when the stirring blade is rotated, when one of the paddles 4-2 of the rotating shaft 4-1 moves away from the arc-shaped recess, the paddle 4-2 that follows the paddle 4-2 always has the arc length of the arc-shaped recess. Even if there is a material that passes through the gap between the paddles away from the recesses first, various kinds of gravel, earth and sand, etc. are present between the paddles 4-2 and the arc-shaped recesses. It is configured to minimize the biting of locally generated material consisting of particle sizes.
[0035]
Further, on the surface of the material 14 dammed up at the interval 5-1, as will be described later with reference to FIG. 4, a substantially flat joining portion 5-2 is formed in the process of manufacturing the on-site composite material. Since the material 14 that has flowed down the concave portion and the part of the material 15 that has been lifted up by the paddle 4-2 can be reliably and effectively recombined at the merge portion 5-2, mixing of the on-site composite material Is further promoted.
[0036]
Therefore, the material 14 that flows down takes the part of the paddle 4-2 that has been sunk and swallowed up, and after passing the time difference of rotation, the material 14 that flows down and weighs the material and the natural fall force. However, it is united again shockingly, and this strengthens the mixing power in the local composite material.
[0037]
The support member 16 described above includes an extendable part 16-2 whose length can be adjusted by operating the handle 16-1, and a leg part 16-3 fixed to the foundation 7. The expansion / contraction part 16-2 arranged on the upper side can be freely rotated by mutual rotation between the female screw parts 16-4 and 16-4 constituting the elastic part 16-2 and the male screw part 16-5 screwed into the female screw part. It can expand and contract.
[0038]
Note that the support member 16 is only intended to add an inclination to the downstream transport body 2, and therefore does not need to be configured as in the present embodiment, and is intended to tilt the downstream transport body 2. Since a mechanism capable of achieving the above is sufficient, even a structure or a ridge having a slope capable of adjusting the gradient can be employed.
[0039]
The other embodiment shown in FIG. 3 further improves the mixing property by changing the form in which a part of the material flowing down is combined with the material flowing down while being swept up in the on-site composite material mixing apparatus of the present invention. It is a thing.
[0040]
The local composite material mixing apparatus 10 according to the present embodiment, as shown in the side sectional view of FIG. 3, is a downstream transport body 11 formed in a cylindrical shape instead of the bowl-shaped downstream transport body 2 of FIG. One feature of the downflowing carrier 11 is that the mixing adjustment block 12 having a predetermined length is attached to the partial blocks 2-1 and 2-2. It is in the point which arrange | positions the scattering prevention dam plate 13 in the back position of the inclination direction above the stirring blade 4 with respect to the conveyance body 11. FIG.
Then, the descending transport body 11 is installed in an inclined shape, and a locally generated material introduced from the carry-in port 3 equipped at the upper end or a material obtained by mixing a plurality of different particle size materials and a curing agent such as cement or the like A structure in which a plurality of stirring blades 4 are connected and rotated in a direction opposite to the inclination direction while rotating a material such as a solidifying agent by its own weight, and rotated in a direction opposite to the material flowing direction is as follows. This is the same as the above embodiment.
[0041]
The mixing adjustment block 12 has a flat mixing plate 12-3, which is a flow guide plate, in a form that is continuous with the lower transfer carrier block 12-1 and the upper end of the flow blocking plate 5 of the partial blocks 2-1, 2-2. It is comprised by installing on the baseplate part 12-2 of the flow-down conveyance body block 12-1.
[0042]
If the mixing adjustment block 12 having various lengths is prepared in advance, the mixing adjustment block 12 may be a locally generated material having various particle sizes or a material in which a plurality of different particle size materials are mixed with cement and the like. The length of the flat mixing plate 12-3 can be adjusted by replacing the mixing adjustment block 12 so that the hardener or the solidifying agent such as can be mixed and mixed surely and effectively in the flat mixing unit 12-3.
[0043]
Therefore, it is easy to set the length of the flat mixing plate 12-3 to an appropriate length according to the locally generated material, and thereby the mixing property of the locally composite material can be increased.
[0044]
Thus, in the present embodiment, the mixing plate 12-3 is made flat parallel to the falling transport block 12-1, but such a limitation is not special, and is indicated by a one-dot chain line in FIG. It is also possible to arrange the mixing plate 12-3 ′ inclined as described above in the falling transport block 12-1, thereby adjusting the flow speed of the material 14 to an efficient mixing speed, It is also possible to increase the mixability of the materials.
[0045]
In the above-described embodiment shown in FIG. 1, a part of the material 15 that has been swept up by the paddle 4-2 being submerged into the material flowing down is subjected to a time difference in rotation, and then the stirring blade 4 The mixing force has been strengthened by impacting again with the material 14 flowing down, but the stirring blade 4 in the present embodiment, when a part of the material 15 is swirled with the paddle 4-2 At the same time, a part of the material 15 released by the rotational force after being lifted up on the paddle 4-2 is caused to collide with the anti-scattering dam plate 13 and the moving direction of the material 15 is controlled so that the flat mixing plate 12- 3, and the material 14 that flows down through the lower part of the stirring blade 4 is combined with the material 14 shockingly again after a time difference, so that the mixing force is further increased by the dropping force of the scattering prevention weir plate 13. While strengthening, the flat mixing of the mixing adjustment block 12 In the plate 12-3, by continuing the mixing of the material 14 which is combined with a portion of the material 15, thereby uplifting the mixture of local composites.
[0046]
And the form which equips the falling conveyance body 10 with the scattering prevention dam 12 is arbitrary, However, The installation angle with respect to the falling conveyance body 10 is suitably set according to the inclination angle of the falling conveyance body 10, or the rotational speed of the stirring blade 4. By selecting a state in which a part of the fried material 15 is returned to the flowing material 14 again, the mixing property of the local composite material can be further increased.
[0047]
Further, as another embodiment of the anti-scattering dam plate 13, the anti-scattering dam plate 13 is composed of a plurality of strip plates, and is adjusted by appropriately adjusting the rotation angle of each strip plate to be installed. It is also possible to adjust the state of returning to the flowing material 14 while controlling the dispersion form of a part of the material 15 more precisely by a plurality of strip plates of the anti-scattering dam plate 13 to increase the mixing property. It is.
[0048]
As described above, in the present embodiment, a mixing adjustment block having a predetermined length is attached to the partial block, and the scattering prevention dam plate is provided in the flow-down carrier in relation to the stirring blade and the flow-down dam plate, thereby mixing the materials. However, it is not limited to the above embodiment in terms of the form of the flow-down carrier and the mixing adjustment block, the method of attaching the anti-scattering dam plate, and the like.
[0049]
Next, the operation of the local composite material mixing apparatus according to the present invention will be described.
FIG. 4 is a schematic view showing a state in which materials are mixed, and is represented by a side sectional view (a) and a plan view (b).
[0050]
A plurality of materials 14 introduced from the carry-in port 3 reach the falling weir plate 5 through the gap 5-1 between the paddles 4-2 of the stirring blade 4 while flowing down by their own weight. In front of this, a part of the material 14 is blocked and stays, but most of the material 14 passes over the falling weir plate 5 and further flows down.
That is, while the material 14 is partly swirled by the stirring blade 4 rotating in the direction opposite to the flow-down direction and is blocked by the flow-down dam plate 5, the flow-down speed of the flow-down carrier 2 is suppressed. At the same time, an arc-shaped concave portion made of material 14 is formed on the bottom plate portion of the bottom plate portion so as to face the stirring blade 4, and at the same time, there is a predetermined interval 5-1 between the falling weir plate 5 and the rotating arc at the tip of the paddle 4-2. Since it is secured, a substantially flat joining portion 5-2 having a predetermined length is formed on the downstream side of the stirring blade in the section from the end of the arc-shaped recess to the falling weir plate.
[0051]
Thus, the arc-shaped recess is formed by a part of the dammed material 14, and since it is in the manufacturing process, it is in a stage where the strength is relatively weak even though it is uncured or cured. Even if a material having a large particle size is caught between the concave portion and the paddle 4-2, the material is easily removed and the rotation of the stirring blade 4 is hardly hindered.
[0052]
Further, by appropriately setting the interval 5-1 and the height of the flow-down dam plate 5, the length of the arc in the arc-shaped concave portion made of the material 14 is set between the tips of the adjacent paddles 4-2 and 4-2. The paddle 4-2 is radially arranged in the circumferential direction of the rotating shaft 4-1 when the stirring blade is rotated. When one of them is separated from the arc-shaped recess, the paddle 4-2 that follows is always located within the arc length of the arc-shaped recess.
[0053]
Therefore, there is a material that passes through the gap between the paddles far away from the recesses. However, the material has various particle sizes such as gravel and earth and sand between the arc-shaped recesses and the joining portion 5-2 and the paddle 4-2. Minimizing biting of locally generated materials.
[0054]
Furthermore, in the substantially flat junction part 5-2, the material 14 that has flowed down the arc-shaped concave portion and the part of the material 15 that has been swept up by the paddle 4-2 are joined again and mixed reliably and effectively. And promotes the mixing of local composite materials.
That is, a part of the material 15 scraped up to the paddle 4-2 falls down by its own weight while being discharged in an arc shape from the paddle 4-2, and at the same time, is directed to the flat portion 5-2 side by the scattering prevention dam plate 12. Since the material 14 is combined with the material 14 flowing down through the gap 5-1, the material 14 is stirred and mixed in the joining portion 5-2 or the flat mixing plate 12-3 of the mixing adjustment block 12. While continuing, it flows down to the next stage stirring blade 4 and the flow-down dam plate 5, and the same stirring and mixing is repeated.
[0055]
Therefore, the stirring and mixing of the material 14 establishes a predetermined mixing property in the unit block composed of the stirring blade 4 and the falling weir plate 5, and when the mixing property is insufficient, the stirring blade 4 and the falling weir plate 5. Can be established over a plurality of stages as in the above-described embodiment to establish a desired mixing property.
[0056]
As described above, the on-site composite material mixing apparatus according to the present invention is configured as described in each embodiment. A plurality of materials to which a hardener such as cement and a hardener or a solidifying agent are added are manufactured as high-quality local composite materials by ensuring that the mixing is efficient.
[0057]
As described above, the present invention has been described in detail on the basis of the embodiment. However, the on-site composite material mixing device according to the present invention is not limited to the above-described embodiment, and the falling carrier, the stirring blade, and the falling weir It is a matter of course that various changes can be made to the specific structure and material related to the plate and the scattering prevention dam plate without departing from the spirit of the present invention.
[0058]
【The invention's effect】
The on-site composite material mixing device according to claim 1 is provided with a carry-in port at the upper end and a carry-out port at the lower end, and is arranged in a sloping manner, arranged in parallel in a direction perpendicular to the flow-down carrier, Agitating blades in which paddles are radially planted at predetermined intervals in the axial direction and the peripheral direction around the rotating shaft, a falling weir plate installed at a rearward position in an inclined direction corresponding to the stirring blades, and a plurality of stirring blades It is composed of a stirring blade drive that rotates in the direction opposite to the tilting direction while connecting the materials, such as cement generated in the locally generated material input from the top inlet or a material mixed with multiple different particle size materials It is possible to produce a high-quality local composite material by reliably and efficiently mixing the material added with the curing agent or solidifying agent.
[0059]
The on-site composite material mixing device according to claim 2 is the on-site composite material mixing device according to claim 1, wherein the flow-down dam plate is disposed with a predetermined interval between the rotating arc at the tip of the paddle. In addition to the effects described above, the present invention demonstrates the effect of increasing the mixability of the local composite material by accurately and efficiently joining and mixing at a flat joining portion formed on the downstream side of the stirring blade.
[0060]
The on-site composite material mixing apparatus according to claim 3 is the on-site composite material mixing apparatus according to claim 1 or 2, wherein the flow-down carrier is installed at a single stirring blade and a rear position of the stirring blade. It is characterized by forming a partial block composed of a weir plate and assembling and configuring the partial block appropriately. In addition to the above effects, an appropriate stirring blade can be attached by simply attaching or removing the partial block. It is possible to adjust the mixing property of the material by forming the length of the descending conveying member, and at the same time, it can be divided into block units and easily cleaned.
[0061]
The on-site composite material mixing device according to claim 4 is the on-site composite material mixing device according to any one of claims 1 to 3, wherein a flat flow-down weir guide plate that is continuous with the flow-down weir plate on the partial block is provided on the bottom plate portion. In addition to the above effects, the mixing adjustment block is replaced and the length of the flat part is appropriately adjusted to the locally generated material. It is effective to increase the mixing property of the local composite material in the flow guide plate by setting it to a long length.
[0062]
The on-site composite material mixing device according to claim 5 is the on-site composite material mixing device according to any one of claims 1 to 4, wherein the paddle of the stirring blade is spaced apart in the axial direction in relation to the adjacent stirring blade. In addition to the above effects, the paddle arrangement between the stirring blades arranged in parallel in the material flow direction is diversified, so that it can be mixed efficiently so that it can be mixed locally. It has the effect of further increasing the mixing property.
[0063]
The on-site composite material mixing device according to claim 6 is characterized in that, in the on-site composite material mixing device according to any of claims 1 to 5, the stirring blades can be set while appropriately changing the rotational speed between them. Therefore, in addition to the above-described effects, it is possible to further increase the mixing property of the local composite material by diversifying the mixing state between the stirring blades.
[0064]
The on-site composite material mixing device according to claim 7 is the on-site composite material mixing device according to any one of claims 1 to 6, wherein the flow-down conveyance body is located above the stirring blades at a rear position in the inclined direction. In addition to the above-mentioned effect, the material moving down the inside of the falling transport body is controlled by the anti-scattering dam plate in addition to the above effect. The effect of further increasing the mixing property of the local composite material by re-mixing and mixing accurately and effectively.
[0065]
The on-site composite material mixing apparatus according to claim 8 is the on-site composite material mixing apparatus according to any one of claims 1 to 7, wherein the anti-scattering dam plate corresponds to the inclination angle of the descending carrier or the rotation speed of the stirring blade. In addition to the above-described effect, the installation angle with respect to the falling transport body is adjustable, so that the state where the scraped-up portion is returned to the material that flows down again with the scattering prevention dam plate is inclined angle or By adjusting the speed appropriately according to the rotation speed of the stirring blade, the effect of further increasing the mixing property of the local composite material is exhibited.
[0066]
The on-site composite material mixing apparatus according to claim 9 is the on-site composite material mixing apparatus according to any one of claims 1 to 8, wherein the scattering prevention weir plate is composed of a plurality of strip plates, and each short-circuit plate is rotated. In addition to the above effects, the dispersion form of the material lifted up by the paddle of the stirring blade is more precisely controlled by a plurality of strip plates of anti-scattering dam plates. In this way, the recombination with the material that has flowed down in the flow-down conveyance body accurately and effectively reinforces the mixing ability of the local composite material.
[0067]
The on-site composite material mixing apparatus according to claim 10 is the on-site composite material mixing apparatus according to any one of claims 1 to 9, wherein the falling transport body is supported in an appropriate inclined form by a support member whose length can be adjusted. In addition to the above effects, the flow carrier is inclined according to the locally generated material having various particle diameters or a material in which a plurality of different particle diameter materials are mixed. It demonstrates the effect of changing the mixing while adjusting.
[0068]
The on-site composite material mixing apparatus according to claim 11 is characterized in that, in the on-site composite material mixing apparatus according to any one of claims 1 to 10, the falling transport body is supported swingably by an elastic body. In addition to the above-mentioned effects, the falling transport body vibrates due to the movement of the material, the rotation of the stirring blades, etc. The effect that can be further increased is demonstrated.
[Brief description of the drawings]
FIG. 1 is a diagram of an embodiment of an on-site composite material mixing device according to the present invention. FIG. 2 is a cross-sectional view of each stirring blade and a falling weir plate of FIG. Fig. 4 is another embodiment diagram. Fig. 4 is a mixing diagram of an on-site composite material mixing apparatus according to the present invention.
1, 10 On-site composite material mixing device, 2, 11 Downstream carrier,
3 carry-in port, 4 stirring blades, 5 falling weir plate, 6 carry-out port, 7 foundation,
8, 8 'elastic body, 9 stirring blade drive machine, 12 mixing adjustment block,
13 scattering prevention barrier plate, 14 materials, 15 some materials,
16 support members, 2-1 and 2-2 partial blocks,
2-3 Downstream carrier block, 4-1 Rotating shaft, 4-2 Paddle,
4-3 Sprocket, 5-1 Gap, 5-2 Junction section,
12-1 Downstream carrier block, 12-2 Bottom plate part,
12-3 flat mixing plate, 12-3 ′ inclined mixing plate,
16-1 Handle, 16-2 Telescopic part, 16-3 Leg part,
16-4 female thread, 16-5 male thread,

Claims (11)

上端の搬入口と下端の搬出口とを備えて傾斜状に設置される流下搬送体、該流下搬送体に直交させて並行に複数個配置し、回転軸の周辺にパドルを軸方向と周辺方向に所定の間隔で放射状に植設して成る攪拌翼、該攪拌翼に対応させて傾斜方向の後方位置に設置される流下堰板及び複数の攪拌翼を連結しながら傾斜方向と反対の方向に回転させる攪拌翼駆動機から構成される現地複合材料混合装置。A descending transport body that is installed in an inclined manner with an upper-end transport inlet and a lower-end transport outlet, and a plurality of paddles are arranged in parallel perpendicularly to the downstream transport body, and paddles are arranged in the axial direction and the peripheral direction around the rotating shaft In a direction opposite to the inclination direction while connecting a plurality of stirring blades and a stirring blade that is radially installed at a predetermined interval, a flow-down weir plate installed at a rear position in the inclination direction corresponding to the stirring blade An on-site composite material mixing device consisting of a rotating stirring blade drive. 流下堰板が、パドル先端の回転円弧との間に所定の間隔を確保して配置されることを特徴とする請求項1に記載の現地複合材料混合装置。The on-site composite material mixing device according to claim 1, wherein the falling weir plate is disposed with a predetermined interval between the falling weir plate and a rotating arc at the tip of the paddle. 流下搬送体が、単一の攪拌翼と該攪拌翼の後方位置に設置される流下堰板とから構成される部分ブロックを形成し、該部分ブロックを適宜に組み立てて構成されることを特徴とする請求項1又は2に記載の現地複合材料混合装置。The falling transport body is formed by forming a partial block composed of a single stirring blade and a falling weir plate installed at a position behind the stirring blade, and assembling the partial block appropriately. The local composite material mixing apparatus according to claim 1 or 2. 部分ブロックが、流下堰板の上端に連続させる平坦な流下案内板を底板部に設置して構成される所定長の混合調整ブロックを、適宜に付属させることを特徴とする請求項1乃至3のいずれかに記載の現地複合材料混合装置。The partial block is appropriately attached with a mixing adjustment block having a predetermined length configured by installing a flat flow guide plate that is continuous with the upper end of the flow barrier plate on the bottom plate portion. The local composite material mixing device according to any one of the above. 攪拌翼のパドルが、隣接する攪拌翼との関連で軸方向の間隔を相互に変更されることを特徴とする請求項1乃至4のいずれかに記載の現地複合材料混合装置。The in-situ composite material mixing apparatus according to any one of claims 1 to 4, wherein the paddles of the stirring blades are mutually changed in the axial distance in relation to adjacent stirring blades. 攪拌が、相互間の回転速度を適宜に変更させながら設定できることを特徴とする請求項1乃至5のいずれかに記載の現地複合材料混合装置。The local composite material mixing apparatus according to any one of claims 1 to 5, wherein the agitation can be set while appropriately changing the rotation speed between them. 流下搬送体が、攪拌翼の上方で傾斜方向の後方位置に飛散防止堰板を具備していることを特徴とする請求項1乃至6のいずれかに記載の現地複合材料混合装置。The on-site composite material mixing apparatus according to any one of claims 1 to 6, wherein the flow-down conveyance body includes an anti-scattering dam plate at a rear position in the inclined direction above the stirring blade. 飛散防止堰板が、流下搬送体の傾斜角度もしくは攪拌翼の回転速度に対応させて流下搬送体に対する設置角度を調整可能に設置されていることを特徴とする請求項1乃至7のいずれかに記載の現地複合材料混合装置。The scattering prevention barrier plate is installed so that the installation angle with respect to the falling carrier can be adjusted in accordance with the inclination angle of the falling carrier or the rotation speed of the stirring blade. The on-site composite material mixing device described. 飛散防止堰板が、複数の短冊板から構成され、各短冊板の回動角度を適宜に調整可能に設置されていることを特徴とする請求項1乃至8のいずれかに記載の現地複合材料混合装置。The on-site composite material according to any one of claims 1 to 8, wherein the scattering prevention dam plate is composed of a plurality of strip plates, and is installed such that the rotation angle of each strip plate can be appropriately adjusted. Mixing equipment. 流下搬送体が、長さの調整可能な支持部材で適宜の傾斜形態に支持されることを特徴とする請求項1乃至9のいずれかに記載の現地複合材料混合装置。The in-situ composite material mixing apparatus according to any one of claims 1 to 9, wherein the falling transport body is supported in an appropriate inclined form by a support member having an adjustable length. 流下搬送体が、弾性体で揺動可能に支持されることを特徴とする請求項1乃至10のいずれかに記載の現地複合材料混合装置。The in-situ composite material mixing apparatus according to any one of claims 1 to 10, wherein the flow-down conveyance body is supported by an elastic body so as to be swingable.
JP2003205924A 2003-08-05 2003-08-05 Local composite material mixing equipment Expired - Fee Related JP4169654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003205924A JP4169654B2 (en) 2003-08-05 2003-08-05 Local composite material mixing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003205924A JP4169654B2 (en) 2003-08-05 2003-08-05 Local composite material mixing equipment

Publications (2)

Publication Number Publication Date
JP2005052988A true JP2005052988A (en) 2005-03-03
JP4169654B2 JP4169654B2 (en) 2008-10-22

Family

ID=34362965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003205924A Expired - Fee Related JP4169654B2 (en) 2003-08-05 2003-08-05 Local composite material mixing equipment

Country Status (1)

Country Link
JP (1) JP4169654B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005349347A (en) * 2004-06-11 2005-12-22 Okumura Corp Apparatus for mixing earth and sand gathered on-site
JP2010228221A (en) * 2009-03-26 2010-10-14 Okumura Corp Mixer of earth and sand gathered on-site
JP2010227800A (en) * 2009-03-26 2010-10-14 Okumura Corp Equipment and method for maintenance of apparatus for mixing earth and sand gathered on-site
JP2010228222A (en) * 2009-03-26 2010-10-14 Okumura Corp Mixer of earth and sand gathered on-site
JP2013075529A (en) * 2012-12-25 2013-04-25 Okumura Corp On-the-spot sampled earth and sand mixing apparatus
CN104863278A (en) * 2015-04-20 2015-08-26 南京迈尚云天新型材料科技有限公司 Inorganic hydrophobic heat preservation plate as well as manufacturing equipment and technology thereof
CN113414873A (en) * 2021-06-28 2021-09-21 新兴栈(绵阳)建材有限公司 Concrete manufacturing equipment convenient to proportion is harmonious
CN114919088A (en) * 2022-05-20 2022-08-19 井冈山大学 Device and process for preparing stone-like material by using waste foundry sand and dust

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005349347A (en) * 2004-06-11 2005-12-22 Okumura Corp Apparatus for mixing earth and sand gathered on-site
JP4526877B2 (en) * 2004-06-11 2010-08-18 株式会社奥村組 Locally collected soil mixing equipment
JP2010228221A (en) * 2009-03-26 2010-10-14 Okumura Corp Mixer of earth and sand gathered on-site
JP2010227800A (en) * 2009-03-26 2010-10-14 Okumura Corp Equipment and method for maintenance of apparatus for mixing earth and sand gathered on-site
JP2010228222A (en) * 2009-03-26 2010-10-14 Okumura Corp Mixer of earth and sand gathered on-site
JP2013075529A (en) * 2012-12-25 2013-04-25 Okumura Corp On-the-spot sampled earth and sand mixing apparatus
CN104863278A (en) * 2015-04-20 2015-08-26 南京迈尚云天新型材料科技有限公司 Inorganic hydrophobic heat preservation plate as well as manufacturing equipment and technology thereof
CN113414873A (en) * 2021-06-28 2021-09-21 新兴栈(绵阳)建材有限公司 Concrete manufacturing equipment convenient to proportion is harmonious
CN113414873B (en) * 2021-06-28 2022-08-26 新兴栈(绵阳)建材有限公司 Concrete manufacturing equipment convenient to proportion is harmonious
CN114919088A (en) * 2022-05-20 2022-08-19 井冈山大学 Device and process for preparing stone-like material by using waste foundry sand and dust

Also Published As

Publication number Publication date
JP4169654B2 (en) 2008-10-22

Similar Documents

Publication Publication Date Title
CN209379397U (en) A kind of concrete aggregate bolting machine
CN107336362B (en) Movable cement stabilized macadam mixture stirrer
JP4169654B2 (en) Local composite material mixing equipment
JP2005000854A (en) Screw conveyer type continuous stirring apparatus
CN114749049A (en) Horizontal soil mixing device capable of continuously stirring and mixing method
JP4169655B2 (en) Local composite material mixing equipment
CN108394020B (en) A kind of building concrete agitating device with efficient discharging performance
JP4769396B2 (en) Continuous mixing equipment for CSG materials
JP4526877B2 (en) Locally collected soil mixing equipment
CN215901326U (en) Soil and stone material mixing stirring device
CN115464762A (en) Small-size prefab processing distributing device
CN210187647U (en) Coarse sand screen
JP2004060326A (en) Method and device for manufacturing lightweight solidification material, pipe-shaped mixer device, solidification material manufacturing device and specific gravity adjusting device
CN107552385A (en) A kind of civil engineering classification sand sieving machine
CN210262609U (en) Civil engineering equipment of material paves
CN206205453U (en) A kind of protected against splashing water concrete ground pump screening plant
JP3706094B2 (en) Soil improvement system
CN206690345U (en) Mud stirring station
JP2000064343A (en) Excavated material mixer
JP2004066107A (en) Continuous mixer for manufacturing mixed civil engineering material
JP3375600B2 (en) Soil improvement method
CN215250376U (en) Solidification treatment device for forming sludge by land backfilling and silt squeezing
CN216297036U (en) Mortar screening stirring all-in-one for building
JP2001038396A (en) Mud solidifying and treating device
CN217597415U (en) Building solid waste mixed cement and soil mixer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4169654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140815

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees