JP2005052212A - Skin sensor - Google Patents

Skin sensor Download PDF

Info

Publication number
JP2005052212A
JP2005052212A JP2003205962A JP2003205962A JP2005052212A JP 2005052212 A JP2005052212 A JP 2005052212A JP 2003205962 A JP2003205962 A JP 2003205962A JP 2003205962 A JP2003205962 A JP 2003205962A JP 2005052212 A JP2005052212 A JP 2005052212A
Authority
JP
Japan
Prior art keywords
skin
sensor
moisture
elasticity
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003205962A
Other languages
Japanese (ja)
Inventor
Tetsuo Yoshida
吉田哲男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Axiom Co Ltd
Original Assignee
Axiom Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Axiom Co Ltd filed Critical Axiom Co Ltd
Priority to JP2003205962A priority Critical patent/JP2005052212A/en
Publication of JP2005052212A publication Critical patent/JP2005052212A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a skin sensor simultaneously measuring the water content contained in the skin and the elasticity of the skin. <P>SOLUTION: This skin sensor is provided with a skin water content sensor of a type of constituting a condenser by disposing a spiral conductor at high density on the surface of an insulating substrate with a dielectric constant value of, at least, less than 10, bringing an electrode part of the condenser close to the skin and detecting the water content contained in the surface layer of the skin by the dimension of a static capacitance; a tactile sense sensor type skin elasticity sensor, which is formed by mounting a contact on the end part of a rod-shaped piezoelectric vibrator, integrally disposed close to the condenser with the contact projecting by a predetermined amount; and a means of correcting mutual detecting information using signals obtained from the skin water content sensor and the skin elasticity sensor. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、肌の手入れの際に重要な情報となる、頬などの肌に含まれる水分量と肌の弾力を同時に計測することが可能な肌センサに関する。
【0002】
【従来の技術】
女性の肌の若さを表す指標として、肌の表面層(表皮および真皮)に含まれる水分量と肌の弾力性は最も重要な特性であり、睡眠不足や過労による肌あれの状態や化粧品の効果の調べるために使用されている。
肌の水分量を計測する手段としては、水の比誘電率が約80であることを利用して、比誘電率が小さい絶縁基板上に一対の渦巻状の電極を形成し、その表面に薄い絶縁膜を形成した静電容量型水分量センサの電極面を肌に圧接したときの静電容量の変化から肌に含まれる水分量を計測する方法が知られている。
一方、肌の弾力に関しては、棒状の圧電振動子の先端に半球状の接触子を装着した触覚センサを肌に押し付け、押し付け荷重の大きさと圧電振動子の共振周波数の変化から、肌の弾力(ヤング率や損失)を計測する方法がある。
【0003】
【発明が解決しようとする課題】
人の肌は、その構造が複雑で、表面状態や内部構造などを簡単なモデルで表すことが難しく、水分量が大きく影響していると言われている肌の潤いや肌の弾力性も多分に感覚的な特性であるためこれを定量的な値で示すことは困難である。
しかし、風呂上りの肌と冬の外出帰りの肌の潤いの違いは明らかであり、また適切な化粧品を使用することにより、肌の潤いや弾力性が向上する効果も十分実感できる。
肌の水分量を保つためにいろいろな保水剤が販売されているが、多くの保水剤は、大きな分子の鎖で水分を抱え込むようにして表皮(角質層)に閉じ込めているだけで、保水剤の分子が大きいために、肌のさらに奥の真皮層まで水分を入り込ませることができないと言われている。
肌の弾力は、真皮層の保水性にも強く関係しており、真皮層の保水性が肌の弾力を保つために有効であると言われている。もちろん、角質層の保水性を高めることにより真皮層からの水分の蒸発を防ぐ効果もあり角質層の保水性も肌の弾力を保つために有効である。
一方、触覚センサに用いられている前記圧電振動子の共振周波数の変化は、肌のヤング率だけでなく肌の密度によっても変化し、肌の密度は肌に含まれる水分量によっても変化することから、水分量センサと触覚センサ式の弾力センサの両方を一体で構成し、各々の計測データを用いて互いのデータを補正することができれば、より精度の高い肌に関するデータを得ることができる。
【0004】
【課題を解決するための手段】
本発明によれば、
比誘電率の値が少なくとも10未満の絶縁基板の表面に面内で対向する少なくとも一対の渦巻状の導体を高密度に配置してコンデンサを構成し、このコンデンサの電極部分を肌に近接させて肌の表面層に含まれる水分の量を静電容量の大きさから検出する方式の肌水分量センサと、このコンデンサの近傍あるいは、コンデンサをドーナツ状に形成した場合にはその中央部に、棒状圧電振動子の端部に接触子を装着して構成される触覚センサ式肌弾力センサを、前記接触子が所定の量だけ突出するように一体に配置した肌センサを得ることができる。
さらに、本発明によれば、前記肌水分量センサと前記肌弾力センサにより得られた信号を用いて互いの検出情報を補正する手段を含む肌センサを得ることができる。
【0005】
(動作原理)
図1は、静電容量式水分量センサの動作原理説明図である。図1において、11および12は導体幅とギャツプ幅がほぼ等しく、互いに面内で対向する帯状電極で、絶縁基板13の表面に複数個形成され、互いに一つおきの電極を電気的に接続して2端子のコンデンサとして構成されている。今、説明を容易にするために、絶縁基板13の比誘電率を1と仮定すると、電極の面を物体に押し付けた場合の静電容量の大きさは、(1)式で与えられることが知られている。
【数1】

Figure 2005052212
(1)式におい、Pは電極ピッチ、aは導体幅、Wは導体の長さ、nは電極対数、εは物体の比誘電率、εは真空中の誘電率である。また、K(α)およびK‘(α)は、hを物体の厚さとしたときh/Pによって定まる定数である。
(1)式より、電極ピッチP、導体幅a、導体の長さw、電極対数nを一定とすれば、静電容量の大きさは、物体の厚さhと比誘電率εにより決定されることがわかる。
さらに、物体の厚さhをほぼ一定と仮定すれば、静電容量の大きさは、物体の比誘電率にεに比例することになる。
つまり、物体を人の肌と考え、人によって肌の厚さはほぼ同じと考えれば、肌に含まれる水分量が多いほど静電容量の値が大きくなり、静電容量の大きさから肌に含まれる水分量を計測することができる。
あらかじめ、できるだけ多くの人に対して、人工的な条件の基で得られた乾燥肌と十分に水分を含んだ肌の静電容量の値を計測することにより、静電容量の値と肌水分量との相関関係のデータベースを構築することができる。特に、同一人が同じ場所を計測した場合であれば、静電容量の変化は肌の水分量の変化をより正確に表していることになる。
【0006】
図2は、触覚センサを用いた肌弾力センサの構造概略図である。図2において、21は圧電セラミッス円柱、22は圧電セラミック円柱21の端部に装着された半球状の接触子である。また、23は圧電セラミック円柱を支持、固定するための支持具であり、支持具23は加圧用のバネ24を介して、触覚センサの筐体25に固定されている。
26は、接触子22を物体に接触させたときの接触面積の変化にともなう負荷質量の変化を検出するための発振回路であり、発振回路26の出力は信号処理回路27に接続され、測定結果は表示装置28により表示される。
【0007】
図3は、図2に示した触覚センサ用圧電振動子のより詳しい構造を示す斜視図である。圧電セラミックス円柱31の一方の端部には、先端が半球状の接触子32が装着されている。また、圧電セラミックス円柱31の外周面には、円柱の中心軸に対して対称な位置に、円柱の長さ方向に沿った帯状電極33,34(図では見えず)が形成され、これらの電極を用いて、円柱の長さ方向と直角な方向に分極処理が施されている。したがって、帯状電極33,34に、接触子32を含めた振動系の1/2波長共振モードの周波数に等しい周波数の交流電圧を印加すると、圧電セラミックス円柱31は、圧電横効果により、圧電セラミックス円柱31のほぼ中央部を共振の節とするような伸縮振動をする圧電振動子として作用する。35は、共振の節の位置に装着された支持具であり、この位置で支持固定することにより、圧電振動子特性に与える影響は最も小さく抑えることができる。
【0008】
図2に示した構成により、圧電振動子の接触子22(図3における32)を物体に圧接すると、圧電振動子は物体から、バネと質量の両方の性質を同時に受ける。物体が硬い場合には、接触子と物体とはほぼ点接触となり、接触面積が小さいので主としてバネの性質を受けることになり、共振周波数が上昇する。一方、物体がゴムや肌などのようなやわらかい場合には、接触子と物体との接触面積が大きくなり、主として質量の性質を主に受けることになり、共振周波数が低下する。
圧電振動子をやわらかい物体に圧接したときの共振周波数の低下量△frは、センサの仕様が同じ場合には、荷重F、ポアソン比σ、密度ρ、およびヤング率Eによって決定される。一般にポアソン比σと密度ρは同じ種類の物体ではほとんど一定の値を示すので、荷重を一定とした場合の共振周波数の低下量△frは主にヤング率に依存することになり、△frから物体のヤング率を求めることができる。つまり、物体を肌とした場合には、肌の弾力を計測することができる。
前述したように、肌の水分量により肌の密度が変化することが予測されるため、上記の方法で計測した肌の弾力を肌の水分量で補正することにより、より正確な肌の弾力を計測することができる。
【0009】
【発明の実施の形態】
図4は、本発明の水分量センサと弾力センサを一体とした肌センサの構成ブロック図である。図4において、41は静電容量型水分量センサ、42は触覚センサ方式の弾力センサであり、静電容量型水分量センサ41には、静電容量の変化を発振周波数の変化に変換するための発振回路43が接続され、触覚センサ方式弾力センサ42には、接触子を物体に接触させたときの接触面積の変化にともなう負荷質量の変化を検出するための発振回路44が接続されている。静電容量型水分量センサ用発振回路43と触覚センサ方式弾力センサ用発振回路44の出力は、信号処理回路45に入力され、あらかじめ作成されたデータベースの情報を基に、弾力センサから得られたデータと水分量センサから得られた水分量データの相互補正処理が行われた後、肌データとして表示装置46に表示される。
【0010】
【実施例】
図5は、本発明の水分量センサと弾力センサを一体とした肌センサの構造例の要点を示す斜視図である。図5において、51は水分量センサであり、正方形状の絶縁基板52の表面に面内で対向する一対の渦巻状の電極53が高密度に形成され、コンデンサを形成している。肌用水分量センサとするために、電極ピッチは0.2mmに設定している。電極ピッチを0.2mmとすることにより、肌の表面から0.5mm程度までの水分量を効率よく検出することができる。
絶縁基板の比誘電率が大きいと、水分量の変化にともなう肌の比誘電率の変化を効率よく検出することが出来なくなるため、絶縁基板の比誘電率の大きさとしては、基板の厚さにも依るが、少なくとも10以下が望ましい。
図5に示したように、水分量センサ基板52の中央部には開口部54が形成され、開口部から所定の量だけ突出するように、触覚センサ用圧電振動子55に装着された接触子56が配置されている。
図4に示したように、触覚センサ用圧電振動子は、加圧用のバネを介して筐体に固定されているため、水分量センサの表面を肌に押し付けたときに、接触子56には所定の圧力が加わり、肌の水分量と、肌の弾力を同時に計測することができる。
【0011】
図6は、本発明の水分量センサと弾力センサを一体とした肌センサの別の構造例の要点を示す斜視図である。図6において、61は水分量センサであり、長方形状の絶縁基板62の表面に面内で対向する一対の渦巻状の電極63が高密度に形成され、コンデンサを形成している。電極ピッチは、図5の場合と同じく0.2mmに設定している。
図6に示したように、水分量センサ基板62と触覚センサは近接して配置され、触覚センサ用圧電振動子の64に装着された接触子65が、水分量センサ基板62の電極面から所定の距離だけ突出している。
図5の場合と同様に、触覚センサ用圧電振動子は、加圧用のバネを介して筐体に固定されているため、水分量センサの表面を肌に押し付けたときに、接触子65には所定の圧力が加わり、肌の水分量と、肌の弾力を同時に計測することができる。
以上の説明では、触覚センサ用圧電振動子として圧電セラミックス円柱振動子を用いた場合について説明したが、触覚センサ用圧電振動子の形状は円柱に限定されるものではなく、その形状は、角柱あるいは細長い板状を含む棒状で、長さ方向縦振動する圧電振動子であれば、その一方の端部に半球状の接触子を装着することにより、触覚センサ用圧電振動子として使用できる。
【0012】
【発明の効果】
以上に説明したように、本発明の肌センサは、静電容量型の水分量センサと触覚センサを利用した弾力センサが一体に構成されているため、肌のほぼ同じ場所の水分量と弾力を同時に計測することができ、さらに、弾力センサにより得られた、肌の弾力(ヤング率)のデータを水分量センサで得られた水分量で補正することにより、より正確な肌の弾力を計測できる利点がある。
また、従来別々の計測器を用いて計測していた肌水分量と肌弾力を同時に計測できると言う便利さと、別々の装置を購入する場合に比べて購入費用が節約できる利点がある。
【図面の簡単な説明】
【図1】静電容量式水分量センサの動作原理説明図
【図2】触覚センサを用いた肌弾力センサの構造概略図
【図3】触覚センサ用圧電振動子のより詳しい構造を示す斜視図
【図4】本発明の水分量センサと弾力センサを一体とした肌センサの構成ブロック図
【図5】本発明の水分量センサと弾力センサを一体とした肌センサの構造例の要点を示す斜視図
【図6】本発明の水分量センサと弾力センサを一体とした肌センサの別の構造例の要点を示す斜視図
【符号の説明】
11,12:帯状電極
13:絶縁基板
21:圧電セラミッス円柱
22:半球状の接触子
23:圧電セラミック円柱を支持、固定するための支持具
24:加圧用のバネ
25:触覚センサの筐体
26:発振回路
27:信号処理回路
28:表示装置
31:圧電セラミックス円柱
32:接触子
33,34:帯状電極
35:支持具
41:静電容量型水分量センサ
42:触覚センサ方式の弾力センサ
43:水分量センサ用発振回路
44:触覚センサ方式弾力センサ用発振回路
45:信号処理回路
46:表示装置
51:水分量センサ
52:絶縁基板
53:渦巻状電極
54:開口部
55:触覚センサ用圧電振動子
56:接触子
61:水分量センサ
62:長方形状の絶縁基板
63:一対の渦巻状の電極
64:触覚センサ用圧電振動子
65:接触子[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a skin sensor capable of simultaneously measuring the amount of moisture contained in skin such as a cheek and the elasticity of the skin, which is important information for skin care.
[0002]
[Prior art]
The amount of moisture contained in the skin surface layer (skin and dermis) and the elasticity of the skin are the most important characteristics as indicators of the youthfulness of women's skin. It is used to investigate the effect.
As a means for measuring the moisture content of the skin, a pair of spiral electrodes is formed on an insulating substrate having a small relative dielectric constant by utilizing the fact that the relative dielectric constant of water is about 80, and the surface is thin. There is known a method of measuring the amount of moisture contained in the skin from the change in capacitance when the electrode surface of the capacitive moisture sensor having an insulating film is pressed against the skin.
On the other hand, regarding the elasticity of the skin, a tactile sensor with a hemispherical contactor attached to the tip of a bar-shaped piezoelectric vibrator is pressed against the skin, and the elasticity of the skin (from the magnitude of the pressing load and the resonance frequency of the piezoelectric vibrator ( There are methods for measuring Young's modulus and loss.
[0003]
[Problems to be solved by the invention]
The structure of human skin is complex, and it is difficult to express the surface state and internal structure with a simple model, and it is said that the moisture content and elasticity of the skin are said to be greatly affected by the amount of moisture. Since this is a sensory characteristic, it is difficult to show this quantitatively.
However, the difference in moisture between the skin after bathing and the skin after going out in the winter is clear, and by using appropriate cosmetics, the effect of improving the moisture and elasticity of the skin can be fully realized.
A variety of water-retaining agents are sold to keep the moisture content of the skin, but many water-retaining agents are simply trapped in the epidermis (stratum corneum) so as to hold moisture with a large chain of molecules. It is said that water cannot penetrate into the dermis layer at the back of the skin because of the large molecule.
The elasticity of the skin is strongly related to the water retention of the dermis layer, and it is said that the water retention of the dermis layer is effective for maintaining the elasticity of the skin. Of course, increasing the water retention of the stratum corneum has the effect of preventing the evaporation of moisture from the dermis layer, and the water retention of the stratum corneum is also effective for maintaining the elasticity of the skin.
On the other hand, the change in the resonance frequency of the piezoelectric vibrator used in the tactile sensor changes not only by the skin Young's modulus but also by the skin density, and the skin density also changes by the amount of moisture contained in the skin. Therefore, if both the moisture amount sensor and the tactile sensor type elasticity sensor are configured integrally and each other's data can be corrected using each measurement data, more accurate data on the skin can be obtained.
[0004]
[Means for Solving the Problems]
According to the present invention,
A capacitor is formed by arranging at least a pair of spiral conductors facing in-plane on the surface of an insulating substrate having a relative dielectric constant of less than 10 at high density, and the electrode portion of the capacitor is placed close to the skin. A skin moisture sensor that detects the amount of moisture contained in the surface layer of the skin from the size of the capacitance, and a rod-shaped sensor in the vicinity of this capacitor or in the center when the capacitor is formed in a donut shape It is possible to obtain a skin sensor in which a tactile sensor type skin elasticity sensor configured by attaching a contact to the end of the piezoelectric vibrator is integrally arranged so that the contact protrudes by a predetermined amount.
Furthermore, according to this invention, the skin sensor containing the means which correct | amends mutual detection information using the signal obtained by the said skin moisture sensor and the said skin elasticity sensor can be obtained.
[0005]
(Operating principle)
FIG. 1 is an explanatory view of the operating principle of a capacitive moisture sensor. In FIG. 1, reference numerals 11 and 12 denote strip-shaped electrodes having substantially the same conductor width and gap width and facing each other in the plane, and a plurality of electrodes are formed on the surface of the insulating substrate 13 to electrically connect every other electrode. It is configured as a two-terminal capacitor. For ease of explanation, assuming that the dielectric constant of the insulating substrate 13 is 1, the capacitance when the electrode surface is pressed against an object can be given by the equation (1). Are known.
[Expression 1]
Figure 2005052212
In the equation (1), P is the electrode pitch, a is the conductor width, W is the conductor length, n is the number of electrode pairs, ε s is the relative permittivity of the object, and ε 0 is the permittivity in vacuum. K (α) and K ′ (α) are constants determined by h / P, where h is the thickness of the object.
From equation (1), if the electrode pitch P, the conductor width a, the conductor length w, and the number of electrode pairs n are constant, the capacitance is determined by the thickness h of the object and the relative dielectric constant ε s. You can see that
Furthermore, assuming that the thickness h of the object is substantially constant, the capacitance is proportional to ε s in the relative dielectric constant of the object.
In other words, if the object is considered to be human skin and the thickness of the skin is almost the same for each person, the greater the amount of moisture contained in the skin, the greater the capacitance value. The amount of water contained can be measured.
In advance, measure the capacitance value and skin moisture for as many people as possible by measuring the capacitance value of the dry skin obtained under the artificial condition and the skin sufficiently containing moisture. A database of correlations with quantities can be constructed. In particular, if the same person measures the same place, the change in capacitance represents the change in the moisture content of the skin more accurately.
[0006]
FIG. 2 is a schematic structural diagram of a skin elasticity sensor using a tactile sensor. In FIG. 2, reference numeral 21 denotes a piezoelectric ceramic cylinder, and 22 denotes a hemispherical contact mounted on the end of the piezoelectric ceramic cylinder 21. Reference numeral 23 denotes a support for supporting and fixing the piezoelectric ceramic cylinder. The support 23 is fixed to the housing 25 of the tactile sensor via a pressurizing spring 24.
Reference numeral 26 denotes an oscillation circuit for detecting a change in load mass due to a change in contact area when the contact 22 is brought into contact with an object. The output of the oscillation circuit 26 is connected to a signal processing circuit 27, and the measurement result Is displayed by the display device 28.
[0007]
3 is a perspective view showing a more detailed structure of the piezoelectric vibrator for a tactile sensor shown in FIG. A contact 32 having a hemispherical tip is attached to one end of the piezoelectric ceramic cylinder 31. Further, on the outer peripheral surface of the piezoelectric ceramic cylinder 31, strip electrodes 33 and 34 (not shown in the figure) are formed along the length direction of the cylinder at positions symmetrical to the center axis of the cylinder. Is applied in a direction perpendicular to the length direction of the cylinder. Therefore, when an AC voltage having a frequency equal to the frequency of the half-wave resonance mode of the vibration system including the contactor 32 is applied to the strip electrodes 33 and 34, the piezoelectric ceramic cylinder 31 becomes piezoelectric piezoelectric cylinders due to the piezoelectric lateral effect. It acts as a piezoelectric vibrator that performs stretching vibration such that the substantially central portion of 31 has a resonance node. Reference numeral 35 denotes a support device mounted at the position of the resonance node. By supporting and fixing at this position, the influence on the piezoelectric vibrator characteristics can be minimized.
[0008]
With the configuration shown in FIG. 2, when the contact 22 (32 in FIG. 3) of the piezoelectric vibrator is pressed against the object, the piezoelectric vibrator receives both spring and mass properties from the object at the same time. When the object is hard, the contact and the object are almost point contact, and since the contact area is small, the object is mainly subjected to the nature of a spring, and the resonance frequency increases. On the other hand, when the object is soft, such as rubber or skin, the contact area between the contact and the object is increased, and mainly the property of mass is received, and the resonance frequency is lowered.
When the piezoelectric vibrator is pressed against a soft object, the decrease amount Δfr of the resonance frequency is determined by the load F, Poisson's ratio σ, density ρ, and Young's modulus E when the sensor specifications are the same. In general, the Poisson's ratio σ and the density ρ show almost constant values for the same type of object. Therefore, the resonance frequency decrease Δfr when the load is constant depends mainly on the Young's modulus. The Young's modulus of the object can be obtained. That is, when the object is skin, the elasticity of the skin can be measured.
As described above, it is predicted that the skin density will change depending on the amount of moisture in the skin. Therefore, by correcting the elasticity of the skin measured by the above method with the amount of moisture in the skin, more accurate skin elasticity can be obtained. It can be measured.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 4 is a structural block diagram of a skin sensor in which the moisture sensor and the elasticity sensor of the present invention are integrated. In FIG. 4, 41 is a capacitance type moisture sensor, 42 is a tactile sensor type elastic sensor, and the capacitance type moisture sensor 41 is for converting a change in capacitance into a change in oscillation frequency. The oscillation circuit 43 is connected, and the tactile sensor type elastic sensor 42 is connected with an oscillation circuit 44 for detecting a change in load mass due to a change in the contact area when the contact is brought into contact with an object. . Outputs of the capacitance type moisture sensor oscillation circuit 43 and the tactile sensor type elasticity sensor oscillation circuit 44 are input to the signal processing circuit 45 and obtained from the elasticity sensor based on information in a database created in advance. After mutual correction processing of the data and moisture data obtained from the moisture sensor is performed, the data is displayed on the display device 46 as skin data.
[0010]
【Example】
FIG. 5 is a perspective view showing the main points of a structural example of a skin sensor in which the moisture sensor and the elasticity sensor of the present invention are integrated. In FIG. 5, 51 is a moisture sensor, and a pair of spiral electrodes 53 facing the surface of a square insulating substrate 52 in a plane are formed at a high density to form a capacitor. In order to obtain a moisture sensor for skin, the electrode pitch is set to 0.2 mm. By setting the electrode pitch to 0.2 mm, it is possible to efficiently detect the moisture content from the skin surface to about 0.5 mm.
If the dielectric constant of the insulating substrate is large, it will not be possible to efficiently detect the change in the relative dielectric constant of the skin due to the change in the amount of moisture, so the relative dielectric constant of the insulating substrate is the thickness of the substrate. However, it is preferably at least 10 or less.
As shown in FIG. 5, an opening 54 is formed at the center of the moisture sensor substrate 52, and a contactor mounted on the tactile sensor piezoelectric vibrator 55 so as to protrude a predetermined amount from the opening. 56 is arranged.
As shown in FIG. 4, the tactile sensor piezoelectric vibrator is fixed to the housing via a pressurizing spring, so that when the surface of the moisture sensor is pressed against the skin, A predetermined pressure is applied, and the moisture content of the skin and the elasticity of the skin can be measured simultaneously.
[0011]
FIG. 6 is a perspective view showing the main points of another structural example of the skin sensor in which the moisture sensor and the elasticity sensor of the present invention are integrated. In FIG. 6, 61 is a moisture sensor, and a pair of spiral electrodes 63 facing the surface of a rectangular insulating substrate 62 in a plane are formed at a high density to form a capacitor. The electrode pitch is set to 0.2 mm as in FIG.
As shown in FIG. 6, the moisture sensor substrate 62 and the tactile sensor are arranged close to each other, and the contact 65 attached to the piezoelectric vibrator 64 for the tactile sensor is predetermined from the electrode surface of the moisture sensor substrate 62. Protrudes by a distance of.
As in the case of FIG. 5, the piezoelectric vibrator for the tactile sensor is fixed to the casing via a spring for pressurization, so that when the surface of the moisture sensor is pressed against the skin, A predetermined pressure is applied, and the moisture content of the skin and the elasticity of the skin can be measured simultaneously.
In the above description, the case where the piezoelectric ceramic cylindrical vibrator is used as the piezoelectric vibrator for the tactile sensor has been described. However, the shape of the piezoelectric vibrator for the tactile sensor is not limited to the cylindrical shape, and the shape may be a prism or A piezoelectric vibrator that is a rod-like shape including an elongated plate shape and vibrates longitudinally in the longitudinal direction can be used as a piezoelectric vibrator for a tactile sensor by attaching a hemispherical contact to one end thereof.
[0012]
【The invention's effect】
As described above, the skin sensor of the present invention is composed of a capacitive moisture sensor and an elastic sensor using a tactile sensor, so that the moisture content and elasticity at almost the same place on the skin can be obtained. It can be measured at the same time, and more accurate skin elasticity can be measured by correcting the skin elasticity (Young's modulus) data obtained by the elasticity sensor with the moisture content obtained by the moisture sensor. There are advantages.
In addition, there is an advantage that it is possible to simultaneously measure the skin moisture amount and the skin elasticity that have been measured using separate measuring devices, and there is an advantage that the purchase cost can be saved as compared with the case of purchasing separate devices.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating the principle of operation of a capacitive moisture sensor. FIG. 2 is a schematic diagram of the structure of a skin elasticity sensor using a tactile sensor. FIG. 3 is a perspective view showing a more detailed structure of a piezoelectric vibrator for a tactile sensor. FIG. 4 is a block diagram showing the configuration of a skin sensor in which the moisture sensor and elasticity sensor of the present invention are integrated. FIG. 5 is a perspective view showing the essential points of a structural example of a skin sensor in which the moisture sensor and elasticity sensor of the present invention are integrated. FIG. 6 is a perspective view showing the main points of another structural example of a skin sensor in which the moisture sensor and the elasticity sensor of the present invention are integrated.
DESCRIPTION OF SYMBOLS 11, 12: Strip electrode 13: Insulating substrate 21: Piezoceramic cylinder 22: Hemispherical contact 23: Support tool 24 for supporting and fixing a piezoelectric ceramic cylinder 24: Spring 25 for pressurization: Case 26 of a tactile sensor : Oscillating circuit 27: Signal processing circuit 28: Display device 31: Piezoelectric ceramic cylinder 32: Contacts 33 and 34: Strip electrode 35: Support tool 41: Capacitive moisture sensor 42: Tactile sensor type elastic sensor 43: Moisture sensor oscillation circuit 44: tactile sensor type elasticity sensor oscillation circuit 45: signal processing circuit 46: display device 51: moisture sensor 52: insulating substrate 53: spiral electrode 54: opening 55: piezoelectric vibration for tactile sensor Child 56: Contact 61: Moisture content sensor 62: Rectangular insulating substrate 63: A pair of spiral electrodes 64: Piezoelectric vibrator for tactile sensor 65: Contact

Claims (2)

比誘電率の値が少なくとも10未満の絶縁基板の表面に、面内で対向する少なくとも一対の渦巻状の導体を高密度に配置してコンデンサを構成し、このコンデンサの電極部分を肌に近接させて肌の表面層に含まれる水分の量を静電容量の大きさから検出する方式の肌水分量センサと、このコンデンサの近傍あるいは、コンデンサをドーナツ状に形成した場合にはその中央部に、棒状圧電振動子の端部に接触子を装着して構成される触覚センサ式肌弾力センサを、前記接触子が所定の量だけ突出するように一体に配置したことを特徴とする肌センサA capacitor is formed by arranging at least a pair of spiral conductors facing in-plane at a high density on the surface of an insulating substrate having a relative dielectric constant of less than 10, and the electrode portion of the capacitor is brought close to the skin. The moisture sensor of the skin type that detects the amount of moisture contained in the surface layer of the skin from the size of the capacitance, and in the vicinity of this capacitor or in the center when the capacitor is formed in a donut shape, A skin sensor characterized in that a tactile sensor type skin elasticity sensor constituted by attaching a contact to the end of a rod-shaped piezoelectric vibrator is integrally arranged so that the contact projects from a predetermined amount. 前記肌水分量センサと前記肌弾力センサにより得られた信号を用いて互いの検出情報を補正する手段を含むことを特徴とする特許請求項1に記載の肌センサThe skin sensor according to claim 1, further comprising means for correcting each other's detection information using signals obtained by the skin moisture sensor and the skin elasticity sensor.
JP2003205962A 2003-08-05 2003-08-05 Skin sensor Pending JP2005052212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003205962A JP2005052212A (en) 2003-08-05 2003-08-05 Skin sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003205962A JP2005052212A (en) 2003-08-05 2003-08-05 Skin sensor

Publications (1)

Publication Number Publication Date
JP2005052212A true JP2005052212A (en) 2005-03-03

Family

ID=34362987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003205962A Pending JP2005052212A (en) 2003-08-05 2003-08-05 Skin sensor

Country Status (1)

Country Link
JP (1) JP2005052212A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250633A (en) * 2005-03-09 2006-09-21 Kochi Univ Hardness measuring instument, hardness measuring device, and hardness evaluation method
JP2011005058A (en) * 2009-06-27 2011-01-13 Nec Corp Mechanical characteristic measuring device and method for using mechanical characteristic measuring device
US20110107842A1 (en) * 2008-04-18 2011-05-12 Javad Dargahi System for sensing and displaying softness and force
WO2013136659A1 (en) * 2012-03-13 2013-09-19 テルモ株式会社 Body water meter
JP2014525330A (en) * 2011-09-01 2014-09-29 エムシー10 インコーポレイテッド Electronic device that detects the condition of the tissue
US9844145B2 (en) 2012-06-11 2017-12-12 Mc10, Inc. Strain isolation structures for stretchable electronics
US9894757B2 (en) 2008-10-07 2018-02-13 Mc10, Inc. Extremely stretchable electronics
US10032709B2 (en) 2012-10-09 2018-07-24 Mc10, Inc. Embedding thin chips in polymer
USD825537S1 (en) 2014-10-15 2018-08-14 Mc10, Inc. Electronic device having antenna
US10186546B2 (en) 2008-10-07 2019-01-22 Mc10, Inc. Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy
US10258282B2 (en) 2013-11-22 2019-04-16 Mc10, Inc. Conformal sensor systems for sensing and analysis of cardiac activity
US10277386B2 (en) 2016-02-22 2019-04-30 Mc10, Inc. System, devices, and method for on-body data and power transmission
US10296819B2 (en) 2012-10-09 2019-05-21 Mc10, Inc. Conformal electronics integrated with apparel
US10300371B2 (en) 2015-10-01 2019-05-28 Mc10, Inc. Method and system for interacting with a virtual environment
US10325951B2 (en) 2008-10-07 2019-06-18 Mc10, Inc. Methods and applications of non-planar imaging arrays
US10334724B2 (en) 2013-05-14 2019-06-25 Mc10, Inc. Conformal electronics including nested serpentine interconnects
CN110074785A (en) * 2019-06-04 2019-08-02 厦门美图之家科技有限公司 Skin test equipment and skin test method
US10410962B2 (en) 2014-01-06 2019-09-10 Mc10, Inc. Encapsulated conformal electronic systems and devices, and methods of making and using the same
JP2019154804A (en) * 2018-03-13 2019-09-19 島根県 Skin condition measurement device
US20190290496A1 (en) * 2016-05-13 2019-09-26 Smith & Nephew Plc Sensor enabled wound monitoring and therapy apparatus
US10447347B2 (en) 2016-08-12 2019-10-15 Mc10, Inc. Wireless charger and high speed data off-loader
US10485118B2 (en) 2014-03-04 2019-11-19 Mc10, Inc. Multi-part flexible encapsulation housing for electronic devices and methods of making the same
US10532211B2 (en) 2015-10-05 2020-01-14 Mc10, Inc. Method and system for neuromodulation and stimulation
WO2020032660A1 (en) * 2018-08-09 2020-02-13 봄텍전자 주식회사 Skin condition measurement device
US10653332B2 (en) 2015-07-17 2020-05-19 Mc10, Inc. Conductive stiffener, method of making a conductive stiffener, and conductive adhesive and encapsulation layers
US10673280B2 (en) 2016-02-22 2020-06-02 Mc10, Inc. System, device, and method for coupled hub and sensor node on-body acquisition of sensor information
US10709384B2 (en) 2015-08-19 2020-07-14 Mc10, Inc. Wearable heat flux devices and methods of use
US10986465B2 (en) 2015-02-20 2021-04-20 Medidata Solutions, Inc. Automated detection and configuration of wearable devices based on on-body status, location, and/or orientation
US11154235B2 (en) 2016-04-19 2021-10-26 Medidata Solutions, Inc. Method and system for measuring perspiration
US11925735B2 (en) 2017-08-10 2024-03-12 Smith & Nephew Plc Positioning of sensors for sensor enabled wound monitoring or therapy

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4517149B2 (en) * 2005-03-09 2010-08-04 国立大学法人高知大学 Hardness measuring instrument, hardness measuring apparatus, and hardness evaluation method
JP2006250633A (en) * 2005-03-09 2006-09-21 Kochi Univ Hardness measuring instument, hardness measuring device, and hardness evaluation method
US8596111B2 (en) * 2008-04-18 2013-12-03 Concordia University System for sensing and displaying softness and force
US20110107842A1 (en) * 2008-04-18 2011-05-12 Javad Dargahi System for sensing and displaying softness and force
US9894757B2 (en) 2008-10-07 2018-02-13 Mc10, Inc. Extremely stretchable electronics
US10383219B2 (en) 2008-10-07 2019-08-13 Mc10, Inc. Extremely stretchable electronics
US10186546B2 (en) 2008-10-07 2019-01-22 Mc10, Inc. Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy
US10325951B2 (en) 2008-10-07 2019-06-18 Mc10, Inc. Methods and applications of non-planar imaging arrays
JP2011005058A (en) * 2009-06-27 2011-01-13 Nec Corp Mechanical characteristic measuring device and method for using mechanical characteristic measuring device
JP2014525330A (en) * 2011-09-01 2014-09-29 エムシー10 インコーポレイテッド Electronic device that detects the condition of the tissue
US9579040B2 (en) 2011-09-01 2017-02-28 Mc10, Inc. Electronics for detection of a condition of tissue
WO2013136659A1 (en) * 2012-03-13 2013-09-19 テルモ株式会社 Body water meter
US9844145B2 (en) 2012-06-11 2017-12-12 Mc10, Inc. Strain isolation structures for stretchable electronics
US10296819B2 (en) 2012-10-09 2019-05-21 Mc10, Inc. Conformal electronics integrated with apparel
US10032709B2 (en) 2012-10-09 2018-07-24 Mc10, Inc. Embedding thin chips in polymer
US10334724B2 (en) 2013-05-14 2019-06-25 Mc10, Inc. Conformal electronics including nested serpentine interconnects
US10258282B2 (en) 2013-11-22 2019-04-16 Mc10, Inc. Conformal sensor systems for sensing and analysis of cardiac activity
US10410962B2 (en) 2014-01-06 2019-09-10 Mc10, Inc. Encapsulated conformal electronic systems and devices, and methods of making and using the same
US10485118B2 (en) 2014-03-04 2019-11-19 Mc10, Inc. Multi-part flexible encapsulation housing for electronic devices and methods of making the same
USD825537S1 (en) 2014-10-15 2018-08-14 Mc10, Inc. Electronic device having antenna
US10986465B2 (en) 2015-02-20 2021-04-20 Medidata Solutions, Inc. Automated detection and configuration of wearable devices based on on-body status, location, and/or orientation
US10653332B2 (en) 2015-07-17 2020-05-19 Mc10, Inc. Conductive stiffener, method of making a conductive stiffener, and conductive adhesive and encapsulation layers
US10709384B2 (en) 2015-08-19 2020-07-14 Mc10, Inc. Wearable heat flux devices and methods of use
US10300371B2 (en) 2015-10-01 2019-05-28 Mc10, Inc. Method and system for interacting with a virtual environment
US10532211B2 (en) 2015-10-05 2020-01-14 Mc10, Inc. Method and system for neuromodulation and stimulation
US10277386B2 (en) 2016-02-22 2019-04-30 Mc10, Inc. System, devices, and method for on-body data and power transmission
US10567152B2 (en) 2016-02-22 2020-02-18 Mc10, Inc. System, devices, and method for on-body data and power transmission
US10673280B2 (en) 2016-02-22 2020-06-02 Mc10, Inc. System, device, and method for coupled hub and sensor node on-body acquisition of sensor information
US11154235B2 (en) 2016-04-19 2021-10-26 Medidata Solutions, Inc. Method and system for measuring perspiration
US20190290496A1 (en) * 2016-05-13 2019-09-26 Smith & Nephew Plc Sensor enabled wound monitoring and therapy apparatus
US11717447B2 (en) * 2016-05-13 2023-08-08 Smith & Nephew Plc Sensor enabled wound monitoring and therapy apparatus
US10447347B2 (en) 2016-08-12 2019-10-15 Mc10, Inc. Wireless charger and high speed data off-loader
US11925735B2 (en) 2017-08-10 2024-03-12 Smith & Nephew Plc Positioning of sensors for sensor enabled wound monitoring or therapy
JP2019154804A (en) * 2018-03-13 2019-09-19 島根県 Skin condition measurement device
JP7101944B2 (en) 2018-03-13 2022-07-19 島根県 Skin condition measuring device
WO2020032660A1 (en) * 2018-08-09 2020-02-13 봄텍전자 주식회사 Skin condition measurement device
CN110074785A (en) * 2019-06-04 2019-08-02 厦门美图之家科技有限公司 Skin test equipment and skin test method

Similar Documents

Publication Publication Date Title
JP2005052212A (en) Skin sensor
CN100571610C (en) Pressure measurement method, pressure gauge and tonometer
CN1027315C (en) Dimension measuring instrument
KR101213157B1 (en) Sensor for measuring skin impedence
US20180192911A1 (en) Sensors for measuring skin conductivity and methods for manufacturing the same
DE60124714D1 (en) DEVICE FOR DETERMINING GLUCOSE CONCENTRATION IN BODY FLUID
JP2003169788A (en) Skin water content measuring instrument
JP2005525163A5 (en)
KR910008380A (en) Detection device with self calibration
JP5534799B2 (en) Skin characteristic measuring apparatus and program
JP3326791B2 (en) Skin property measurement probe
JP2005052227A (en) Instrument measuring water content of stratum corneum non-affected by electrolyte component on skin surface
Sergio et al. A textile-based capacitive pressure sensor
Mertodikromo et al. A low-profile shear force sensor for wearable applications
JPH1033631A (en) Meridian point detecting device
JP2000258260A5 (en)
JP7101944B2 (en) Skin condition measuring device
JP2011185828A (en) Acceleration sensor
JPS61221641A (en) Measuring instrument for percentage of moisture content
KR200285942Y1 (en) Handwriting pressure gauge using shear type piezoelectric element
JPH0381641A (en) Method and device for measuring hardness characteristic of material
Lin et al. MEMS Cavity-Based pH Image Biosensor for Wound Dressings to Monitor Hard-to-Cure Wounds
CN112472099A (en) Skin surface oil content detection device and method
JP2003310568A (en) Apparatus for measuring epidermal flexibility
JPS59225335A (en) Humidity sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060809

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20070116