JP2005051204A - 電気部品実装モジュールおよびその製造方法 - Google Patents

電気部品実装モジュールおよびその製造方法 Download PDF

Info

Publication number
JP2005051204A
JP2005051204A JP2004169680A JP2004169680A JP2005051204A JP 2005051204 A JP2005051204 A JP 2005051204A JP 2004169680 A JP2004169680 A JP 2004169680A JP 2004169680 A JP2004169680 A JP 2004169680A JP 2005051204 A JP2005051204 A JP 2005051204A
Authority
JP
Japan
Prior art keywords
wiring pattern
electrically insulating
electrical component
base layer
insulating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004169680A
Other languages
English (en)
Inventor
Takashi Ichiyanagi
貴志 一柳
Seiichi Nakatani
誠一 中谷
Toshiyuki Asahi
俊行 朝日
Shingo Komatsu
慎五 小松
Koichi Hirano
浩一 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004169680A priority Critical patent/JP2005051204A/ja
Publication of JP2005051204A publication Critical patent/JP2005051204A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Wire Bonding (AREA)

Abstract

【課題】電子部品の精度の高い実装と、短絡の防止と、放熱性能の向上。
【解決手段】端子電極104aを有する表面実装型の電気部品104を電気絶縁性基材101に実装する構造において、電気絶縁性基材101の表面に凹部101aを設ける。凹部101aに電気部品104に接続される配線パターン102を設ける。電気部品104の端子電極104aを凹部101aに対向させ部品実装面を基材表面に面着させた状態で、電気部品104を電気絶縁性基材101に搭載する。端子電極104を配線パターン102に電気接続する。
【選択図】 図1

Description

本発明は電気部品を電気絶縁性基材からなるプリント配線基板上実装した電気部品実装モジュール、また、絶縁材料を用いてプリント配線上を封止した電気部品実装モジュール、それに用いる電気絶縁性基材、電気部品実装モジュールの製造実装方法、並びに電気絶縁性基材の製造方法に関する。
従来から、量産性が高く製造コストを低減できるサブトラクティブ法を用いて配線パターン形成したプリント配線基板上にチップ抵抗器・チップコンデンサ・チップIC等の電気部品を実装する場合、一般に次の方法が採られる。すなわち、チップマウンタを用いて個々の電気部品の端子電極をプリント配線基板のランドパターンに位置合わせしたうえで各電気部品をプリント配線基板上に配置する。その後、リフロー工程により電気部品の端子電極をプリント配線基板上のランドパターンに半田付けする。
近年の電子機器の高性能化,小型化に伴い、さらなる高密度と高機能化とが半導体装置に要求される。このような要求を満たすため、半導体装置や電気部品を実装するプリント配線基板として小型で高密度なものが必要となる。
しかし、サブトラクティブ法により作製するプリント配線基板は、基板表面に配線パターンが突出する構造となる。このような構成の実装基板では、電気部品や半導体装置にバンプを形成したうえで、半田や導電性接着剤等を用いてこれらの部品をプリント配線基板に実装する場合、
・半田や導電性接着剤等をプリント配線基板に搭載し難い、
・バンプが配線パターン間に位置ずれして短絡を起こしやすい、
・電気部品(半導体装置を含む)においても位置ずれや半田流れ等が生じやすい、
という不都合がある。これらの不都合は、サブトラクティブ法によって形成する配線パターンは、構造的に基板表面から突出することを主たる原因にして生じる。
そこで、最近ではアディティブ法が採用される傾向にある。アディティブ法は、レジスト層を形成した基板表面に、レジスト層をマスクとしメッキすることで配線パターンを形成する方法である。この方法により30μm程度の線幅である配線パターンを形成することができる。しかしながら、アディティブ法は、サブトラクティブ法に比べ、基板と配線パターンの密着強度が弱い等の問題がある。
そこで、微細な配線パターンを形成しパターン検査を行った後、良品の配線パターンだけを所望の基板に転写する方法が各種考案されている。第1の転写方法は、カーボン板表面に微細な配線パターンを印刷して焼成したのち、その配線パターンをセラミック基板等に転写する方法である。
第2の転写方法は、離型性支持板上に銅箔からなる配線パターンを形成したのち、その配線パターンをプリプレグに転写する方法である(例えば、特許文献1、特許文献2参照)。
第3の転写方法は、銅箔を配線パターンとして用い粗化面および光沢面における接着度合いの違いを利用して、基板に転写する方法である(例えば、特許文献3参照)。
このような転写法を用いることにより転写される配線パターンは、基板表面から突出することなく埋め込まれる形状となる。そのため、この方法で得られる配線基板の表面は平坦な構造となり、前述のような配線パターンの突出による問題は起きにくくなる。
また、更なる高密度な実装を行う手段として絶縁材料を用いて、電気部品を実装した電気絶縁性基材表面をさらに封止し、その絶縁材料表面に配線パターンを形成することにより多層基材を作製することで高密度化を実現しようとする方法が検討されるようになってきている
特開平10−84186号公報(第1−8頁) 特開平10−41611号公報(第1−13頁) 特開平8−330709号公報(第1−6頁) 特開2001−244368号公報
従来の構成には、さらなる小型化が進行している現状において電気部品と電気絶縁性基材の接合部との間に強度を十分に確保しつつ、より狭ピッチな実装において信頼性を確保することが困難であるという課題がある。
また、電気絶縁性基材に、電気部品,半導体装置を接続する際における初期接続不良が生じやすいという課題がある。具体的には、配線上に電気部品や半導体装置をマウントする際の実装部品の位置ずれに起因する初期接続不良や、実装時における導電接着剤の流れ出しやリフロー時における半田の流れ出しにより生じる配線パターン間の短絡などである。
このような不都合は、電気部品のさらなる小型化要求に応えるために、
・電気部品間の間隔がより狭くなる、
・フリップチップ実装する半導体チップもしくは、ボールグリッドアレイ(BGA)構造をもつ半導体パッケージの狭ピッチ化が進められている、
という現状において大きな課題となる。
小型化,狭ピッチ化に対応するためには精密な工程の追加設定とそれに伴う設備の増加とを実施せざるを得ないという状況においては、上記初期接続不良はさらに生じやすくなり、このことが製造コストを増加させる要因となっている。
また、絶縁材料を用いて電気部品を実装した電気絶縁性基材表面を封止し、その絶縁材料表面に配線パターンを形成する電気部品内蔵型の多層基材を作製する方法では、電気部品を電気絶縁基材に接続する方法に半田を用いる場合に、電気部品の端子電極間が極端に短いものでは、封止後の半田が再溶融することで体積膨張し電気部品の下側ではんだブリッジが生じて、歩留まりの低下などの問題が発生し、高密度化のための狭ピッチ実装に限界がある。
本発明は、端子電極を有する電気部品と、前記電気部品が実装される電気絶縁性基材とを有する。前記電気絶縁性基材の表面に凹部を設ける。この凹部に前記電気部品に接続される配線パターンを設ける。前記電気部品を、前記端子電極を前記凹部に対向させるとともにその搭載面を前記電気絶縁性基材の基材表面に面着させた状態で、前記電気絶縁性基材に搭載する。前記凹部に導電材を設け、前記配線パターンと前記端子電極とを、この導電材を介して電気接続する。
本発明の構成により、電気部品の実装面と電気絶縁性基材の基材表面とが接することで電気部品を安定して配置することができて接続の補強がなされる。
電子部品を電気絶縁性基材に搭載する際に生じる電気部品の位置ズレや、導電材が電気部品の実装面下に入り込むことにより起こる導電材の接続不良・短絡を無くし、生産性の向上、歩留まりを減少させることができる。
電気部品の実装面と熱伝導性に優れた電気絶縁性基材とが確実に当接することで、モジュールで発生する熱をすばやく放熱することができて長期信頼性を得ることが可能となる。というのも、電気部品の実装面を前記電気絶縁基板材と接するように実装でき溶融した導電材が流れ出ることを防ぎ、電気部品下部で導電材の接触を防ぐことができ、初期接続不良や信頼性の向上が望めることができるからである。この場合、前記導電材を、熱硬化樹脂と導電性フィラとを含む導電性接着剤、または半田とすれば、この作用効果は絶大なものとなる。
また、本発明は、前記電気部品は前記端子電極を複数有しており、前記電気絶縁性基材は前記端子電極それぞれに対応する凹部を有し、これら凹部を前記端子電極それぞれに対向する位置に設け、これら凹部それぞれに前記配線パターンを設けるのが好ましい。複数の端子電極を有する電気部品においても、電気部品を電気絶縁性基材の表面に接するように実装することが可能となり、これにより上記作用効果を発揮できるからである。
また、本発明は、前記凹部は前記配線パターン表面と前記基材表面との間に、前記端子電極が収納される深さを有することが好ましい。さらには、この凹部の深さ寸法を、3μm〜20μmにするのが好ましい。この程度、凹部が深さを有することで導電材が外部に流れ出るのを抑えることが可能となり、電気部品間や配線パターン間の短絡を抑えることができるからである。このことは、各電気部品を高密度に実装するうえで絶大なる効果を発揮する。
また本発明は、電気絶縁性基材が無機フィラと熱硬化性樹脂からなることであることが好ましい。前記電気絶縁性基材を無機フィラ(Al、MgO、BN、AlN、SiOのいずれか)と熱硬化樹脂からなる混合物を使用することで熱伝導性に優れたプリプレグを作製することができ、部品・半導体から発生する熱を素早く放熱させることができる格別の効果を得ることができるからである。さらに、熱硬化樹脂組成の主成分をエポキシ樹脂、フェノール樹脂もしくはシアネート樹脂にすることで優れた耐熱性や電気絶縁性も得ることができるからである。
また、本発明は、電気絶縁性基材がガラス繊維の織布、ガラス繊維の不織布、耐熱有機繊維の織布および耐熱有機繊維の不織布から選択された少なくとも一つの補強材とその補強材に熱硬化性樹脂組成物を含浸したものであることが好ましい。前記電気絶縁性基材をガラス繊維の織布、ガラス繊維の不織布、耐熱有機繊維の織布および耐熱有機繊維の不織布から選択された少なくとも一つの補強材とその補強材に熱硬化性樹脂組成物を含浸したプリプレグを用いることで補強効果が高いものになり、生産・製造工程での取り扱いを容易にすることができるからである。
また、本発明は、導電材が熱硬化樹脂と導電性フィラとからなる混合物、または半田であることが好ましい。電気部品を電気絶縁性基材上にマウントした後リフロー工程で導電材を溶融させ再度導電材を硬化させることで電気的接続を得ることができるからである。さらに、導電性フィラは銀、銅及びニッケルから選ばれた少なくとも一つの金属粉であり、熱硬化樹脂および硬化剤を含むことで電気的接続を得ることができるからである。
また、本発明は、前記電気部品がフリップチップ実装された半導体チップもしくは、少なくとも電気接続部が樹脂封止された半導体パッケージであり、かつ前記半導体チップもしくは半導体パッケージの実装面が前記電気絶縁性基材からなる突起部分に接していることが好ましい。接続する前記配線パターンに凹部を形成して前記半導体チップ・前記半導体パッケージを実装することによって、実装時におこる導電材(半田等)の流出を抑えることができ、これにより短絡が起こる可能性が無くなりより狭ピッチの実装が可能になる。また、半導体チップ・半導体パッケージの実装面に接している電気絶縁基板を熱伝導性の優れた電気絶縁性基材にすることで、半導体で発生した熱をすばやく放熱する効果を得ることができる。さらに、製造の実装時に起こる位置ずれも前記電気絶縁基材上に設けた凹部を利用して半導体チップ・半導体パッケージに設けた凸部(バンプ)とにより抑制することできるようになり生産性の面でも効率化を図ることができるようになるからである。
本発明は、前記電気絶縁性基材と前記電子部品の面着している面と前記導電材との間に空隙を設ける形で、前記配線パターンと前記電子部品が前記導電材を介して電気接続し、絶縁性材料により、前記電気部品を接続した電気絶縁性基材の表面全体を封止するのが好ましい。
そうすれば、次の作用効果が得られる。電気部品が実装された電気絶縁性基材表面を絶縁材料で封止する工程や、その後に行う他の電気部品の実装、または、電気部品実装モジュールを他電気絶縁性基材に実装する工程においては、加熱処理が実施されることがある。そのような加熱処理が実施される場合、封止したモジュール内での導電材の再溶融による電気部品の実装面下への流れ込みが生じて、導電材の接続不良・短絡をが発生して接続不良を招くことが危惧される。これに対して、本発明の構成によって初期実装の段階で上記空隙を設ければ、上記再溶融導電材は、この空隙に収納されて流出が抑制されることになる。これにより、再溶融導電材に起因する導電材の接続不良・短絡が無くなってその分、接続精度がさらに高まる。
この場合、前記絶縁性材料は、少なくとも熱硬化性樹脂を含むものであることが好ましい。熱硬化樹脂組成の主成分をエポキシ樹脂、フェノール樹脂もしくはシアネート樹脂にすることで優れた耐熱性や電気絶縁性も得ることができるからである。
また、前記絶縁性材料は、前記電気絶縁性基材と同一の組成で構成されていることが好ましい。これは、線膨張係数や弾性係数等の物性値を合わせることで、高信頼性を確保することが可能となるためである。
本発明にかかる電気部品実装モジュールの製造方法は、
・ベース層の片面に配線パターンを有する配線パターン形成済ベース層を用意する工程と、
・前記配線パターン形成済ベース層の配線パターン形成面を、配線パターン下方のベース板領域を残して前記ベース層の層途中まで取り去る工程と、
・未硬化状態のプリプレグを用意し、このプリプレグに前記配線パターン形成済ベース層を、その配線パターン形成面が前記プリプレグに対向するように位置合せして積層する工程と、
・積層した前記プリプレグと前記配線パターン形成済ベース層とを加熱加圧することで、前記プリプレグを電気絶縁性基材にするとともに、形成した電気絶縁性基材と前記配線パターン形成済ベース層とを、前記配線パターンを前記電気絶縁性基材の厚み方向の基材途中まで押し込んだ状態で一体化させる工程と、
・前記電気絶縁性基材と一体化した前記配線パターン形成済ベース層から前記ベース層を取り去ることで、前記電気絶縁性基材表面に凹部を形成するとともにこの凹部に前記配線パターンを設ける工程と
・前記凹部に導電材を設ける工程と、
・前記端子電極が前記凹部に対向するように、前記電気部品を前記電気絶縁性基材に搭載する工程と、
・前記導電材を硬化させて前記電気部品を前記導電材を介して前記電気絶縁性基材上に固定するとともに、前記端子電極と前記配線パターンとを前記導電材を介して電気接続する工程と、
を含んでいる。
本発明の別の製造方法は、
・ベース層の片面に配線パターンが設けられた配線パターン形成済ベース層を用意する工程と、
・未硬化状態のプリプレグを用意し、このプリプレグに前記配線パターン形成済ベース層を、その配線パターン形成面が前記プリプレグに対向するように位置合せして積層する工程と、
・積層した前記プリプレグと前記配線パターン形成済ベース層とを加熱加圧することで、前記プリプレグを電気絶縁性基材にするとともに、形成した電気絶縁層基材と前記配線パターン形成済ベース層とを、前記配線パターンを前記電気絶縁性基材の厚み方向の基材途中まで押し込んだ状態で一体化させる工程と、
・前記電気絶縁性基材に一体化した前記配線パターン形成済ベース層から前記ベース層を取り去ることで、パターン表面が外部に露出した状態で前記電気絶縁性基材に埋設された前記配線パターンを形成する工程と、
・前記配線パターンの一部をパターン表面から除去することで、当該配線パターン上に前記電気絶縁性基材表面に連続する凹部を形成する工程と、
・前記凹部に導電材を設ける工程と、
・前記端子電極が前記凹部に対向するように、前記電気部品を電気絶縁性基材に搭載する工程と、
・前記導電材を硬化させて、前記電気部品を前記導電材を介して前記電気絶縁性基材上に固定するとともに、前記端子電極と前記配線パターンとを前記導電材を介して電気接続する工程と、
を含んでいる。
これらの本発明の製造方法によれば、凹部を有し、その凹部に配線パターンが設けられた電気絶縁基材を、既存の設備を使用して作製できる。また、電気部品と電気絶縁性基材を面着させることによって、接触面積を多くすることで電気部品を電気絶縁性基材に安定して実装することができて接続強度が高まる。また、リフロー時において液状化した導電材が配線パターン周囲にはみ出す等の現象により生じる短絡を防止することができる。これは、基板表面と電気部品の実装面とが接着していることで部品下への流れ込みが抑えられることと、導電材が凹部に設けられることにより過剰な導電材の流れ出しを防ぐことができることによっている。これより本発明の製造方法では、より小型な電気部品をマウント時の位置ズレや、再溶融した導電材の配線パターン間を短絡させる半田ブリッジなどの接続不良を防ぐことができる。
なお、本発明の製造方法では、フリップチップ実装による半導体チップまたは、BGA構造を有する半導体パッケージなどにおいて、半導体チップ(半導体パッケージ)に設ける端子電極(バンプ等)を電気絶縁性基材に位置合わせする作業を、容易にかつ精度高く実施することができる。これは、セルフアライメント作用により端子電極が凹部に自然と入り込むことを利用した作用効果である。
前記凹部は、エッチング法、好適には化学エッチング法により形成するのが好ましい。凹部の深さをエッチング時間の制御により容易にしかも精度高く調整することが可能だからである。
また、前記構成において、前記配線パターン形成済ベース層を、前記金属層と前記ベース層とが同種の金属から構成されものを用いるのが好ましい。そうすれば、エッチング等の処理によって金属層とともに、ベース層の表層部に形成する配線パターンと同じ形状の凹部を形成することが可能となる。この場合、ベース層と金属層との間に熱膨張係数の差がないため、加熱時にパターン歪みが生じにくく、微細な配線パターンの転写に適するからである。
また、前記構成において、前記ベース層がアルミ,銀,ニッケルから選ばれたものであり、金属層が銅からなることが好ましい。その中でも銅箔とするのが好ましく、銅箔にすることにより導電性に優れたものにすることができ、とても安価に配線パターンが形成された電気絶縁性基材を製造することができる。特に好ましくは、電解銅箔である。なお、前記金属は、一種類でもよいし、二種類以上を併用してもよい。
また前記構成において、凹部の深さは3μm〜20μmの範囲であることが好ましい。この程度の凹みを有することで導電材流れを抑える効果を得ることができるからである。
また、本発明の製造方法では、ベース層が銅、アルミ、銀およびニッケルなどを用いた金属系、PET・ポリイミドなどを用いた樹脂系のフィルムを用いることもでき低コスト化を図ることが可能であり、工業的にも極めて有用である。
この場合、配線パターンの表面をエッチングにより除去するのが好ましく、そうすれば、配線パターンの表面を精度高く取り去ることができる。さらには、前記配線パターン表面をエッチングする際の前処理として、前記配線パターン表面を除く前記電気絶縁性基材の配線パターン形成面にレジスト層を形成し、前記配線パターン表面をエッチングした際の後処理として、前記レジスト層を除去するのが好ましい。そうすれば、レジスト層によって選択的に配線パターンをエッチングすることができ、導電材の塗布箇所のみを凹部に形成することで、他の配線パターン等に対して損傷を与えないことにより、より微細な配線パターンでの基板作製が実現できる。また、搭載する電気部品の実装面と、レジスト層により保護され凹んでいない配線パターンとを接するように実装することで、電気部品の放熱が速やかに行われ熱をより効率よく放熱させる効果を得ることができる。
さらにはこの場合に実施するエッチングは化学的エッチングであることが好ましい。そうすれば、狭ピッチに形成した他の配線パターンをエッチング工程により除去してしまうことがなくなり、接続性の向上と導電材流れを抑える効果を得ることができる。
これらの本発明の製造方法においてさらに、前記空隙を維持した状態で前記電気絶縁性基材の電気部品搭載面を絶縁性材料により封止する場合には、次のように構成するのが好ましい。すなわち、前記凹部に、当該凹部に空隙を設けた状態で導電材を設ける。そして、前記空隙を維持した状態で前記電気部品を前記導電材を介して前記電気絶縁性基材上に固定するとともに、前記端子電極と前記配線パターンとを前記導電材を介して電気接続する。さらには、前記空隙を維持した状態で前記電気絶縁性基材の電気部品搭載面を絶縁性材料により封止する。そうすれば、前記電気絶縁性基材の電気部品搭載面を絶縁性材料により封止する際に生じる熱やさらに後の工程等で生じる熱により導電材が再溶融したとしても、その再溶融導電材は凹部に残存する空隙に収納されて外側に流出しない。このような再溶融導電材の流出は接続精度の低下の原因となるが、本発明では、再溶融導電材は空隙により吸収されるため、その分でも電気接続精度は高まる。
以上説明してきたように、本発明の電気部品実装モジュールによれば、電気部品の実装面が電気絶縁性基材表面と面着するように実装することで接触面積を大きくして、搭載時の位置ズレを抑え基板に安定して実装する可能となる。これにより電気部品の電気接続強度を高めることができる。
また、リフロー時に液状化する導電材によって電気部品の端子電極が短絡する不具合を、電気絶縁性基材と電気部品とを面着させることと、凹部に導電材を収納することにより防止することができる。そのうえ、初期実装において導電材を電気絶縁性基材と電気部品の面着している面との間に空隙を設けるように形成することで、後工程での電気絶縁性基材に実装した電気部品を封止するための電気絶縁性基材の加熱硬化や、他の電気部品を実装するための再リフロー、電気部品実装モジュールを他の電気絶縁性基材へ実装するための再リフローなどの加熱工程により封止された電気絶縁性基材内の導電材が再溶融することで膨張し、行き場のない導電材が電気絶縁性基材と電気部品の面着している面に流れ込み配線パターンが短絡するという不具合も防止することができる。
さらに、電気部品・半導体の実装面と接着している電気絶縁性基材を無機フィラと熱硬化樹脂の混合物で構成することで、基材それ自身の熱伝導性が高くなり、電気部品(半導体装置を含む)から発生する熱を素早く放熱させることができるという格別の効果を得ることができる。
フリップチップ実装による半導体チップまたは、BGA構造をもつ半導体パッケージからなる電気部品においては、マウント時の位置ズレを抑止することと、半導体チップ・半導体パッケージ下への導電材流れを防止することにより、より狭ピッチの実装を実施することが可能となる。これにより、近年の電子機器が求められている高性能化、小型化をより実現することができる。
また、本発明の電気部品実装モジュールの製造方法は従来の実装基板の製造工程に対して格段の変更点はなく、配線パターンを形成するための金属層に対するエッチング時間等の制御よって凹部を形成することが可能となる。従来の製造設備を使用し製造できることで設備コストへの負担を抑え、実装時の初期不良を抑え信頼性を向上させることで歩留まりを減少し生産性を向上させることができる。
以上のように本発明は、電気絶縁基材に凹部を設けて電気部品を実装することにより接続強度が高く接続不良を抑制し、電気部品と電気絶縁性基材の面着している面と導電材の間に空隙を設けることで導電材の再溶融による接続不良も抑制することができ、さらに、電気絶縁基材に機能を添加することで放熱性に優れた極めて高信頼性な電気部品実装モジュールを簡易な製造することができる。
本発明はその第1の電気部品実装モジュールの態様として、前記電気絶縁性基材の少なくとも表裏面に配線パターンを有する電気絶縁性基材であって、前記表裏面に形成された配線パターンの全てもしくは一部表面が、前記電気絶縁性基材の表面より凹んだ位置に配置されており、任意の場所の前記凹部に電気部品の外部端子と電気的に接続させるための導電材が形成され、かつ前記電気部品の実装面が前記電気絶縁性基材表面と接着していることを特徴とする電気部品実装モジュールを提供するものである。
以下、本発明の最良の実施形態に係る電気部品実装モジュールを、図面を参照して説明する。
(実施の形態1)
図1(a),(b)は、本発明の実施の形態1における電気部品実装モジュールの構成を示す断面図である。図1(a)において、101は電気絶縁性基材である。102は電気絶縁性基材101に形成された配線パターンである。104は配線パターン102上に実装された電気部品の一例としてのチップ部品である。チップ部品は、チップ抵抗やチップコンデンサを一例とすることができる。104aはチップ部品104の端子電極である。
図1(b)において、101は電気絶縁性基材である。102は電気絶縁性基材101に形成される配線パターンである。103は導電材である。導電材103は電気絶縁性基材101に形成された配線パターン102の間を電気的に接続する導電材であって、半田や導電性接着剤から構成される。105は配線パターン102上に実装される電気部品の一例としての半導体装置である。半導体装置105は半導体チップであっても、半導体パッケージであってもよい。106は半導体の実装面に形成される端子電極である。端子電極106は例えば金属バンプから構成される。
本実施の形態は、電気絶縁性基材101の表面に凹部101aを設け、この凹部101aの低部に配線パターン102を配置したことに特徴がある。凹部101aは、各端子電極104a,106に対応して設けられている。各凹部101aの離間間隔は、複数ある端子電極104a,106どうしの離間間隔と同間隔(同一形成ピッチ)に設定されている。各凹部101aの開口の大きさ(図中奥行き寸法×幅w1)は、端子電極104a,106の大きさ(図中奥行き寸法×幅w2)と同等もしくはそれより大きくなっている。端子電極104a,106を凹部101aに位置合わせした状態でチップ部品104や半導体装置105を電気絶縁性基材101に搭載すると、端子電極104a,106は各凹部101aに収納されて、各配線パターン102に対向する。端子電極104a,106はチップ部品104や半導体装置105の実装面から突出して配置される。そのため、端子電極104a,106が凹部101aに収納されると、チップ部品104や半導体装置105の実装面は、電気絶縁性基材101に確実に面着し、両者の間の熱伝導性が良くなる。
凹部101a内の深さ寸法hは、3μm〜20μmの範囲に設定される。導電材103は凹部101a内にあって配線パターン102から端子電極104aにわたって配置される。導電材103は、配線パターン102と端子電極104a,106とを電気接続する。チップ部品104や半導体装置105の実装面と電気絶縁性基材101の基材面(電子部品搭載面)とが面着しているため、導電材103は部品104,105と電気絶縁性基材101との間に入り込むことがない。したがって、部品と基板との間に導電材103が入り込むことに起因する短絡等の不具合は生じない。また、部品104,105を安定した状態で電気絶縁性基材101上に実装することができる。これにより、部品104,105の位置ズレを無くした状態で実装が可能となり、その分接続の補強が図れる。
本実施形態では、電気絶縁性基材101として、無機フィラと熱硬化樹脂の混合物で構成されたプリプレグの硬化物を使用する。プリプレグの硬化物はそれ自身熱伝導性に優れるため、部品実装時の発熱を素早く放熱させることができる。そのため、その分でも、本実施形態の電気部品実装モジュールは、極めて高信頼性となる。
前記熱硬化性樹脂としては、例えばエポキシ樹脂、フェノール樹脂及びシアネート樹脂を挙げることができる。このとき熱硬化樹脂の室温に於ける弾性率、ガラス転移温度を制御する方法としてそれぞれの樹脂組成に対し、室温で低弾性率もしくはガラス転移温度が低い樹脂を添加することで得られる。また、前記無機質フィラとしては、Al,MgO,BN,AlN,SiO等を挙げることができる。また、必要であれば、無機質フィラと熱硬化性樹脂の複合物に、更にカップリング剤,分散剤,着色剤,離型剤を添加することも可能である。半導体装置は、シリコン半導体であるパワー素子に限らず、バイポーラ素子や、MOS素子など、さらには、機械的強度が弱いシリコンーゲルマニウム半導体,ガリウム砒素半導体なども利用できる。また配線パターン102は、銅箔が利用でき、更にその表面にニッケルや金めっきしたものであると半導体装置105上の端子電極(金属バンプ)106との安定な電気接続が得られる。端子電極106は、金バンプが利用でき、ワイヤーボンディング法で作製した2段突起バンプ、もしくは金めっきによるバンプが利用できる。
図2(a)〜図2(g)は、本実施形態の電気部品実装モジュールの第1の製造方法を示す工程別断面図である。
図2(a)に示すように、キャリアとしてのベース層201の主面に剥離層202を介して金属層203'が積層されたシート状金属209を用意する。金属銅箔は、キャリアとしての搬送性、電気抵抗の良好な圧延銅箔とするのが好ましい。
図2(b)に示すように、金属層203'に、最終的に配線パターン203として残す領域を規定するレジスト層207を形成した後、レジスト層207をマスクとして金属層203'の不要部分をエッチングにより取り去ることで、配線パターン203を形成する。その後レジスト層207を除去し、所望の配線パターン203をベース層201上に形成する。これにより、配線パターン形成済ベース層210が形成される。この時、レジスト層207をマスクとして金属層203'をエッチングして配線パターン203を形成した後、剥離層202をエッチングし、さらに配線パターン203の下方位置を除いたベース層201の表層部分を、引き続いてエッチング処理することで取り去る。これにより、ベース層201には、配線パターン203の下方位置に凸部208が形成される。この場合、エッチング時間を制御することにより、ベース層201の表層を所定深さまで取り去ることで、凸部208の高さ寸法を任意に設定することができる。
図2(c)に示すように、未硬化状態のプリプレグ204'を用意し、このプリプレグ204'と配線パターン形成済ベース層210とを位置合わせして重ね合わせる。さらには、配線パターン形成済ベース層210の配線パターン形成部位をプリプレグ204'に埋没させて一体化させる。このとき、配線パターン203を、凸部208の高さ寸法h1だけ、電気絶縁性基材プリプレグ204'の厚み方向基材途中まで押し込んだ状態で一体化させる。この状態で加熱加圧を加えることで、プリプレグ204'と配線パターン形成済ベース層210とを一体化させる。さらには、加熱加圧により、プリプレグ204'を硬化させて電気絶縁性基材204にする。
図2(d)に示すように、電気絶縁性基材204と一体化した配線パターン形成済ベース層210から、ベース層201を剥離する。ベース層201は、剥離層202を設けることで容易に剥離できる。ベース層201を剥離することで、電気絶縁性基材204の表面に凹部211が形成され、配線パターン203は凹部211の底部に配置されて固定される。凹部211の深さ寸法h2は、凸部208の高さ寸法h2によって一義的に規定される。
図2(e)に示すように、全てもしくは任意に選択した凹部211に導電材205を塗布する。導電材205は半田や金,銀,銅,銀−パラジウム合金などを熱硬化樹脂で混練した導電性接着剤が一例として挙げられる。また、半田と導電性接着剤との併用も可能であり、溶融した半田であっても良い。
図2(f)に示すように、電気部品206の端子電極206aが凹部211(配線パターン203)に対向してその内部に入り込むように位置合せする。この状態で、電気部品206の実装面が電気絶縁性基材204に面着するように、電気部品206を電気絶縁性基材204に搭載する。このとき、電気部品206は、端子電極206aが凹部211に入り込むことで、精度高く、しかも、自然に位置合わせ(セルフアライメント)される。
この状態で導電材205に熱処理を施すことで導電材205が溶解し、これにより、電気部品206が電気絶縁性基材204上に接着するとともに、端子電極206aが配線パターン203に電気接続する。
図3(a)〜(g)は、本実施形態の前記電気部品実装モジュールの第2の製造方法を示す工程別断面図である。図中、301はベース層であり、302は剥離層であり、303は配線パターンであり、303'は金属層であり、304は電気絶縁性基材であり、304' はプリプレグであり、305は導電材であり、309はシート状金属であり、310は配線パターン形成済ベース層であり、311は凹部である。
図3(a),図3(b)に示す工程により、所望の配線パターン303がベース層301上に形成された配線パターン形成済ベース層310を形成する。これらの工程は、図2(a),図2(b)を参照して前述した工程と同様である。ただし、この製造方法では、ベース層301をエッチングにより除去せずに、その厚みを層全体にわたって当初のままに維持する。また、金属層303'の厚みは、最終的に形成される配線パターン303の厚みより、凹部311の深さ分だけ厚くする。
図3(c)に示すように、未硬化状態のプリプレグ304'を用意し、このプリプレグ304'と配線パターン形成済ベース層310とを位置合わせして重ね合わせる。さらには、配線パターン形成済ベース層310の配線パターン形成部位により配線パターン形成済ベース層310を押し込むことで、配線パターン形成済ベース層310に凹部311を形成する。配線パターン303は、形成した凹部311に収納される形態でプリプレグ304'に埋没される。この状態で加熱加圧を加えることで、プリプレグ304'と配線パターン形成済ベース層310とを一体化させる。さらには、加熱加圧により、プリプレグ304'を硬化させて電気絶縁性基材304にする。
図3(d)に示すように、電気絶縁性基材304と一体化した配線パターン形成済ベース層310からベース層301を剥離する。ベース層301を剥離することで、配線パターン303は電気絶縁性基材304の表面とはほぼ面一となった状態で固定される。
図3(e)に示すように、配線パターン303の表面をエッチング工程により取り去る。これにより、電気絶縁性基材304の表面に凹部311を形成する。
図3(f)に示すように、全てもしくは任意に選択した凹部311に導電材305を塗布する。導電材305は半田や金,銀,銅,銀−パラジウム合金などを熱硬化樹脂で混練した導電性接着剤が一例として挙げられる。また、半田と導電性接着剤との併用も可能であり、溶融した半田であっても良い。
図3(g)に示すように、電気部品306の端子電極306aが凹部311に対向してその内部に入り込むように位置合せする。そして、電気部品306の実装面が電気絶縁性基材304に面着するように、電気部品306を電気絶縁性基材304に実装する。この状態で導電材305に熱処理を施すことで、導電材305の溶解により、電気部品306を電気絶縁性基材304上に接着するとともに、端子電極306aを配線パターン303に電気接続する。
図4(a)〜図4(i)は、本実施形態の電気部品実装モジュールの第3の製造方法を示す工程別断面図である。図中、401はベース層であり、402は剥離層であり、403'は金属層であり、404は電気絶縁性基材であり、404'はプリプレグであり、405は導電材であり、409はシート状金属であり、410は配線パターン形成済ベース層であり、411は凹部である。
図4(a)〜図4(d)に示すように、
・所望の配線パターン403がベース層401上に形成された配線パターン形成済ベース層410を形成する、
・配線パターン形成済ベース層410とプリプレグ404'とを一体化してプリプレグ404'を加熱加圧により電気絶縁性基材404にする、
・電気絶縁性基材404からベース層401を取り除く、
という処理を実施する。
これらの処理は図3(a)〜図3(d)に示す工程と同一である。
図4(e)に示すように、電気絶縁性基材404の配線パターン形成面にレジスト層407を形成する。レジスト層407は、電子部品406に接続される配線パターン403の表面を選択的に露出させた状態で、電気絶縁性基材404の配線パターン形成面を被覆するように形成される。レジスト層407は、感光性樹脂を塗布あるいは感光性フィルムをラミネートしたうえで、露光・現像処理と不要部分の除去処理とを実施することで形成される。
図4(f)に示すように、レジスト層407をマスクにして、配線パターン403の表面をエッチングすることで、底に配線パターン403が配置される凹部411を形成する。
図4(g)に示すように、凹部411の形成に用いたレジスト層407を除去する。図4(h)に示すように、凹部411に導電材405を塗布する。導電材405は第1,第2の製造方法における導電材205,305と同様のものとする。
図4(i)に示すように、電気部品406の端子電極406aが凹部411に対向してその内部に入り込むように位置合せした後、電気部品406の実装面が電気絶縁性基材404に面着するように、電気部品406を電気絶縁性基材404に実装する。この状態で導電材405に熱処理を施すことで、導電材405を溶解させて、電気部品406を電気絶縁性基材404上に接着するとともに、端子電極406aを配線パターン403に電気接続する。
上述した第1〜第3の製造方法は、チップ部品からなる電気部品206,306,406を搭載した電気部品実装モジュールの製造方法である。次に、半導体チップや半導体パッケージからなる電気部品を搭載した本実施形態の電気部品実装モジュールの製造方法を説明する。図中、501はベース層であり、502は剥離層であり、503'は金属層であり、503は配線パターンであり、504'はプリプレグであり、504は電気絶縁性基材であり、506は半導体チップもしくは半導体パッケージからなる電気部品であり、506aは金属バンプからなる端子電極であり、507はレジスト層であり、508は凸部であり、509はシート状金属であり、510は配線パターン形成済ベース層であり、511は凹部である。
本製造方法は、基本的には、図2(a)〜図2(f)に示す第1の製造方法と同様の方法である。特に、図5(a)〜図5(d)は、図2(a)〜図2(d)と全く同一である。
図5(e)に示すように、電気絶縁性基材504の実装面に、フリップチップ実装する電気部品(半導体チップ,もしくは、BGA構造をもつ半導体パッケージ)506を搭載する。電気部品506の端子電極(金属バンプ)506aが凹部511(配線パターン503)に対向してその内部に入り込んで配線パターン503に当接するように位置合せする。そして、位置合わせした状態で、電気部品506の実装面が電気絶縁性基材504に面着するように、電気部品506を電気絶縁性基材504に搭載する。このとき、電気部品506は、端子電極506aが凹部511に入り込むことで、精度高く、しかも、自然に位置合わせ(セルフアライメント)される。またこのとき、凹部511内の大きさ(特に深さ寸法)を端子電極505全てが入り込む大きさに設定することで、電気部品506の実装面を電気絶縁性基材504に面着させる。これにより、半導体装置等からなる電気部品506が生じさせる熱を、電気絶縁性基材504を介して効率高く放熱することが可能となる。
(実施の形態2)
図6は、本発明の実施の形態2における電気部品実装モジュールの構成を示す断面図である。実施の形態2は実施の形態1の応用であり、本発明は前記電気絶縁性基材の少なくとも表裏面に配線パターンを有する電気絶縁性基材であって、
・前記表裏面に形成された配線パターンの全てもしくは一部表面が、電気絶縁性基材の表面より凹んだ位置に配置されている、
・任意の場所の凹部に電気部品の端子電極と電気的に接続させるための導電材が形成されている、
・電気部品の実装面が電気絶縁性基材表面と面着し、電気絶縁性基材と前記電気部品の面着している面と前記導電材の間に空隙を設ける形で導電材を硬化させ電気絶縁性基材に固定している、
という特徴を有する電気部品実装モジュールを提供するものである。
以下、本発明の最良の実施形態に係る電気部品実装モジュールを、図面を参照して説明する。
図6において、601は電気絶縁性基材である。602は電気絶縁性基材601に形成された配線パターンである。604は配線パターン602上に実装された電気部品の一例としてのチップ部品である。チップ部品604は、チップ抵抗やチップコンデンサを一例とすることができる。604aはチップ部品604の端子電極である。603は導電材である。導電材603は電気絶縁性基材601に形成された配線パターン602の間を電気的に接続する導電材であって、半田や導電性接着剤から構成される。
本実施の形態は、実施の形態1と同様に電気絶縁性基材601の表面に凹部601aを設け、この凹部601aの底部に配線パターン602を配置したことに特徴がある。凹部601aは、各端子電極604aに対応して設けられている。各凹部601aの離間間隔は、複数ある端子電極604aどうしの離間間隔と同間隔(同一形成ピッチ)に設定されている。各凹部601aの開口の大きさ(図中奥行き寸法×幅w1)は、端子電極604aの大きさ(図中奥行き寸法×幅w2)と同等もしくはそれより大きく設定されている。端子電極604aを凹部601aに位置合わせした状態でチップ部品604を電気絶縁性基材601に搭載すると、端子電極604aは各凹部601aに収納されて、各配線パターン602に対向する。端子電極604aはチップ部品604の実装面から突出して配置される。そのため、端子電極604aが凹部601aに収納されると、チップ部品604の実装面は、電気絶縁性基材601に確実に面着し、両者の間の熱伝導性が良くなる。
凹部601aの深さ寸法hは、3μm〜20μmの範囲に設定される。導電材603は凹部601a内にあって、凹部601a内の幅w3上に形成されており配線パターン602から端子電極604aにわたって配置される。端子電極604aと配線パターン602との間には空隙605が形成された状態で配線パターン602と端子電極604aとは電気接続される。本実施形態では、空隙605を設けたことに最大の特徴がある。空隙605は凹部601a内において導電材603と端子電極604aとチップ部品604表面とにより囲まれて封止されている。
さらに、本実施形態では、電気絶縁性基材601の電子部品搭載面601aを電気絶縁性材料614により封止している。電気絶縁性材料としては、例えば、熱硬化性樹脂等の電気絶縁性樹脂から構成される。
本実施形態では、実施の形態1と同様にチップ部品604の実装面と電気絶縁性基材601の基材面との間は面着しているため、導電材603はチップ部品604と電気絶縁性基材601との間に入り込むことがない。さらに、この電気絶縁性基材601の電子部品搭載面601bを電気絶縁性基材606により封止した後の導電材603の熱膨張を空隙605が吸収する。これにより、熱膨張(再溶融)した導電材603がチップ部品604と基材601との間の界面に流れ込むことが防止される。したがって、部品と基板との間の凹部に導電材603が入り込むことに起因する短絡等の不具合をさらに精度高く防止することができる。
本実施形態の構成による効果をさらに詳細に説明する。電気絶縁性材料614により電子部品搭載面601bを封止する際には、電気絶縁性材料614に熱硬化処理等の加熱処理が施される。さらには、電気絶縁性基材601に他の電子部品を実装する際等においても、電気絶縁性材料614に加熱処理が施される。そのような加熱処理を実施する際には、その熱によって導電材603が再溶融する場合があり、そうすると、再溶融した導電材603が部品と基板との間の隙間に入り込んで短絡等の不具合を生じさせることもある。
このような不具合を解消するために、本実施形態では、凹部601aに空隙605を設けている。これにより、再溶融した導電材603は、空隙605に収納されてここで保持されるために、空隙605の外部(部品と基板との間の隙間等)に流出することはない。このような理由により、本実施形態は、短絡等の不具合をさらに精度高く防止することができる。
図7(a)〜図7(h)は、本実施の形態2の電気部品実装モジュールの第1の製造方法を示す工程別断面図である。これらの各図において、符号701はベース層であり、702は剥離層であり、703'は金属層であり、703は配線パターンであり、704'はプリプレグであり、704は電気絶縁性基材であり、705は導電材であり、706は電気部品(チップ部品)であり、706aは端子電極であり、707はレジスト層であり、708は凸部であり、709はシート状金属であり、710は配線パターン形成済ベース層であり、711は凹部であり、713は空隙であり、714は電気絶縁性材料であり、715はキャビティ部である。
図7(a)〜図7(d)は、図2(a)〜図2(d)と全く同一である。また、この工程において、例として実施の形態1の第1の製造方法で示しているが、実施の形態1の第2の製造方法、実施の形態1の第3の製造方法を用いて製造することも、もちろん可能である。
図7(e)に示すように、全てもしくは任意に選択した凹部701aにおいて、導電材703と電子部品706の端子電極706aとの間に空隙713が形成されるように塗布する。具体的には例えば次のようにして空隙713を形成する。
各電子部品706に対応して設けられた凹部711の組合わせそれぞれにおいて、凹部対向方向の内側に位置する凹部内端側711aに端子電極706aが入り込むように、各凹部711の位置を設定する。そうすると、端子電極706aが凹部711に入り込んだ状態では、端子電極706aと凹部711の底部との間には隙間が形成される。導電材703は、この隙間を避けて凹部対向方向の外側に位置する凹部外端側711bにだけ選択的に設けられる。これにより、凹部711の内端側711aの底部に形成された隙間は、端子電極706aを含む電子部品706により蓋をされて、外部から封止された空隙713となる。
導電材705は半田や金,銀,銅,銀−パラジウム合金などを熱硬化樹脂で混練した導電性接着剤が一例として挙げられる。また、半田と導電性接着剤との併用も可能であり、溶融した半田であっても良い。
図7(f)に示すように、電気部品706の端子電極706aが凹部711(配線パターン703)に対向してその内部に入り込むように位置合せする。この状態で、電気部品706の実装面が電気絶縁性基材704に面着するように、電気部品706を電気絶縁性基材704に搭載する。このとき、電気部品706は、端子電極706aが凹部711に入り込むことで、精度高く、しかも、自然に位置合わせ(セルフアライメント)される。
この状態で、導電材705に熱処理を施すことで導電材705が溶融し、これにより、端子電極704aと配線パターン702の間には空隙713を形成した形で電気部品706が電気絶縁性基材704上に接着し、さらに、端子電極706aが配線パターン703に電気接続する。
図7(g)に示すように、電気絶縁性基材704上に実装した電気部品706を覆うように絶縁性材料714で封止する。この絶縁性材料714は電気絶縁性基材704と同一の材料構成が望ましい。これは、線膨張係数や弾性係数等の物性値を合わせることで、高信頼性を確保することが可能となるためである。ただし、各種物性値等の調整により必ずしも同一材料に限定されるものではない。
また、絶縁性材料714は電子部品706を内蔵することを目的とするため、キャビティ部715を有している。また、絶縁性材料714の他方に配線パターンが形成されていて、インナービアが形成されている多層基板であってもよい。
図7(h)に示すように、位置あわせを行い積層したあとに加熱加圧することで、電気部品706を封止した電子部品実装モジュールを製造することができる。
上述の製造方法を用いることにより、後工程で行う他の電気部品を実装するための再リフロー、電気部品実装モジュールを他の電気絶縁性基材へ実装するための再リフローなどの加熱工程を経ることで、封止された電気部品実装モジュール内の導電材705が再溶融し、導電材705が電気絶縁性基材704と電気部品706の面着している面に流れ込み配線パターンが短絡するという不具合を防止することができる。
以下に、本発明の具体的な実施例(製造方法)を説明する。ここでは、図7に示す実施の形態2の製造方法を例にして本発明の各実施例を説明するが、各実施例が実施の形態1における各製造方法においても同様に実施できるのはいうまでもない。
(実施例1)
本発明の電気部品実装モジュールの作製に際し、フォトリソグラフィ法により化学エッチングすることで、配線パターンが表面に形成された配線パターン形成済ベース層を作製する方法から述べる。
配線パターン形成済ベース層710を構成するベース層701は、既存の回路基板用銅箔を利用できる。回路基板用銅箔の具体的な製法の一例は次の通りである。ドラム状メッキ電極を電解液中でゆっくりと回転させることで、ドラム状メッキ電極上に銅メッキ層を連続的に形成し、さらに形成した銅メッキ層を巻き取る方法により回路基板用銅箔を作製できる。その際、メッキ電流値,回転速度などから任意の厚みの銅箔が連続的に形成できる。本発明の実施例で用いたベース層(銅箔)は70μm厚みである。
次いで、ベース層(銅箔)701の表面に極めて薄い有機層を形成するか、もしくはニッケルや錫などの異種金属を同様に薄くメッキすることで、剥離層702を形成する。剥離層702は形成しなくとも転写できる。しかしながら、剥離層702を設けることで、
・配線パターン703をエッチング形成する際にそれ以上エッチングしないように止める働き、
・ベース層(銅箔)701を若干エッチングさせ、配線パターン703を転写時に埋め込むようにする働き、
を果たす。
剥離層702上にさらに配線パターン703となる銅メッキを行い金属層703’とする。本実施例においては金属層703’をメッキ厚み9μmで形成する。
次に、金属層703’をベース層701の表層までエッチングし、さらにベース層701をその厚みの途中までエッチングすることで金属層703’から配線パターン703を形成する。さらに、引き続いてベース層701をエッチングする。この場合、エッチング時間を制御することにより、ベース層701の表層を一定深さまでエッチングすることは容易である。本実施例では、ベース層701を15μm削り取る。これにより、配線パターン形成済ベース層710を形成する。
無機フィラと熱硬化樹脂との混合物からなる未硬化状態のプリプレグ704'を用意し、このプリプレグ704'と配線パターン形成済ベース層710とを積層する。積層したプリプレグ704'と配線パターン形成済ベース層710とを加熱加圧することで、配線パターン703をプリプレグ704'に埋設する。本実施例では、加熱加圧する条件を、200℃に加熱した金型に配線パターン形成済ベース層710をセットし、さらにプリプレグ704'を配置して金型で100Kg/cmの圧力で加圧するという条件にする。加熱加圧時間は15分間とする。
本実施例に使用したプリプレグ704'は、無機フィラと液状の熱硬化樹脂とを、攪拌混合機を用いて混合することで作製する。攪拌混合機は、所定の容量の容器に無機フィラと液状の熱硬化樹脂を投入し、容器自身を回転させながら公転させるものであり、比較的粘度が高くても充分な分散状態が得られるものである。実施したプリプレグ704'の配合組成を以下に示す。
・無機フィラ:Al(昭和電工(株)製AS−40、球状12μm)
90重量%
・熱硬化樹脂:液状エポキシ樹脂(日本レック(株)製 EF−450)
9.5重量%
・カップリング剤:(味の素ファインテクノ(株)製 チタネート系 KR−46B)
0.3重量%
上記組成で秤量・混合されたペースト状の混合物を作製する。上記混合物は、所定量の無機フィラと液状エポキシ樹脂を容器に投入し、本容器ごと混練機によって混合することで作製する。混練機を用いた混合作業は、容器を公転させながら、自転させる方法により行われる。10分程度の短時間で混練が行われる。離型フィルムとしては、厚み75μmの表面にシリコンによる離型処理を施されたポリエチレンテレフタレートフィルムを用いる。
上記混合物の所定量を取り、離型フィルム上に滴下させる。滴下させた離型フィルム上の混合物にさらに離型フィルムを重ね、加圧プレスで一定厚みになるようにプレスする。次に離型フィルムで挟持された混合物を離型フィルムごと加熱し、粘着性が無くなる条件下で熱処理する。熱処理条件は、温度(120℃)、処理時間(15分間)とする。
以上により、厚み500μmの粘着性のないプリプレグ704'ができる。
熱硬化エポキシ樹脂は、硬化開始温度が130℃であるため、前記熱処理条件下では、未硬化状態(Bステージ)であり、以降の工程で加熱により再度溶融させることができる。
このようにして得られたプリプレグ704'の両面に設けた離型フィルムを剥離し、再度耐熱性離型フィルム(PPS:ポリフェニレンサルファイト75μm厚み)で挟んで、温度170℃,圧力50Kg/cmで硬化させる。さらに、PPS離型フィルムを剥離し、所定の寸法に加工してプリプレグ704'とする。
作製したプリプレグ704'の熱伝導性を測定した。なお熱伝導性は、10mm角に切断した試料の表面を加熱ヒータに接触加熱し、反対面の温度の伝わり方から計算で熱伝導度を求めた。その結果を表1に示す。
Figure 2005051204
表1に示すように、無機フィラとしてAlを用いた場合には、従来のガラス-エポキシ基板(0.2w/mK〜0.3w/mK)に比べて熱伝導度が約20倍以上の熱伝導性が得られ、また同様にAlN,MgOを用いた場合でも、それ以上の熱伝導度が得られることがわかる。また、非晶質SiOを用いた場合では、熱膨張係数がシリコン半導体に近い熱膨張係数のものが得られる。これにより、本実施例のプリプレグ704'から作製した電気絶縁性基材704は半導体装置を直接実装するフリップチップ用基板としても有望である。即ちAlNの良好な熱伝導性を利用すれば、セラミック基板に近い熱伝導性が得られる。またBNを添加した場合、表1に示すように高熱伝導でしかも低熱膨張性が得られる。特にアルミナを用いた系では、85重量%以上で良好な熱伝導度が得られ、コストも安いことから高熱伝導モジュールとして有望である。
以上製法を説明したプリプレグ704'と配線パターン形成済ベース層710とを積層して加熱加圧する。これにより、プリプレグ704'を電気絶縁性基材704にする。この時、ベース層701に15μm程度エッチングを行っていることにより電気絶縁性基材704上には深さ15μmの凹部711が形成され、さらにその凹部711の底に配線パターン703が埋設状態で配置される。配線パターン703と基材表面との間には凹部711が形成される。
電気絶縁性基材704と配線パターン形成済ベース層710との積層物からベース層(銅箔)701を剥離させる。次に、凹部711内に半田からなる導電材705を塗布充填する。この状態で電気部品706の端子電極706aが凹部711(配線パターン703)に対向するように位置合わせする。これにより、電気部品706は、その実装面が基材表面に接するように電気絶縁性基材704に搭載される。電気部品706を搭載した電気絶縁性基材704をリフロー炉により加熱することで、導電材(半田)705を溶融させる。これにより電気部品706と電気絶縁性基材704とが表面実装された本発明の電気部品実装モジュールが得られる。
以上のようにして製造する電気部品実装モジュールは、はじめの実装時から電気部品706の位置ズレによる接続不良や半田流れによる短絡も発生している箇所はなかった。さらに、半田リフロー試験、温度サイクル試験を行ったところ次のような結果が得られた。半田リフロー試験は、最高温度が260℃で10秒のベルト式リフロー試験機を用いて10回通すことで行った。また温度サイクル試験は、高温側が125℃、低温側が−60℃の温度で各30分間保持し、200サイクル行った。温度サイクル試験の結果、電気部品実装モジュール上の電気部品は接続抵抗もほとんど初期性能と変化がなかった。
(実施例2)
実施例2は実施の形態1の第3の製造方法で説明した方法で電気部品実装モジュールを作製した一例である。
実施例1と同様の方法で作製した配線パターン形成済ベース層710とプリプレグ704'とを用い、実施の形態1の第3の製造方法で説明した方法で作製した電気部品実装モジュールの実施例を示す。配線パターン形成済ベース層(銅箔)710の厚みは70μmとし、剥離層702を介して配線パターン703を形成する。配線パターン703は銅メッキ9μm厚みで形成する。配線パターン形成済ベース層710は、エッチング時間を制御することにより、金属層703'と剥離層702のみエッチングした配線パターン703をベース層701上に形成したものを用いる。
本実施例に使用したプリプレグ704'の組成を以下に示す。
・無機フィラ:Al(昭和電工(株)製AS−40、球状12μm)
90重量%
・熱硬化樹脂:液状エポキシ樹脂(日本レック(株)製 EF−450)
9.5重量%
・カップリング剤:(味の素ファインテクノ(株)製 チタネート系 KR−46B)
0.3重量%
積層して加熱加圧することにより、配線パターン703をプリプレグ704'に埋設した状態でプリプレグ704'と配線パターン形成済ベース層710とを一体化する。加熱加圧は次のように行う。200℃に加熱した金型に配線パターン形成済ベース層710をセットし、さらにプリプレグ704'を配線パターン形成済ベース層710上に配置した状態で、その積層体を金型によって100Kg/cmの圧力で加圧する。保持時間は15分間とする。
加熱加圧した積層体からベース層701を剥離する。配線パターン703は電気絶縁性基材704に埋設されている形状になって基材表面と配線パターン703とは平坦になる。
配線パターン703を形成した電気絶縁性基材704を感光性フィルムでラミネートしてレジスト層707を形成する。レジスト層707は、電気部品706に接続される配線パターン703の上方に選択的に開口を設けてその配線パターン703を外部に露出させたパターン形状とする。レジスト層707の厚みは6μmとする。
塩化第2鉄の水溶液を用いて電気絶縁性基材704の表面をエッチングする。これにより、レジスト層707において露出する配線パターン703のみがエッチングされて配線パターン703と基材表面との間に5μm程度の深さの凹部711が形成される。
エッチング処理で除去されなかったレジスト層707を除去する。さらに、配線パターン703上の凹部711に導電材(半田)705を塗布する。
電気部品706を、その端子電極706aが配線パターン703に対向するように位置合わせした状態で電気部品706を、その実装面が電気絶縁性基材704に接するように電気絶縁性基材704に搭載する。電気部品706を搭載した電気絶縁性基材704を、リフロー炉により加熱する。これにより、導電材(半田)705を溶融させて電気部品706と電気絶縁性基材704とを電気接続させる。
このようにして、本発明の実施の形態3で説明した方法で電気部品実装モジュールが得られる。
実施例2により作製される電気部品実装モジュールの特性を測定した結果、はじめの実装時から電気部品の位置ズレによる接続不良や半田流れによる短絡が発生している箇所はなかった。さらに信頼性を評価するために、半田リフロー試験、温度サイクル試験を行った。半田リフロー試験は、最高温度が260℃で10秒のベルト式リフロー試験機を用いて10回通すことで行った。また温度サイクル試験は、高温側が125℃、低温側が−60℃の温度で各30分間保持する工程を200サイクル行った。このとき電気部品実装モジュール上の電気部品は接続抵抗もほとんど初期性能と変化がなかった。
(実施例3)
実施例3は半導体装置からなる電気部品を実装してなる電気部品実装モジュールを作製する一例である。
実施例1と同様の方法で作製した配線パターン形成済ベース層710とプリプレグ704'とを用い、実施の形態1の第1の製造方法で説明した方法で作製した電気部品実装モジュールの実施例を示す。
実施例1と同様の製造方法により電気絶縁性基材704上に凹部711を形成し、凹部711の底に配線パターン703を形成する。配線パターン703と電気絶縁性基材704表面との間に15μm程度の凹部711を形成する。
作製した電気絶縁性基材704の配線パターン703に半田バンプを用いて電気部品(半導体装置)706をフリップチップボンディングする。電気部品706に形成した端子電極(バンプ)706aを電気絶縁性基材704に形成した凹部711に入り込ませることで、電気部品706を容易にしかも精度高く電気絶縁性基材704に搭載できる。加熱処理により電気部品706の端子電極(バンプ)706aと配線パターン703とを電気接続することで、電気絶縁性基材704に電気部品(半導体装置)706を実装した電気部品実装モジュールが得られる。
本実施例により作製された電気部品実装モジュールは、はじめの実装時から電気装置(半導体装置)706の位置ズレによる接続不良や半田流れによる短絡も発生している箇所はなかった。
信頼性を評価するために、半田リフロー試験、温度サイクル試験を本実施例品に実施した。半田リフロー試験は、最高温度が260℃で10秒のベルト式リフロー試験機を用いて10回通すことで行った。また温度サイクル試験は、高温側が125℃、低温側が−60℃の温度で各30分間保持することを、200サイクル行った。いずれの信頼性試験においても超音波探傷装置を用いても実装した半導体素子に異常は見つからなかった。接続抵抗においてもほとんど初期性能と変化がなかった。
(実施例4)
実施例4は実施の形態2の第1の製造方法で説明した方法で電気部品実装モジュールを作製した一例である。
実施例1と同様の方法で作製した配線パターン形成済ベース層710とプリプレグ704'とを用い、実施の形態2の第1の製造方法で説明した方法で作製した電気部品実装モジュールの実施例を示す。
実施例1と同様の製造方法により電気絶縁性基材704上に凹部711を形成し、凹部711の底に配線パターン703を形成する。配線パターン703と電気絶縁性基材704表面との間に15μm程度の凹部711を形成する。
さらに、配線パターン703上の凹部711に導電材(半田ペースト)705を印刷法により形成する。導電材705は電気絶縁性基材704と電気部品706とが面着する側と、その逆側とのそれぞれに形成する。導電材705は配線パターン703が有する電極パッドの面積の50%の面積に塗布する。
電気部品706を、その端子電極706aが配線パターン703に対向するように位置合わせした状態でその実装面が電気絶縁性基材704に接するように搭載する。電気部品706を搭載した電気絶縁性基材704を、リフロー炉により加熱する。これにより、導電材(半田)705を溶融させて電気部品706と電気絶縁性基材704とを電気接続させる。
さらに、電気絶縁性基材704として使用したプリプレグ704'と同一材料の層材からなる電気絶縁性材料714にキャビティ部715を形成したものを用意する。そして、キャビティ部715に電子部品706が相対するように電気絶縁性材料714と電気絶縁性基材704とを位置あわせして積層するする。その後、200℃に加熱した金型にその積層物を配置して3MPaの圧力で加圧する。
このようにして、本発明の実施の形態2で説明した方法で電気部品実装モジュールが得られる。
実施例4により作製される電気部品実装モジュールの特性を測定した結果、初期実装、封止後においても電気部品の位置ズレによる接続不良や半田流れによる短絡が発生している箇所はなかった。さらに信頼性を評価するために、半田リフロー試験、温度サイクル試験を行った。半田リフロー試験は、最高温度が260℃で10秒のベルト式リフロー試験機を用いて10回通すことで行った。また温度サイクル試験は、高温側が125℃、低温側が−60℃の温度で各30分間保持する工程を200サイクル行った。
実施の形態1で作製したものを同一のプリプレグ704'により封止した電子部品実装モジュールにおいては、半田リフロー試験においてサンプル数10個のうち、4個において再溶融した導電材(半田)705が電気絶縁性基材704と電気部品706との面着面において半田ブリッジが発生した。しかし、実施の形態2で作製したものは半田リフロー試験においてサンプル数10個のうち、半田ブリッジが発生したものはなかった。そして、他の信頼性試験においても接続抵抗の上昇も無く、初期性能との変化は見られなかった。
本発明の実施の形態1を説明する電気部品実装モジュールの一部断面図であって、(a)はチップ部品を実装した電気部品実装モジュールであり、(b)は、半導体装置を実装した電気部品実装モジュールである。 実施の形態1の電気部品実装モジュールの第1の製造方法の各工程を示す断面図である。 実施の形態1の電気部品実装モジュールの第2の製造方法の各工程を示す断面図である。 実施の形態1の電気部品実装モジュールの第3の製造方法の各工程を示す断面図である。 実施の形態1の電気部品実装モジュールであって、電気部品として半導体装置を実装したモジュールの各製造工程を示す断面図である。 本発明の実施の形態2を説明する電気部品実装モジュールの一部断面図であって、チップ部品を実装した電気部品実装モジュールである。 実施の形態2の電気部品実装モジュールの製造方法の各工程を示す断面図である。
符号の説明
101電気絶縁性基材 101a凹部
102配線パターン 103導電材
104チップ部品 104a端子電極
105半導体装置 106端子電極
201ベース層 202剥離層
203'金属層 203配線パターン
204'プリプレグ 204電気絶縁性基材
205導電材 206電気部品
206a端子電極 207レジスト層
208凸部 209シート状金属
210配線パターン形成済ベース層
211凹部 301ベース層
302剥離層 303配線パターン
303'金属層 304電気絶縁性基材
304'プリプレグ 305導電材
306電気部品 306a端子電極
309シート状金属 310配線パターン形成済ベース層
311凹部 401ベース層
402剥離層 403'金属層
404電気絶縁性基材 404' プリプレグ
405導電材 406電気部品
406a端子電極 407レジスト層
409シート状金属 410配線パターン形成済ベース層
411凹部 501ベース層
502剥離層 503配線パターン
503'金属層 504電気絶縁性基材
504'プリプレグ 505導電材
509シート状金属 510配線パターン形成済ベース層
511凹部 601電気絶縁性基材
601a凹部 602配線パターン
603導電材 604チップ部品
604a端子電極 605空隙
701ベース層702剥離層
703'金属層 703配線パターン
704'プリプレグ 704電気絶縁性基材
705導電材 706電気部品
706a端子電極 707レジスト層
708凸部 709シート状金属
710配線パターン形成済ベース層
711凹部 713空隙
714絶縁性材料 715キャビティ部

Claims (32)

  1. 端子電極を有する電気部品と、前記電気部品が実装される電気絶縁性基材とを有し、
    前記電気絶縁性基材の表面に凹部を設け、この凹部に前記電気部品に接続される配線パターンを設け、
    前記電気部品を、前記端子電極を前記凹部に対向させるとともにその実装面を前記電気絶縁性基材の基材表面に面着させた状態で、前記電気絶縁性基材に搭載し、
    前記凹部に導電材を設け、前記配線パターンと前記端子電極とを、この導電材を介して電気接続する、
    ことを特徴とする電気部品実装モジュール。
  2. 前記導電材は、熱硬化樹脂と導電性フィラとを含む導電性接着剤、または半田である、
    ことを特徴とする請求項1に記載の電気部品実装モジュール。
  3. 前記電気部品は前記端子電極を複数有しており、前記電気絶縁性基材は前記端子電極それぞれに対応する凹部を有し、これら凹部を前記端子電極それぞれに対向する位置に設け、これら凹部それぞれに前記配線パターンを設ける、
    ことを特徴とする請求項1に記載の電気部品実装モジュール。
  4. 前記凹部は、前記配線パターン表面と前記電気絶縁性基材表面との間が、前記端子電極が収納される深さを有する、
    ことを特徴とする請求項1に記載の電気部品実装モジュール。
  5. 前記凹部の深さ寸法を、3μm〜20μmにする、
    ことを特徴とする請求項4に記載の電気部品実装モジュール。
  6. 前記電気絶縁性基材は、無機フィラと熱硬化性樹脂とを含むものである、
    ことを特徴とする請求項1に記載の電気部品実装モジュール。
  7. 前記電気絶縁性基材は、ガラス繊維の織布、ガラス繊維の不織布、耐熱有機繊維の織布および耐熱有機繊維の不織布から選択された少なくとも一つの補強材とその補強材に含浸された熱硬化性樹脂組成物とを含むものである、
    ことを特徴とする請求項1に記載の電気部品実装モジュール。
  8. 前記電気部品は、フリップチップ実装された半導体チップもしくは、少なくとも電気接続部が樹脂封止された半導体パッケージである、
    ことを特徴とする請求項1に記載の電気部品実装モジュール。
  9. 前記電気絶縁性基材の電気部品搭載面を封止する電気絶縁性材料を設け、
    前記凹部に空隙を設ける、
    ことを特徴とする請求項1に記載の電子部品実装モジュール
  10. 前記空隙は、前記凹部において前記電子部品と前記導電材とにより封止されており、この状態で前記電気部品搭載面が前記電気絶縁性材料により封止されている、
    ことを特徴とする請求項9に記載の電子部品実装モジュール。
  11. 前記電気絶縁性材料は、少なくとも熱硬化性樹脂を含むものである、
    ことを特徴とする請求項9に記載の電気部品実装モジュール。
  12. 前記電気絶縁性材料は、前記電気絶縁性基材と同一の組成で構成されている、
    ことを特徴とする請求項9に記載の電気部品実装モジュール。
  13. 端子電極を有する表面実装型の電気部品が実装される電気絶縁性基材であって、
    基材表面に凹部を設け、この凹部に前記電気部品に接続される配線パターンを設ける、
    ことを特徴とする電気絶縁性基材。
  14. 端子電極を有する表面実装型の電気部品と、前記電気部品が実装される電気絶縁性基材とを有する電気部品実装モジュールの製造方法であって、
    ベース層の片面に配線パターンを有する配線パターン形成済ベース層を用意する工程と、
    前記配線パターン形成済ベース層の配線パターン形成面を、配線パターン下方のベース板領域を残して前記ベース層の層途中まで取り去る工程と、
    未硬化状態のプリプレグを用意し、このプリプレグに前記配線パターン形成済ベース層を、その配線パターン形成面が前記プリプレグに対向するように位置合せして積層する工程と、
    積層した前記プリプレグと前記配線パターン形成済ベース層とを加熱加圧することで、前記プリプレグを電気絶縁性基材にするとともに、形成した電気絶縁性基材と前記配線パターン形成済ベース層とを、前記配線パターンを前記電気絶縁性基材の厚み方向の基材途中まで押し込んだ状態で一体化させる工程と、
    前記電気絶縁性基材と一体化した前記配線パターン形成済ベース層から前記ベース層を取り去ることで、前記電気絶縁性基材表面に凹部を形成するとともにこの凹部に前記配線パターンを設ける工程と、
    前記凹部に導電材を設ける工程と、
    前記端子電極が前記凹部に対向するように、前記電気部品を前記電気絶縁性基材に搭載する工程と、
    前記導電材を硬化させて前記電気部品を前記導電材を介して前記電気絶縁性基材上に固定するとともに、前記端子電極と前記配線パターンとを前記導電材を介して電気接続する工程と、
    を含むことを特徴とする電気部品実装モジュールの製造方法。
  15. 端子電極を有する表面実装型の電子部品と、前記電気部品が実装される電気絶縁性基材とを有する電気部品実装モジュールの製造方法であって、
    ベース層の片面に配線パターンを有する配線パターン形成済ベース層を用意する工程と、
    前記配線パターン形成済ベース層の配線パターン形成面を、配線パターン下方のベース板領域を残して前記ベース層の層途中まで取り去る工程と、
    未硬化状態のプリプレグを用意し、このプリプレグに前記配線パターン形成済ベース層を、その配線パターン形成面が前記プリプレグに対向するように位置合わせして積層する工程と、
    積層した前記プリプレグと前記配線パターン形成済ベース層とを加熱加圧することで、前記プリプレグを電気絶縁性基材にするとともに、形成した電気絶縁性基材と前記配線パターン形成済ベース層とを、前記配線パターンを前記電気絶縁性基材の厚み方向の基材途中まで押し込んだ状態で一体化させる工程と、
    前記電気絶縁性基材と一体化した前記配線パターン形成済ベース層から前記ベース層を取り去ることで、前記電気絶縁性基材表面に凹部を形成するとともにこの凹部に前記配線パターンを設ける工程と、
    前記凹部に、当該凹部に空隙を設けた状態で導電材を設ける工程と、
    前記端子電極が前記凹部に対向するように、前記電気部品を前記電気絶縁性基材に搭載する工程と、
    前記空隙を維持した状態で前記導電材を硬化させて、前記電気部品を前記導電材を介して前記電気絶縁性基材上に固定するとともに、前記端子電極と前記配線パターンとを前記導電材を介して電気接続する工程と、
    前記空隙を維持した状態で前記電気絶縁性基材の電気部品搭載面を絶縁性材料により封止する工程と、
    を含むことを特徴とする電気部品実装モジュールの製造方法。
  16. 前記電気部品を前記電気絶縁性基材に搭載する工程において、前記端子電極を蓋にして前記空隙を外部から封止する、
    ことを特徴とする請求項15に記載の電子部品実装モジュールの製造方法。
  17. 前記配線パターン形成済ベース層は、
    ベース層の片面全面に金属層を有するシート状金属を設けたのち、
    前記金属層における配線パターン形成部位を除いてこの金属層の他の部位を取り去ることで形成する、
    ことを特徴とする請求項14または15に記載の電気部品実装モジュールの製造方法。
  18. 前記金属層における配線パターン形成部位を除いてこの金属層の他の部位を取り去る処理を、エッチングにより実施する、
    ことを特徴とする請求項17に記載の電気部品実装モジュールの製造方法。
  19. 前記エッチング処理として化学的エッチングを実施する、
    ことを特徴とする請求項18に記載の電気部品実装モジュールの製造方法。
  20. 前記シート状金属として、前記金属層と前記ベース層とが同種の金属から構成されものを用いる、
    ことを特徴とする請求項17に記載の電気部品実装モジュールの製造方法。
  21. 前記ベース層として電解銅箔を用いる、
    ことを特徴とする請求項14または15に記載の電気部品実装モジュールの製造方法。
  22. 前記ベース層として、アルミ,銀,ニッケルから選ばれた層を用い、前記金属層として銅層を用いる、
    ことを特徴とする請求項14または15に記載の電気部品実装モジュールの製造方法。
  23. 前記凹部を、3μm〜20μmの範囲の深さに形成する、
    ことを特徴とする請求項14または15に記載の電気部品実装モジュールの製造方法。
  24. 端子電極を有する表面実装型の電気部品と、前記電気部品が実装される電気絶縁性基材とを有する電気部品実装モジュールの製造方法であって、
    ベース層の片面に配線パターンが設けられた配線パターン形成済ベース層を用意する工程と、
    未硬化状態のプリプレグを用意し、このプリプレグに前記配線パターン形成済ベース層を、その配線パターン形成面が前記プリプレグに対向するように位置合せして積層する工程と、
    積層した前記プリプレグと前記配線パターン形成済ベース層とを加熱加圧することで、前記プリプレグを電気絶縁性基材にするとともに、形成した電気絶縁層基材と前記配線パターン形成済ベース層とを、前記配線パターンを前記電気絶縁性基材の厚み方向の基材途中まで押し込んだ状態で一体化させる工程と、
    前記電気絶縁性基材に一体化した前記配線パターン形成済ベース層から前記ベース層を取り去ることで、パターン表面が外部に露出した状態で前記電気絶縁性基材に埋設された前記配線パターンを形成する工程と、
    前記配線パターンの一部をパターン表面から除去することで、当該配線パターン上に前記電気絶縁性基材表面に連続する凹部を形成する工程と、
    前記凹部に導電材を設ける工程と、
    前記端子電極が前記凹部に対向するように、前記電気部品を電気絶縁性基材に搭載する工程と、
    前記導電材を硬化させて、前記電気部品を前記導電材を介して前記電気絶縁性基材上に固定するとともに、前記端子電極と前記配線パターンとを前記導電材を介して電気接続する工程と、
    を含むことを特徴とする電気部品実装モジュールの製造方法。
  25. 端子電極を有する表面実装型の電気部品と、前記電気部品が実装される電気絶縁性基材とを有する電気部品実装モジュールの製造方法であって、
    ベース層の片面に配線パターンが設けられた配線パターン形成済ベース層を用意する工程と、
    未硬化状態のプリプレグを用意し、このプリプレグに前記配線パターン形成済ベース層を、その配線パターン形成面が前記プリプレグに対向するように位置合せして積層する工程と、
    積層した前記プリプレグと前記配線パターン形成済ベース層とを加熱加圧することで、前記プリプレグを電気絶縁性基材にするとともに、形成した電気絶縁層基材と前記配線パターン形成済ベース層とを、前記配線パターンを前記電気絶縁性基材の厚み方向の基材途中まで押し込んだ状態で一体化させる工程と、
    前記電気絶縁性基材に一体化した前記配線パターン形成済ベース層から前記ベース層を取り去ることで、パターン表面が外部に露出した状態で前記電気絶縁性基材に埋設された前記配線パターンを形成する工程と、
    前記配線パターンの一部をパターン表面から除去することで、当該配線パターン上に前記電気絶縁性基材表面に連続する凹部を形成する工程と、
    前記凹部に、当該凹部に空隙を設けた状態で導電材を設ける工程と、
    前記端子電極が前記凹部に対向するように、前記電気部品を電気絶縁性基材に搭載する工程と、
    前記空隙を維持した状態で前記導電材を硬化させて、前記電気部品を前記導電材を介して前記電気絶縁性基材に固定するとともに、前記端子電極と前記配線パターンとを前記導電材を介して電気接続する工程と、
    前記空隙を維持した状態で前記電気絶縁性基材の電気部品搭載面を絶縁性材料により封止する工程と、
    を含むことを特徴とする電気部品実装モジュールの製造方法。
  26. 前記電気部品を前記電気絶縁性基材に搭載する工程において、前記端子電極を蓋にして、前記空隙を外部から封止する、
    ことを特徴とする請求項25に記載の電子部品実装モジュールの製造方法。
  27. 前記ベース層として、樹脂フィルム材からなるベース層を用いる、
    ことを特徴とする請求項24または25に記載の電気部品実装モジュールの製造方法。
  28. 前記配線パターンの表面をエッチングにより除去する、
    ことを特徴とする請求項24または25に記載の電気部品実装モジュールの製造方法。
  29. 前記配線パターンの表面をエッチングする際の前処理として、前記配線パターン表面を除く前記電気絶縁性基材の配線パターン形成面にレジスト層を形成し、
    前記配線パターン表面をエッチングした際の後処理として、前記レジスト層を除去する、
    ことを特徴とする請求項28に記載の電気部品実装モジュールの製造方法。
  30. 前記エッチング処理として化学的エッチングを実施する、
    ことを特徴とする請求項28または29に記載の電気部品実装モジュールの製造方法。
  31. 端子電極を有する表面実装型の電気部品が実装される電気絶縁性基材の製造方法であって、
    ベース層の片面に配線パターンを有する配線パターン形成済ベース層を用意する工程と、
    前記配線パターン形成済ベース層の配線パターン形成面を、配線パターン下方のベース板領域を残して前記ベース層の層途中まで取り去る工程と、
    未硬化状態のプリプレグを用意し、このプリプレグに前記配線パターン形成済ベース層を、その配線パターン形成面が前記プリプレグに対向するように位置合せして積層する工程と、
    積層した前記プリプレグと前記配線パターン形成済ベース層とを加熱加圧することで、前記プリプレグを電気絶縁性基材にするとともに、形成した電気絶縁性基材と前記配線パターン形成済ベース層とを、前記配線パターンを前記電気絶縁性基材の厚み方向基材途中まで押し込んだ状態で一体化させる工程と、
    前記電気絶縁性基材に一体化した前記配線パターン形成済ベース層から、基材厚みの途中位置に前記配線パターンを残存させた状態で前記ベース層を取り去ることで、前記電気絶縁性基材表面に凹部を形成するとともにこの凹部に前記配線パターンを設ける工程と、
    を含むことを特徴とする電気絶縁性基材の製造方法。
  32. 端子電極を有する表面実装型の電気部品が実装される電気絶縁性基材の製造方法法であって、
    ベース層の片面に配線パターンが設けられた配線パターン形成済ベース層を用意する工程と、
    未硬化状態のプリプレグを用意し、このプリプレグに前記配線パターン形成済ベース層を、その配線パターン形成面が前記プリプレグに対向するように位置合せして積層する工程と、
    積層した前記プリプレグと前記配線パターン形成済ベース層とを加熱加圧することで、前記プリプレグを電気絶縁性基材にするとともに、形成した電気絶縁層基材と前記配線パターン形成済ベース層とを、前記配線パターンを前記電気絶縁性基材の厚み方向の基材途中まで押し込んだ状態で一体化させる工程と、
    前記電気絶縁性基材に一体化した前記配線パターン形成済ベース層から前記ベース層を取り去ることで、パターン表面が外部に露出した状態で前記電気絶縁性基材に埋設された前記配線パターンを形成する工程と、
    前記配線パターンの一部をパターン表面から除去することで、当該配線パターン上に前記電気絶縁性基材表面に連続する凹部を形成する工程と
    を含むことを特徴とする電気絶縁性基材の製造方法。
JP2004169680A 2003-07-16 2004-06-08 電気部品実装モジュールおよびその製造方法 Pending JP2005051204A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004169680A JP2005051204A (ja) 2003-07-16 2004-06-08 電気部品実装モジュールおよびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003275377 2003-07-16
JP2004169680A JP2005051204A (ja) 2003-07-16 2004-06-08 電気部品実装モジュールおよびその製造方法

Publications (1)

Publication Number Publication Date
JP2005051204A true JP2005051204A (ja) 2005-02-24

Family

ID=34277550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004169680A Pending JP2005051204A (ja) 2003-07-16 2004-06-08 電気部品実装モジュールおよびその製造方法

Country Status (1)

Country Link
JP (1) JP2005051204A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007110092A (ja) * 2005-09-15 2007-04-26 Fujifilm Corp 配線基板及びその製造方法、並びに液体吐出ヘッド
JP2009117496A (ja) * 2007-11-05 2009-05-28 Panasonic Corp 実装構造体およびその製造方法
JP2011003705A (ja) * 2009-06-18 2011-01-06 Sony Corp 半導体パッケージの製造方法及びその基板の製造方法
WO2011078214A1 (ja) * 2009-12-24 2011-06-30 古河電気工業株式会社 射出成形基板と実装部品との取付構造
JP2013058728A (ja) * 2011-08-17 2013-03-28 Daisho Denshi Co Ltd プリント配線板およびその製造方法
WO2023239162A1 (ko) * 2022-06-07 2023-12-14 엘지이노텍 주식회사 회로 기판 및 이를 포함하는 반도체 패키지

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007110092A (ja) * 2005-09-15 2007-04-26 Fujifilm Corp 配線基板及びその製造方法、並びに液体吐出ヘッド
JP2009117496A (ja) * 2007-11-05 2009-05-28 Panasonic Corp 実装構造体およびその製造方法
JP2011003705A (ja) * 2009-06-18 2011-01-06 Sony Corp 半導体パッケージの製造方法及びその基板の製造方法
WO2011078214A1 (ja) * 2009-12-24 2011-06-30 古河電気工業株式会社 射出成形基板と実装部品との取付構造
US9078358B2 (en) 2009-12-24 2015-07-07 Furukawa Electric Co., Ltd. Assembly structure for injection molded substrate and for mounting component
JP2013058728A (ja) * 2011-08-17 2013-03-28 Daisho Denshi Co Ltd プリント配線板およびその製造方法
WO2023239162A1 (ko) * 2022-06-07 2023-12-14 엘지이노텍 주식회사 회로 기판 및 이를 포함하는 반도체 패키지

Similar Documents

Publication Publication Date Title
JP4272693B2 (ja) 部品内蔵モジュールの製造方法
JP3375555B2 (ja) 回路部品内蔵モジュールおよびその製造方法
US6489685B2 (en) Component built-in module and method of manufacturing the same
JP4279893B2 (ja) 回路部品内蔵モジュールの製造方法
JP3553043B2 (ja) 部品内蔵モジュールとその製造方法
JP2003197849A (ja) 部品内蔵モジュールとその製造方法
JP2002170921A (ja) 半導体装置およびその製造方法
JP2002134653A (ja) 半導体装置とその製造方法
TWI461118B (zh) 具有電子零件之配線基板及其製造方法
JP2003188340A (ja) 部品内蔵モジュールとその製造方法
JP4606685B2 (ja) 回路部品内蔵モジュール
JP4227482B2 (ja) 部品内蔵モジュールの製造方法
JP2001308470A (ja) 回路部品モジュール及びその製造方法
JP2002246542A (ja) パワーモジュール及びその製造方法
JP4503349B2 (ja) 電子部品実装体及びその製造方法
JP2011233915A (ja) 複合配線基板およびその製造方法、ならびに電子部品の実装体および製造方法
JP2005051204A (ja) 電気部品実装モジュールおよびその製造方法
JP2001057408A (ja) パワーモジュールとその製造方法
JP2007194516A (ja) 複合配線基板およびその製造方法、ならびに電子部品の実装体および製造方法
JP2004055967A (ja) 電子部品内蔵基板の製造方法
JP4417294B2 (ja) プローブカード用部品内蔵基板とその製造方法
JP2003298213A (ja) プリント配線板とその製造方法
JP2004022610A (ja) インターポーザ、半導体実装体、インターポーザの製造方法および半導体実装体の製造方法
JP2003060346A (ja) 回路基板の製造方法および回路基板とそれを用いた電力変換モジュール
JP2004039934A (ja) 回路部品実装体およびその製造方法